1
|
Charles N, Blank U. IgE-Mediated Activation of Mast Cells and Basophils in Health and Disease. Immunol Rev 2025; 331:e70024. [PMID: 40165512 DOI: 10.1111/imr.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Type 2-mediated immune responses protect the body against environmental threats at barrier surfaces, such as large parasites and environmental toxins, and facilitate the repair of inflammatory tissue damage. However, maladaptive responses to typically nonpathogenic substances, commonly known as allergens, can lead to the development of allergic diseases. Type 2 immunity involves a series of prototype TH2 cytokines (IL-4, IL-5, IL-13) and alarmins (IL-33, TSLP) that promote the generation of adaptive CD4+ helper Type 2 cells and humoral products such as allergen-specific IgE. Mast cells and basophils are integral players in this network, serving as primary effectors of IgE-mediated responses. These cells bind IgE via high-affinity IgE receptors (FcεRI) expressed on their surface and, upon activation by allergens, release a variety of mediators that regulate tissue responses, attract and modulate other inflammatory cells, and contribute to tissue repair. Here, we review the biology and effector mechanisms of these cells, focusing primarily on their role in mediating IgE responses in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Nicolas Charles
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Kolkhir P, Bieber K, Hawro T, Kridin K, Ludwig MA, Olbrich H, Metz M, Vorobyev A, Ludwig RJ, Maurer M. Mortality in adult patients with chronic spontaneous urticaria: A real-world cohort study. J Allergy Clin Immunol 2025; 155:1290-1298. [PMID: 39675681 DOI: 10.1016/j.jaci.2024.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Chronic spontaneous urticaria (CSU), a common and debilitating disease, is widely held not to be life limiting, but the mortality of CSU has not been investigated. OBJECTIVE We sought to assess all-cause mortality in patients with CSU, risk for comorbidities that are leading causes of death, and impact of guideline-recommended urticaria treatments on mortality rates. METHODS This was a retrospective population-based cohort study of electronic health records of 272,190 adult patients with CSU and 12,728,913 controls without urticaria from the US collaborative network TriNetX. RESULTS The study included 264,680 propensity score-matched patients with CSU (mean [SD] age = 47.5 [19.8] years; 71.5% female) and a corresponding number of controls without urticaria. Patients with CSU had higher 3-month (hazard ratio [HR] 2.10, 95% CI 1.97-2.22), 1-year (HR 1.77, 95% CI 1.71-1.83), and 5-year (HR 1.69, 95% CI 1.65-1.73) all-cause mortality (all P < .0001). Compared with controls, patients with CSU exhibited higher risk and rates of the leading causes of death in the United States, including suicidal ideations/suicide attempts (HR 3.14, 95% CI 3.00-3.28) and malignant neoplasms (HR 2.09, 95% CI 2.02-2.16). The risk of mortality appeared to be more pronounced in White and younger patients with CSU. All-cause mortality rates at 5 years were significantly lower in patients treated with second-generation H1 antihistamines versus untreated patients (1.0% vs 2.3%; HR 1.84, P < .0001) and omalizumab-treated patients versus antihistamine-treated patients (0.7% vs 2.6%; HR 3.99, P = .0003). CONCLUSIONS CSU is associated with increased mortality likely due to comorbidities, especially suicide, and effective CSU treatment may reduce mortality. These findings should be investigated in additional studies and in other populations.
Collapse
Affiliation(s)
- Pavel Kolkhir
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology and Allergology, Berlin, Germany.
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Tomasz Hawro
- Institute for Inflammation Medicine, University of Lübeck, Lübeck, Germany; Department of Dermatology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Khalaf Kridin
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Unit of Dermatology and Skin Research Laboratory, Galilee Medical Center, Nahariya, Israel
| | | | - Henning Olbrich
- Department of Dermatology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology and Allergology, Berlin, Germany
| | - Artem Vorobyev
- Department of Dermatology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Institute for Inflammation Medicine, University of Lübeck, Lübeck, Germany; Department of Dermatology, University Hospital Schleswig-Holstein, Lübeck, Germany.
| | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology and Allergology, Berlin, Germany
| |
Collapse
|
3
|
Kramer K, Pecher AC, Henes J, Klein R. IgE autoantibodies to nuclear antigens in patients with different connective tissue diseases: re-evaluation and novel findings. Front Immunol 2025; 16:1483815. [PMID: 40181984 PMCID: PMC11965355 DOI: 10.3389/fimmu.2025.1483815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Connective tissue diseases (CTD) are characterised by the overproduction of multiple autoantibodies, especially antinuclear antibodies (ANA) of the IgG type. Meanwhile, also IgE autoantibodies have been described. The aim was therefore, to establish an ELISA for the demonstration of IgE autoantibodies to SSA/Ro, SSB/La, RNP proteins and dsDNA in sera from patients with systemic lupus erythematosus (SLE), Sjoegren's syndrome (SS), and mixed connective tissue disease (MCTD) to investigate their frequency and clinical relevance. Methods Serum samples from 110 patients with SLE, 118 patients with SS, 41 patients with MCTD, and 73 controls were analysed by ELISA for IgE autoantibodies against dsDNA, SSA/Ro52, and SSA/Ro60, SSB/La, and RNP proteins using recombinant antigens. Patients were assessed for different clinical manifestations. Results In SLE and SS, IgE anti-SSA/Ro52-, -SSA/Ro60- and -SSB/La-antibodies showed a significantly higher reactivity than in controls. IgE anti-dsDNA-antibodies were present in 66% of SLE patients. In SLE, there was a correlation of IgE anti-dsDNA- and -anti-SSA/Ro52-antibodies with disease activity and cutaneous manifestation. Neither IgE anti-SSA/Ro- nor -anti-SSB/La-antibodies were associated with distinct clinical manifestations in SS. Also, anti-RNP-antibodies were found to be of the IgE type (up to 90% in MCTD and 70% in SLE). In MCTD, IgE anti-Sm/RNPB- and -anti-RNP68-antibodies correlated with pulmonary manifestations. IgE anti-dsDNA- but not the other IgE autoantibodies decreased under immunosuppressive therapy. Conclusion IgE anti-SSA/Ro-, -SSB/La-, -RNP-, and -dsDNA antibodies show a high frequency and specificity for the prevailing CTD. We confirmed an association of anti-dsDNA and anti-SSA/Ro52 antibodies with disease activity in SLE. In MCTD, there was an association of anti-Sm/RNP B and -RNP68 antibodies with pulmonary disorder.
Collapse
Affiliation(s)
| | | | | | - Reinhild Klein
- Department of Haematology, Oncology, Rheumatology, Immunology, University Hospital
Tuebingen, Tuebingen, Germany
| |
Collapse
|
4
|
Ramirez GA, Cardamone C, Lettieri S, Fredi M, Mormile I. Clinical and Pathophysiological Tangles Between Allergy and Autoimmunity: Deconstructing an Old Dichotomic Paradigm. Clin Rev Allergy Immunol 2025; 68:13. [PMID: 39932658 DOI: 10.1007/s12016-024-09020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2024] [Indexed: 02/14/2025]
Abstract
Allergic and autoimmune disorders are characterised by dysregulation of the immune responses to otherwise inert environmental substances and autoantigens, leading to inflammation and tissue damage. Their incidence has constantly increased in the last decades, and their co-occurrence defies current standards in patient care. For years, allergy and autoimmunity have been considered opposite conditions, with IgE and Th2 lymphocytes cascade driving canonical allergic manifestations and Th1/Th17-related pathways accounting for autoimmunity. Conversely, growing evidence suggests that these conditions not only share some common inciting triggers but also are subtended by overlapping pathogenic pathways. Permissive genetic backgrounds, along with epithelial barrier damage and changes in the microbiome, are now appreciated as common risk factors for both allergy and autoimmunity. Eosinophils and mast cells, along with autoreactive IgE, are emerging players in triggering and sustaining autoimmunity, while pharmacological modulation of B cells and Th17 responses has provided novel clues to the pathophysiology of allergy. By combining clinical and therapeutic evidence with data from mechanistic studies, this review provides a state-of-the-art update on the complex interplay between allergy and autoimmunity, deconstructing old dichotomic paradigms and offering potential clues for future research.
Collapse
Affiliation(s)
- Giuseppe A Ramirez
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Cardamone
- Immunorheumatology Unit, University Hospital "San Giovanni Di Dio E Ruggi d'Aragona", Largo Città d'Ippocrate, Via San Leonardo 1, 84131, Salerno, Italy.
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy.
| | - Sara Lettieri
- Pulmonology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Micaela Fredi
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Ilaria Mormile
- Division of Internal Medicine and Clinical Immunology, Department of Internal Medicine and Clinical Complexity, AOU Federico II, Naples, Italy
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
5
|
Galletta F, Gambadauro A, Foti Randazzese S, Passanisi S, Sinatra V, Caminiti L, Zirilli G, Manti S. Pathophysiology of Congenital High Production of IgE and Its Consequences: A Narrative Review Uncovering a Neglected Setting of Disorders. Life (Basel) 2024; 14:1329. [PMID: 39459629 PMCID: PMC11509725 DOI: 10.3390/life14101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Elevated serum IgE levels serve as a critical marker for uncovering hidden immunological disorders, particularly inborn errors of immunity (IEIs), which are often misdiagnosed as common allergic conditions. IgE, while typically associated with allergic diseases, plays a significant role in immune defense, especially against parasitic infections. However, extremely high levels of IgE can indicate more severe conditions, such as Hyper-IgE syndromes (HIES) and disorders with similar features, including Omenn syndrome, Wiskott-Aldrich syndrome, and IPEX syndrome. Novel insights into the genetic mutations responsible for these conditions highlight their impact on immune regulation and the resulting clinical features, including recurrent infections, eczema, and elevated IgE. This narrative review uniquely integrates recent advances in the genetic understanding of IEIs and discusses how these findings impact both diagnosis and treatment. Additionally, emerging therapeutic strategies, such as hematopoietic stem cell transplantation (HSCT) and gene therapies, are explored, underscoring the potential for personalized treatment approaches. Emphasizing the need for precise diagnosis and tailored interventions aims to enhance patient outcomes and improve the quality of care for those with elevated IgE levels and associated immunological disorders.
Collapse
Affiliation(s)
| | | | | | - Stefano Passanisi
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, University of Messina, 98124 Messina, Italy; (F.G.); (A.G.); (S.F.R.); (V.S.); (L.C.); (G.Z.)
| | | | | | | | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, University of Messina, 98124 Messina, Italy; (F.G.); (A.G.); (S.F.R.); (V.S.); (L.C.); (G.Z.)
| |
Collapse
|
6
|
Liu YL, Ran YT, Zhang YF, Peng XT, Xia YM, Yan HL. Efficacy and safety of dupilumab in the treatment of Kimura's disease. QJM 2024; 117:575-580. [PMID: 38492561 DOI: 10.1093/qjmed/hcae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/10/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Kimura's disease (KD) is a rare chronic inflammatory condition characterized by nodules and lymphadenopathy in the head and neck region, exhibiting type II inflammation. Dupilumab is commonly used against type II inflammation. AIM To evaluate the efficacy and safety of dupilumab in KD patients. DESIGN The real-world study was conducted in a hospital in China. METHODS Six male patients with a mean age of 24.50 ± 15.47 years were treated with dupilumab following the same protocol as that for atopic dermatitis (AD). Clinical and laboratory indicators, such as maximum nodule diameter, blood eosinophil count, eosinophil percentage, and total serum IgE levels were assessed at baseline, Week 12 and Week 24. Adverse events were documented. Paired t-tests and one-way ANOVA were used for statistical analysis. RESULTS The results showed significant reductions in the longest nodule diameter at Week 12 (P = 0.006) and Week 24 (P = 0.017) compared to baseline. Blood eosinophil count decreased by 57.95% (P = 0.024) at Week 12 and 90.59% (P = 0.030) at Week 24. Eosinophil percentage decreased by 58.44% (P = 0.026) at Week 12 and 89.37% (P = 0.013) at Week 24. Total serum IgE levels decreased by 78.02% (P = 0.040) at Week 12 and 89.55% (P = 0.031) at Week 24. The presence of AD did not affect the results. One patient experienced temporary facial erythema after 32 weeks of treatment, which resolved with topical treatment. No other adverse events were reported. CONCLUSION Dupilumab demonstrated effectiveness in treating KD without severe adverse events.
Collapse
Affiliation(s)
- Y L Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Y T Ran
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Y F Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - X T Peng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Y M Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - H L Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
7
|
Himbert M, Jourde-Chiche N, Chapart L, Charles N, Baumstarck K, Daugas E. Anti-dsDNA IgE: a potential non-invasive test for prediction of lupus nephritis relapse. RMD Open 2024; 10:e004255. [PMID: 38942591 PMCID: PMC11227839 DOI: 10.1136/rmdopen-2024-004255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/31/2024] [Indexed: 06/30/2024] Open
Abstract
OBJECTIVES Discontinuation or continuation of maintenance immunosuppressive therapy (MIST) after a severe lupus nephritis (LN) requires measuring the risk of relapse but reliable clinical and biological markers are lacking. The WIN-IgE study assesses the value of serum anti-dsDNA IgE autoantibodies as a biomarker for the prediction of relapse in severe LN. METHODS WIN-IgE is an ancillary study of the WIN-Lupus study (NCT01284725), a prospective controlled clinical trial which evaluated the discontinuation of MIST after 2-3 years in class III or IV±V LN with active lesions. WIN-IgE included all patients with available serum collected at randomisation for continuation or discontinuation of MIST. In these sera, anti-dsDNA antibodies, IgE and IgG, were quantified by ELISA and compared between patients who experienced LN relapse and those who did not during the 24 months of follow-up. RESULTS 52 patients were included, 25 in the MIST continuation group and 27 in the MIST discontinuation group, 12 experienced a biopsy-proven relapse of LN. Initial anti-dsDNA IgE antibodies levels were higher in patients with subsequent LN relapse. Anti-dsDNA IgG was not associated with relapse. Survival without LN relapse was lower in patients with anti-dsDNA IgE levels above vs below a threshold of 1.9 arbitrary units (p=0.019), particularly in the subgroup of patients randomised to discontinue MIST (p=0.002). In all patients, anti-dsDNA IgE above 1.9 arbitrary units had a positive predictive value of 0.8 for severe LN relapse. CONCLUSIONS These results suggest blood anti-dsDNA IgE as a non-invasive predictive marker of LN relapse.
Collapse
Affiliation(s)
- Marie Himbert
- Department of Nephrology, Hôpital Bichat Claude-Bernard, Paris, France
| | - Noémie Jourde-Chiche
- C2VN, INSERM, INRAE, Aix-Marseille Universite, Marseille, France
- Centre de Néphrologie et Transplantation Rénale, AP-HM, CHU de la Conception, Marseille, France
| | - Léa Chapart
- Centre de Recherche sur l'inflammation, INSERM UMR1149, CNRS EMR8252, Université Paris Cité, Paris, France
| | - Nicolas Charles
- Centre de Recherche sur l'inflammation, INSERM UMR1149, CNRS EMR8252, Université Paris Cité, Paris, France
| | - Karine Baumstarck
- Laboratoire de Santé Publique CERESS, Aix-Marseille Université, Marseille, France
| | - Eric Daugas
- Department of Nephrology, Hôpital Bichat Claude-Bernard, Paris, France
- Centre de Recherche sur l'inflammation, INSERM UMR1149, CNRS EMR8252, Université Paris Cité, Paris, France
| |
Collapse
|
8
|
Tchen J, Simon Q, Chapart L, Thaminy MK, Vibhushan S, Saveanu L, Lamri Y, Saidoune F, Pacreau E, Pellefigues C, Bex-Coudrat J, Karasuyama H, Miyake K, Hidalgo J, Fallon PG, Papo T, Blank U, Benhamou M, Hanouna G, Sacre K, Daugas E, Charles N. PD-L1- and IL-4-expressing basophils promote pathogenic accumulation of T follicular helper cells in lupus. Nat Commun 2024; 15:3389. [PMID: 38649353 PMCID: PMC11035650 DOI: 10.1038/s41467-024-47691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by anti-nuclear autoantibodies whose production is promoted by autoreactive T follicular helper (TFH) cells. During SLE pathogenesis, basophils accumulate in secondary lymphoid organs (SLO), amplify autoantibody production and disease progression through mechanisms that remain to be defined. Here, we provide evidence for a direct functional relationship between TFH cells and basophils during lupus pathogenesis, both in humans and mice. PD-L1 upregulation on basophils and IL-4 production are associated with TFH and TFH2 cell expansions and with disease activity. Pathogenic TFH cell accumulation, maintenance, and function in SLO were dependent on PD-L1 and IL-4 in basophils, which induced a transcriptional program allowing TFH2 cell differentiation and function. Our study establishes a direct mechanistic link between basophils and TFH cells in SLE that promotes autoantibody production and lupus nephritis.
Collapse
Affiliation(s)
- John Tchen
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Quentin Simon
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
- Inovarion, 75005, Paris, France
| | - Léa Chapart
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Morgane K Thaminy
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Shamila Vibhushan
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Loredana Saveanu
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Yasmine Lamri
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Fanny Saidoune
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Emeline Pacreau
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Christophe Pellefigues
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Julie Bex-Coudrat
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Juan Hidalgo
- Universidad Autonoma de Barcelona, Facultad de Biociencias, Unidad de Fisiologia Animal Bellaterra, Bellaterra Campus, 08193, Barcelona, Spain
| | | | - Thomas Papo
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
- Service de Médecine Interne, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris, 75018, Paris, France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Marc Benhamou
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Guillaume Hanouna
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
- Service de Néphrologie, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris, 75018, Paris, France
| | - Karim Sacre
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
- Service de Médecine Interne, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris, 75018, Paris, France
| | - Eric Daugas
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
- Service de Néphrologie, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris, 75018, Paris, France
| | - Nicolas Charles
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France.
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France.
| |
Collapse
|
9
|
Kolkhir P, Altrichter S, Badloe FMS, Belasri H, Charles N, De Vriese S, Gutermuth J, Huygen L, Kocatürk E, Kortekaas Krohn I, Muñoz M, Moñino-Romero S, Reber LL, Scheffel J, Steinert C, Xiang YK, Maurer M. The European Network for IgE-Mediated Autoimmunity and Autoallergy (ENIGMA) initiative. Nat Med 2024; 30:920-922. [PMID: 38429523 DOI: 10.1038/s41591-024-02819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Affiliation(s)
- Pavel Kolkhir
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Immunology and Allergology, Berlin, Germany.
| | - Sabine Altrichter
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Immunology and Allergology, Berlin, Germany
- Department of Dermatology and Venerology, Kepler University Hospital, Linz, Austria
- Center for Medical Research, Johannes Kepler University, Linz, Austria
| | - Fariza Mishaal Saiema Badloe
- Vrije Universiteit Brussel (VUB), Skin Immunology and Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Hafsa Belasri
- Vrije Universiteit Brussel (VUB), Skin Immunology and Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Nicolas Charles
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, Paris, France
| | - Shauni De Vriese
- Vrije Universiteit Brussel (VUB), Skin Immunology and Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jan Gutermuth
- Vrije Universiteit Brussel (VUB), Skin Immunology and Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Lisa Huygen
- Vrije Universiteit Brussel (VUB), Skin Immunology and Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Emek Kocatürk
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Immunology and Allergology, Berlin, Germany
- Koç University School of Medicine, Department of Dermatology, Istanbul, Turkey
| | - Inge Kortekaas Krohn
- Vrije Universiteit Brussel (VUB), Skin Immunology and Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Melba Muñoz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Immunology and Allergology, Berlin, Germany
| | - Sherezade Moñino-Romero
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Immunology and Allergology, Berlin, Germany
| | - Laurent L Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR 1291, University of Toulouse, INSERM, CNRS, Toulouse, France
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Immunology and Allergology, Berlin, Germany
| | - Carolin Steinert
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Immunology and Allergology, Berlin, Germany
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Berlin, Germany
| | - Yi-Kui Xiang
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Immunology and Allergology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Immunology and Allergology, Berlin, Germany.
| |
Collapse
|
10
|
Pathmanandavel K, Tangye SG, Ma CS. Flow Cytometric Identification of Human IgE + B Lineage Subsets. Methods Mol Biol 2024; 2826:189-199. [PMID: 39017894 DOI: 10.1007/978-1-0716-3950-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The use of flow cytometry for immunophenotyping is contingent on the ability to accurately assign biological relevance to the detected signal. This process has historically been challenging when defining IgE expressing B cells or IgE expressing antibody-secreting cells due to widespread expression of receptors for IgE on various leukocyte subsets, including human B cells. Here we describe our implementation of intracellular staining for human IgE following a blocking step to negate the challenge of surface-bound IgE. We also describe our experience with a human B cell culture system that can be used to robustly validate this approach before application to primary human samples. Orthogonal confirmatory techniques remain essential; these are not described in detail, but several possible strategies are suggested.
Collapse
Affiliation(s)
- Karrnan Pathmanandavel
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
- School of Clinical Medicine, Sydney, NSW, Australia.
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Sydney, NSW, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
- School of Clinical Medicine, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Chen L, Yuan M, Tan Y, Zhao M. Serum IgE anti-dsDNA autoantibodies in patients with proliferative lupus nephritis are associated with tubulointerstitial inflammation. Ren Fail 2023; 45:2273981. [PMID: 38059453 PMCID: PMC11001354 DOI: 10.1080/0886022x.2023.2273981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/17/2023] [Indexed: 12/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the overproduction of multiple autoantibodies. Lupus nephritis (LN), the most common cause of morbidity and mortality, requires early detection. However, only a limited number of serum biomarkers have been associated with the disease activity of LN. Serum IgE anti-dsDNA autoantibodies are prevalent in patients with SLE and may be associated with the pathogenesis of LN. In this study, serum samples from 88 patients with biopsy-proven proliferative LN were collected along with complete clinical and pathological data to investigate the clinical and pathological associations of anti-dsDNA IgE autoantibodies using ELISA. This study found that the prevalence of IgE anti-dsDNA autoantibodies in patients with proliferative LN was 38.6% (34/88). Patients with anti-dsDNA IgE autoantibodies were more prone to acute kidney injury (17/34 vs. 14/54; p = .025). Levels of anti-dsDNA IgE autoantibodies were associated with interstitial inflammation (r = 0.962, p = .017). Therefore, anti-dsDNA IgE autoantibody levels are associated with tubulointerstitial inflammation in patients with proliferative LN.
Collapse
Affiliation(s)
- Leran Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, PR China
- Institute of Nephrology, Peking University, Beijing, PR China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, PR China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, PR China
| | - Mo Yuan
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, PR China
- Institute of Nephrology, Peking University, Beijing, PR China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, PR China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, PR China
| | - Ying Tan
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, PR China
- Institute of Nephrology, Peking University, Beijing, PR China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, PR China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, PR China
| | - Minghui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, PR China
- Institute of Nephrology, Peking University, Beijing, PR China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, PR China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, PR China
| |
Collapse
|
12
|
Kortekaas Krohn I, Badloe FMS, Herrmann N, Maintz L, De Vriese S, Ring J, Bieber T, Gutermuth J. Immunoglobulin E autoantibodies in atopic dermatitis associate with Type-2 comorbidities and the atopic march. Allergy 2023; 78:3178-3192. [PMID: 37489049 DOI: 10.1111/all.15822] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Autoreactive immunoglobulin E (IgE) antibodies to self-peptides within the epidermis have been identified in patients with atopic dermatitis (AD). Prevalence, concomitant diseases, patient characteristics, and risk factors of IgE autoantibody development remain elusive. We aimed to determine IgE autoantibodies in serum samples (n = 672) from well-characterized patients with AD and controls (1.2-88.9 years). METHODS Atopic dermatitis patients were sub-grouped in AD with comorbid Type-2 diseases ("AD + Type 2"; asthma, allergic rhinitis, food allergy, n = 431) or "solely AD" (n = 115). Also, subjects without AD but with Type-2 diseases ("atopic controls," n = 52) and non-atopic "healthy controls" (n = 74) were included. Total proteins from primary human keratinocytes were used for the immunoassay to detect IgE autoantibodies. Values were compared to already known positive and negative serum samples. RESULTS Immunoglobulin E autoantibodies were found in 15.0% (82/546) of all analyzed AD-patients. "AD + Type 2" showed a higher prevalence (16.4%) than "solely AD" (9.6%). "Atopic controls" (9.6%) were comparable with "solely AD" patients, while 2.7% of healthy controls showed IgE autoantibodies. Of those with high levels of IgE autoantibodies, 15 out of 16 were patients with "AD + Type 2". AD patients with IgE autoantibodies were younger than those without. Patients with IgE autoreactivity also displayed higher total serum IgE levels. Factors that affected IgE autoantibody development were as follows: birth between January and June, cesarean-section and diversity of domestic pets. CONCLUSIONS Immunoglobulin E autoantibodies in AD seem to associate with the presence of atopic comorbidities and environmental factors. The potential value of IgE autoantibodies as a predictive biomarker for the course of AD, including the atopic march, needs further exploration.
Collapse
Affiliation(s)
- Inge Kortekaas Krohn
- Skin Immunology & Immune Tolerance (SKIN) Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Dermatology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Fariza Mishaal Saiema Badloe
- Skin Immunology & Immune Tolerance (SKIN) Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Dermatology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Nadine Herrmann
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Laura Maintz
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Shauni De Vriese
- Skin Immunology & Immune Tolerance (SKIN) Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Dermatology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Johannes Ring
- Department Dermatology and Allergy Biederstein, Technical University Munich, Munich, Germany
| | - Thomas Bieber
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
- Davos Biosciences, Davos, Switzerland
| | - Jan Gutermuth
- Skin Immunology & Immune Tolerance (SKIN) Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Dermatology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
13
|
Charles N, Kortekaas-Krohn I, Kocaturk E, Scheffel J, Altrichter S, Steinert C, Xiang YK, Gutermuth J, Reber LL, Maurer M. Autoreactive IgE: Pathogenic role and therapeutic target in autoimmune diseases. Allergy 2023; 78:3118-3135. [PMID: 37555488 DOI: 10.1111/all.15843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/08/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Autoimmunity is the break of tolerance to self-antigens that leads to organ-specific or systemic diseases often characterized by the presence of pathogenic autoreactive antibodies (AAb) produced by plasmablast and/or plasma cells. AAb are prevalent in the general population and not systematically associated with clinical symptoms. In contrast, in some individuals, these AAb are pathogenic and drive the development of signs and symptoms of antibody-mediated autoimmune diseases (AbAID). AAb production, isotype profiles, and glycosylations are promoted by pro-inflammatory triggers linked to genetic, environmental, and hormonal parameters. Recent evidence supports a role for pathogenic AAb of the IgE isotype in a number of AbAID. Autoreactive IgE can drive the activation of mast cells, basophils, and other types of FcεRI-bearing cells and may play a role in promoting autoantibody production and other pro-inflammatory pathways. In this review, we discuss the current knowledge on the pathogenicity of autoreactive IgE in AbAID and their status as therapeutic targets. We also highlight unresolved issues including the need for assays that reproducibly quantify IgE AAbs, to validate their diagnostic and prognostic value, and to further study their pathophysiological contributions to AbAID.
Collapse
Affiliation(s)
- Nicolas Charles
- Faculté de Médecine site Bichat, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Université Paris Cité, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| | - Inge Kortekaas-Krohn
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Department of Dermatology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Emek Kocaturk
- Department of Dermatology, Koç University School of Medicine, Istanbul, Turkey
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Sabine Altrichter
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
- Departement of Dermatology and Venerology, Kepler University Hospital, Linz, Austria
| | - Carolin Steinert
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Berlin, Germany
| | - Yi-Kui Xiang
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jan Gutermuth
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Department of Dermatology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Laurent L Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR 1291, University of Toulouse, INSERM, CNRS, Toulouse, France
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| |
Collapse
|
14
|
Mucha J, Cho A, Weijler AM, Muckenhuber M, Hofmann AG, Wahrmann M, Heinzel A, Linhart B, Gattinger P, Valenta R, Berlakovich G, Zuckermann A, Jaksch P, Oberbauer R, Wekerle T. Prospective assessment of pre-existing and de novo anti-HLA IgE in kidney, liver, lung and heart transplantation. Front Immunol 2023; 14:1179036. [PMID: 37731514 PMCID: PMC10507692 DOI: 10.3389/fimmu.2023.1179036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Antibody mediated rejection (ABMR) is a major factor limiting outcome after organ transplantation. Anti-HLA donor-specific antibodies (DSA) of the IgG isotype are mainly responsible for ABMR. Recently DSA of the IgE isotype were demonstrated in murine models as well as in a small cohort of sensitized transplant recipients. In the present study, we aimed to determine the frequency of pre-existing and de novo anti-HLA IgE antibodies in a cohort of 105 solid organ transplant recipients. Methods We prospectively measured anti-HLA IgE antibodies in a cohort of kidney (n=60), liver, heart and lung (n=15 each) transplant recipients before and within one-year after transplantation, employing a single-antigen bead assay for HLA class I and class II antigens. Functional activity of anti-HLA IgE antibodies was assessed by an in vitro mediator release assay. Antibodies of the IgG1-4 subclasses and Th1 and Th2 cytokines were measured in anti-HLA IgE positive patients. Results Pre-existing anti-HLA IgE antibodies were detected in 10% of renal recipients (including 3.3% IgE-DSA) and in 4.4% of non-renal solid organ transplant recipients (heart, liver and lung cohort). Anti-HLA IgE occurred only in patients that were positive for anti-HLA IgG, and most IgE positive patients had had a previous transplant. Only a small fraction of patients developed de novo anti-HLA IgE antibodies (1.7% of kidney recipients and 4.4% of non-renal recipients), whereas no de novo IgE-DSA was detected. IgG subclass antibodies showed a distinct pattern in patients who were positive for anti-HLA IgE. Moreover, patients with anti-HLA IgE showed elevated Th2 and also Th1 cytokine levels. Serum from IgE positive recipients led to degranulation of basophils in vitro, demonstrating functionality of anti-HLA IgE. Discussion These data demonstrate that anti-HLA IgE antibodies occur at low frequency in kidney, liver, heart and lung transplant recipients. Anti-HLA IgE development is associated with sensitization at the IgG level, in particular through previous transplants and distinct IgG subclasses. Taken together, HLA specific IgE sensitization is a new phenomenon in solid organ transplant recipients whose potential relevance for allograft injury requires further investigation.
Collapse
Affiliation(s)
- Jasmin Mucha
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Ara Cho
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anna Marianne Weijler
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Moritz Muckenhuber
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Amun Georg Hofmann
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Markus Wahrmann
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Andreas Heinzel
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Pia Gattinger
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Gabriela Berlakovich
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Andreas Zuckermann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Peter Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Rainer Oberbauer
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Hung YH, Liu HY, Chang R, Huang JY, Wu CD, Yen MS, Hung YM, Wei JCC, Wang PYP. Association between parental autoimmune disease and childhood atopic dermatitis varied by sex: a nationwide case-control study. Arch Dermatol Res 2023; 315:2011-2021. [PMID: 36892596 DOI: 10.1007/s00403-023-02582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disorder induced by dysfunction of immune suppression sharing similar pathogenesis to autoimmune diseases. To explore the association between autoimmune diseases and AD in children, we linked the birth data from National Birth Registry with National Health Insurance Research Database. There were 1,174,941 children obtained from 2006 to 2012 birth cohort. A total of 312,329 children diagnosed with AD before 5 years old were compared to 862,612 children without AD in the control group. Conditional logistic regression was utilized to calculate adjusted odds ratio (OR) and Bonferroni-corrected confidence interval (CI) for overall significance level of 0.05. In 2006-2012 birth cohort, the prevalence rate of AD was 26.6% (95% CI 26.5, 26.7) before 5 years of age. Having parental autoimmune disease (including rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, ankylosing spondylitis, and psoriasis) was associated with a significant higher risk of children AD development. The other associated factors were maternal obstetric complications (including gestational diabetes mellitus and cervical incompetence), parental systemic diseases (including anemia, hypertension, diabetes mellitus, chronic obstructive pulmonary disease, hyperthyroidism, and obstructive sleep apnea), and parental allergic disease (including asthma and AD). The subgroup analysis showed similar results between children's sexes. Moreover, maternal autoimmune disease had higher impact on the risk of developing AD in the child compared with paternal autoimmune disease. In conclusion, parental autoimmune diseases were found to be related to their children's AD before 5 years old.
Collapse
Affiliation(s)
- Yu-Hsuan Hung
- School of Medicine, Department of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsin-Yu Liu
- School of Medicine, Department of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Renin Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jing-Yang Huang
- Department of Medical Research, Chung Shan Medical University, Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., South District, Taichung City, 40201, Taiwan
| | - Cheng-Dong Wu
- School of Medicine, Department of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Man-Syuan Yen
- School of Medicine, Department of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yao-Min Hung
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital Taitung Branch, No.1000, Gengsheng Rd, Taitung City, 95050, Taiwan.
- College of Science and Engineering, National Taitung University, Taitung, Taiwan.
- College of Health and Nursing, Meiho University, Pingtung, Taiwan.
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., South District, Taichung City, 40201, Taiwan.
- Divison of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan.
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| | - Paul Yung-Pou Wang
- Division of Nephrology, Kaiser Permanente Baldwin Park Medical Center, Baldwin Park, CA, 91706, USA
| |
Collapse
|
16
|
Yang BG, Kim AR, Lee D, An SB, Shim YA, Jang MH. Degranulation of Mast Cells as a Target for Drug Development. Cells 2023; 12:1506. [PMID: 37296626 PMCID: PMC10253146 DOI: 10.3390/cells12111506] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Mast cells act as key effector cells of inflammatory responses through degranulation. Mast cell degranulation is induced by the activation of cell surface receptors, such as FcεRI, MRGPRX2/B2, and P2RX7. Each receptor, except FcεRI, varies in its expression pattern depending on the tissue, which contributes to their differing involvement in inflammatory responses depending on the site of occurrence. Focusing on the mechanism of allergic inflammatory responses by mast cells, this review will describe newly identified mast cell receptors in terms of their involvement in degranulation induction and patterns of tissue-specific expression. In addition, new drugs targeting mast cell degranulation for the treatment of allergy-related diseases will be introduced.
Collapse
Affiliation(s)
- Bo-Gie Yang
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea; (A.-R.K.); (D.L.); (S.B.A.)
| | - A-Ram Kim
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea; (A.-R.K.); (D.L.); (S.B.A.)
| | - Dajeong Lee
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea; (A.-R.K.); (D.L.); (S.B.A.)
| | - Seong Beom An
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea; (A.-R.K.); (D.L.); (S.B.A.)
| | - Yaein Amy Shim
- Research Institute, GI Innovation Inc., Songpa-gu, Seoul 05855, Republic of Korea;
| | - Myoung Ho Jang
- Research Institute, GI Innovation Inc., Songpa-gu, Seoul 05855, Republic of Korea;
| |
Collapse
|
17
|
Poto R, Loffredo S, Marone G, Di Salvatore A, de Paulis A, Schroeder JT, Varricchi G. Basophils beyond allergic and parasitic diseases. Front Immunol 2023; 14:1190034. [PMID: 37205111 PMCID: PMC10185837 DOI: 10.3389/fimmu.2023.1190034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Basophils bind IgE via FcεRI-αβγ2, which they uniquely share only with mast cells. In doing so, they can rapidly release mediators that are hallmark of allergic disease. This fundamental similarity, along with some morphological features shared by the two cell types, has long brought into question the biological significance that basophils mediate beyond that of mast cells. Unlike mast cells, which mature and reside in tissues, basophils are released into circulation from the bone marrow (constituting 1% of leukocytes), only to infiltrate tissues under specific inflammatory conditions. Evidence is emerging that basophils mediate non-redundant roles in allergic disease and, unsuspectingly, are implicated in a variety of other pathologies [e.g., myocardial infarction, autoimmunity, chronic obstructive pulmonary disease, fibrosis, cancer, etc.]. Recent findings strengthen the notion that these cells mediate protection from parasitic infections, whereas related studies implicate basophils promoting wound healing. Central to these functions is the substantial evidence that human and mouse basophils are increasingly implicated as important sources of IL-4 and IL-13. Nonetheless, much remains unclear regarding the role of basophils in pathology vs. homeostasis. In this review, we discuss the dichotomous (protective and/or harmful) roles of basophils in a wide spectrum of non-allergic disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - John T. Schroeder
- Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| |
Collapse
|
18
|
Charii H, Tahri S, Boudouh A, Kouismi H, Bourkadi JE. Anaphylactic Shock After First-Line Treatment With Antituberculosis Drugs in a Patient With Lupus. Cureus 2023; 15:e38862. [PMID: 37188064 PMCID: PMC10181892 DOI: 10.7759/cureus.38862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
Tuberculosis (TB) is still a major public health concern in Morocco. Although first-line antituberculosis drugs (ATD) are generally considered safe and effective, serious adverse events can occur. In this case report, we describe a female with pulmonary TB who experienced anaphylaxis induced by rifampicin (RFP) and pyrazinamide (PZA) during ATD therapy. Anaphylactic reactions to first-line ATD can occur and may lead to treatment discontinuation and challenges in finding effective alternative treatment options. Healthcare professionals should be aware of the potential of anaphylaxis with the use of these drugs, especially in patients with a history of lupus. Further research is needed to better understand the mechanisms underlying anaphylaxis and develop effective preventive and management strategies. A young female patient with a history of lupus and splenectomy presented with respiratory symptoms and deterioration of general condition. She was diagnosed with pulmonary tuberculosis and received first-line ATD, which caused complications including liver dysfunction and anaphylactic shock. Despite these challenges, the anaphylactic shock was successfully managed; she was put on a combination of levofloxacin, kanamycin, and ethambutol (ETB), as well as a desensitization protocol for isoniazid (INH); the patient was cured.
Collapse
Affiliation(s)
- Hajar Charii
- Department of Pulmonology, Mohammed VI University Hospital, Oujda, MAR
- Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, MAR
| | - Samah Tahri
- Department of Internal Medicine, Mohammed VI University Hospital, Oujda, MAR
| | - Asmae Boudouh
- Department of Pulmonology, Mohammed VI University Hospital, Oujda, MAR
- Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, MAR
| | - Hatim Kouismi
- Department of Pulmonology, Mohammed VI University Hospital, Oujda, MAR
- Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, MAR
| | - Jamal-Eddine Bourkadi
- Department of Pulmonology, Moulay Youssef Hospital, Ibn Sina University Hospital, Rabat, MAR
| |
Collapse
|
19
|
Sánchez J, Sánchez Biol A, Múnera Biol M, García E, López JF. Immunoglobulin E and G autoantibodies against eosinophil proteins in children and adults with asthma and healthy subjects. World Allergy Organ J 2023; 16:100742. [PMID: 36941898 PMCID: PMC10024149 DOI: 10.1016/j.waojou.2023.100742] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background Autoimmune IgG response has been described in the pathogenesis of asthma in adults, but IgE autoimmunity has been little explored. Considering high levels of blood eosinophils and immunoglobulin E in asthmatic patients, the possibility of IgE autoantibody response to eosinophil proteins arises. Objective To explore the presence of IgE and IgG autoantibodies against Eosinophil peroxidase (EPX) and Eosinophil cationic protein (ECP). Methods Three steps were followed: 1) The frequency of IgE and IgG autoantibodies against EPX and ECP was investigated among asthmatic and healthy subjects. 2) The ability of IgE autoantibodies to induce an inflammatory response (basophil activation) was performed. 3) The capacity of autoantibodies to identify patients with severe asthma was evaluated. Results Asthmatic and healthy subjects had IgE and IgG autoantibodies against EPX and ECP. Anti-EPX IgE was significantly higher in asthmatic patients. Severe asthmatic patients had a higher frequency and higher levels of IgE and IgG autoantibodies compared to healthy subjects. There was not a correlation between autoantibodies and blood eosinophils. Children younger than 14 years of age had IgE and IgG autoantibodies against to EPX and ECP. IgE autoantibodies to EPX and ECP induced basophil activation in asthmatic patients. Conclusion In this study, we identify for the first time IgE autoantibodies against EPX and ECP in adults and children patients with asthma; IgE and IgG autoantibodies against EPX and ECP could serve as a predictive biomarker of the clinical severity.
Collapse
Affiliation(s)
- Jorge Sánchez
- Group of Clinical and Experimental Allergy, Clinic “IPS Universitaria”, University of Antioquia. Medellín, Colombia
- Corresponding author. Department of Allergology and Pediatrics, Faculty of Medicine, University of Antioquia. Medellín, Colombia.
| | - Andres Sánchez Biol
- Group of Clinical and Experimental Allergy, Clinic “IPS Universitaria”, University of Antioquia. Medellín, Colombia
- Faculty of Medicine, Corporation University “Rafael Nuñez”, Cartagena, Colombia
| | - Marlon Múnera Biol
- Faculty of Medicine, Corporation University “Rafael Nuñez”, Cartagena, Colombia
| | - Elizabeth García
- Universidad de Los Andes, Fundación Santa Fe de Bogota, Unidad Medica quirúrgica ORL. Bogota, Colombia
| | - Juan-Felipe López
- Group of Clinical and Experimental Allergy, Clinic “IPS Universitaria”, University of Antioquia. Medellín, Colombia
| |
Collapse
|
20
|
Olewicz-Gawlik A, Kowala-Piaskowska A. Self-reactive IgE and anti-IgE therapy in autoimmune diseases. Front Pharmacol 2023; 14:1112917. [PMID: 36755957 PMCID: PMC9899859 DOI: 10.3389/fphar.2023.1112917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Growing evidence indicates the pathogenic role of autoreactive IgE in autoimmune diseases. Incidence of autoimmune and allergic diseases in the industrialized countries is consistently icreasing, thus leading to concerted efforts to comprehend the regulation of IgE-mediated mechanisms. The first reports of a presence of IgE autoantibodies in patients with autoimmune diseases have been published a long time ago, and it is now recognized that self-reactive IgE can mediate inflammatory response in bullous pemhigoid, systemic lupus erythematosus, chronic urticaria, and atopic dermatitis. The advances in understanding the pathomechanisms of these disorders brought to a successful use of anti-IgE strategies in their management. The present review discusses the current state of knowledge on the IgE-mediated autoimmunity and anti-IgE treatment, and pave the way for further exploration of the subject.
Collapse
Affiliation(s)
- Anna Olewicz-Gawlik
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland,Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Poznan University of Medical Sciences, Poznan, Poland,*Correspondence: Anna Olewicz-Gawlik,
| | - Arleta Kowala-Piaskowska
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
21
|
Muacevic A, Adler JR, Al Zahrani RA, Kari JA. Lupus Nephritis in an Adolescent Girl With Hyper-Immunoglobulin E. Cureus 2023; 15:e34332. [PMID: 36865980 PMCID: PMC9972904 DOI: 10.7759/cureus.34332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2023] [Indexed: 01/30/2023] Open
Abstract
We report the case of an adolescent girl with frequent hospital admissions for severe eczematous skin rashes with recurrent epistaxis and chest infections. Investigations revealed persistent severely elevated serum total immunoglobulin E (IgE) levels but normal levels of other immunoglobulins, suggesting hyper-IgE syndrome. The first skin biopsy revealed superficial dermatophytic dermatitis (tinea corpora). Another biopsy performed after six months revealed a prominent basement membrane with dermal mucin, suggesting an underlying autoimmune disease. Her condition was complicated by proteinuria, hematuria, hypertension, and edema. A kidney biopsy revealed class IV lupus nephritis, according to the International Society of Nephrology/Renal Pathology Society (ISN/RPS). Based on the American College of Rheumatology/European League Against Rheumatism (ACR/EULAR) criteria, she was diagnosed with systemic lupus erythematosus (SLE). She was first administered with intravenous pulse methylprednisolone (600 mg/m2) for three consecutive days, followed by oral prednisolone (40 mg/m2) daily, mycophenolate mofetil tablets (600 mg/m2/dose) twice daily, hydroxychloroquine (200 mg) once daily, and three classes of antihypertensive medications. She maintained normal renal functions with no lupus morbidity for 24 months, then rapidly progressed to end-stage kidney disease, and was then started on three to four sessions of regular hemodialysis per week. Hyper-IgE is known to be a marker of immune dysregulation as it facilitates the generation of immune complexes (ICs) that mediate lupus nephritis and juvenile SLE. Regardless of the different factors that are impacting the production of IgE, the present case illustrated that juvenile patients with SLE may have increased IgE levels, indicating that higher IgE levels might have a role in lupus pathogenesis and prognosis. The mechanisms regarding the increased levels of IgE in subjects with lupus need further investigation. Further studies are thus required to assess the incidence, prognosis, and possible new specific management for hyper-IgE in juvenile SLE.
Collapse
|
22
|
James LK. B cells defined by immunoglobulin isotypes. Clin Exp Immunol 2022; 210:230-239. [PMID: 36197112 PMCID: PMC9985177 DOI: 10.1093/cei/uxac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
The ability of B cells to generate antibodies and provide long-lived protective immunity is the cornerstone of vaccination and has contributed to the success of modern medicine. The nine different antibody subclasses produced by humans have effector functions that differ according to antigen type and route of exposure. Expression of the appropriate isotype is critical for effective humoral immunity, and it is becoming clear that subclass specificity is to some extent reflected at the cellular level. Understanding the mechanisms that govern the induction, expansion, and maintenance of B cells expressing different antibody subclasses informs the strategic manipulation of responses to benefit human health. This article provides an overview of the mechanisms by which the different human antibody subclasses regulate immunity, presents an update on how antibody subclass expression is regulated at the cellular level and highlights key areas for future research.
Collapse
|
23
|
Palomares O, Elewaut D, Irving PM, Jaumont X, Tassinari P. Regulatory T cells and immunoglobulin E: A new therapeutic link for autoimmunity? Allergy 2022; 77:3293-3308. [PMID: 35852798 DOI: 10.1111/all.15449] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 01/28/2023]
Abstract
Autoimmune diseases have a prevalence of approximately 7 to 9% and are classified as either organ-specific diseases, including type I diabetes, multiple sclerosis, inflammatory bowel disease and myasthenia gravis, or systemic diseases, including systemic lupus erythematosus, rheumatoid arthritis and Sjögren's syndrome. While many advancements have been made in understanding of the mechanisms of autoimmune disease, including the nature of self-tolerance and its breakdown, there remain unmet needs in terms of effective and highly targeted treatments. T regulatory cells (Tregs) are key mediators of peripheral tolerance and are implicated in many autoimmune diseases, either as a result of reduced numbers or altered function. Tregs may be broadly divided into those generated in the thymus (tTregs) and those generated in the periphery (pTregs). Tregs target many different immune cell subsets and tissues to suppress excessive inflammation and to support tissue repair and homeostasis: there is a fine balance between Treg cell stability and the plasticity that is required to adjust Tregs' regulatory purposes to particular immune responses. The central role of immunoglobulin E (IgE) in allergic disease is well recognized, and it is becoming increasingly apparent that this immunoglobulin also has a wider role encompassing other diseases including autoimmune disease. Anti-IgE treatment restores the capacity of plasmacytoid dendritic cells (pDCs) impaired by IgE- high-affinity IgE receptor (FcεR1) cross-linking to induce Tregs in vitro in atopic patients. The finding that anti-IgE therapy restores Treg cell homeostasis, and that this mechanism is associated with clinical improvement in asthma and chronic spontaneous urticaria suggests that anti-IgE therapy may also have a potential role in the treatment of autoimmune diseases in which Tregs are involved.
Collapse
Affiliation(s)
| | - Dirk Elewaut
- Department of Rheumatology, VIB Center for Inflammation Research, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Peter M Irving
- Guy's and St Thomas' Hospital Foundation Trust, London, UK
- King's College London, London, UK
| | | | | |
Collapse
|
24
|
Weeding E, Fava A, Mohan C, Magder L, Goldman D, Petri M. Urine proteomic insights from the belimumab in lupus nephritis trial. Lupus Sci Med 2022; 9:e000763. [PMID: 36167482 PMCID: PMC9516299 DOI: 10.1136/lupus-2022-000763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/14/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Urine proteomic approaches have shown promise in identifying biological pathways in lupus nephritis (LN) which are not captured on renal histopathology or by measurement of proteinuria alone. We investigated how the urine proteome changes with treatment response and with belimumab therapy. METHODS Urine samples from 54 Belimumab International Systemic Lupus Erythematosus-Lupus Nephritis trial participants (all with biopsy-proven LN) were collected at weeks 0, 24 and 52. At each time point, 1000 urinary proteins were quantified using antibody microarrays (Raybiotech Kiloplex), and their abundance was compared in responders (n=31) versus non-responders (n=22) and with belimumab treatment (n=28) versus standard of care therapy (n=26). Response was defined as proteinuria <500 mg/gcreatinine (cr), serum creatinine ≤1.25 times the week 0 value and prednisone ≤10 mg/day at week 52. RESULTS By week 52, CD163 was the urine protein with the most significant difference in abundance between complete responders (median 1.8 pg/mgcr) versus non-responders (median 8.2 pg/mgcr, p=4e-7) regardless of treatment arm. At week 24, five urinary proteins were present at a significantly lower (CD23 and Siglec-5) or higher (AIF, CRELD2 and ROR2) level in the belimumab group. Belimumab therapy was particularly associated with reduction in CD23 between week 0 and week 24 (p=0.0001). CONCLUSIONS Reduction in urinary CD163 was strongly associated with complete renal response, confirming the results of multiple prior studies. Treatment with belimumab can be detected in the urine proteome, and further study is needed to determine whether modulation of CD23-mediated immune enhancement pathways might be implicated in LN treatment response.
Collapse
Affiliation(s)
- Emma Weeding
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea Fava
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Laurence Magder
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Daniel Goldman
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Tchen J, Simon Q, Chapart L, Pellefigues C, Karasuyama H, Miyake K, Blank U, Benhamou M, Daugas E, Charles N. CT-M8 Mice: A New Mouse Model Demonstrates That Basophils Have a Nonredundant Role in Lupus-Like Disease Development. Front Immunol 2022; 13:900532. [PMID: 35844602 PMCID: PMC9277511 DOI: 10.3389/fimmu.2022.900532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Tissue-specific mouse models are essential tools to decipher the role of each cell compartment and/or their expressed genes in the pathophysiology of diseases. Here, we describe a new knock-in mouse model allowing expression of both the fluorescent protein tdTomato and the CRE recombinase selectively in the basophil compartment under the control of the Mcpt8 gene. These “CT-M8” mice did not show any abnormalities in their peripheral distribution of major immune cell populations nor their basophil function. CT-M8 mice allowed the identification of basophils by immunofluorescence and flow cytometry and basophil-specific Cre-mediated floxed gene deletion. Breeding of our CT-M8 mice with the ROSA26flox-stop-DTA mice led to the generation of basophil-deficient mice with no detectable abnormalities in other cell compartments. These mice were then used to document basophil involvement in systemic lupus erythematosus (SLE) pathophysiology since we previously reported by transient depletion of these cells during the course of an ongoing disease that they support and amplify autoantibody production in two distinct lupus-like mouse models (Lyn−/− and pristane-induced). Here, constitutive basophil deficiency prevented pristane-induced lupus-like disease development by limiting autoantibody titers and renal damages. Therefore, basophils have a nonredundant role in pristane-induced lupus-like disease and are involved in both its induction and amplification. This CT-M8 new mouse model will allow us to finely decipher the role of basophils and their expressed genes in health and disease.
Collapse
Affiliation(s)
- John Tchen
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR1149, Centre National de la Recherche Scientifique (CNRS). EMR8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Quentin Simon
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR1149, Centre National de la Recherche Scientifique (CNRS). EMR8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Léa Chapart
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR1149, Centre National de la Recherche Scientifique (CNRS). EMR8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Christophe Pellefigues
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR1149, Centre National de la Recherche Scientifique (CNRS). EMR8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR1149, Centre National de la Recherche Scientifique (CNRS). EMR8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Marc Benhamou
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR1149, Centre National de la Recherche Scientifique (CNRS). EMR8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Eric Daugas
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR1149, Centre National de la Recherche Scientifique (CNRS). EMR8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
- Service de Néphrologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nicolas Charles
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR1149, Centre National de la Recherche Scientifique (CNRS). EMR8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
- *Correspondence: Nicolas Charles, ; orcid.org/0000-0002-5416-5834
| |
Collapse
|
26
|
Colas L, Magnan A, Brouard S. Immunoglobulin E response in health and disease beyond allergic disorders. Allergy 2022; 77:1700-1718. [PMID: 35073421 DOI: 10.1111/all.15230] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/13/2021] [Accepted: 01/16/2022] [Indexed: 12/24/2022]
Abstract
Immunoglobulin E is the latest discovered of immunoglobulin family and has been long associated with anaphylaxis and worm expulsion. Immunoglobulin E, along with mast cells, basophils, and eosinophils, is also a hallmark of type 2 immunity which is dysregulated in numerous diseases such as asthma, rhinitis, atopic dermatitis, and eosinophilic esophagitis in addition to anaphylaxis as aforementioned. However, recent advances have shed light on IgE regulation and memory explaining the low level of free IgE, the scarcity of IgE plasma cells that are mainly short live and the absence of IgE memory B cells in homeostatic conditions. Furthermore, IgE was implicated in inflammatory conditions beyond allergic disorders where IgE-mediated facilitated antigen presentation can enhance cellular and humoral response against autoantigens in systemic lupus or chronic urticaria leading to more severe disease and even against neoantigen facilitating tumor cell lysis. At last, IgE was unexpectedly associated with allograft rejection or atheromatous cardiovascular diseases where precise mechanisms remain to be deciphered. The purpose of this review is to summarize these recent advances in IgE regulation, biology, and physiopathology beyond allergic diseases opening whole new fields of IgE biology to explore.
Collapse
Affiliation(s)
- Luc Colas
- Plateforme Transversale d'Allergologie et d'immunologie Clinique PFTA Clinique dermatologique CHU de Nantes Nantes France
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology Nantes France
| | - Antoine Magnan
- Hôpital Foch, Suresnes; Université de Versailles Saint‐Quentin Paris‐Saclay; INRAe Paris France
| | - Sophie Brouard
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology Nantes France
- Labex IGO Nantes France
- Centre d’Investigation Clinique en Biothérapie Centre de ressources biologiques (CRB) Nantes France
| |
Collapse
|
27
|
Miyake K, Ito J, Karasuyama H. Role of Basophils in a Broad Spectrum of Disorders. Front Immunol 2022; 13:902494. [PMID: 35693800 PMCID: PMC9186123 DOI: 10.3389/fimmu.2022.902494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Basophils are the rarest granulocytes and have long been overlooked in immunological research due to their rarity and similarities with tissue-resident mast cells. In the last two decades, non-redundant functions of basophils have been clarified or implicated in a broad spectrum of immune responses, particularly by virtue of the development of novel analytical tools for basophils. Basophils infiltrate inflamed tissues of patients with various disorders, even though they circulate in the bloodstream under homeostatic conditions. Depletion of basophils results in the amelioration or exaggeration of inflammation, depending on models of disease, indicating basophils can play either beneficial or deleterious roles in a context-dependent manner. In this review, we summarize the recent findings of basophil pathophysiology under various conditions in mice and humans, including allergy, autoimmunity, tumors, tissue repair, fibrosis, and COVID-19. Further mechanistic studies on basophil biology could lead to the identification of novel biomarkers or therapeutic targets in a broad range of diseases.
Collapse
|
28
|
Tchen J, Charles N. [Basophils and IgE in autoimmunity: Mechanisms and therapeutic targets]. Med Sci (Paris) 2022; 38:366-373. [PMID: 35485897 DOI: 10.1051/medsci/2022040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the pathophysiology of antibody-driven autoimmune diseases (AAID) represents a major challenge for the biomedical community to develop innovative therapeutic strategies that are still lacking to control these diseases. If the reason why AAID are developing still needs to be defined, loss of tolerance to self-antigens leads to the development of an autoimmune chain reaction in some individuals. However, autoreactive antibodies are present in a large proportion of the general population without any associated pathological condition. The amplification of autoantibody production, circulating immune complex formation and innate immune system activation leading to this amplification are some central phenomena in AAID pathophysiology. In this review, we summarize the contribution of type 2 immunity, basophils and IgE in the initiation of some amplification loops that are pathogenic in some AAID, including systemic lupus erythematosus and mixed connective tissue disease.
Collapse
Affiliation(s)
- John Tchen
- Université Paris Cité, Centre de recherche sur l'inflammation, Inserm UMR1149, CNRS ERL8252, Faculté de médecine site Bichat, Paris, France - Université Paris Cité, Laboratoire d'excellence Inflamex, Paris, France
| | - Nicolas Charles
- Université Paris Cité, Centre de recherche sur l'inflammation, Inserm UMR1149, CNRS ERL8252, Faculté de médecine site Bichat, Paris, France - Université Paris Cité, Laboratoire d'excellence Inflamex, Paris, France
| |
Collapse
|
29
|
Pellefigues C, Tchen J, Saji C, Lamri Y, Charles N. AMG853, A Bispecific Prostaglandin D 2 Receptor 1 and 2 Antagonist, Dampens Basophil Activation and Related Lupus-Like Nephritis Activity in Lyn-Deficient Mice. Front Immunol 2022; 13:824686. [PMID: 35444641 PMCID: PMC9014266 DOI: 10.3389/fimmu.2022.824686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Systemic lupus erythematosus is a complex autoimmune disease during which patients develop autoantibodies raised against nuclear antigens. During the course of the disease, by accumulating in secondary lymphoid organs (SLOs), basophils support autoreactive plasma cells to amplify autoantibody production. We have recently shown that murine lupus-like disease could be controlled by 10 days of oral treatment with a combination of prostaglandin D2 (PGD2) receptor (PTGDR) antagonists through the inhibition of basophil activation and recruitment to SLOs. Importantly, inhibiting solely PTGDR-1 or PTGDR-2 was ineffective, and the development of lupus-like disease could only be dampened by using antagonists for both PTGDR-1 and PTGDR-2. Here, we aimed at establishing a proof of concept that a clinically relevant bispecific antagonist of PTGDR-1 and PTGDR-2 could be efficient to treat murine lupus-like nephritis. Diseased Lyn-deficient female mice received treatment with AMG853 (vidupiprant, a bispecific PTGDR-1/PTGDR-2 antagonist) for 10 days. This led to the dampening of basophil activation and recruitment in SLOs and was associated with a decrease in plasmablast expansion and immunoglobulin E (IgE) production. Ten days of treatment with AMG853 was consequently sufficient in reducing the dsDNA-specific IgG titers, circulating immune complex glomerular deposition, and renal inflammation, which are hallmarks of lupus-like disease. Thus, bispecific PTGDR-1 and PTGDR-2 antagonists, such as AMG853, are a promising class of drugs for the treatment or prevention of organ damage in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Christophe Pellefigues
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'Excellence INFLAMEX, Paris, France
| | - John Tchen
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Chaimae Saji
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Yasmine Lamri
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Nicolas Charles
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'Excellence INFLAMEX, Paris, France
| |
Collapse
|
30
|
Ko H, Kim CJ, Im SH. T Helper 2-Associated Immunity in the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2022; 13:866549. [PMID: 35444658 PMCID: PMC9014558 DOI: 10.3389/fimmu.2022.866549] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease that mainly affects women in their reproductive years. A complex interaction of environmental and genetic factors leads to the disruption of immune tolerance towards self, causing overt immune activation and production of autoantibodies that attack multiple organs. Kidney damage, termed lupus nephritis, is the leading cause of SLE-related morbidity and mortality. Autoantibodies are central to propagating lupus nephritis through forming immune complexes and triggering complements. Immunoglobulin G (IgG) potently activates complement; therefore, autoantibodies were mainly considered to be of the IgG isotype. However, studies revealed that over 50% of patients produce autoantibodies of the IgE isotype. IgE autoantibodies actively participate in disease pathogenesis as omalizumab treatment, a humanized anti-IgE monoclonal antibody, improved disease severity in an SLE clinical trial. IgE is a hallmark of T helper 2-associated immunity. Thus, T helper 2-associated immunity seems to play a pathogenic role in a subset of SLE patients. This review summarizes human and animal studies that illustrate type 2 immune responses involved during the pathology of SLE.
Collapse
Affiliation(s)
- Haeun Ko
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Chan Johng Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
- Pohang University of Science and Technology (POSTECH) Biotech Center, Pohang University of Science and Technology, Pohang, South Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
- Institute for Convergence Research and Education, Yonsei University, Seoul, South Korea
- ImmunoBiome Inc., Bio Open Innovation Center, Pohang, South Korea
| |
Collapse
|
31
|
Treger RS, Fink SL. Beyond Titer: Expanding the Scope of Clinical Autoantibody Testing. J Appl Lab Med 2022; 7:99-113. [DOI: 10.1093/jalm/jfab123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/17/2021] [Indexed: 11/14/2022]
Abstract
Abstract
Background
Autoantibodies that bind self-antigens are a hallmark of autoimmune diseases, but can also be present in healthy individuals. Clinical assays that detect and titer antigen-specific autoantibodies are an important component of the diagnosis and monitoring of autoimmune diseases. Autoantibodies may contribute to disease pathogenesis via effector functions that are dictated by both the antigen-binding site and constant domain.
Content
In this review, we discuss features of antibodies, in addition to antigen-binding specificity, which determine effector function. These features include class, subclass, allotype, and glycosylation. We discuss emerging data indicating that analysis of these antibody features may be informative for diagnosis and monitoring of autoimmune diseases. We also consider methodologies to interrogate these features and consider how they could be implemented in the clinical laboratory.
Summary
Future autoantibody assays may incorporate assessment of additional antibody features that contribute to autoimmune disease pathogenesis and provide added clinical value.
Collapse
Affiliation(s)
- Rebecca S Treger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Susan L Fink
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
32
|
Anti-Sm antibodies in the classification criteria of systemic lupus erythematosus. J Transl Autoimmun 2022; 5:100155. [PMID: 35464346 PMCID: PMC9026971 DOI: 10.1016/j.jtauto.2022.100155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 11/23/2022] Open
Abstract
Systemic lupus erythematosus is characterized by autoantibodies and immune complex deposition. Several autoantibodies against mainly nuclear autoantigens have been described. One of these nuclear autoantigens is the Smith antigen. In this review, we focus on the position of autoantibodies against the Smith antigen in the classification criteria, the characteristics of the antigen, the production of anti-Smith antibodies in SLE and we discuss the different test methods available, together with their pitfalls, to detect these autoantibodies. Patients having anti-Sm antibodies already fulfil sixty percent of the criteria required for SLE classification. Correct interpretation of anti-Smith antibody test results is strongly related to the choice of the test used for detection. Anti-Sm antibodies are very specific for SLE.
Collapse
|
33
|
Colas L, Bui L, Kerleau C, Lemdani M, Autain-Renaudin K, Magnan A, Giral M, Brouard S. Time-dependent blood eosinophilia count increases the risk of kidney allograft rejection. EBioMedicine 2021; 73:103645. [PMID: 34688031 PMCID: PMC8536518 DOI: 10.1016/j.ebiom.2021.103645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
Background Growing evidence suggest that type 2 immune effectors play a role in solid organ transplantation. The aim of this study was to evaluate the impact of blood count eosinophils (BCEo) on immunological outcomes in kidney transplant recipients with stable graft function after 3 months post-transplant. Method We performed cause-specific Cox model considering BCEo, the use of calcineurin inhibitors and systemic corticoids as time-dependent explicative variables on a prospective cohort of 1013 kidney transplant patients who experienced kidney allograft rejection and/or the appearance of de novo donor specific antibodies after excluding common causes of increased BCEo.. Findings BCEo ≥ 0.3 G/L was associated with a 3-fold increased risk of rejection independent of immunosuppressive regimen after 3 months post-transplant in patients without pre-transplant DSAs and with CNI-based immunosuppression. No association between BCEo either with donor specific antibodies or graft survival was noticed. Interpretation These observations in this large cohort support the hypothesis of eosinophils in allo-immunity in human and claim for further mechanistic research. Funding This study was supported by the French National Research Agency, The “Institut de Recherche en Santé Respiratoire des Pays de la Loire” and the University hospital of Nantes.
Collapse
Affiliation(s)
- Luc Colas
- INSERM, CHU Nantes, Nantes Université, Centre de Recherche en Transplantation et Immunologie UMR1064, Centre Hospitalier Universitaire de Nantes, ITUN 30 bd Jean Monnet, Nantes 44093, France
| | - Linh Bui
- Centre Hospitalier de Mouscron, Belgique, Service de néphrologie, Belgium
| | - Clarisse Kerleau
- Service de Néphrologie-Immunologie Clinique, CHU Nantes, Nantes Université, Nantes, France
| | - Mohamed Lemdani
- Département of Biomathematiques, Faculté de Pharmacie and Biologie, Université de Lille, Lille, France
| | - Karine Autain-Renaudin
- INSERM, CHU Nantes, Nantes Université, Centre de Recherche en Transplantation et Immunologie UMR1064, Centre Hospitalier Universitaire de Nantes, ITUN 30 bd Jean Monnet, Nantes 44093, France; Département d'anatomie et Cytologie Pathologique, CHU Nantes, Nantes Université, Nantes, France
| | - Antoine Magnan
- Université de Versailles Saint-Quentin Paris-Saclay, Hôpital Foch, INRAe UMR 0892, Paris, Suresnes, France
| | - Magali Giral
- INSERM, CHU Nantes, Nantes Université, Centre de Recherche en Transplantation et Immunologie UMR1064, Centre Hospitalier Universitaire de Nantes, ITUN 30 bd Jean Monnet, Nantes 44093, France; Service de Néphrologie-Immunologie Clinique, CHU Nantes, Nantes Université, Nantes, France; Labex IGO, F-44000 Nantes, France.; Centre d'Investigation Clinique en Biothérapie, Institut de Transplantation Urology and Nephrology (ITUN), Centre Hospitalier Universitaire de Nantes, 30 bd Jean Monnet, Nantes 44093, France.
| | - Sophie Brouard
- INSERM, CHU Nantes, Nantes Université, Centre de Recherche en Transplantation et Immunologie UMR1064, Centre Hospitalier Universitaire de Nantes, ITUN 30 bd Jean Monnet, Nantes 44093, France; Labex IGO, F-44000 Nantes, France.; Centre d'Investigation Clinique en Biothérapie, Institut de Transplantation Urology and Nephrology (ITUN), Centre Hospitalier Universitaire de Nantes, 30 bd Jean Monnet, Nantes 44093, France.
| | | |
Collapse
|
34
|
Sánchez J, Sánchez A, Munera M, Garcia E, Lopez JF, Velásquez-Lopera M, Cardona R. Presence of IgE Autoantibodies Against Eosinophil Peroxidase and Eosinophil Cationic Protein in Severe Chronic Spontaneous Urticaria and Atopic Dermatitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:746-761. [PMID: 34486259 PMCID: PMC8419645 DOI: 10.4168/aair.2021.13.5.746] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 11/20/2022]
Abstract
Purpose Eosinophils are frequently found in atopic dermatitis (AD) and chronic spontaneous urticaria (CSU) that release eosinophil peroxidase (EPX) and eosinophil cationic protein (ECP). Continuous exposure to these proteins could trigger an autoimmune response which may contribute to the pathogenesis and severity of skin inflammation. In this study, we investigate the immunoglobulin E (IgE) response against eosinophil proteins in CSU and AD. Methods We recruited patients with severe AD, severe CSU and healthy subjects to explore the presence of IgE autoantibodies and cross-reactivity against EPX, ECP and thyroid peroxidase (TPO). The potential cross-reactive epitopes among the peroxidase family were determined using in silico tools. Results The frequencies of anti-EPX IgE (28.8%) and anti-ECP IgE (26.6%) were higher in the AD group, and anti-TPO IgE was higher in the CSU group (27.2%). In the CSU group, there was a correlation between the anti-EPX IgE and anti-TPO IgE levels (r = 0.542, P < 0.001); TPO inhibited 42% of IgE binding to EPX, while EPX inhibited 59% of IgE binding to TPO, suggesting a cross-reactivity with EPX as a primary sensitizer. There was greater inhibition when we used a pool of sera CSU and AD, TPO inhibited 52% of IgE binding to EPX, while EPX inhibited 78% of IgE binding to TPO. In silico analysis showed a possible shared epitope in the peroxidase protein family. Conclusions IgE against eosinophil proteins may contribute to chronic inflammation in patients with AD and CSU. Cross-reactivity between EPX and TPO could explain thyroid problems in CSU patients.
Collapse
Affiliation(s)
- Jorge Sánchez
- Group of Clinical and Experimental Allergy, IPS Universitaria Clinic, University of Antioquia, Medellín, Colombia.
| | - Andres Sánchez
- Group of Clinical and Experimental Allergy, IPS Universitaria Clinic, University of Antioquia, Medellín, Colombia.,Medical Research Group (GINUMED), Rafael Núñez University Corporation, Department Immunology, Faculty of Medicine, Cartagena, Colombia
| | - Marlon Munera
- Medical Research Group (GINUMED), Rafael Núñez University Corporation, Department Immunology, Faculty of Medicine, Cartagena, Colombia
| | - Elizabeth Garcia
- Allergy Department, Faculty of Medicine, Universidad de los Andes, Bogotá, Colombia.,Department Allergology, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Juan-Felipe Lopez
- Group of Clinical and Experimental Allergy, IPS Universitaria Clinic, University of Antioquia, Medellín, Colombia.,Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Margarita Velásquez-Lopera
- Dermatological Research Center, Centro de Investigaciones Dermatológicas (CIDERM), University of Antioquia, Medellín, Colombia
| | - Ricardo Cardona
- Group of Clinical and Experimental Allergy, IPS Universitaria Clinic, University of Antioquia, Medellín, Colombia
| |
Collapse
|
35
|
Coexistence of Rheumatoid Arthritis, Systemic Lupus Erythematosus, Sjogren Syndrome, Antiphospholipid Syndrome, and Ankylosing Spondylitis. Case Rep Rheumatol 2021; 2021:8491717. [PMID: 34422427 PMCID: PMC8376431 DOI: 10.1155/2021/8491717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
A 37-year-old Bangladeshi woman presented with low back and several joints pain and swelling for months together; there was significant morning stiffness for more than two hours. Repeated abortions, dry eye, hair fall, photosensitivity, and oral ulcer were the additional complaints. Clinical examination unveiled asymmetrical peripheral and both sacroiliac joint tenderness, positive modified Schober's test, and limited chest expansion. Schirmer's test was positive. The history of rheumatoid arthritis (RA) and ankylosing spondylitis (AS) among 1st-degree relatives was also significant. Biochemical analysis revealed pancytopenia, raised erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP), and mild microscopic proteinuria. The patient was seropositive for rheumatoid factor (RF), antibodies against cyclic citrullinated peptides (anti-CCP), antinuclear antibody (ANA), anti-Sm antibody, anti-Sjögren's-syndrome-related antigen A and B (anti-SSA/SSB), antiphospholipid (aPL-IgG/IgM), and HLA B27; however, serum complement (C3 and C4) levels were normal. Basal cortisol level measured elevated. Besides, X-ray and MRI of lumbosacral spines demonstrated sacroiliitis. There was radiological cardiomegaly, echocardiography unveiled atrial regurgitation, and ascending aorta aneurysm. Based on the abovementioned information, RA, AS, and systemic lupus erythematosus (SLE) have been diagnosed. Moreover, the patient developed Sjogren's syndrome (SS), antiphospholipid lipid syndrome (APS), Cushing syndrome, ascending aorta aneurysm, and atrial regurgitation. Her disease activity score for RA (DAS28), DAS for AS (ASDAS), SLE disease activity index (SLEDAI), and Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) scores were 3.46, 2.36, 23, and 5, respectively. The patient received hydroxychloroquine (200 mg daily), pulsed cyclophosphamide, prednisolone (20 mg in the morning), and naproxen 500 mg (twice daily). To our best knowledge, this is the first report documenting RA, AS, and SLE with secondary SS and APS.
Collapse
|
36
|
Biologics in the treatment of Sjogren's syndrome, systemic lupus erythematosus, and lupus nephritis. Curr Opin Rheumatol 2021; 32:609-616. [PMID: 33002950 DOI: 10.1097/bor.0000000000000754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW It is an understatement to say that drug approvals in systemic lupus erythematosus (SLE), lupus nephritis, and Sjogren's syndrome have lagged far behind those in other autoimmune diseases, such as rheumatoid arthritis and psoriatic arthritis. Reasons for this are multiple and include the molecular and clinical heterogeneity of these conditions; confounding by background medications, especially corticosteroids; and clinical trial endpoints. However, the tides are changing, and there have been several bright spots in our attempts to bring more efficacious drugs to our patients. RECENT FINDINGS Several positive phase II and phase III trials in SLE and lupus nephritis with drugs such as anifrolumab, voclosporin, belimumab, and obinutuzumab will no doubt eventually generate regulatory approvals for most, if not all, of these drugs. Although early in development, the promising results in Sjogren's syndrome with iscalimab and ianalumab should make the Sjogren's syndrome community quite hopeful of future drug approvals. SUMMARY In this review, we highlight recent study results in Sjogren's syndrome, SLE, and lupus nephritis, emphasizing investigational therapies in late stage development, but we also provide a glimpse into drugs of the future.
Collapse
|
37
|
Magrone T, Magrone M, Jirillo E. Mast Cells as a Double Edged Sword in Immunity: Disorders of Mast Cell Activation and Therapeutic Management. Second of Two Parts. Endocr Metab Immune Disord Drug Targets 2021; 20:670-686. [PMID: 31789136 DOI: 10.2174/1871530319666191202121644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs) bear many receptors that allow them to respond to a variety of exogenous and endogenous stimuli. However, MC function is dual since they can initiate pathological events or protect the host against infectious challenges. The role of MCs in disease will be analyzed in a broad sense, describing cellular and molecular mechanisms related to their involvement in auto-inflammatory diseases, asthma, autoimmune diseases and cancer. On the other hand, their protective role in the course of bacterial, fungal and parasitic infections will also be illustrated. As far as treatment of MC-derived diseases is concerned, allergen immunotherapy as well as other attempts to reduce MC-activation will be outlined according to the recent data. Finally, in agreement with current literature and our own data polyphenols have been demonstrated to attenuate type I allergic reactions and contact dermatitis in response to nickel. The use of polyphenols in these diseases will be discussed also in view of MC involvement.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
38
|
Autoimmunity, IgE and FcεRI-bearing cells. Curr Opin Immunol 2021; 72:43-50. [PMID: 33819742 DOI: 10.1016/j.coi.2021.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022]
Abstract
Antibody-mediated autoimmune diseases (AAID) involve several isotypes of autoreactive antibodies. In a growing number of AAID, autoreactive IgE are present with a significant prevalence and are often associated with the presence of IgG anti-IgE and/or anti-FcεRIα (high affinity IgE receptor α chain). FcεRI-bearing cells, such as basophils or mast cells, are key players in some of these AAID. Recent advances in the pathophysiology of these diseases led to the passed or current development of anti-IgE strategies that showed very potent effects in some of them. The present review centralizes the information on the relevance of autoreactive IgE and FcεRI-bearing cells in the pathophysiology of different AAID and the ones where the anti-IgE therapeutic strategy shows or may show some benefits for the patients.
Collapse
|
39
|
Kortekaas Krohn I. The emerging role of autoreactive antibodies in inflammatory skin diseases. J Eur Acad Dermatol Venereol 2021; 35:781-782. [DOI: 10.1111/jdv.17164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022]
Affiliation(s)
- I. Kortekaas Krohn
- Department of Dermatology SKIN Research Group Vrije Universiteit Brussel (VUB)Universitair Ziekenhuis Brussel (UZ Brussel) Brussels Belgium
| |
Collapse
|
40
|
Wu M, Zhao M, Wu H, Lu Q. Immune repertoire: Revealing the "real-time" adaptive immune response in autoimmune diseases. Autoimmunity 2021; 54:61-75. [PMID: 33650440 DOI: 10.1080/08916934.2021.1887149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The diversity of the immune repertoire (IR) enables the human immune system to distinguish multifarious antigens (Ags) that humans may encounter throughout life. At the same time, bias or abnormalities in the IR also pay a contribution to the pathogenesis of autoimmune diseases. Rapid advancements in high-throughput sequencing (HTS) technology have ushered in a new era of immune studies, revealing novel molecules and pathways that might result in autoimmunity. In the field of IR, HTS can monitor the immune response status and identify disease-specific immune repertoires. In this review, we summarize updated progress on the mechanisms of the IR and current related studies on four autoimmune diseases, particularly focusing on systemic lupus erythematosus (SLE). These autoimmune diseases can exhibit slightly or significantly skewed IRs and provide novel insights that inform our comprehending of disease pathogenesis and provide potential targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Meiyu Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
41
|
Lamri Y, Vibhushan S, Pacreau E, Boedec E, Saidoune F, Mailleux A, Crestani B, Blank U, Benhamou M, Papo T, Daugas E, Sacré K, Charles N. Basophils and IgE contribute to mixed connective tissue disease development. J Allergy Clin Immunol 2020; 147:1478-1489.e11. [PMID: 33338538 DOI: 10.1016/j.jaci.2020.12.622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/20/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mixed connective tissue disease (MCTD) is a rare and complex autoimmune disease that presents mixed features with other connective tissue diseases, such as systemic lupus erythematosus, systemic sclerosis, and myositis. It is characterized by high levels of anti-U1 small nuclear ribonucleoprotein 70k autoantibodies and a high incidence of life-threatening pulmonary involvement. The pathophysiology of MCTD is not well understood, and no specific treatment is yet available for the patients. Basophils and IgE play a role in the development of systemic lupus erythematosus and thus represent new therapeutic targets for systemic lupus erythematosus and other diseases involving basophils and IgE in their pathogenesis. OBJECTIVE We sought to investigate the role of basophils and IgE in the pathophysiology of MCTD. METHODS Basophil activation status and the presence of autoreactive IgE were assessed in peripheral blood of a cohort of patients with MCTD and in an MCTD-like mouse model. Basophil depletion and IgE-deficient animals were used to investigate the contribution of basophils and IgE in the lung pathology development of this mouse model. RESULTS Patients with MCTD have a peripheral basopenia and activated blood basophils overexpressing C-C chemokine receptor 3. Autoreactive IgE raised against the main MCTD autoantigen U1 small nuclear ribonucleoprotein 70k were found in nearly 80% of the patients from the cohort. Basophil activation and IgE anti-U1 small nuclear ribonucleoprotein 70k were also observed in the MCTD-like mouse model along with basophil accumulation in lymph nodes and lungs. Basophil depletion dampened lung pathology, and IgE deficiency prevented its development. CONCLUSIONS Basophils and IgE contribute to MCTD pathophysiology and represent new candidate therapeutic targets for patients with MCTD.
Collapse
Affiliation(s)
- Yasmine Lamri
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Shamila Vibhushan
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Emeline Pacreau
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Erwan Boedec
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Fanny Saidoune
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Arnaud Mailleux
- Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France; Université de Paris, INSERM UMR1152, Faculté de Médecine site Bichat, Paris, France
| | - Bruno Crestani
- Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France; Université de Paris, INSERM UMR1152, Faculté de Médecine site Bichat, Paris, France; Department of Pulmonology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Faculté de Médecine site Bichat, DHU FIRE, Paris, France
| | - Ulrich Blank
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Marc Benhamou
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Thomas Papo
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France; Department of Internal Medicine, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Faculté de Médecine site Bichat, DHU FIRE, Paris, France
| | - Eric Daugas
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France; Department of Nephrology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Faculté de Médecine site Bichat, DHU FIRE, Paris, France
| | - Karim Sacré
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France; Department of Internal Medicine, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Faculté de Médecine site Bichat, DHU FIRE, Paris, France
| | - Nicolas Charles
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France.
| |
Collapse
|
42
|
Halfon M, Bachelet D, Hanouna G, Dema B, Pellefigues C, Manchon P, Laouenan C, Charles N, Daugas E. CD62L on blood basophils: a first pre-treatment predictor of remission in severe lupus nephritis. Nephrol Dial Transplant 2020; 36:2256-2262. [PMID: 33316058 DOI: 10.1093/ndt/gfaa263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Basophils were recently shown to contribute to lupus nephritis (LN). This study assessed blood basophil activation markers (BAMs) for the diagnosis of LN severity and as pre-treatment prognostic markers of the response to treatment in patients with severe LN. METHOD The diagnostic study included all the patients of a monocentric prospective observational cohort built with consecutive patients diagnosed with LN on the basis of a renal biopsy. The prognostic study selected patients of this cohort according to the following inclusion criteria: ≥18 years old, Class III or IV A ± C ± Class V or pure Class V LN at the time of inclusion and treated with an induction treatment for LN. Clinical data and BAMs were obtained at the time of the kidney biopsy. LN remission status was recorded 12 months after induction therapy initiation. Associations between baseline data and histological severity of LN or LN remission were assessed using logistic regression. RESULTS No significant association was found between BAMs and the histological severity of LN in 101 patients. Among the 83 patients included in the prognostic study, 64 reached renal remission. CD62L expression on blood basophils at baseline was independently negatively associated with remission at 12 months [odds ratio = 0.26, 95% confidence interval 0.08-0.82, P = 0.02 for quantitative CD62L expression >105 (geometric fluorescent intensity) gMFI]. CD62L <105 gMFI was associated with a probability of 0.87 of LN remission in the next 12 months after the start of induction therapy. CONCLUSION Pre-treatment CD62L expression on blood basophils could be a first predictive biomarker of renal response to induction therapy at 12 months in patients with severe LN.
Collapse
Affiliation(s)
- Matthieu Halfon
- Department of Nephrology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Delphine Bachelet
- Department of Biostatistical Epidemiology and Clinical Research, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, INSERM CIC-EC 1425, Paris, France
| | - Guillaume Hanouna
- Department of Nephrology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Barbara Dema
- Centre de recherche sur l'inflammation, INSERM UMR1149, CNRS EL8252, Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Christophe Pellefigues
- Centre de recherche sur l'inflammation, INSERM UMR1149, CNRS EL8252, Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Pauline Manchon
- Department of Biostatistical Epidemiology and Clinical Research, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, INSERM CIC-EC 1425, Paris, France
| | - Cedric Laouenan
- Department of Biostatistical Epidemiology and Clinical Research, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, INSERM CIC-EC 1425, Paris, France.,INSERM, IAME, UMR 1137, Université de Paris, Paris, France
| | - Nicolas Charles
- Centre de recherche sur l'inflammation, INSERM UMR1149, CNRS EL8252, Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Eric Daugas
- Department of Nephrology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France.,Centre de recherche sur l'inflammation, INSERM UMR1149, CNRS EL8252, Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| |
Collapse
|
43
|
IgE in the Pathogenesis of SLE: From Pathogenic Role to Therapeutic Target. Antibodies (Basel) 2020; 9:antib9040069. [PMID: 33302566 PMCID: PMC7768355 DOI: 10.3390/antib9040069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/11/2020] [Accepted: 11/22/2020] [Indexed: 01/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial chronic autoimmune disease, marked by the presence of autoantibodies to nuclear antigens belonging to different isotype classes. For several years, IgE antibodies have been incriminated in the development of allergic diseases and parasitic infections and different anti-IgE therapies have been developed to encounter the pathogenic role of IgE in these pathologies. Recently, multiple studies showed the presence of elevated total IgE levels and demonstrated a pathogenic role of autoreactive IgE in SLE. This review aims to summarize the findings incriminating IgE and autoreactive IgE in the pathophysiology of SLE, to describe their functional outcomes on their targeted cells as well as to discuss different IgE-related therapeutic modalities that emerged and that may be beneficial for SLE patient care.
Collapse
|
44
|
García-Carrasco M, Macias-Díaz S, Mendoza-Pinto C, Munguía-Realpozo P, Etchegaray-Morales I, Gálvez-Romero JL, Peña-Pérez JC, Berra-Romani R, Montiel-Jarquín Á, Méndez-Martínez S. The role of IgE in systemic lupus erythematosus. Autoimmun Rev 2020; 20:102704. [PMID: 33188915 DOI: 10.1016/j.autrev.2020.102704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Mario García-Carrasco
- Systemic Autoimmune Diseases Research Unit CIBIOR, Hospital de Especialidades, UMAE, Instituto Mexicano del Seguro Social, Puebla, Mexico; Rheumatology Department, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Salvador Macias-Díaz
- Internal Medicine Service, Hospital General de Zona N°1, Instituto Mexicano del Seguro Social, Pachuca, Hidalgo, Mexico
| | - Claudia Mendoza-Pinto
- Systemic Autoimmune Diseases Research Unit CIBIOR, Hospital de Especialidades, UMAE, Instituto Mexicano del Seguro Social, Puebla, Mexico; Rheumatology Department, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.
| | - Pamela Munguía-Realpozo
- Rheumatology Department, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ivet Etchegaray-Morales
- Rheumatology Department, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - José Luis Gálvez-Romero
- Clinical Research Department, Regional Hospital, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Puebla, Mexico
| | - José Carmelo Peña-Pérez
- Systemic Autoimmune Diseases Research Unit CIBIOR, Hospital de Especialidades, UMAE, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | | |
Collapse
|
45
|
Chan SCW, Yeung WWY, Wong JCY, Chui ESH, Lee MSH, Chung HY, Cheung TT, Lau CS, Li PH. Prevalence and Impact of Reported Drug Allergies among Rheumatology Patients. Diagnostics (Basel) 2020; 10:diagnostics10110918. [PMID: 33182278 PMCID: PMC7695245 DOI: 10.3390/diagnostics10110918] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 02/08/2023] Open
Abstract
Background: Drug allergies (DA) are immunologically mediated adverse drug reactions and their manifestations depend on a variety of drug- and patient-specific factors. The dysregulated immune system underpinning rheumatological diseases may also lead to an increase in hypersensitivity reactions, including DA. The higher prevalence of reported DA, especially anti-microbials, also restricts the medication repertoire for these already immunocompromised patients. However, few studies have examined the prevalence and impact of reported DA in this group of patients. Methods: Patients with a diagnosis of rheumatoid arthritis (RA), spondyloarthritis (SpA), or systemic lupus erythematosus (SLE) were recruited from the rheumatology clinics in a tertiary referral hospital between 2018 and 2019. Prevalence and clinical outcomes of reported DA among different rheumatological diseases were calculated and compared to a cohort of hospitalized non-rheumatology patients within the same period. Results: A total of 6081 patients (2541 rheumatology patients: 1286 RA, 759 SpA, and 496 SLE; and 3540 controls) were included. DA was more frequently reported among rheumatology patients compared to controls (23.8% vs. 13.8%, p < 0.01). Antibiotics and non-steroidal anti-inflammatory drugs (NSAIDs) were the two most commonly reported categories of DA with a prevalence of 12.0% and 5.1%, respectively. Reported antibiotics allergies were more frequent in patients with RA (OR = 1.20, 95% CI = 1.02–1.62, p = 0.03) and SLE (OR = 4.69, 95% CI = 3.69–5.95, p < 0.01); and associated with increased infection-related admissions among rheumatology patients (OR = 1.79, 95% CI = 1.09–2.95, p = 0.02). Among the subgroup of patients referred for allergy testing, 85.7% of beta-lactam antibiotic allergy labels were found to be inaccurate and de-labelled after negative drug provocation testing. Conclusion: The prevalence of reported DA was significantly higher in rheumatology patients. Reported antibiotic allergy was associated with increased rate of infection-related admissions. However, the rate of genuine antibiotic allergy was low. Further studies are needed to guide proper assessment of reported DA and impact of comprehensive allergy testing in this group of patients.
Collapse
|
46
|
Rajasinghe LD, Li QZ, Zhu C, Yan M, Chauhan PS, Wierenga KA, Bates MA, Harkema JR, Benninghoff AD, Pestka JJ. Omega-3 fatty acid intake suppresses induction of diverse autoantibody repertoire by crystalline silica in lupus-prone mice. Autoimmunity 2020; 53:415-433. [PMID: 32903098 PMCID: PMC8020726 DOI: 10.1080/08916934.2020.1801651] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/22/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
Inhalation of crystalline silica (cSiO2) in the workplace is etiologically linked to lupus and other autoimmune diseases. Exposing lupus-prone NZBWF1 mice to respirable cSiO2 unleashes a vicious cycle of inflammation and cell death in the lung that triggers interferon-regulated gene expression, ectopic lymphoid structure (ELS) development, elevation of local and systemic autoantibodies (AAbs), and glomerulonephritis. However, cSiO2-induced inflammation and onset of autoimmunity can be prevented by inclusion of the ω-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) into the diet of these mice. Since cSiO2 both causes cell death and interferes with efferocytosis, secondary necrosis of residual cell corpses might provide a rich and varied autoantigen (AAg) source in the lung. While it is known that the particle induces anti-nuclear and anti-dsDNA AAbs in NZBWF1 mice, the full extent of the cSiO2-induced AAb response relative to specificity and isotype is not yet understood. The purpose of this study was to test the hypotheses that cSiO2 exposure induces a wide spectrum of AAbs in the pulmonary and systemic compartments, and that dietary DHA intervention prevents these changes. Archived tissue fluid samples were obtained from a prior study in which NZBWF1 mice were fed purified isocaloric diets containing no DHA (control) or DHA corresponding calorically to human doses of 2 and 5 g/day. Mice were intranasally instilled with 1 mg cSiO2 or saline vehicle weekly for 4 weeks, then groups euthanized 1, 5, 9, or 13 weeks post-instillation (PI) of the last cSiO2 dose. Bronchoalveolar lavage fluid (BALF) and plasma from each time point were subjected to AAb profiling using a microarray containing 122 AAgs. cSiO2 triggered robust IgG and IgM AAb responses against lupus-associated AAgs, including DNA, histones, ribonucleoprotein, Smith antigen, Ro/SSA, La/SSB, and complement as early as 1 week PI in BALF and 5 weeks PI in plasma, peaking at 9 and 13 weeks PI, respectively. Importantly, cSiO2 also induced AAbs to AAgs associated with rheumatoid arthritis (collagen II, fibrinogen IV, fibrinogen S, fibronectin, and vimentin), Sjögren's syndrome (α-fodrin), systemic sclerosis (topoisomerase I), vasculitis (MPO and PR3), myositis (Mi-2, TIF1-γ, MDA5), autoimmune hepatitis (LC-1), and celiac disease (TTG). cSiO2 elicited comparable but more modest IgA AAb responses in BALF and plasma. cSiO2-induced AAb production was strongly associated with time dependent inflammatory/autoimmune gene expression, ELS development, and glomerulonephritis. AAb responses were dose-dependently suppressed by DHA supplementation and negatively correlated with the ω-3 index, an erythrocyte biomarker of ω-3 content in tissue phospholipids. Taken together, these findings suggest that cSiO2 exposure elicits a diverse multi-isotype repertoire of AAbs, many of which have been reported in individuals with lupus and other autoimmune diseases. Furthermore, induction of this broad AAb spectrum could be impeded by increasing ω-3 tissue content via dietary DHA supplementation.
Collapse
Affiliation(s)
- Lichchavi D. Rajasinghe
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, U.S
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, U.S
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, IIMT Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S
| | - Chengsong Zhu
- Department of Immunology and Internal Medicine, IIMT Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S
| | - Mei Yan
- Department of Immunology and Internal Medicine, IIMT Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S
| | - Preeti S. Chauhan
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, U.S
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, U.S
| | - Kathryn A. Wierenga
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, U.S
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, U.S
| | - Melissa A. Bates
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, U.S
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, U.S
| | - Jack R. Harkema
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, U.S
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, U.S
| | - Abby D. Benninghoff
- Department of Animal, Dairy and Veterinary Sciences and the School of Veterinary Medicine, Utah State University, Logan UT 84322, U.S
| | - James J. Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, U.S
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, U.S
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, U.S
| |
Collapse
|
47
|
Sage PT, Sharpe AH. The multifaceted functions of follicular regulatory T cells. Curr Opin Immunol 2020; 67:68-74. [PMID: 33176227 DOI: 10.1016/j.coi.2020.10.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/06/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The immune system is capable of generating robust antibody responses to foreign antigens during infection and vaccination, while simultaneously limiting antibodies to self-antigens. T follicular regulatory (Tfr) cells are a subset of follicular T cell with specialized roles in regulating humoral immunity. Although Tfr cells have been studied for the past 10 years, their roles have remained elusive. In this review we discuss the current understanding of Tfr cell functions in autoimmunity and how Tfr cells simultaneously control foreign and autoantigen specific antibody responses. We highlight new tools that enable in-depth study of Tfr cells in vivo and recent data suggesting an important role for Tfr cells in limiting participation of autoreactive B cells in germinal centers.
Collapse
Affiliation(s)
- Peter T Sage
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, United States; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
48
|
Pellefigues C. IgE Autoreactivity in Atopic Dermatitis: Paving the Road for Autoimmune Diseases? Antibodies (Basel) 2020; 9:E47. [PMID: 32911788 PMCID: PMC7551081 DOI: 10.3390/antib9030047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
Atopic dermatitis (AD) is a common skin disease affecting 20% of the population beginning usually before one year of age. It is associated with the emergence of allergen-specific IgE, but also with autoreactive IgE, whose function remain elusive. This review discusses current knowledge relevant to the mechanisms, which leads to the secretion of autoreactive IgE and to the potential function of these antibodies in AD. Multiple autoantigens have been described to elicit an IgE-dependent response in this context. This IgE autoimmunity starts in infancy and is associated with disease severity. Furthermore, the overall prevalence of autoreactive IgE to multiple auto-antigens is high in AD patients. IgE-antigen complexes can promote a facilitated antigen presentation, a skewing of the adaptive response toward type 2 immunity, and a chronic skin barrier dysfunction and inflammation in patients or AD models. In AD, skin barrier defects and the atopic immune environment facilitate allergen sensitization and the development of other IgE-mediated allergic diseases in a process called the atopic march. AD is also associated epidemiologically with several autoimmune diseases showing autoreactive IgE secretion. Thus, a potential outcome of IgE autoreactivity in AD could be the development of further autoimmune diseases.
Collapse
Affiliation(s)
- Christophe Pellefigues
- INSERM UMRS1149-CNRS ERL8252, Team «Basophils and Mast cells in Immunopathology», Centre de recherche sur l'inflammation (CRI), Inflamex, DHU Fire, Université de Paris, 75018 Paris, France
| |
Collapse
|
49
|
Criado PR, Pagliari C, Criado RFJ, Marques GF, Belda W. What the physicians should know about mast cells, dendritic cells, urticaria, and omalizumab during COVID-19 or asymptomatic infections due to SARS-CoV-2? Dermatol Ther 2020; 33:e14068. [PMID: 32713127 DOI: 10.1111/dth.14068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease (COVID-19) pandemic presents several dermatological manifestations described in the present indexed literature, with around 700 cases reported until May 2020, some described as urticaria or urticarial rashes. Urticaria is constituted by evanescent erythematous-edematous lesions (wheals and flare), which does not persist in the same site for more than 24 to 48 hours and appears in other topographic localization, resolving without residual hyper pigmentation. During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, some cytokines are synthesized, including Interferon (IFN) type I, TNF-α, and chemokines which may induce mast cells (MCs) and basophils degranulation by mechanisms similar to the autoinflammatory monogenic or polygenic diseases. In this article, we discuss the spectrum of the urticaria and urticarial-like lesions in the COVID-19's era, besides other aspects related to innate and adaptative immune response to viral infections, interactions between dermal dendritic cells and MCs, and degranulation of MCs by different stimuli. Plasmacytoid dendritic cells share, in allergic patients, expression of the high-affinity IgE receptors on cell membranes and demonstrated a low pattern of type I IFN secretion in viral infections. We discuss the previous descriptions of the effects of omalizumab, a monoclonal antibody directed to IgE and high-affinity IgE receptors, to improve the IFN responses and enhance their antiviral effects.
Collapse
Affiliation(s)
- Paulo Ricardo Criado
- Dermatology Department, Centro Universitário Saúde ABC, Santo André, Brazil.,Dermatology Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carla Pagliari
- Pathology Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Gabriela Franco Marques
- Dermatology Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Walter Belda
- Dermatology Department, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
50
|
Badloe FMS, De Vriese S, Coolens K, Schmidt-Weber CB, Ring J, Gutermuth J, Kortekaas Krohn I. IgE autoantibodies and autoreactive T cells and their role in children and adults with atopic dermatitis. Clin Transl Allergy 2020; 10:34. [PMID: 32774842 PMCID: PMC7398196 DOI: 10.1186/s13601-020-00338-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
The pathophysiology of atopic dermatitis (AD) is highly complex and understanding of disease endotypes may improve disease management. Immunoglobulins E (IgE) against human skin epitopes (IgE autoantibodies) are thought to play a role in disease progression and prolongation. These antibodies have been described in patients with severe and chronic AD, suggesting a progression from allergic inflammation to severe autoimmune processes against the skin. This review provides a summary of the current knowledge and gaps on IgE autoreactivity and self-reactive T cells in children and adults with AD based on a systematic search. Currently, the clinical relevance and the pathomechanism of IgE autoantibodies in AD needs to be further investigated. Additionally, it is unknown whether the presence of IgE autoantibodies in patients with AD is an epiphenomenon or a disease endotype. However, increased knowledge on the clinical relevance and the pathophysiologic role of IgE autoantibodies and self-reactive T cells in AD can have consequences for diagnosis and treatment. Responses to the current available treatments can be used for better understanding of the pathways and may shed new lights on the treatment options for patients with AD and autoreactivity against skin epitopes. To conclude, IgE autoantibodies and self-reactive T cells can contribute to the pathophysiology of AD based on the body of evidence in literature. However, many questions remain open. Future studies on autoreactivity in AD should especially focus on the clinical relevance, the contribution to the disease progression and chronicity on cellular level, the onset and therapeutic strategies.
Collapse
Affiliation(s)
- Fariza Mishaal Saiema Badloe
- Department of Dermatology, SKIN Research Group, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, Building D, Room D148, 1090 Brussels, Belgium
| | - Shauni De Vriese
- Department of Dermatology, SKIN Research Group, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, Building D, Room D148, 1090 Brussels, Belgium
| | - Katarina Coolens
- Department of Dermatology, SKIN Research Group, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, Building D, Room D148, 1090 Brussels, Belgium
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany.,Member of the German Center of Lung Research (DZL) and the Helmholtz Initiative for Inflammation and Immunology (I&I), Munich, Germany
| | - Johannes Ring
- Department of Dermatology, SKIN Research Group, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, Building D, Room D148, 1090 Brussels, Belgium.,Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Jan Gutermuth
- Department of Dermatology, SKIN Research Group, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, Building D, Room D148, 1090 Brussels, Belgium
| | - Inge Kortekaas Krohn
- Department of Dermatology, SKIN Research Group, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, Building D, Room D148, 1090 Brussels, Belgium
| |
Collapse
|