1
|
Mourkogianni E, Karavasili K, Xanthopoulos A, Enake MK, Menounou L, Papadimitriou E. Pleiotrophin Activates cMet- and mTORC1-Dependent Protein Synthesis through PTPRZ1-The Role of α νβ 3 Integrin. Int J Mol Sci 2024; 25:10839. [PMID: 39409168 PMCID: PMC11477150 DOI: 10.3390/ijms251910839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Pleiotrophin (PTN) is a secreted factor that regulates endothelial cell migration through protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) and αvβ3 integrin. Genetic deletion of Ptprz1 results in enhanced endothelial cell proliferation and migration, due to the decreased expression of β3 integrin and the subsequent, enhanced cMet phosphorylation. In the present study, we investigated the effect of PTN and PTPRZ1 on activating the mTORC1 kinase and protein synthesis and identified part of the implicated signaling pathway in endothelial cells. PTN or genetic deletion of Ptprz1 activates protein synthesis in a mTORC1-dependent manner, as shown by the enhanced phosphorylation of the mTORC1-downstream targets ribosomal protein S6 kinase 1 (SK61) and 4E-binding protein 1 (4EBP1) and the upregulation of HIF-1α. The cMet tyrosine kinase inhibitor crizotinib abolishes the stimulatory effects of PTN or PTPRZ1 deletion on mTORC1 activation and protein synthesis, suggesting that mTORC1 activation is downstream of cMet. The mTORC1 inhibitor rapamycin abolishes the stimulatory effect of PTN or PTPRZ1 deletion on endothelial cell migration, suggesting that mTORC1 is involved in the PTN/PTPRZ1-dependent cell migration. The αvβ3 integrin blocking antibody LM609 and the peptide PTN112-136, both known to bind to ανβ3 and inhibit PTN-induced endothelial cell migration, increase cMet phosphorylation and activate mTORC1, suggesting that cMet and mTORC1 activation are required but are not sufficient to stimulate cell migration. Overall, our data highlight novel aspects of the signaling pathway downstream of the PTN/PTPRZ1 axis that regulates endothelial cell functions.
Collapse
Affiliation(s)
| | | | | | | | | | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (E.M.); (K.K.); (A.X.); (M.-K.E.); (L.M.)
| |
Collapse
|
2
|
Pinelli R, Ferrucci M, Berti C, Biagioni F, Scaffidi E, Bumah VV, Busceti CL, Lenzi P, Lazzeri G, Fornai F. The Essential Role of Light-Induced Autophagy in the Inner Choroid/Outer Retinal Neurovascular Unit in Baseline Conditions and Degeneration. Int J Mol Sci 2023; 24:ijms24108979. [PMID: 37240326 DOI: 10.3390/ijms24108979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The present article discusses the role of light in altering autophagy, both within the outer retina (retinal pigment epithelium, RPE, and the outer segment of photoreceptors) and the inner choroid (Bruch's membrane, BM, endothelial cells and the pericytes of choriocapillaris, CC). Here autophagy is needed to maintain the high metabolic requirements and to provide the specific physiological activity sub-serving the process of vision. Activation or inhibition of autophagy within RPE strongly depends on light exposure and it is concomitant with activation or inhibition of the outer segment of the photoreceptors. This also recruits CC, which provides blood flow and metabolic substrates. Thus, the inner choroid and outer retina are mutually dependent and their activity is orchestrated by light exposure in order to cope with metabolic demand. This is tuned by the autophagy status, which works as a sort of pivot in the cross-talk within the inner choroid/outer retina neurovascular unit. In degenerative conditions, and mostly during age-related macular degeneration (AMD), autophagy dysfunction occurs in this area to induce cell loss and extracellular aggregates. Therefore, a detailed analysis of the autophagy status encompassing CC, RPE and interposed BM is key to understanding the fine anatomy and altered biochemistry which underlie the onset and progression of AMD.
Collapse
Affiliation(s)
- Roberto Pinelli
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Caterina Berti
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| | - Elena Scaffidi
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Violet Vakunseth Bumah
- Department of Chemistry and Biochemistry College of Sciences San Diego State University, San Diego, CA 92182, USA
- Department of Chemistry and Physics, University of Tennessee, Knoxville, TN 37996, USA
| | - Carla L Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| | - Paola Lenzi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| |
Collapse
|
3
|
Zhao Y, Ma C, Qiu Q, Huang X, Qiaolongbatu X, Qu H, Wu J, Fan G, Wu Z. Exploring the components and mechanisms of Shen-qi-wang-mo granule in the treatment of retinal vein occlusion by UPLC-Triple TOF MS/MS and network pharmacology. Sci Rep 2023; 13:5330. [PMID: 37005436 PMCID: PMC10066998 DOI: 10.1038/s41598-023-32472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
This study aimed to explore the substance basis and mechanisms of Shen-qi-wang-mo Granule (SQWMG), a traditional Chinese medicine prescription that had been clinically utilized to treat retinal vein occlusion (RVO) for 38 years. Components in SQWMG were analyzed by UPLC-Triple-TOF/MS and a total of 63 components were identified with ganoderic acids (GA) being the largest proportion. Potential targets of active components were retrieved from SwissTargetPrediction. RVO-related targets were acquired from related disease databases. Core targets of SQWMG against RVO were acquired by overlapping the above targets. The 66 components (including 5 isomers) and 169 targets were obtained and concluded into a component-target network. Together with biological enrichment analysis of targets, it revealed the crucial role of the "PI3K-Akt signaling pathway", "MAPK signaling pathway" and their downstream factor iNOS and TNF-α. The 20 key targets of SQWMG in treating RVO were acquired from the network and pathway analysis. The effects of SQWMG on targets and pathways were validated by molecular docking based on AutoDock Vina and qPCR experiment. The molecular docking showed great affinity for these components and targets, especially on ganoderic acids (GA) and alisols (AS), which were both triterpenoids and qPCR exhibited remarkably reduced inflammatory factor gene expression through regulation of these two pathways. Finally, the key components were also identified from rat serum after treatment of SQWMG.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Cui Ma
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Xucong Huang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
- School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xijier Qiaolongbatu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Han Qu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiaqi Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China.
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
4
|
Essential Role of Multi-Omics Approaches in the Study of Retinal Vascular Diseases. Cells 2022; 12:cells12010103. [PMID: 36611897 PMCID: PMC9818611 DOI: 10.3390/cells12010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Retinal vascular disease is a highly prevalent vision-threatening ocular disease in the global population; however, its exact mechanism remains unclear. The expansion of omics technologies has revolutionized a new medical research methodology that combines multiple omics data derived from the same patients to generate multi-dimensional and multi-evidence-supported holistic inferences, providing unprecedented opportunities to elucidate the information flow of complex multi-factorial diseases. In this review, we summarize the applications of multi-omics technology to further elucidate the pathogenesis and complex molecular mechanisms underlying retinal vascular diseases. Moreover, we proposed multi-omics-based biomarker and therapeutic strategy discovery methodologies to optimize clinical and basic medicinal research approaches to retinal vascular diseases. Finally, the opportunities, current challenges, and future prospects of multi-omics analyses in retinal vascular disease studies are discussed in detail.
Collapse
|
5
|
Sghaier R, Perus M, Cornebise C, Courtaut F, Scagliarini A, Olmiere C, Aires V, Hermetet F, Delmas D. Resvega, a Nutraceutical Preparation, Affects NFκB Pathway and Prolongs the Anti-VEGF Effect of Bevacizumab in Undifferentiated ARPE-19 Retina Cells. Int J Mol Sci 2022; 23:ijms231911704. [PMID: 36233006 PMCID: PMC9569823 DOI: 10.3390/ijms231911704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is an irreversible chronic degenerative pathology that affects the retina. Despite therapeutic advances thanks to the use of anti-vascular endothelial growth factor (VEGF) agents, resistance mechanisms have been found to accentuate the visual deficit. In the present study, we explored whether a nutraceutical formulation composed of omega-3 fatty acids and resveratrol, called Resvega®, was able to disrupt VEGF-A secretion in human ARPE-19 retina cells. We found that Resvega® inhibits VEGF-A secretion through decreases in both the PI3K-AKT-mTOR and NFκB signaling pathways. In NFκB signaling pathways, Resvega® inhibits the phosphorylation of the inhibitor of NFκB, IκB, which can bind NFκB dimers and sequester them in the cytoplasm. Thus, the NFκB subunits cannot migrate to the nucleus where they normally bind and stimulate the transcription of target genes such as VEGF-A. The IκB kinase complex (IKK) is also affected by Resvega® since the nutraceutical formulation decreases both IKKα and IKKβ subunits and the IKKγ subunit which is required for the stimulation of IKK. Very interestingly, we highlight that Resvega® could prolong the anti-angiogenic effect of Avastin®, which is an anti-VEGF agent typically used in clinical practice. Our results suggest that Resvega® may have potential interest as nutritional supplementation against AMD.
Collapse
Affiliation(s)
- Randa Sghaier
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Maude Perus
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Clarisse Cornebise
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Flavie Courtaut
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Alessandra Scagliarini
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Céline Olmiere
- Laboratoires Théa, 12 Rue Louis-Blériot, 63000 Clermont-Ferrand, France
| | - Virginie Aires
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - François Hermetet
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Dominique Delmas
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
- Centre Anticancéreux Georges François Leclerc Center, 21000 Dijon, France
- Correspondence: ; Tel.: +33-380-39-32-26
| |
Collapse
|
6
|
Wang Y, Fung NSK, Lam WC, Lo ACY. mTOR Signalling Pathway: A Potential Therapeutic Target for Ocular Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11071304. [PMID: 35883796 PMCID: PMC9311918 DOI: 10.3390/antiox11071304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Recent advances in the research of the mammalian target of the rapamycin (mTOR) signalling pathway demonstrated that mTOR is a robust therapeutic target for ocular degenerative diseases, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. Although the exact mechanisms of individual ocular degenerative diseases are unclear, they share several common pathological processes, increased and prolonged oxidative stress in particular, which leads to functional and morphological impairment in photoreceptors, retinal ganglion cells (RGCs), or retinal pigment epithelium (RPE). mTOR not only modulates oxidative stress but is also affected by reactive oxygen species (ROS) activation. It is essential to understand the complicated relationship between the mTOR pathway and oxidative stress before its application in the treatment of retinal degeneration. Indeed, the substantial role of mTOR-mediated autophagy in the pathogenies of ocular degenerative diseases should be noted. In reviewing the latest studies, this article summarised the application of rapamycin, an mTOR signalling pathway inhibitor, in different retinal disease models, providing insight into the mechanism of rapamycin in the treatment of retinal neurodegeneration under oxidative stress. Besides basic research, this review also summarised and updated the results of the latest clinical trials of rapamycin in ocular neurodegenerative diseases. In combining the current basic and clinical research results, we provided a more complete picture of mTOR as a potential therapeutic target for ocular neurodegenerative diseases.
Collapse
|
7
|
mTOR inhibition as a novel gene therapeutic strategy for diabetic retinopathy. PLoS One 2022; 17:e0269951. [PMID: 35709240 PMCID: PMC9202865 DOI: 10.1371/journal.pone.0269951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
In addition to laser photocoagulation, therapeutic interventions for diabetic retinopathy (DR) have heretofore consisted of anti-VEGF drugs, which, besides drawbacks inherent to the treatments themselves, are limited in scope and may not fully address the condition’s complex pathophysiology. This is because DR is a multifactorial condition, meaning a gene therapy focused on a target with broader effects, such as the mechanistic target of rapamycin (mTOR), may prove to be the solution in overcoming these concerns. Having previously demonstrated the potential of a mTOR-inhibiting shRNA packaged in a recombinant adeno-associated virus to address a variety of angiogenic retinal diseases, here we explore the effects of rAAV2-shmTOR-SD in a streptozotocin-induced diabetic mouse model. Delivered via intravitreal injection, the therapeutic efficacy of the virus vector upon early DR processes was examined. rAAV2-shmTOR-SD effectively transduced mouse retinas and therein downregulated mTOR expression, which was elevated in sham-treated and control shRNA-injected (rAAV2-shCon-SD) control groups. mTOR inhibition additionally led to marked reductions in pericyte loss, acellular capillary formation, vascular permeability, and retinal cell layer thinning, processes that contribute to DR progression. Immunohistochemistry showed that rAAV2-shmTOR-SD decreased ganglion cell loss and pathogenic Müller cell activation and proliferation, while also having anti-apoptotic activity, with these effects suggesting the therapeutic virus vector may be neuroprotective. Taken together, these results build upon our previous work to demonstrate the broad ability of rAAV2-shmTOR-SD to address aspects of DR pathophysiology further evidencing its potential as a human gene therapeutic strategy for DR.
Collapse
|
8
|
Tang Y, Cheng Y, Wang S, Wang Y, Liu P, Wu H. Review: The Development of Risk Factors and Cytokines in Retinal Vein Occlusion. Front Med (Lausanne) 2022; 9:910600. [PMID: 35783660 PMCID: PMC9240302 DOI: 10.3389/fmed.2022.910600] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
Retinal vein occlusion (RVO) is the second most prevalent retinal disease. Despite this, the pathogenic mechanisms and risk factors are not entirely clear. In this article, we review recent publications on the classification, pathogenesis, risk factors, ischemic changes, cytokines, and vital complications of RVO. Risk factors and cytokines are important for exploring the mechanisms and new treatment targets. Furthermore, risk factors are interrelated, making RVO mechanisms more complex. Cytokines act as powerful mediators of pathological conditions, such as inflammation, neovascularization, and macular edema. This review aims to summarize the updated knowledge on risk factors, cytokines of RVO and signaling in order to provide valuable insight on managing the disease.
Collapse
Affiliation(s)
- Yi Tang
- Eye Center of Second Hospital, Jilin University, Changchun, China
| | - Yan Cheng
- Eye Center of Second Hospital, Jilin University, Changchun, China
| | - Shuo Wang
- Eye Center of Second Hospital, Jilin University, Changchun, China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Pengjia Liu
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Hong Wu
- Eye Center of Second Hospital, Jilin University, Changchun, China
- *Correspondence: Hong Wu
| |
Collapse
|
9
|
Asani B, Siedlecki J, Wertheimer C, Liegl R, Wolf A, Ohlmann A, Priglinger S, Priglinger C. Anti-angiogenic properties of rapamycin on human retinal pericytes in an in vitro model of neovascular AMD via inhibition of the mTOR pathway. BMC Ophthalmol 2022; 22:138. [PMID: 35337287 PMCID: PMC8957126 DOI: 10.1186/s12886-022-02334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Choroidal neovascularizations (CNV) are partially stabilized through a coverage of pericytes leading to a partial anti-VEGF resistence. Drugs licensed for neovascular AMD (nAMD) do not take this mechanical and growth factor-driven CNV stability into account. The purpose of this work was to see if inhibiting the mammalian target of rapamycin (mTOR) may successfully block angiogenic cellular pathways in primary human retinal pericytes in an in vitro model of nAMD. METHODS The mTOR inhibitor rapamycin was used to treat human retinal pericytes (HRP) at doses ranging from 0.005 to 15 g/ml. A modified metabolism-based XTT-Assay was used to assess toxicity and anti-proliferative effects. A scratch wound experiment showed the effects on migration. On Cultrex basement membrane gels, the influence of rapamycin on the development of endothelial cell capillary-like structures by human umbilical vein vascular endothelial cells (HUVEC) in the absence and presence of pericytes was investigated. RESULTS Rapamycin showed no signs of toxicity within its range of solubility. The drug showed dose dependent anti-proliferative activity and inhibited migration into the scratch wound. Endothelial cell tube formation in a HUVEC monoculture was effectively inhibited at 45%. A co-culture of HUVEC with pericytes on Cultrex induced endothelial tube stabilization but was disrupted by the addition of rapamycin leading to degradation of 94% of the tubes. CONCLUSIONS Rapamycin allows for an efficient modulation of aspects of angiogenesis in pericytes via mTOR-modulation in vitro. Further studies are needed to elucidate whether rapamycin may have an impact on CNV in nAMD in vivo.
Collapse
Affiliation(s)
- Ben Asani
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, 80336, Munich, Germany.
| | - Jakob Siedlecki
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, 80336, Munich, Germany
| | | | - Raffael Liegl
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, 80336, Munich, Germany
| | - Armin Wolf
- Department of Ophthalmology, University Clinic Ulm, Ulm, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, 80336, Munich, Germany
| | - Siegfried Priglinger
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, 80336, Munich, Germany
| | - Claudia Priglinger
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, 80336, Munich, Germany
| |
Collapse
|
10
|
Chang KC, Liu PF, Chang CH, Lin YC, Chen YJ, Shu CW. The interplay of autophagy and oxidative stress in the pathogenesis and therapy of retinal degenerative diseases. Cell Biosci 2022; 12:1. [PMID: 34980273 PMCID: PMC8725349 DOI: 10.1186/s13578-021-00736-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress is mainly caused by intracellular reactive oxygen species (ROS) production, which is highly associated with normal physiological homeostasis and the pathogenesis of diseases, particularly ocular diseases. Autophagy is a self-clearance pathway that removes oxidized cellular components and regulates cellular ROS levels. ROS can modulate autophagy activity through transcriptional and posttranslational mechanisms. Autophagy further triggers transcription factor activation and degrades impaired organelles and proteins to eliminate excessive ROS in cells. Thus, autophagy may play an antioxidant role in protecting ocular cells from oxidative stress. Nevertheless, excessive autophagy may cause autophagic cell death. In this review, we summarize the mechanisms of interaction between ROS and autophagy and their roles in the pathogenesis of several ocular diseases, including glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), and optic nerve atrophy, which are major causes of blindness. The autophagy modulators used to treat ocular diseases are further discussed. The findings of the studies reviewed here might shed light on the development and use of autophagy modulators for the future treatment of ocular diseases.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology and Neurobiology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hsuan Chang
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, No. 70, Lianhai Rd., Gushan Dist., Kaohsiung, 80424, Taiwan
| | - Ying-Cheng Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yen-Ju Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, No. 70, Lianhai Rd., Gushan Dist., Kaohsiung, 80424, Taiwan.
| |
Collapse
|
11
|
Safaeian L, Vaseghi G, Mirian M, Firoozabadi MD. The effect of pramlintide, an antidiabetic amylin analogue, on angiogenesis-related markers in vitro. Res Pharm Sci 2020; 15:323-330. [PMID: 33312210 PMCID: PMC7714014 DOI: 10.4103/1735-5362.293510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/15/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022] Open
Abstract
Background and purpose: Irregularities of angiogenesis may participate in the pathogenesis of diabetes complications. Pramlintide is an amylin analogue administered for the treatment of type 1 and type 2 diabetes. The present investigation aimed at surveying the effect of pramlintide on angiogenesis-related markers in human umbilical vein endothelial cells (HUVECs). Experimental approach: The proliferation of cells was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) method. The effect of pramlintide on migration was estimated by Transwell® assay. in vitro evaluation of angiogenesis was performed by tube formation assay. The secretion of vascular endothelial growth factor (VEGF) to the supernatant of HUVECs was measured by an enzyme- linked immunosorbent assay (ELISA) kit. All experiments were performed in triplicate. Findings / Results: Pramlintide exhibited no inhibitory effect on HUVECs proliferation. It significantly increased cell migration at the concentration of 1 μg/mL. Pramlintide (1 μg/mL) also enhanced average tubules length, size, and the mean number of junctions. However, there was not any significant change in VEGF release from HUVECs. Conclusion and implications: Findings of this research revealed the effect of pramlintide on angiogenesis- related markers via enhancing migration and tubulogenesis in vitro, suggesting a worthwhile proposition for further clinical researches on improving vascular complications and healing of diabetic wounds.
Collapse
Affiliation(s)
- Leila Safaeian
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mehdi Dehghani Firoozabadi
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
12
|
Yao A, Wijngaarden P. Metabolic pathways in context:
mTOR
signalling in the retina and optic nerve ‐ A review. Clin Exp Ophthalmol 2020; 48:1072-1084. [DOI: 10.1111/ceo.13819] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Anthony Yao
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital East Melbourne, Victoria Australia
| | - Peter Wijngaarden
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital East Melbourne, Victoria Australia
- Ophthalmology, Department of Surgery University of Melbourne Melbourne, Victoria Australia
| |
Collapse
|
13
|
Lee SHS, Chang H, Kim JH, Kim HJ, Choi JS, Chung S, Woo HN, Lee KJ, Park K, Lee JY, Lee H. Inhibition of mTOR via an AAV-Delivered shRNA Tested in a Rat OIR Model as a Potential Antiangiogenic Gene Therapy. Invest Ophthalmol Vis Sci 2020; 61:45. [PMID: 32106292 PMCID: PMC7329967 DOI: 10.1167/iovs.61.2.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose Recent studies have shown that inhibitors of the mechanistic target of rapamycin (mTOR) play important roles in proliferating endothelial cells within the retinal vasculature. Here we explore the effects of inhibiting mTOR as a potential gene therapeutic against pathological retinal angiogenesis in a rat model of oxygen-induced retinopathy (OIR). Methods Sprague-Dawley pups were used to generate the OIR model, with a recombinant adeno-associated virus expressing an shRNA (rAAV2-shmTOR-GFP) being administered via intravitreal injection on returning the rats to normoxia, with appropriate controls. Immunohistochemistry and TUNEL assays, as well as fluorescein angiography, were performed on transverse retinal sections and flat mounts, respectively, to determine the in vivo effects of mTOR inhibition. Results Compared with normal control rats, as well as OIR model animals that were either untreated (20.95 ± 6.85), mock-treated (14.50 ± 2.47), or injected with a control short hairpin RNA (shRNA)-containing virus vector (16.64 ± 4.92), rAAV2-shmTOR-GFP (4.28 ± 2.86, P = 0.00103) treatment resulted in dramatically reduced neovascularization as a percentage of total retinal area. These results mirrored quantifications of retinal avascular area and vessel tortuosity, with rAAV2-shmTOR-GFP exhibiting significantly greater therapeutic efficacy than the other treatments. The virus vector was additionally shown to reduce inflammatory cell infiltration into retinal tissue and possess antiapoptotic properties, both these processes having been implicated in the pathophysiology of angiogenic retinal disorders. Conclusions Taken together, these results demonstrate the strong promise of rAAV2-shmTOR-GFP as an effective and convenient gene therapy for the treatment of neovascular retinal diseases.
Collapse
|
14
|
Yang SF, Chen YS, Chien HW, Wang K, Lin CL, Chiou HL, Lee CY, Chen PN, Hsieh YH. Melatonin attenuates epidermal growth factor-induced cathepsin S expression in ARPE-19 cells: Implications for proliferative vitreoretinopathy. J Pineal Res 2020; 68:e12615. [PMID: 31605630 DOI: 10.1111/jpi.12615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
Abnormal proliferation and motility of retinal pigment epithelial cells leads to proliferative vitreoretinopathy (PVR). Melatonin is a known effective antitumour and anti-invasive agent, but whether it affects the formation and underlying mechanisms of PVR remains unclear. In this study, the results of the MTT assay, colony formation and propidium iodide (PI) staining with flow cytometry revealed that melatonin dose dependently inhibited epidermal growth factor (EGF)-induced proliferation of human ARPE-19 cells. Furthermore, melatonin reduced EGF-induced motility by suppressing cathepsin S (CTSS) expression. Pretreatment with ZFL (a CTSS inhibitor) or overexpression of CTSS (pCMV-CTSS) significantly inhibited EGF-induced cell motility when combined with melatonin. Epidermal growth factor induced the phosphorylation of AKT(S473)/mTOR (S2448) and transcription factor (c-Jun/Sp1) signaling pathways. Pretreatment of LY294002 (a PI3K inhibitor) or rapamycin (an mTOR inhibitor) markedly reduced EGF-induced motility and p-AKT/p-mTOR/c-Jun/Sp1 expression when combined with melatonin. Taken together, these data indicate that melatonin inhibited EGF-induced proliferation and motility of human ARPE-19 cells by activating the AKT/mTOR pathway, which is dependent on CTSS modulation of c-Jun/Sp1 signalling. Melatonin may be a promising therapeutic drug against PVR.
Collapse
Affiliation(s)
- Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yong-Syuan Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiang-Wen Chien
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Departments of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
| | - Kai Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Departments of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
| | - Chia-Liang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Ling Chiou
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Yi Lee
- Department of Ophthalmology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Clinical laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
15
|
Wu Y, Wei Q, Yu J. The cGAS/STING pathway: a sensor of senescence-associated DNA damage and trigger of inflammation in early age-related macular degeneration. Clin Interv Aging 2019; 14:1277-1283. [PMID: 31371933 PMCID: PMC6628971 DOI: 10.2147/cia.s200637] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness among the elderly. Considering the relatively limited effect of therapy on early AMD, it is important to focus on the pathogenesis of AMD, especially early AMD. Ageing is one of the strongest risk factors for AMD, and analysis of the impact of ageing on AMD development is valuable. Among all the ageing hallmarks, increased DNA damage accumulation is regarded as the beginning of cellular senescence and is related to abnormal expression of inflammatory cytokines, which is called the senescence-associated secretory phenotype (SASP). The exact pathway for DNA damage that triggers senescence-associated hallmarks is poorly understood. Recently, mounting evidence has shown that the cGAS/STING pathway is an important DNA sensor related to proinflammatory factor secretion and is associated with another hallmark of ageing, SASP. Thus, we hypothesized that the cGAS/STING pathway is a vital signalling pathway for early AMD development and that inhibition of STING might be a potential therapeutic strategy for AMD cases.
Collapse
Affiliation(s)
- Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China.,Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Qingquan Wei
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China.,Department of Ophthalmology, Ninghai First Hospital, Zhejiang, People's Republic of China
| |
Collapse
|
16
|
Lee SHS, Chang H, Kim HJ, Choi JS, Kim J, Kim JH, Woo HN, Nah SK, Jung SJ, Lee JY, Park K, Park TK, Lee H. Effects of Stuffer DNA on the Suppression of Choroidal Neovascularization by a rAAV Expressing a mTOR-Inhibiting shRNA. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:171-179. [PMID: 31380463 PMCID: PMC6661460 DOI: 10.1016/j.omtm.2019.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/21/2019] [Indexed: 11/19/2022]
Abstract
Choroidal neovascularization (CNV) is the defining characteristic of the wet subtype of age-related macular degeneration (AMD), which is a rapidly growing global health problem. Previously, we had demonstrated the therapeutic potential of gene therapy against CNV using short hairpin RNA (shRNA) delivered via recombinant adeno-associated virus (rAAV), which abrogates mammalian-to-mechanistic (mTOR) activity in a novel manner by simultaneously inhibiting both mTOR complexes. Both the target and use of gene therapy represent a novel treatment modality against AMD. Here, the xenogeneic GFP gene used as a reporter in previous studies was removed from the virus vector to further develop the therapeutic for clinical trials. Instead, a stuffer DNA derived from the 3′ UTR of the human UBE3A gene was used to ensure optimal viral genome size for efficient rAAV assembly. The virus vector containing the stuffer DNA, rAAV2-shmTOR-SD, positively compares to one encoding the shRNA and a GFP expression cassette in terms of reducing CNV in a laser-induced mouse model, as determined by fundus fluorescein angiography. These results were confirmed via immunohistochemistry using anti-CD31, while a TUNEL assay showed that rAAV2-shmTOR-SD possesses anti-apoptotic properties as well. The qualities exhibited by rAAV2-shmTOR-SD demonstrate its potential as a human gene therapeutic for the treatment of wet AMD.
Collapse
Affiliation(s)
- Steven Hyun Seung Lee
- Department of Microbiology, College of Medicine, University of Ulsan, Seoul 05505, Korea
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul 05505, Korea
| | - HeeSoon Chang
- CuroGene Life Sciences Co., Ltd., Cheongju 28578, Korea
| | - Hee Jong Kim
- CuroGene Life Sciences Co., Ltd., Cheongju 28578, Korea
| | - Jun-Sub Choi
- CuroGene Life Sciences Co., Ltd., Cheongju 28578, Korea
| | - Jin Kim
- CuroGene Life Sciences Co., Ltd., Cheongju 28578, Korea
| | - Ji Hyun Kim
- Department of Microbiology, College of Medicine, University of Ulsan, Seoul 05505, Korea
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul 05505, Korea
| | - Ha-Na Woo
- Department of Microbiology, College of Medicine, University of Ulsan, Seoul 05505, Korea
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul 05505, Korea
| | - Seung Kwan Nah
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Korea
| | - Sang Joon Jung
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Korea
| | - Joo Yong Lee
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul 05505, Korea
- Department of Ophthalmology, University of Ulsan, College of Medicine, Seoul 05505, Korea
- Asan Medical Center, University of Ulsan, College of Medicine, Seoul 05505, Korea
| | - Keerang Park
- Department of Biopharmacy, Chungbuk Health & Science University, Cheongju 28150, Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Korea
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- Corresponding author: Tae Kwann Park, MD, PhD, Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, 170, Jomaru-ro, Wonmi-gu, Bucheon 14584, Korea.
| | - Heuiran Lee
- Department of Microbiology, College of Medicine, University of Ulsan, Seoul 05505, Korea
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul 05505, Korea
- Corresponding author: Heuiran Lee, PhD, Department of Microbiology and Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, 88 Olympic-ro 43-gil Songpa-gu, Seoul 05505, Korea.
| |
Collapse
|
17
|
Whitehead M, Wickremasinghe S, Osborne A, Van Wijngaarden P, Martin KR. Diabetic retinopathy: a complex pathophysiology requiring novel therapeutic strategies. Expert Opin Biol Ther 2018; 18:1257-1270. [PMID: 30408422 PMCID: PMC6299358 DOI: 10.1080/14712598.2018.1545836] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Diabetic retinopathy (DR) is the leading cause of vision loss in the working age population of the developed world. DR encompasses a complex pathology, and one that is reflected in the variety of currently available treatments, which include laser photocoagulation, glucocorticoids, vitrectomy and agents which neutralize vascular endothelial growth factor (VEGF). Whilst these options demonstrate modest clinical benefits, none is yet to fully attenuate clinical progression or reverse damage to the retina. This has led to an interest in developing novel therapies for the condition, such as mediators of angiopoietin signaling axes, immunosuppressants, nonsteroidal anti-inflammatory drugs (NSAIDs), oxidative stress inhibitors and vitriol viscosity inhibitors. Further, preclinical research suggests that gene therapy treatment for DR could provide significant benefits over existing treatments options. AREAS COVERED Here we review the pathophysiology of DR and provide an overview of currently available treatments. We then outline recent advances made towards improved patient outcomes and highlight the potential of the gene therapy paradigm to revolutionize DR management. EXPERT OPINION Whilst significant progress has been made towards our understanding of DR, further research is required to enable the development of a detailed spatiotemporal model of the disease. In addition, we hope that improvements in our knowledge of the condition facilitate therapeutic innovations that continue to address unmet medical need and improve patient outcomes, with a focus on the development of targeted medicines.
Collapse
Affiliation(s)
- Michael Whitehead
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sanjeewa Wickremasinghe
- Centre for Eye Research Australia, University of Melbourne and Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Van Wijngaarden
- Centre for Eye Research Australia, University of Melbourne and Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Keith R. Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Eye Department, Addenbrooke’s Hospital, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge, UK
- Wellcome Trust – MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Essential Role of mTOR Signaling in Human Retinal Pigment Epithelial Cell Regeneration After Laser Photocoagulation. Lasers Med Sci 2018; 34:1019-1029. [PMID: 30499005 DOI: 10.1007/s10103-018-2692-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
This study assessed the role of mechanistic target of rapamycin (mTOR) pathway in the human adult retinal pigment epithelial (ARPE) cell response after laser photocoagulation (LP). The effect of mTOR inhibition on ARPE-19 cell was investigated by rapamycin treatment after LP. Cell viability and proliferation were explored using MTT and EdU assays, respectively. The expression of mTOR-related proteins and epithelial-mesenchymal transition (EMT) markers was verified by Western blot. Rapamycin retarded the LP area recovery in a dose-dependent manner by the 120 h, while LP+DMSO vehicle-treated cells completely restored the lesion zone (P ≤ 0.01). ARPE-19 cell viability is significantly lower in LP + rapamycin 80 and 160 ng/ml treated cultures compared to LP control at 120 h (P ≤ 0.001). LP control group demonstrated significantly more proliferative cells compared to untreated cells at the 72 and 120 h, whereas EdU-positive cell numbers in cultures treated with rapamycin at concentrations of 80 and 160 ng/ml were similar to baseline values (P ≤ 0.01). mTOR pathway activation is essential for regulation of the RPE cell migration and proliferation after LP. mTOR inhibition with rapamycin effectively blocks the migration and proliferation of the RPE cells. Our results demonstrate that mTOR has an important role in ARPE-19 cell as a regulator of cell behavior under stress conditions, suggesting that mTOR could be a promising therapeutic target for numerous retinal diseases.
Collapse
|
19
|
Chen H, Wang H, An J, Shang Q, Ma J. Plumbagin induces RPE cell cycle arrest and apoptosis via p38 MARK and PI3K/AKT/mTOR signaling pathways in PVR. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018. [PMID: 29534723 PMCID: PMC5851073 DOI: 10.1186/s12906-018-2155-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background This study aimed to explore the effects of plumbagin (PLB) on ARPE-19 cells and underlying mechanism. Methods Cultured ARPE-19 cells were treated with various concentrations (0, 5, 15, and 25 μM) of PLB for 24 h or with 15 μM PLB for 12, 24 and 48 h. Then cell viability was evaluated by MTT assay and DAPI staining, while apoptosis and cell cycle progression of ARPE cells were assessed by flow cytometric analysis. Furthermore, the level of main regulatory proteins was examinated by Western boltting and the expression of relative mRNA was tested by Real-Time PCR. Results PLB exhibited potent inducing effects on cell cycle arrest at G2/M phase and apoptosis of ARPE cells via the modulation of Bcl-2 family regulators in a concentration- and time-dependent manner. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K) and p38 mitogen-activated protein kinase (p38 MAPK) signaling pathways contributing to the anti-proliferative activities in ARPE cells. Conclusions This is the first report to show that PLB could inhibit the proliferation of RPE cells through down-regulation of modulatory signaling pathways. The results open new avenues for the use of PLB in prevention and treatment of proliferative vitreoretinopathy.
Collapse
|
20
|
Amato R, Catalani E, Dal Monte M, Cammalleri M, Di Renzo I, Perrotta C, Cervia D, Casini G. Autophagy-mediated neuroprotection induced by octreotide in an ex vivo model of early diabetic retinopathy. Pharmacol Res 2017; 128:167-178. [PMID: 28970178 DOI: 10.1016/j.phrs.2017.09.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/28/2017] [Indexed: 12/18/2022]
Abstract
Neuronal injury plays a major role in diabetic retinopathy (DR). Our hypothesis was that the balance between neuronal death and survival may depend on a similar equilibrium between apoptosis and autophagy and that a neuroprotectant may act by influencing this equilibrium. Ex vivo mouse retinal explants were treated with high glucose (HG) for 10days and the somatostatin analog octreotide (OCT) was used as a neuroprotectant. Chloroquine (CQ) was used as an autophagy inhibitor. Apoptotic and autophagic markers were evaluated using western blot and immunohistochemistry. HG-treated explants displayed a significant increase of apoptosis paralleled by a significant decrease of the autophagic flux, which was likely to be due to increased activity of the autophagy regulator mTOR (mammalian target of rapamycin). Treatment with OCT rescued HG-treated retinal explants from apoptosis and determined an increase of autophagic activity with concomitant mTOR inhibition. Blocking the autophagic flux with CQ completely abolished the anti-apoptotic effect of OCT. Immunohistochemical observations showed that OCT-induced autophagy is localized to populations of bipolar and amacrine cells and to ganglion cells. These observations revealed the antithetic role of apoptosis and autophagy, highlighting their equilibrium from which neuronal survival is likely to depend. These data suggest the crucial role covered by autophagy, which could be considered as a molecular target for DR neuroprotective treatment strategies.
Collapse
Affiliation(s)
- Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | | | - Ilaria Di Renzo
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), University of Milano, Milano, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), University of Milano, Milano, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.
| |
Collapse
|
21
|
Adeno-Associated Viral Vector-Mediated mTOR Inhibition by Short Hairpin RNA Suppresses Laser-Induced Choroidal Neovascularization. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:26-35. [PMID: 28918027 PMCID: PMC5477068 DOI: 10.1016/j.omtn.2017.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 12/20/2022]
Abstract
Choroidal neovascularization (CNV) is the defining characteristic feature of the wet subtype of age-related macular degeneration (AMD) and may result in irreversible blindness. Based on anti-vascular endothelial growth factor (anti-VEGF), the current therapeutic approaches to CNV are fraught with difficulties, and mammalian target of rapamycin (mTOR) has recently been proposed as a possible therapeutic target, although few studies have been conducted. Here, we show that a recombinant adeno-associated virus-delivered mTOR-inhibiting short hairpin RNA (rAAV-mTOR shRNA), which blocks the activity of both mTOR complex 1 and 2, represents a promising therapeutic approach for the treatment of CNV. Eight-week-old male C57/B6 mice were treated with the short hairpin RNA (shRNA) after generating CNV lesions in the eyes via laser photocoagulation. The recombinant adeno-associated virus (rAAV) delivery vehicle was able to effectively transduce cells in the inner retina, and significantly fewer inflammatory cells and less extensive CNV were observed in the animals treated with rAAV-mTOR shRNA when compared with control- and rAAV-scrambled shRNA-treated groups. Presumably related to the reduction of CNV, increased autophagy was detected in CNV lesions treated with rAAV-mTOR shRNA, whereas significantly fewer apoptotic cells detected in the outer nuclear layer around the CNV indicate that mTOR inhibition may also have neuroprotective effects. Taken together, these results demonstrate the therapeutic potential of mTOR inhibition, resulting from rAAV-mTOR shRNA activity, in the treatment of AMD-related CNV.
Collapse
|
22
|
Abstract
Diabetic macular oedema (DMO) results from alterations of several biochemical pathways in diabetic eyes. Centre-involving DMO is an important cause of visual loss in diabetes. Anti-vascular endothelial growth factor agents are now the mainstay of centre-involving DMO treatment. Oedema that does not achieve optimal response to these agents occurs in a sizeable proportion of eyes and is called refractory or persistent DMO. Management of refractory DMO is challenging. In this paper, the pathophysiology of DMO, and the definitions used in various studies are summarised. Therapeutic options for refractory DMO management including corticosteroids, laser, combination therapies, and surgery are explored. Novel agents on the horizon for DMO control that are being investigated at present are discussed as well. A literature review was performed and a summary of the research studies for each of the agents is provided in order to guide the reader regarding the existing evidence for their application in DMO. Importance of early recognition of disease and prompt treatment to achieve best visual outcome is discussed. Utility of optical coherence tomography to guide disease diagnosis and monitoring is highlighted. An algorithmic approach for DMO management is described. Finally, the impact that personalized medicine and genetics might have on DMO management is assessed.
Collapse
|
23
|
Jiang X, Wei Y, Zhang T, Zhang Z, Qiu S, Zhou X, Zhang S. Effects of GSK2606414 on cell proliferation and endoplasmic reticulum stress-associated gene expression in retinal pigment epithelial cells. Mol Med Rep 2017; 15:3105-3110. [DOI: 10.3892/mmr.2017.6418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/17/2017] [Indexed: 11/06/2022] Open
|
24
|
Bolinger MT, Antonetti DA. Moving Past Anti-VEGF: Novel Therapies for Treating Diabetic Retinopathy. Int J Mol Sci 2016; 17:E1498. [PMID: 27618014 PMCID: PMC5037775 DOI: 10.3390/ijms17091498] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/22/2016] [Accepted: 08/30/2016] [Indexed: 12/25/2022] Open
Abstract
Diabetic retinopathy is the leading cause of blindness in working age adults, and is projected to be a significant future health concern due to the rising incidence of diabetes. The recent advent of anti-vascular endothelial growth factor (VEGF) antibodies has revolutionized the treatment of diabetic retinopathy but a significant subset of patients fail to respond to treatment. Accumulating evidence indicates that inflammatory cytokines and chemokines other than VEGF may contribute to the disease process. The current review examines the presence of non-VEGF cytokines in the eyes of patients with diabetic retinopathy and highlights mechanistic pathways in relevant animal models. Finally, novel drug targets including components of the kinin-kallikrein system and emerging treatments such as anti-HPTP (human protein tyrosine phosphatase) β antibodies are discussed. Recognition of non-VEGF contributions to disease pathogenesis may lead to novel therapeutics to enhance existing treatments for patients who do not respond to anti-VEGF therapies.
Collapse
Affiliation(s)
- Mark T Bolinger
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA.
| | - David A Antonetti
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
25
|
Jujuboside A Protects H9C2 Cells from Isoproterenol-Induced Injury via Activating PI3K/Akt/mTOR Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9593716. [PMID: 27293469 PMCID: PMC4884826 DOI: 10.1155/2016/9593716] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/26/2016] [Indexed: 11/17/2022]
Abstract
Jujuboside A is a kind of the saponins isolated from the seeds of Ziziphus jujuba, which possesses multiple biological effects, such as antianxiety, antioxidant, and anti-inflammatory effects; however, its mediatory effect on isoproterenol-stimulated cardiomyocytes has not been investigated yet. In this study, we tried to detect the protective effect and potential mechanism of JUA on ISO-induced cardiomyocytes injury. H9C2 cells were treated with ISO to induce cell damage. Cells were pretreated with JUA to investigate the effects on the cell viability, morphological changes, light chain 3 conversion, and the activation of PI3K/Akt/mTOR signaling pathway. Results showed that ISO significantly inhibited the cell viability in a time- and dose-dependent manner. JUA pretreatment could reverse the reduction of cell viability and better the injury of H9C2 cells induced by ISO. Western blot analysis showed that JUA could accelerate the phosphorylation of PI3K, Akt, and mTOR. Results also indicated that JUA could significantly decrease the ratio of microtubule-associated protein LC3-II/I in H9C2 cells. Taken together, our research showed that JUA could notably reduce the damage cause by ISO via promoting the phosphorylation of PI3K, Akt, and mTOR and inhibiting LC3 conversion, which may be a potential choice for the treatment of heart diseases.
Collapse
|
26
|
Yang WL, Zhang L. Mechanism of PEDF promoting the proliferation of lens epithelial cells in human eyes. ASIAN PAC J TROP MED 2015; 8:971-975. [PMID: 26614999 DOI: 10.1016/j.apjtm.2015.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/20/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To investigate the regulation effect of pigment epithelium-derived factor (PEDF) on the growth of human lens endothelial cells (LECs) and related mechanisms in vivo and in vitro. METHODS In the part of in vivo study, 82 eyes of 82 patients with age-related cataract were included to collect the central lens anterior capsule (diameter at 5.0-5.5 mm) with the informed consent of surgery for patients. The selected specimens were divided into the LECs low density group and high density group with 20 specimens for each group based on hematoxylin and eosin staining results. The relative expression level of PEDF mRNA in LECs was detected by reverse transcription PCR. In the part of in vitro study, LEC line (HLE-B3) was cultured and 50 ng/mL PEDF was added in media for 72 h in PEDF culture group, while normally cultured cells were used as the control group. The percentage of LECs at G0 and S phases and apoptotic rate of cells were assayed by using flow cytometry with annexin Ⅴ-FITC/7-AAD double staining method. Intracellular expression of vascular endothelial growth factor (VEGF) mRNA was detected by real-time fluorescence quantitative PCR. RESULTS The central anterior subcapsular LECs density and relative expression level of PEDF mRNA were lower than those of high density group. There were no significant differences between two groups (P = 0.168). The apoptotic rate in the PEDF culture group was significantly reduced in comparison with the control group (P < 0.001). In addition, the expression level of VEGF mRNA was lower in the PEDF culture group compared with the control group (P < 0.001). CONCLUSIONS In human eyes, PEDF may function as cytotropic factor to promote survival of LECs through anti-apoptosis and reducing-expression of VEGF. Decrease of PEDF content in LECs probably modulates the pathophysiological process of lens cells and further cataractogenesis.
Collapse
Affiliation(s)
- Wen-Lei Yang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lin Zhang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
27
|
Sharma K, Sharma NK, Singh R, Anand A. Exploring the role of VEGF in Indian Age related macular degeneration. Ann Neurosci 2015; 22:232-7. [PMID: 26526736 PMCID: PMC4627204 DOI: 10.5214/ans.0972.7531.220408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Age related macular degeneration (AMD) is major devastating neurodegenerative disorder characterized by progressive irreversible vision loss in the elderly persons. In spite of several genetic and environmental factors, the role of VEGF and CFH predispose the pathological phenomenon in the AMD patients. PURPOSE The aim of the study was to estimate the VEGF levels in the serum of AMD patients and its correlation with co-morbidity of the participants. METHODS The study recruited the 98 AMD patients and 59 controls with proper consent of the participants as per the exclusion-inclusion criteria. The co-morbidity and socio-economic details were obtained by introducing the standard questionnaire amongst the participants. Serum levels of vascular endothelial growth factor (VEGF) was estimated by ELISA and compared with the control population of the study. The levels of VEGF in the serum of AMD patients and controls were compared with Mann-Whitney U-test. Kruskal Wallis one-way analysis of variance (ANOVA) was employed to analyze more than two variables in the study. RESULTS Elevated level of VEGF was found in AMD patients as compared to controls. Surprisingly, we did not find significant changes among wet AMD subtypes i.e. minimal, predominant and classic wet AMD. However, we have demonstrated the intravitreal anti-VEGF treatment (avastin) in AMD patients could reduce the systemic VEGF levels although it was not significant. Moreover, the heart ailment in the AMD patients could also influence the VEGF levels. CONCLUSION Our study is consistent with previous studies describing the imperative significance of VEGF in AMD pathology. However, our study did not reveal the role of VEGF in wet AMD progression but it is well established causative agent for the same. The increased levels of VEGF in heart ailment among AMD patients are significant.
Collapse
Affiliation(s)
- Kaushal Sharma
- Neuroscience Research Lab, Department of Neurology, Post Graduate institute of Medical Education and Research, Chandigarh, India
- Centre for Systems biology and Bioinformatics, Panjab University, Chandigarh, India
- *Both contributed equally to the manuscript
| | - Neel K Sharma
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, USA
- *Both contributed equally to the manuscript
| | - Ramandeep Singh
- Department of Ophthalmology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
28
|
Ozmen A, Unek G, Kipmen-Korgun D, Cetinkaya B, Avcil Z, Korgun ET. Glucocorticoid exposure altered angiogenic factor expression via Akt/mTOR pathway in rat placenta. Ann Anat 2014; 198:34-40. [PMID: 25479925 DOI: 10.1016/j.aanat.2014.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 12/27/2022]
Abstract
During pregnancy, glucocorticoids (GCs) are used for fetal lung maturation in women at risk of preterm labor. Exogenous GCs do not have exclusively beneficial effects and repeated use of GCs remains controversial. It has been observed that GC exposed rats have smaller placentas and intrauterine growth retarded fetuses. In this study, we questioned whether or not glucocorticoids effect placental angiogenesis mechanisms. One of the most important signaling pathways among several downstream of VEGFR-2 is PI3K/Akt which subsequently activates the mammalian target of rapamycin. Therefore, we hypothesized that overexposure to GCs may adversely affect placental angiogenesis mechanisms by regulating pro-angiogenic factors and their receptors via Akt/mTOR pathway. According to our results Dexamethasone, a synthetic glucocorticoid, administration led to a decrease in VEGF, PIGF expression during pregnancy. VEGFR2 expression was first decreased at gestational day 14 and afterwards increased at gestational days 16, 18 and 20 in rat placentas. These results are in accordance with the reduced phosphorylation of Akt, 4EBP1 and p70S6K. Dexamethasone injection also resulted in a reduction of VEGF, VEGFR1, and VEGFR2 mRNA expression at gestational days 14 and 20, but PIGF mRNA expression was not altered. Growth retarded fetuses seen in Dexamethasone treated pregnancies, may be a result of altered angiogenic factor expression of the placenta mediated via altered mTOR pathway signaling.
Collapse
Affiliation(s)
- Asli Ozmen
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, 07070 Antalya, Turkey
| | - Gozde Unek
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, 07070 Antalya, Turkey
| | - Dijle Kipmen-Korgun
- Department of Biochemistry, Medical Faculty, Akdeniz University, 07070 Antalya, Turkey
| | - Busra Cetinkaya
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, 07070 Antalya, Turkey
| | - Zeynep Avcil
- Department of Biochemistry, Medical Faculty, Akdeniz University, 07070 Antalya, Turkey
| | - Emin Türkay Korgun
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, 07070 Antalya, Turkey.
| |
Collapse
|
29
|
Horie-Inoue K, Inoue S. Genomic aspects of age-related macular degeneration. Biochem Biophys Res Commun 2014; 452:263-75. [PMID: 25111812 DOI: 10.1016/j.bbrc.2014.08.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 11/29/2022]
Abstract
Age-related macular degeneration (AMD) is a major late-onset posterior eye disease that causes central vision to deteriorate among elderly populations. The predominant lesion of AMD is the macula, at the interface between the outer retina and the inner choroid. Recent advances in genetics have revealed that inflammatory and angiogenic pathways play critical roles in the pathophysiology of AMD. Genome-wide association studies have identified ARMS2/HTRA1 and CFH as major AMD susceptibility genes. Genetic studies for AMD will contribute to the prevention of central vision loss, the development of new treatment, and the maintenance of quality of vision for productive aging.
Collapse
Affiliation(s)
- Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan.
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan; Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Liu Y, Zhu S, Wang Y, Hu J, Xu L, Ding L, Liu G. Neuroprotective effect of ischemic preconditioning in focal cerebral infarction: relationship with upregulation of vascular endothelial growth factor. Neural Regen Res 2014; 9:1117-21. [PMID: 25206770 PMCID: PMC4146099 DOI: 10.4103/1673-5374.135313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2014] [Indexed: 12/14/2022] Open
Abstract
Neuroprotection by ischemic preconditioning has been confirmed by many studies, but the precise mechanism remains unclear. In the present study, we performed cerebral ischemic preconditioning in rats by simulating a transient ischemic attack twice (each a 20-minute occlusion of the middle cerebral artery) before inducing focal cerebral infarction (2 hour occlusion-reperfusion in the same artery). We also explored the mechanism underlying the neuroprotective effect of ischemic preconditioning. Seven days after occlusion-reperfusion, tetrazolium chloride staining and immunohistochemistry revealed that the infarct volume was significantly smaller in the group that underwent preconditioning than in the model group. Furthermore, vascular endothelial growth factor immunoreactivity was considerably greater in the hippocampal CA3 region of preconditioned rats than model rats. Our results suggest that the protective effects of ischemic preconditioning on focal cerebral infarction are associated with upregulation of vascular endothelial growth factor.
Collapse
Affiliation(s)
- Yong Liu
- Department of Neurology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Neurology, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yunfu Wang
- Department of Neurology, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Jingquan Hu
- Department of Neurology, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Lili Xu
- Department of Neurology, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Li Ding
- Department of Neurology, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Guangjian Liu
- Department of Neurology, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei Province, China
| |
Collapse
|