1
|
Tran U, Streets AJ, Smith D, Decker E, Kirschfink A, Izem L, Hassey JM, Rutland B, Valluru MK, Bräsen JH, Ott E, Epting D, Eisenberger T, Ong AC, Bergmann C, Wessely O. BICC1 Interacts with PKD1 and PKD2 to Drive Cystogenesis in ADPKD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.608867. [PMID: 39253489 PMCID: PMC11383298 DOI: 10.1101/2024.08.27.608867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is primarily of adult-onset and caused by pathogenic variants in PKD1 or PKD2 . Yet, disease expression is highly variable and includes very early-onset PKD presentations in utero or infancy. In animal models, the RNA-binding molecule Bicc1 has been shown to play a crucial role in the pathogenesis of PKD. Methods To study the interaction between BICC1, PKD1 and PKD2 we combined biochemical approaches, knockout studies in mice and Xenopus, genetic engineered human kidney cells as well as genetic association studies in a large ADPKD cohort. Results We first demonstrated that BICC1 physically binds to the proteins Polycystin-1 and -2 encoded by PKD1 and PKD2 via distinct protein domains. Furthermore, PKD was aggravated in loss-of-function studies in Xenopus and mouse models resulting in more severe disease when Bicc1 was depleted in conjunction with Pkd1 or Pkd2 . Finally, in a large human patient cohort, we identified a sibling pair with a homozygous BICC1 variant and patients with very early onset PKD (VEO-PKD) that exhibited compound heterozygosity of BICC1 in conjunction with PKD1 and PKD2 variants. Genome editing demonstrated that these BICC1 variants were hypomorphic in nature and impacted disease-relevant signaling pathways. Conclusions These findings support the hypothesis that BICC1 cooperates functionally with PKD1 and PKD2 , and that BICC1 variants may aggravate disease severity highlighting RNA metabolism as an important new concept for disease modification in ADPKD.
Collapse
|
2
|
Robinson-Cohen C, Triozzi JL, Rowan B, He J, Chen HC, Zheng NS, Wei WQ, Wilson OD, Hellwege JN, Tsao PS, Gaziano JM, Bick A, Matheny ME, Chung CP, Lipworth L, Siew ED, Ikizler TA, Tao R, Hung AM. Genome-Wide Association Study of CKD Progression. J Am Soc Nephrol 2023; 34:1547-1559. [PMID: 37261792 PMCID: PMC10482057 DOI: 10.1681/asn.0000000000000170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
SIGNIFICANCE STATEMENT Rapid progression of CKD is associated with poor clinical outcomes. Most previous studies looking for genetic factors associated with low eGFR have used cross-sectional data. The authors conducted a meta-analysis of genome-wide association studies of eGFR decline among 116,870 participants with CKD, focusing on longitudinal data. They identified three loci (two of them novel) associated with longitudinal eGFR decline. In addition to the known UMOD/PDILT locus, variants within BICC1 were associated with significant differences in longitudinal eGFR slope. Variants within HEATR4 also were associated with differences in eGFR decline, but only among Black/African American individuals without diabetes. These findings help characterize molecular mechanisms of eGFR decline in CKD and may inform new therapeutic approaches for progressive kidney disease. BACKGROUND Rapid progression of CKD is associated with poor clinical outcomes. Despite extensive study of the genetics of cross-sectional eGFR, only a few loci associated with eGFR decline over time have been identified. METHODS We performed a meta-analysis of genome-wide association studies of eGFR decline among 116,870 participants with CKD-defined by two outpatient eGFR measurements of <60 ml/min per 1.73 m 2 , obtained 90-365 days apart-from the Million Veteran Program and Vanderbilt University Medical Center's DNA biobank. The primary outcome was the annualized relative slope in outpatient eGFR. Analyses were stratified by ethnicity and diabetes status and meta-analyzed thereafter. RESULTS In cross-ancestry meta-analysis, the strongest association was rs77924615, near UMOD / PDILT ; each copy of the G allele was associated with a 0.30%/yr faster eGFR decline ( P = 4.9×10 -27 ). We also observed an association within BICC1 (rs11592748), where every additional minor allele was associated with a 0.13%/yr slower eGFR decline ( P = 5.6×10 -9 ). Among participants without diabetes, the strongest association was the UMOD/PDILT variant rs36060036, associated with a 0.27%/yr faster eGFR decline per copy of the C allele ( P = 1.9×10 -17 ). Among Black participants, a significantly faster eGFR decline was associated with variant rs16996674 near APOL1 (R 2 =0.29 with the G1 high-risk genotype); among Black participants with diabetes, lead variant rs11624911 near HEATR4 also was associated with a significantly faster eGFR decline. We also nominally replicated loci with known associations with eGFR decline, near PRKAG2, FGF5, and C15ORF54. CONCLUSIONS Three loci were significantly associated with longitudinal eGFR change at genome-wide significance. These findings help characterize molecular mechanisms of eGFR decline and may contribute to the development of new therapeutic approaches for progressive CKD.
Collapse
Affiliation(s)
- Cassianne Robinson-Cohen
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jefferson L Triozzi
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bryce Rowan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jing He
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hua C Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Neil S Zheng
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Otis D Wilson
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- VA Tennessee Valley Healthcare System, Clinical Sciences Research and Development, Nashville, Tennessee
| | - Jacklyn N Hellwege
- VA Tennessee Valley Healthcare System, Clinical Sciences Research and Development, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Philip S Tsao
- Department of Medicine, Division of Cardiovascular Medicine, VA Palo Alto Health Care System, Palo Alto, California
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard School of Medicine, Boston, Massachusetts
| | - Alexander Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael E Matheny
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
- Geriatrics Research Education and Clinical Care Service, VA Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Cecilia P Chung
- VA Tennessee Valley Healthcare System, Clinical Sciences Research and Development, Nashville, Tennessee
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Loren Lipworth
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Edward D Siew
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - T Alp Ikizler
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adriana M Hung
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- VA Tennessee Valley Healthcare System, Clinical Sciences Research and Development, Nashville, Tennessee
| |
Collapse
|
3
|
Abstract
RNA-binding proteins (RBPs) are of fundamental importance for post-transcriptional gene regulation and protein synthesis. They are required for pre-mRNA processing and for RNA transport, degradation and translation into protein, and can regulate every step in the life cycle of their RNA targets. In addition, RBP function can be modulated by RNA binding. RBPs also participate in the formation of ribonucleoprotein complexes that build up macromolecular machineries such as the ribosome and spliceosome. Although most research has focused on mRNA-binding proteins, non-coding RNAs are also regulated and sequestered by RBPs. Functional defects and changes in the expression levels of RBPs have been implicated in numerous diseases, including neurological disorders, muscular atrophy and cancers. RBPs also contribute to a wide spectrum of kidney disorders. For example, human antigen R has been reported to have a renoprotective function in acute kidney injury (AKI) but might also contribute to the development of glomerulosclerosis, tubulointerstitial fibrosis and diabetic kidney disease (DKD), loss of bicaudal C is associated with cystic kidney diseases and Y-box binding protein 1 has been implicated in the pathogenesis of AKI, DKD and glomerular disorders. Increasing data suggest that the modulation of RBPs and their interactions with RNA targets could be promising therapeutic strategies for kidney diseases.
Collapse
|
4
|
Han Q, Jiang J, Yuan Y, Tang B, Zhang J. Bicaudal-C protein, a potential antidepressant target. Neuroreport 2021; 32:1293-1298. [PMID: 34554934 DOI: 10.1097/wnr.0000000000001729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bicaudal-C protein is a highly conserved RNA binding protein, which contains K homology domains and sterile alpha motif domain. Genome-wide association study identified that Bicaudal-C protein was associated with depression. The expression of Bicaudal-C increased in depression patients, also increased expression of Bicaudal-C induces the behavior of depression. The decrease of synaptic plasticity plays a part in depression. Bicaudal-C protein reduces the synaptic plasticity of neurons via TrkB/mTOR/AMPA/pGluA1 pathways, Wnt pathway, or influencing some proteins related to synaptic plasticity. The decreased expression of Bicaudal-C plays an important role in the action of several antidepressants, such as ketamine, biperiden, and scopolamine. Therefore, Bicaudal-C protein may be a potential antidepressant target. Clarifying the relationship between Bicaudal-C protein and depression may help us to find new antidepressants. This review focuses on the research advances of the relationship between Bicaudal-C protein and depression.
Collapse
Affiliation(s)
- Qinghua Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | | | | | | | | |
Collapse
|
5
|
Lv J, Wang J, Shang X, Liu F, Guo S. Survival prediction in patients with colon adenocarcinoma via multi-omics data integration using a deep learning algorithm. Biosci Rep 2020; 40:BSR20201482. [PMID: 33258470 PMCID: PMC7753845 DOI: 10.1042/bsr20201482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 01/20/2023] Open
Abstract
This study proposed a deep learning (DL) algorithm to predict survival in patients with colon adenocarcinoma (COAD) based on multi-omics integration. The survival-sensitive model was constructed using an autoencoder for DL implementation based on The Cancer Genome Atlas (TCGA) data of patients with COAD. The autoencoder framework was compared to PCA, NMF, t-SNE, and univariable Cox-PH model for identifying survival-related features. The prognostic robustness of the inferred survival risk groups was validated using three independent confirmation cohorts. Differential expression analysis, Pearson's correlation analysis, construction of miRNA-target gene network, and function enrichment analysis were performed. Two risk groups with significant survival differences were identified in TCGA set using the autoencoder-based model (log-rank p-value = 5.51e-07). The autoencoder framework showed superior performance compared to PCA, NMF, t-SNE, and the univariable Cox-PH model based on the C-index, log-rank p-value, and Brier score. The robustness of the classification model was successfully verified in three independent validation sets. There were 1271 differentially expressed genes, 10 differentially expressed miRNAs, and 12 hypermethylated genes between the survival risk groups. Among these, miR-133b and its target genes (GNB4, PTPRZ1, RUNX1T1, EPHA7, GPM6A, BICC1, and ADAMTS5) were used to construct a network. These genes were significantly enriched in ECM-receptor interaction, focal adhesion, PI3K-Akt signaling pathway, and glucose metabolism-related pathways. The risk subgroups obtained through a multi-omics data integration pipeline using the DL algorithm had good robustness. miR-133b and its target genes could be potential diagnostic markers. The results would assist in elucidating the possible pathogenesis of COAD.
Collapse
Affiliation(s)
- Jiudi Lv
- Department of General Surgery Three, Xinxiang Central Hospital, No. 56 Jinsui Avenue, Xinxiang, Henan 453000, China
| | - Junjie Wang
- Department of Oncology Medicine Three, Xinxiang Central Hospital, No. 56 Jinsui Avenue, Xinxiang, Henan 453000, China
| | - Xiujuan Shang
- Department of General Surgery Three, Xinxiang Central Hospital, No. 56 Jinsui Avenue, Xinxiang, Henan 453000, China
| | - Fangfang Liu
- Department of General Surgery Three, Xinxiang Central Hospital, No. 56 Jinsui Avenue, Xinxiang, Henan 453000, China
| | - Shixun Guo
- Severe Medical Section, Xinxiang Central Hospital, No. 56 Jinsui Avenue, Xinxiang, Henan 453000, China
| |
Collapse
|
6
|
Rothé B, Gagnieux C, Leal-Esteban LC, Constam DB. Role of the RNA-binding protein Bicaudal-C1 and interacting factors in cystic kidney diseases. Cell Signal 2019; 68:109499. [PMID: 31838063 DOI: 10.1016/j.cellsig.2019.109499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/03/2023]
Abstract
Polycystic kidneys frequently associate with mutations in individual components of cilia, basal bodies or centriolar satellites that perturb complex protein networks. In this review, we focus on the RNA-binding protein Bicaudal-C1 (BICC1) which was found mutated in renal cystic dysplasia, and on its interactions with the ankyrin repeat and sterile α motif (SAM)-containing proteins ANKS3 and ANKS6 and associated kinases and their partially overlapping ciliopathy phenotypes. After reviewing BICC1 homologs in model organisms and their functions in mRNA and cell metabolism during development and in renal tubules, we discuss recent insights from cell-based assays and from structure analysis of the SAM domains, and how SAM domain oligomerization might influence multivalent higher order complexes that are implicated in ciliary signal transduction.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland
| | - Céline Gagnieux
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland
| | - Lucia Carolina Leal-Esteban
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland; Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
7
|
Torres JA, Rezaei M, Broderick C, Lin L, Wang X, Hoppe B, Cowley BD, Savica V, Torres VE, Khan S, Holmes RP, Mrug M, Weimbs T. Crystal deposition triggers tubule dilation that accelerates cystogenesis in polycystic kidney disease. J Clin Invest 2019; 129:4506-4522. [PMID: 31361604 PMCID: PMC6763267 DOI: 10.1172/jci128503] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022] Open
Abstract
The rate of disease progression in autosomal-dominant (AD) polycystic kidney disease (PKD) exhibits high intra-familial variability suggesting that environmental factors may play a role. We hypothesized that a prevalent form of renal insult may accelerate cystic progression and investigated tubular crystal deposition. We report that calcium oxalate (CaOx) crystal deposition led to rapid tubule dilation, activation of PKD-associated signaling pathways, and hypertrophy in tubule segments along the affected nephrons. Blocking mTOR signaling blunted this response and inhibited efficient excretion of lodged crystals. This mechanism of "flushing out" crystals by purposefully dilating renal tubules has not previously been recognized. Challenging PKD rat models with CaOx crystal deposition, or inducing calcium phosphate deposition by increasing dietary phosphorous intake, led to increased cystogenesis and disease progression. In a cohort of ADPKD patients, lower levels of urinary excretion of citrate, an endogenous inhibitor of calcium crystal formation, correlated with increased disease severity. These results suggest that PKD progression may be accelerated by commonly occurring renal crystal deposition which could be therapeutically controlled by relatively simple measures.
Collapse
Affiliation(s)
- Jacob A. Torres
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| | - Mina Rezaei
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| | - Caroline Broderick
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| | - Louis Lin
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| | - Xiaofang Wang
- Mayo Clinic College of Medicine, Division of Nephrology and Hypertension, Rochester, Minnesota, USA
| | - Bernd Hoppe
- University Children’s Hospital Bonn, Division of Pediatric Nephrology, Bonn, Germany
| | - Benjamin D. Cowley
- University of Oklahoma Health Sciences Center, Department of Medicine, Section of Nephrology, Oklahoma City, Oklahoma, USA
| | - Vincenzo Savica
- University of Messina, Department of Clinical and Experimental Medicine, Messina, Italy
| | - Vicente E. Torres
- Mayo Clinic College of Medicine, Division of Nephrology and Hypertension, Rochester, Minnesota, USA
| | - Saeed Khan
- University of Florida, Department of Pathology, Gainesville, Florida, USA
| | | | - Michal Mrug
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - Thomas Weimbs
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| |
Collapse
|
8
|
Blackburn ATM, Miller RK. Modeling congenital kidney diseases in Xenopus laevis. Dis Model Mech 2019; 12:12/4/dmm038604. [PMID: 30967415 PMCID: PMC6505484 DOI: 10.1242/dmm.038604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) occur in ∼1/500 live births and are a leading cause of pediatric kidney failure. With an average wait time of 3-5 years for a kidney transplant, the need is high for the development of new strategies aimed at reducing the incidence of CAKUT and preserving renal function. Next-generation sequencing has uncovered a significant number of putative causal genes, but a simple and efficient model system to examine the function of CAKUT genes is needed. Xenopus laevis (frog) embryos are well-suited to model congenital kidney diseases and to explore the mechanisms that cause these developmental defects. Xenopus has many advantages for studying the kidney: the embryos develop externally and are easily manipulated with microinjections, they have a functional kidney in ∼2 days, and 79% of identified human disease genes have a verified ortholog in Xenopus. This facilitates high-throughput screening of candidate CAKUT-causing genes. In this Review, we present the similarities between Xenopus and mammalian kidneys, highlight studies of CAKUT-causing genes in Xenopus and describe how common kidney diseases have been modeled successfully in this model organism. Additionally, we discuss several molecular pathways associated with kidney disease that have been studied in Xenopus and demonstrate why it is a useful model for studying human kidney diseases. Summary: Understanding how congenital kidney diseases arise is imperative to their treatment. Using Xenopus as a model will aid in elucidating kidney development and congenital kidney diseases.
Collapse
Affiliation(s)
- Alexandria T M Blackburn
- Pediatric Research Center, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA
| | - Rachel K Miller
- Pediatric Research Center, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA .,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Biochemistry and Cell Biology Houston, Houston, TX 77030, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Leal-Esteban LC, Rothé B, Fortier S, Isenschmid M, Constam DB. Role of Bicaudal C1 in renal gluconeogenesis and its novel interaction with the CTLH complex. PLoS Genet 2018; 14:e1007487. [PMID: 29995892 PMCID: PMC6056059 DOI: 10.1371/journal.pgen.1007487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/23/2018] [Accepted: 06/13/2018] [Indexed: 01/06/2023] Open
Abstract
Altered glucose and lipid metabolism fuel cystic growth in polycystic kidneys, but the cause of these perturbations is unclear. Renal cysts also associate with mutations in Bicaudal C1 (Bicc1) or in its self-polymerizing sterile alpha motif (SAM). Here, we found that Bicc1 maintains normoglycemia and the expression of the gluconeogenic enzymes FBP1 and PEPCK in kidneys. A proteomic screen revealed that Bicc1 interacts with the C-Terminal to Lis-Homology domain (CTLH) complex. Since the orthologous Gid complex in S. cerevisae targets FBP1 and PEPCK for degradation, we mapped the topology among CTLH subunits and found that SAM-mediated binding controls Bicc1 protein levels, whereas Bicc1 inhibited the accumulation of several CTLH subunits. Under the conditions analyzed, Bicc1 increased FBP1 protein levels independently of the CTLH complex. Besides linking Bicc1 to cell metabolism, our findings reveal new layers of complexity in the regulation of renal gluconeogenesis compared to lower eukaryotes. Polycystic kidney diseases (PKD) are incurable inherited chronic disorders marked by fluid-filled cysts that frequently cause renal failure. A glycolytic metabolism reminiscent of cancerous cells accelerates cystic growth, but the mechanism underlying such metabolic re-wiring is poorly understood. PKD-like cystic kidneys also develop in mice that lack the RNA-binding protein Bicaudal-C (Bicc1), and mutations in a single copy of human BICC1 associate with renal cystic dysplasia. Here, we report that Bicc1 regulates renal gluconeogenesis. A screen for interacting factors revealed that Bicc1 binds the C-Terminal to Lis-Homology domain (CTLH) complex, which in lower eukaryotes mediates degradation of gluconeogenic enzymes. By contrast, Bicc1 and the mammalian CTLH complex regulated each other, and Bicc1 stimulated the accumulation of the rate-limiting gluconeogenic enzyme even in cells depleted of CTLH subunits. Our finding that Bicc1 is required for normoglycemia implies that renal gluconeogenesis may be important to inhibit cyst formation.
Collapse
Affiliation(s)
- Lucia Carolina Leal-Esteban
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Simon Fortier
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Manuela Isenschmid
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Daniel B. Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
10
|
Castonguay J, Orth JHC, Müller T, Sleman F, Grimm C, Wahl-Schott C, Biel M, Mallmann RT, Bildl W, Schulte U, Klugbauer N. The two-pore channel TPC1 is required for efficient protein processing through early and recycling endosomes. Sci Rep 2017; 7:10038. [PMID: 28855648 PMCID: PMC5577145 DOI: 10.1038/s41598-017-10607-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/11/2017] [Indexed: 02/06/2023] Open
Abstract
Two-pore channels (TPCs) are localized in endo-lysosomal compartments and assumed to play an important role for vesicular fusion and endosomal trafficking. Recently, it has been shown that both TPC1 and 2 were required for host cell entry and pathogenicity of Ebola viruses. Here, we investigate the cellular function of TPC1 using protein toxins as model substrates for distinct endosomal processing routes. Toxin uptake and activation through early endosomes but not processing through other compartments were reduced in TPC1 knockout cells. Detailed co-localization studies with subcellular markers confirmed predominant localization of TPC1 to early and recycling endosomes. Proteomic analysis of native TPC1 channels finally identified direct interaction with a distinct set of syntaxins involved in fusion of intracellular vesicles. Together, our results demonstrate a general role of TPC1 for uptake and processing of proteins in early and recycling endosomes, likely by providing high local Ca2+ concentrations required for SNARE-mediated vesicle fusion.
Collapse
Affiliation(s)
- Jan Castonguay
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Joachim H C Orth
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Thomas Müller
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Faten Sleman
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Christian Grimm
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University, Munich, Germany
| | - Christian Wahl-Schott
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University, Munich, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University, Munich, Germany
| | - Robert Theodor Mallmann
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology II, Faculty of Medicine, Albert-Ludwigs-University, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology II, Faculty of Medicine, Albert-Ludwigs-University, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany.,Logopharm GmbH, Schlossstrasse 14, 79232, March-Buchheim, Germany.,Center for Biological Signaling Studies (BIOSS), Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Norbert Klugbauer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany.
| |
Collapse
|
11
|
Gamberi C, Hipfner DR, Trudel M, Lubell WD. Bicaudal C mutation causes myc and TOR pathway up-regulation and polycystic kidney disease-like phenotypes in Drosophila. PLoS Genet 2017; 13:e1006694. [PMID: 28406902 PMCID: PMC5390980 DOI: 10.1371/journal.pgen.1006694] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 03/15/2017] [Indexed: 12/26/2022] Open
Abstract
Progressive cystic kidney degeneration underlies diverse renal diseases, including the most common cause of kidney failure, autosomal dominant Polycystic Kidney Disease (PKD). Genetic analyses of patients and animal models have identified several key drivers of this disease. The precise molecular and cellular changes underlying cystogenesis remain, however, elusive. Drosophila mutants lacking the translational regulator Bicaudal C (BicC, the fly ortholog of vertebrate BICC1 implicated in renal cystogenesis) exhibited progressive cystic degeneration of the renal tubules (so called “Malpighian” tubules) and reduced renal function. The BicC protein was shown to bind to Drosophila (d-) myc mRNA in tubules. Elevation of d-Myc protein levels was a cause of tubular degeneration in BicC mutants. Activation of the Target of Rapamycin (TOR) kinase pathway, another common feature of PKD, was found in BicC mutant flies. Rapamycin administration substantially reduced the cystic phenotype in flies. We present new mechanistic insight on BicC function and propose that Drosophila may serve as a genetically tractable model for dissecting the evolutionarily-conserved molecular mechanisms of renal cystogenesis. Polycystic kidney disease (PKD) is a degenerative, potentially lethal, genetic malady that affects 12.5 million people world-wide for which there is no cure. In the kidney, PKD causes the formation of prominent, fluid-filled cysts the growth of which damages progressively kidney function. Crucial to PKD development, mutations in the PKD1 and PKD2 genes cause renal cystic degeneration via factors and mechanisms that are only partially known. This manuscript reports novel insights into the molecular mechanisms of the evolutionarily conserved RNA binding protein BicC, which has been implicated in vertebrate cystic kidney diseases. The BicC mutants of the fruit fly Drosophila melanogaster recapitulate crucial characteristics of PKD. A clear link between BicC and PKD has begun to emerge, in part because both PKD1 patients and Pkd1 mice exhibit reduced BicC function. This first in kind Drosophila model of renal cystogenesis offers strong potential to decipher the complex mechanisms of the molecular and cellular changes causing renal cyst formation.
Collapse
Affiliation(s)
- Chiara Gamberi
- Department of Biology, Concordia University, Montréal, QC, Canada
- * E-mail:
| | - David R. Hipfner
- Institut de recherches cliniques de Montréal, 110 Pine Avenue West, Montréal, QC, Canada
- Département de médecine, Université de Montréal, Montréal, QC, Canada
| | - Marie Trudel
- Institut de recherches cliniques de Montréal, 110 Pine Avenue West, Montréal, QC, Canada
- Département de médecine, Université de Montréal, Montréal, QC, Canada
| | | |
Collapse
|
12
|
Abstract
Loss of the RNA-binding protein Bicaudal-C (Bicc1) provokes renal and pancreatic cysts as well as ectopic Wnt/β-catenin signaling during visceral left-right patterning. Renal cysts are linked to defective silencing of Bicc1 target mRNAs, including adenylate cyclase 6 (AC6). RNA binding of Bicc1 is mediated by N-terminal KH domains, whereas a C-terminal sterile alpha motif (SAM) self-polymerizes in vitro and localizes Bicc1 in cytoplasmic foci in vivo. To assess a role for multimerization in silencing, we conducted structure modeling and then mutated the SAM domain residues which in this model were predicted to polymerize Bicc1 in a left-handed helix. We show that a SAM-SAM interface concentrates Bicc1 in cytoplasmic clusters to specifically localize and silence bound mRNA. In addition, defective polymerization decreases Bicc1 stability and thus indirectly attenuates inhibition of Dishevelled 2 in the Wnt/β-catenin pathway. Importantly, aberrant C-terminal extension of the SAM domain in bpk mutant Bicc1 phenocopied these defects. We conclude that polymerization is a novel disease-relevant mechanism both to stabilize Bicc1 and to present associated mRNAs in specific silencing platforms.
Collapse
|
13
|
Bakey Z, Bihoreau MT, Piedagnel R, Delestré L, Arnould C, de Villiers AD, Devuyst O, Hoffmann S, Ronco P, Gauguier D, Lelongt B. The SAM domain of ANKS6 has different interacting partners and mutations can induce different cystic phenotypes. Kidney Int 2015; 88:299-310. [PMID: 26039630 DOI: 10.1038/ki.2015.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/12/2015] [Accepted: 03/05/2015] [Indexed: 01/18/2023]
Abstract
The ankyrin repeat and sterile α motif (SAM) domain-containing six gene (Anks6) is a candidate for polycystic kidney disease (PKD). Originally identified in the PKD/Mhm(cy/+) rat model of PKD, the disease is caused by a mutation (R823W) in the SAM domain of the encoded protein. Recent studies support the etiological role of the ANKS6 SAM domain in human cystic diseases, but its function in kidney remains unknown. To investigate the role of ANKS6 in cyst formation, we screened an archive of N-ethyl-N-nitrosourea-treated mice and derived a strain carrying a missense mutation (I747N) within the SAM domain of ANKS6. This mutation is only six amino acids away from the PKD-causing mutation (R823W) in cy/+ rats. Evidence of renal cysts in these mice confirmed the crucial role of the SAM domain of ANKS6 in kidney function. Comparative phenotype analysis in cy/+ rats and our Anks6(I747N) mice further showed that the two models display noticeably different PKD phenotypes and that there is a defective interaction between ANKS6 with ANKS3 in the rat and between ANKS6 and BICC1 (bicaudal C homolog 1) in the mouse. Thus, our data demonstrate the importance of ANKS6 for kidney structure integrity and the essential mediating role of its SAM domain in the formation of protein complexes.
Collapse
Affiliation(s)
- Zeineb Bakey
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR_S1155, Paris, France [2] INSERM, UMR_S1155, Hôpital Tenon, Paris, France
| | | | - Rémi Piedagnel
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR_S1155, Paris, France [2] INSERM, UMR_S1155, Hôpital Tenon, Paris, France
| | - Laure Delestré
- 1] UPD University of Paris 05, Paris, France [2] INSERM, UMR_S1138, CRC, Paris, France
| | - Catherine Arnould
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR_S1155, Paris, France [2] INSERM, UMR_S1155, Hôpital Tenon, Paris, France
| | - Alexandre d'Hotman de Villiers
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR_S1155, Paris, France [2] INSERM, UMR_S1155, Hôpital Tenon, Paris, France
| | - Olivier Devuyst
- 1] UCL Medical School, Brussels, Belgium [2] University of Zurich, Zürich, Switzerland
| | - Sigrid Hoffmann
- Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Pierre Ronco
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR_S1155, Paris, France [2] INSERM, UMR_S1155, Hôpital Tenon, Paris, France [3] AP-HP, Hôpital Tenon, Paris, France
| | - Dominique Gauguier
- 1] UPD University of Paris 05, Paris, France [2] INSERM, UMR_S1138, CRC, Paris, France [3] Institute of Cardiometabolism and Nutrition, University Pierre & Marie Curie, Hospital Pitié Salpetrière, Paris, France
| | - Brigitte Lelongt
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR_S1155, Paris, France [2] INSERM, UMR_S1155, Hôpital Tenon, Paris, France
| |
Collapse
|
14
|
Piazzon N, Bernet F, Guihard L, Leonhard WN, Urfer S, Firsov D, Chehade H, Vogt B, Piergiovanni S, Peters DJM, Bonny O, Constam DB. Urine Fetuin-A is a biomarker of autosomal dominant polycystic kidney disease progression. J Transl Med 2015; 13:103. [PMID: 25888842 PMCID: PMC4416261 DOI: 10.1186/s12967-015-0463-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/13/2015] [Indexed: 01/08/2023] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder characterized by numerous fluid-filled cysts that frequently result in end-stage renal disease. While promising treatment options are in advanced clinical development, early diagnosis and follow-up remain a major challenge. We therefore evaluated the diagnostic value of Fetuin-A as a new biomarker of ADPKD in human urine. Results We found that renal Fetuin-A levels are upregulated in both Pkd1 and Bicc1 mouse models of ADPKD. Measurement by ELISA revealed that urinary Fetuin-A levels were significantly higher in 66 ADPKD patients (17.5 ± 12.5 μg/mmol creatinine) compared to 17 healthy volunteers (8.5 ± 3.8 μg/mmol creatinine) or 50 control patients with renal diseases of other causes (6.2 ± 2.9 μg/mmol creatinine). Receiver operating characteristics (ROC) analysis of urinary Fetuin-A levels for ADPKD rendered an optimum cut-off value of 12.2 μg/mmol creatinine, corresponding to 94% of sensitivity and 60% of specificity (area under the curve 0.74 ; p = 0.0019). Furthermore, urinary Fetuin-A levels in ADPKD patients correlated with the degree of renal insufficiency and showed a significant increase in patients with preserved renal function followed for two years. Conclusions Our findings establish urinary Fetuin-A as a sensitive biomarker of the progression of ADPKD. Further studies are required to examine the pathogenic mechanisms of elevated renal and urinary Fetuin-A in ADPKD. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0463-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nathalie Piazzon
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Bâtiment SV ISREC, Station 19, Lausanne, Switzerland. .,Department of Pharmacology and Toxicology, University of Lausanne (UNIL), Quartier UNIL-CHUV, Lausanne, Switzerland.
| | - Florian Bernet
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Bâtiment SV ISREC, Station 19, Lausanne, Switzerland.
| | - Linda Guihard
- Service of Nephrology, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Wouter N Leonhard
- Department of Human Genetics, Leiden Univ. Medical Center, Leiden, The Netherlands.
| | - Séverine Urfer
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Bâtiment SV ISREC, Station 19, Lausanne, Switzerland.
| | - Dmitri Firsov
- Department of Pharmacology and Toxicology, University of Lausanne (UNIL), Quartier UNIL-CHUV, Lausanne, Switzerland.
| | - Hassib Chehade
- Department of Pediatrics, Division of Pediatric Nephrology, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Bruno Vogt
- Department of Nephrology and Hypertension, Inselspital, Bern, Switzerland.
| | - Sophia Piergiovanni
- Department of Pharmacology and Toxicology, University of Lausanne (UNIL), Quartier UNIL-CHUV, Lausanne, Switzerland.
| | - Dorien J M Peters
- Department of Human Genetics, Leiden Univ. Medical Center, Leiden, The Netherlands.
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne (UNIL), Quartier UNIL-CHUV, Lausanne, Switzerland. .,Service of Nephrology, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Bâtiment SV ISREC, Station 19, Lausanne, Switzerland.
| |
Collapse
|