1
|
Kim SI, Park S, Ahn E, Kim J, Jo H, Lee J, Cho U, Lee M, Lee C, Dhanasekaran DN, Ahn T, Song YS. Tailored chemotherapy: Innovative deep-learning model customizing chemotherapy for high-grade serous ovarian carcinoma. Clin Transl Med 2024; 14:e1774. [PMID: 39243150 PMCID: PMC11380048 DOI: 10.1002/ctm2.1774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 09/09/2024] Open
Affiliation(s)
- Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Sangick Park
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, South Korea
| | - Eunyong Ahn
- Research Group, Foretell My Health, Pohang, South Korea
| | - Jeunhui Kim
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, South Korea
| | - HyunA Jo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Agricultural Biotechnology, WCU Biomodulation, Seoul National University, Seoul, South Korea
| | - Juwon Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Agricultural Biotechnology, WCU Biomodulation, Seoul National University, Seoul, South Korea
| | - Untack Cho
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Maria Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Taejin Ahn
- Research Group, Foretell My Health, Pohang, South Korea
- Department of Life Science, Handong Global University, Pohang, South Korea
| | - Yong Sang Song
- Department of Obstetrics and Gynaecology, Myongji Hospital, Hanyang University College of Medicine, Goyang, South Korea
| |
Collapse
|
2
|
Ghini V, Sorbi F, Fambrini M, Magherini F. NMR Metabolomics of Primary Ovarian Cancer Cells in Comparison to Established Cisplatin-Resistant and -Sensitive Cell Lines. Cells 2024; 13:661. [PMID: 38667276 PMCID: PMC11049548 DOI: 10.3390/cells13080661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer cell lines are frequently used in metabolomics, such as in vitro tumor models. In particular, A2780 cells are commonly used as a model for ovarian cancer to evaluate the effects of drug treatment. Here, we compare the NMR metabolomics profiles of A2780 and cisplatin-resistant A2780 cells with those of cells derived from 10 patients with high-grade serous ovarian carcinoma (collected during primary cytoreduction before any chemotherapeutic treatment). Our analysis reveals a substantial similarity among all primary cells but significant differences between them and both A2780 and cisplatin-resistant A2780 cells. Notably, the patient-derived cells are closer to the resistant A2780 cells when considering the exo-metabolome, whereas they are essentially equidistant from A2780 and A2780-resistant cells in terms of the endo-metabolome. This behavior results from dissimilarities in the levels of several metabolites attributable to the differential modulation of underlying biochemical pathways. The patient-derived cells are those with the most pronounced glycolytic phenotype, whereas A2780-resistant cells mainly diverge from the others due to alterations in a few specific metabolites already known as markers of resistance.
Collapse
Affiliation(s)
- Veronica Ghini
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy
| | - Flavia Sorbi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.S.); (M.F.)
| | - Massimiliano Fambrini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.S.); (M.F.)
| | - Francesca Magherini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.S.); (M.F.)
| |
Collapse
|
3
|
Constantinescu DR, Sorop A, Ghionescu AV, Lixandru D, Herlea V, Bacalbasa N, Dima SO. EM-transcriptomic signature predicts drug response in advanced stages of high-grade serous ovarian carcinoma based on ascites-derived primary cultures. Front Pharmacol 2024; 15:1363142. [PMID: 38510654 PMCID: PMC10953505 DOI: 10.3389/fphar.2024.1363142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction: High-grade serous ovarian carcinoma (HGSOC) remains a medical challenge despite considerable improvements in the treatment. Unfortunately, over 75% of patients have already metastasized at the time of diagnosis. Advances in understanding the mechanisms underlying how ascites cause chemoresistance are urgently needed to derive novel therapeutic strategies. This study aimed to identify the molecular markers involved in drug sensitivity and highlight the use of ascites as a potential model to investigate HGSOC treatment options. Methods: After conducting an in silico analysis, eight epithelial-mesenchymal (EM)-associated genes related to chemoresistance were identified. To evaluate differences in EM-associated genes in HGSOC samples, we analyzed ascites-derived HGSOC primary cell culture (AS), tumor (T), and peritoneal nodule (NP) samples. Moreover, in vitro experiments were employed to measure tumor cell proliferation and cell migration in AS, following treatment with doxorubicin (DOX) and cisplatin (CIS) and expression of these markers. Results: Our results showed that AS exhibits a mesenchymal phenotype compared to tumor and peritoneal nodule samples. Moreover, DOX and CIS treatment leads to an invasive-intermediate epithelial-to-mesenchymal transition (EMT) state of the AS by different EM-associated marker expression. For instance, the treatment of AS showed that CDH1 and GATA6 decreased after CIS exposure and increased after DOX treatment. On the contrary, the expression of KRT18 has an opposite pattern. Conclusion: Taken together, our study reports a comprehensive investigation of the EM-associated genes after drug exposure of AS. Exploring ascites and their associated cellular and soluble components is promising for understanding the HGSOC progression and treatment response at a personalized level.
Collapse
Affiliation(s)
| | - Andrei Sorop
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | | | - Daniela Lixandru
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
| | - Vlad Herlea
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Department of Pathology-Fundeni Clinical Institute, Bucharest, Romania
| | - Nicolae Bacalbasa
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Simona Olimpia Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
4
|
Piwocka O, Musielak M, Ampuła K, Piotrowski I, Adamczyk B, Fundowicz M, Suchorska WM, Malicki J. Navigating challenges: optimising methods for primary cell culture isolation. Cancer Cell Int 2024; 24:28. [PMID: 38212739 PMCID: PMC10785493 DOI: 10.1186/s12935-023-03190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/24/2023] [Indexed: 01/13/2024] Open
Abstract
Primary cell lines are invaluable for exploring cancer biology and investigating novel treatments. Despite their numerous advantages, primary cultures are laborious to obtain and maintain in culture. Hence, established cell lines are still more common. This study aimed to evaluate a range of techniques for isolating primary breast cancer cultures, employing distinct enzymatic compositions, incubation durations, and mechanical approaches, including filtration. Out of several protocols, we opted for a highly effective method (Method 5) that gave rise to a primary cell culture (BC160). This method combines mechanical disaggregation and enzymatic digestion with hyaluronidase and collagenase. Moreover, the paper addresses common issues in isolating primary cultures, shedding light on the struggle against fibroblasts overgrowing cancer cell populations. To make primary cell lines a preferred model, it is essential to elaborate and categorise isolation methods, develop approaches to separate heterogeneous cultures and investigate factors influencing the establishment of primary cell lines.
Collapse
Affiliation(s)
- Oliwia Piwocka
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, 61-701, Poland.
- Doctoral School, Poznan University of Medical Sciences, Poznan, 61-701, Poland.
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, 61- 866, Poland.
| | - Marika Musielak
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, 61-701, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, 61- 866, Poland
| | - Karolina Ampuła
- Faculty of Biology, Adam Mickiewicz University, Poznan, 61-614, Poland
| | - Igor Piotrowski
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, 61- 866, Poland
| | - Beata Adamczyk
- Breast Surgical Oncology Department, Greater Poland Cancer Centre, Poznan, 61-866, Poland
| | | | - Wiktoria Maria Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, 61- 866, Poland
| | - Julian Malicki
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
- Medical Physics Department, Greater Poland Cancer Centre, Poznan, 61-866, Poland
| |
Collapse
|
5
|
Patient-Derived In Vitro Models of Ovarian Cancer: Powerful Tools to Explore the Biology of the Disease and Develop Personalized Treatments. Cancers (Basel) 2023; 15:cancers15020368. [PMID: 36672318 PMCID: PMC9856518 DOI: 10.3390/cancers15020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Epithelial ovarian cancer (OC) is the most lethal gynecological malignancy worldwide due to a late diagnosis caused by the lack of specific symptoms and rapid dissemination into the peritoneal cavity. The standard of care for OC treatment is surgical cytoreduction followed by platinum-based chemotherapy. While a response to this frontline treatment is common, most patients undergo relapse within 2 years and frequently develop a chemoresistant disease that has become unresponsive to standard treatments. Moreover, also due to the lack of actionable mutations, very few alternative therapeutic strategies have been designed as yet for the treatment of recurrent OC. This dismal clinical perspective raises the need for pre-clinical models that faithfully recapitulate the original disease and therefore offer suitable tools to design novel therapeutic approaches. In this regard, patient-derived models are endowed with high translational relevance, as they can better capture specific aspects of OC such as (i) the high inter- and intra-tumor heterogeneity, (ii) the role of cancer stem cells (a small subset of tumor cells endowed with tumor-initiating ability, which can sustain tumor spreading, recurrence and chemoresistance), and (iii) the involvement of the tumor microenvironment, which interacts with tumor cells and modulates their behavior. This review describes the different in vitro patient-derived models that have been developed in recent years in the field of OC research, focusing on their ability to recapitulate specific features of this disease. We also discuss the possibilities of leveraging such models as personalized platforms to design new therapeutic approaches and guide clinical decisions.
Collapse
|
6
|
Tumor-reactive antibodies evolve from non-binding and autoreactive precursors. Cell 2022; 185:1208-1222.e21. [PMID: 35305314 DOI: 10.1016/j.cell.2022.02.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022]
Abstract
The tumor microenvironment hosts antibody-secreting cells (ASCs) associated with a favorable prognosis in several types of cancer. Patient-derived antibodies have diagnostic and therapeutic potential; yet, it remains unclear how antibodies gain autoreactivity and target tumors. Here, we found that somatic hypermutations (SHMs) promote antibody antitumor reactivity against surface autoantigens in high-grade serous ovarian carcinoma (HGSOC). Patient-derived tumor cells were frequently coated with IgGs. Intratumoral ASCs in HGSOC were both mutated and clonally expanded and produced tumor-reactive antibodies that targeted MMP14, which is abundantly expressed on the tumor cell surface. The reversion of monoclonal antibodies to their germline configuration revealed two types of classes: one dependent on SHMs for tumor binding and a second with germline-encoded autoreactivity. Thus, tumor-reactive autoantibodies are either naturally occurring or evolve through an antigen-driven selection process. These findings highlight the origin and potential applicability of autoantibodies directed at surface antigens for tumor targeting in cancer patients.
Collapse
|
7
|
Bieńkowski M, Tomasik B, Braun M, Jassem J. PARP inhibitors for metastatic castration-resistant prostate cancer: Biological rationale and current evidence. Cancer Treat Rev 2022; 104:102359. [DOI: 10.1016/j.ctrv.2022.102359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/27/2022]
|
8
|
Chiang YC, Lin PH, Cheng WF. Homologous Recombination Deficiency Assays in Epithelial Ovarian Cancer: Current Status and Future Direction. Front Oncol 2021; 11:675972. [PMID: 34722237 PMCID: PMC8551835 DOI: 10.3389/fonc.2021.675972] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/17/2021] [Indexed: 01/02/2023] Open
Abstract
Epithelial ovarian cancer (EOC) patients are generally diagnosed at an advanced stage, usually relapse after initial treatments, which include debulking surgery and adjuvant platinum-based chemotherapy, and eventually have poor 5-year survival of less than 50%. In recent years, promising survival benefits from maintenance therapy with poly(ADP-ribose) polymerase (PARP) inhibitor (PARPi) has changed the management of EOC in newly diagnosed and recurrent disease. Identification of BRCA mutations and/or homologous recombination deficiency (HRD) is critical for selecting patients for PARPi treatment. However, the currently available HRD assays are not perfect predictors of the clinical response to PARPis in EOC patients. In this review, we introduce the concept of synthetic lethality, the rationale of using PARPi when HRD is present in tumor cells, the clinical trials of PARPi incorporating the HRD assays for EOC, the current HRD assays, and other HRD assays in development.
Collapse
Affiliation(s)
- Ying-Cheng Chiang
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Han Lin
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Fang Cheng
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Richter M, Piwocka O, Musielak M, Piotrowski I, Suchorska WM, Trzeciak T. From Donor to the Lab: A Fascinating Journey of Primary Cell Lines. Front Cell Dev Biol 2021; 9:711381. [PMID: 34395440 PMCID: PMC8356673 DOI: 10.3389/fcell.2021.711381] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/21/2021] [Indexed: 12/02/2022] Open
Abstract
Primary cancer cell lines are ex vivo cell cultures originating from resected tissues during biopsies and surgeries. Primary cell cultures are objects of intense research due to their high impact on molecular biology and oncology advancement. Initially, the patient-derived specimen must be subjected to dissociation and isolation. Techniques for tumour dissociation are usually reliant on the organisation of connecting tissue. The most common methods include enzymatic digestion (with collagenase, dispase, and DNase), chemical treatment (with ethylene diamine tetraacetic acid and ethylene glycol tetraacetic acid), or mechanical disaggregation to obtain a uniform cell population. Cells isolated from the tissue specimen are cultured as a monolayer or three-dimensional culture, in the form of multicellular spheroids, scaffold-based cultures (i.e., organoids), or matrix-embedded cultures. Every primary cell line must be characterised to identify its origin, purity, and significant features. The process of characterisation should include different assays utilising specific (extra- and intracellular) markers. The most frequently used approaches comprise immunohistochemistry, immunocytochemistry, western blot, flow cytometry, real-time polymerase chain reaction, karyotyping, confocal microscopy, and next-generation sequencing. The growing body of evidence indicates the validity of the usage of primary cancer cell lines in the formulation of novel anti-cancer treatments and their contribution to drug development.
Collapse
Affiliation(s)
- Magdalena Richter
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poznań, Poland
| | - Oliwia Piwocka
- Radiobiology Lab, Department of Medical Physics, Greater Poland Cancer Center, Poznań, Poland
| | - Marika Musielak
- Department of Electroradiology, Poznan University of Medical Sciences, Poznań, Poland
| | - Igor Piotrowski
- Department of Electroradiology, Poznan University of Medical Sciences, Poznań, Poland
| | - Wiktoria M. Suchorska
- Radiobiology Lab, Department of Medical Physics, Greater Poland Cancer Center, Poznań, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznań, Poland
| | - Tomasz Trzeciak
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
10
|
Chauvin M, Garambois V, Choblet S, Colombo PE, Chentouf M, Gros L, De Brauwere DP, Duonor-Cerutti M, Dumas K, Robert B, Jarlier M, Martineau P, Navarro-Teulon I, Pépin D, Chardès T, Pèlegrin A. Anti-Müllerian hormone concentration regulates activin receptor-like kinase-2/3 expression levels with opposing effects on ovarian cancer cell survival. Int J Oncol 2021; 59:43. [PMID: 34013359 PMCID: PMC8131086 DOI: 10.3892/ijo.2021.5223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/11/2021] [Indexed: 11/27/2022] Open
Abstract
Anti‑Müllerian hormone (AMH) type II receptor (AMHRII) and the AMH/AMHRII signaling pathway are potential therapeutic targets in ovarian carcinoma. Conversely, the role of the three AMH type I receptors (AMHRIs), namely activin receptor‑like kinase (ALK)2, ALK3 and ALK6, in ovarian cancer remains to be clarified. To determine the respective roles of these three AMHRIs, the present study used four ovarian cancer cell lines (COV434‑AMHRII, SKOV3‑AMHRII, OVCAR8, KGN) and primary cells isolated from tumor ascites from patients with ovarian cancer. The results demonstrated that ALK2 and ALK3 may be the two main AMHRIs involved in AMH signaling at physiological endogenous and supraphysiological exogenous AMH concentrations, respectively. Supraphysiological AMH concentrations (25 nM recombinant AMH) were associated with apoptosis in all four cell lines and decreased clonogenic survival in COV434‑AMHRII and SKOV3‑AMHRII cells. These biological effects were induced via ALK3 recruitment by AMHRII, as ALK3‑AMHRII dimerization was favored at increasing AMH concentrations. By contrast, ALK2 was associated with AMHRII at physiological endogenous concentrations of AMH (10 pM). Based on these results, tetravalent IgG1‑like bispecific antibodies (BsAbs) against AMHRII and ALK2, and against AMHRII and ALK3 were designed and evaluated. In vivo, COV434‑AMHRII tumor cell xenograft growth was significantly reduced in all BsAb‑treated groups compared with that in the vehicle group (P=0.018 for BsAb 12G4‑3D7; P=0.001 for all other BsAbs). However, the growth of COV434‑AMHRII tumor cell xenografts was slower in mice treated with the anti‑AMRII‑ALK2 BsAb 12G4‑2F9 compared with that in animals that received a control BsAb that targeted AMHRII and CD5 (P=0.048). These results provide new insights into type I receptor specificity in AMH signaling pathways and may lead to an innovative therapeutic approach to modulate AMH signaling using anti‑AMHRII/anti‑AMHRI BsAbs.
Collapse
Affiliation(s)
- Maëva Chauvin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - Véronique Garambois
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - Sylvie Choblet
- CNRS UPS3044 Baculovirus et Thérapie, F-30380 Saint-Christol-Lèz Alès, France
| | - Pierre-Emmanuel Colombo
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, F-34298 Montpellier, France
| | - Myriam Chentouf
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - Laurent Gros
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | | | | | | | - Bruno Robert
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - Marta Jarlier
- Institut Régional du Cancer de Montpellier, ICM, F-34298 Montpellier, France
| | - Pierre Martineau
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - Isabelle Navarro-Teulon
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - David Pépin
- Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Thierry Chardès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
| |
Collapse
|
11
|
Genomic, Transcriptomic, and Functional Alterations in DNA Damage Response Pathways as Putative Biomarkers of Chemotherapy Response in Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13061420. [PMID: 33804647 PMCID: PMC8003626 DOI: 10.3390/cancers13061420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Several chemotherapy drugs are approved for ovarian cancer treatment in the neo-adjuvant/adjuvant setting as well as following relapse. These include carboplatin, paclitaxel, doxorubicin, topotecan, PARP inhibitors (PARPi), and gemcitabine. However, except for PAPRi, there are no predictive biomarkers to guide the choice of drug. The majority of chemotherapeutic drugs function by inducing DNA damage or inhibiting its repair. However, the association of DNA damage repair (DDR) pathway alterations with therapy response remain unclear. In this study, using a panel of 14 ovarian cancer cell lines, 10 patient ascites-derived primary cultures and bioinformatic analysis of The Cancer Genome Atlas (TCGA) ovarian cancer dataset, we identified the role of genomic/transcriptomic and/or functional alterations in DDR pathways as determinants of therapy response. Abstract Defective DNA damage response (DDR) pathways are enabling characteristics of cancers that not only can be exploited to specifically target cancer cells but also can predict chemotherapy response. Defective Homologous Recombination Repair (HRR) function, e.g., due to BRCA1/2 loss, is a determinant of response to platinum agents and PARP inhibitors in ovarian cancers. Most chemotherapies function by either inducing DNA damage or impacting on its repair but are generally used in the clinic unselectively. The significance of HRR and other DDR pathways in determining response to several other chemotherapy drugs is not well understood. In this study, the genomic, transcriptomic and functional analysis of DDR pathways in a panel of 14 ovarian cancer cell lines identified that defects in DDR pathways could determine response to several chemotherapy drugs. Carboplatin, rucaparib, and topotecan sensitivity were associated with functional loss of HRR (validated in 10 patient-derived primary cultures) and mismatch repair. Two DDR gene expression clusters correlating with treatment response were identified, with PARP10 identified as a novel marker of platinum response, which was confirmed in The Cancer Genome Atlas (TCGA) ovarian cancer cohort. Reduced non-homologous end-joining function correlated with increased sensitivity to doxorubicin, while cells with high intrinsic oxidative stress showed sensitivity to gemcitabine. In this era of personalised medicine, molecular/functional characterisation of DDR pathways could guide chemotherapy choices in the clinic allowing specific targeting of ovarian cancers.
Collapse
|
12
|
Chauvin M, Garambois V, Colombo PE, Chentouf M, Gros L, Brouillet JP, Robert B, Jarlier M, Dumas K, Martineau P, Navarro-Teulon I, Pépin D, Chardès T, Pèlegrin A. Anti-Müllerian hormone (AMH) autocrine signaling promotes survival and proliferation of ovarian cancer cells. Sci Rep 2021; 11:2231. [PMID: 33500516 PMCID: PMC7838181 DOI: 10.1038/s41598-021-81819-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/12/2021] [Indexed: 12/30/2022] Open
Abstract
In ovarian carcinoma, anti-Müllerian hormone (AMH) type II receptor (AMHRII) and the AMH/AMHRII signaling pathway are potential therapeutic targets. Here, AMH dose-dependent effect on signaling and proliferation was analyzed in four ovarian cancer cell lines, including sex cord stromal/granulosa cell tumors and high grade serous adenocarcinomas (COV434-AMHRII, SKOV3-AMHRII, OVCAR8 and KGN). As previously shown, incubation with exogenous AMH at concentrations above the physiological range (12.5-25 nM) decreased cell viability. Conversely, physiological concentrations of endogenous AMH improved cancer cell viability. Partial AMH depletion by siRNAs was sufficient to reduce cell viability in all four cell lines, by 20% (OVCAR8 cells) to 40% (COV434-AMHRII cells). In the presence of AMH concentrations within the physiological range (5 to 15 pM), the newly developed anti-AMH B10 antibody decreased by 25% (OVCAR8) to 50% (KGN) cell viability at concentrations ranging between 3 and 333 nM. At 70 nM, B10 reduced clonogenic survival by 57.5%, 57.1%, 64.7% and 37.5% in COV434-AMHRII, SKOV3-AMHRII, OVCAR8 and KGN cells, respectively. In the four cell lines, B10 reduced AKT phosphorylation, and increased PARP and caspase 3 cleavage. These results were confirmed in ovarian cancer cells isolated from patients' ascites, demonstrating the translational potential of these results. Furthermore, B10 reduced COV434-MISRII tumor growth in vivo and significantly enhanced the median survival time compared with vehicle (69 vs 60 days; p = 0.0173). Our data provide evidence for a novel pro-survival autocrine role of AMH in the context of ovarian cancer, which was targeted therapeutically using an anti-AMH antibody to successfully repress tumor growth.
Collapse
Affiliation(s)
- Maëva Chauvin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Véronique Garambois
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
| | - Pierre-Emmanuel Colombo
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
| | - Myriam Chentouf
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
| | - Laurent Gros
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
| | - Jean-Paul Brouillet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
- Département de Biochimie et Biologie Moléculaire, CHU de Nîmes, Nîmes, France
| | - Bruno Robert
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
| | - Marta Jarlier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
| | - Karen Dumas
- SurgiMAb, 10 Parc Club du Millénaire, 1025 Avenue Henri Becquerel, 34000, Montpellier, France
| | - Pierre Martineau
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
| | - Isabelle Navarro-Teulon
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
| | - David Pépin
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Thierry Chardès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France
- INSERM, U1194, 34298, Montpellier, France
- Université de Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France
| | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Campus Val d'Aurelle, 34298, Montpellier Cedex, France.
- INSERM, U1194, 34298, Montpellier, France.
- Université de Montpellier, 34298, Montpellier, France.
- Institut Régional du Cancer de Montpellier, ICM, 34298, Montpellier, France.
| |
Collapse
|
13
|
Deciphering the Molecular Mechanism of Spontaneous Senescence in Primary Epithelial Ovarian Cancer Cells. Cancers (Basel) 2020; 12:cancers12020296. [PMID: 32012719 PMCID: PMC7072138 DOI: 10.3390/cancers12020296] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Abstract
Spontaneous senescence of cancer cells remains a puzzling and poorly understood phenomenon. Here we comprehensively characterize this process in primary epithelial ovarian cancer cells (pEOCs). Analysis of tumors from ovarian cancer patients showed an abundance of senescent cells in vivo. Further, serially passaged pEOCs become senescent after a few divisions. These senescent cultures display trace proliferation, high expression of senescence biomarkers (SA--Gal, -H2A.X), growth-arrest in the G1 phase, increased level of cyclins D1, D2, decreased cyclin B1, up-regulated p16, p21, and p53 proteins, eroded telomeres, reduced activity of telomerase, predominantly non-telomeric DNA damage, activated AKT, AP-1, and ERK1/2 signaling, diminished JNK, NF-B, and STAT3 pathways, increased formation of reactive oxygen species, unchanged activity of antioxidants, increased oxidative damage to DNA and proteins, and dysfunctional mitochondria. Moreover, pEOC senescence is inducible by normal peritoneal mesothelium, fibroblasts, and malignant ascites via the paracrine activity of GRO-1, HGF, and TGF-1. Collectively, pEOCs undergo spontaneous senescence in a mosaic, telomere-dependent and telomere-independent manner, plausibly in an oxidative stress-dependent mechanism. The process may also be activated by extracellular stimuli. The biological and clinical significance of pEOC senescence remains to be explored.
Collapse
|
14
|
Mikuła-Pietrasik J, Niklas A, Uruski P, Tykarski A, Książek K. Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells. Cell Mol Life Sci 2020; 77:213-229. [PMID: 31414165 PMCID: PMC6970957 DOI: 10.1007/s00018-019-03261-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022]
Abstract
In contrast to the well-recognized replicative and stress-induced premature senescence of normal somatic cells, mechanisms and clinical implications of senescence of cancer cells are still elusive and uncertain from patient-oriented perspective. Moreover, recent years provided multiple pieces of evidence that cancer cells may undergo senescence not only in response to chemotherapy or ionizing radiation (the so-called therapy-induced senescence) but also spontaneously, without any external insults. Since the molecular nature of the latter process is poorly recognized, the significance of spontaneously senescent cancer cells for tumor progression, therapy effectiveness, and patient survival is purely speculative. In this review, we summarize the most up-to-date research regarding therapy-induced and spontaneous senescence of cancer cells, by delineating the most important discoveries regarding the occurrence of these phenomena in vivo and in vitro. This review provides data collected from studies on various cancer cell models, and the narration is presented from the broader perspective of the most critical findings regarding the senescence of normal somatic cells.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland.
| |
Collapse
|
15
|
Roberts CM, Cardenas C, Tedja R. The Role of Intra-Tumoral Heterogeneity and Its Clinical Relevance in Epithelial Ovarian Cancer Recurrence and Metastasis. Cancers (Basel) 2019; 11:E1083. [PMID: 31366178 PMCID: PMC6721439 DOI: 10.3390/cancers11081083] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 12/14/2022] Open
Abstract
Epithelial ovarian cancer is the deadliest gynecologic cancer, due in large part to recurrent tumors. Recurrences tend to have metastasized, mainly in the peritoneal cavity and developed resistance to the first line chemotherapy. Key to the progression and ultimate lethality of ovarian cancer is the existence of extensive intra-tumoral heterogeneity (ITH). In this review, we describe the genetic and epigenetic changes that have been reported to give rise to different cell populations in ovarian cancer. We also describe at length the contributions made to heterogeneity by both linear and parallel models of clonal evolution and the existence of cancer stem cells. We dissect the key biological signals from the tumor microenvironment, both directly from other cell types in the vicinity and soluble or circulating factors. Finally, we discuss the impact of tumor heterogeneity on the choice of therapeutic approaches in the clinic. Variability in ovarian tumors remains a major barrier to effective therapy, but by leveraging future research into tumor heterogeneity, we may be able to overcome this barrier and provide more effective, personalized therapy to patients.
Collapse
Affiliation(s)
- Cai M Roberts
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA
| | - Carlos Cardenas
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA
| | - Roslyn Tedja
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
16
|
Gentles L, Goranov B, Matheson E, Herriott A, Kaufmann A, Hall S, Mukhopadhyay A, Drew Y, Curtin NJ, O'Donnell RL. Exploring the Frequency of Homologous Recombination DNA Repair Dysfunction in Multiple Cancer Types. Cancers (Basel) 2019; 11:cancers11030354. [PMID: 30871186 PMCID: PMC6468835 DOI: 10.3390/cancers11030354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/05/2023] Open
Abstract
Dysfunctional homologous recombination DNA repair (HRR), frequently due to BRCA mutations, is a determinant of sensitivity to platinum chemotherapy and poly(ADP-ribose) polymerase inhibitors (PARPi). In cultures of ovarian cancer cells, we have previously shown that HRR function, based upon RAD51 foci quantification, correlated with growth inhibition ex vivo induced by rucaparib (a PARPi) and 12-month survival following platinum chemotherapy. The aim of this study was to determine the feasibility of measuring HRR dysfunction (HRD) in other tumours, in order to estimate the frequency and hence wider potential of PARPi. A total of 24 cultures were established from ascites sampled from 27 patients with colorectal, upper gastrointestinal, pancreatic, hepatobiliary, breast, mesothelioma, and non-epithelial ovarian cancers; 8 were HRD. Cell growth following continuous exposure to 10 μM of rucaparib was lower in HRD cultures compared to HRR-competent (HRC) cultures. Overall survival in the 10 patients who received platinum-based therapy was marginally higher in the 3 with HRD ascites (median overall survival of 17 months, range 10 to 90) compared to the 7 patients with HRC ascites (nine months, range 1 to 55). HRR functional assessment in primary cultures, from several tumour types, revealed that a third are HRD, justifying the further exploration of PARPi therapy in a broader range of tumours.
Collapse
Affiliation(s)
- Lucy Gentles
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Bojidar Goranov
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK.
| | - Elizabeth Matheson
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Ashleigh Herriott
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Angelika Kaufmann
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Northern Gynecological Oncology Centre, Queen Elizabeth Hospital, Sherriff Hill, Gateshead NE9 6SX, UK.
| | - Sally Hall
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK.
| | - Asima Mukhopadhyay
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata 700 160, India.
| | - Yvette Drew
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK.
| | - Nicola J Curtin
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Rachel L O'Donnell
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK. rachel.o'
- Northern Gynecological Oncology Centre, Queen Elizabeth Hospital, Sherriff Hill, Gateshead NE9 6SX, UK. rachel.o'
| |
Collapse
|
17
|
Baloch T, López-Ozuna VM, Wang Q, Matanis E, Kessous R, Kogan L, Yasmeen A, Gotlieb WH. Sequential therapeutic targeting of ovarian Cancer harboring dysfunctional BRCA1. BMC Cancer 2019; 19:44. [PMID: 30630446 PMCID: PMC6327434 DOI: 10.1186/s12885-018-5250-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022] Open
Abstract
Background Poly (ADP-ribose) polymerase inhibitors (PARPi) have become the first targeted therapies available in the treatment of patients with high-grade serous ovarian cancer (HGSOC). We recently described a significant reduction in PARP1 protein levels in vitro and in vivo in patients treated with standard carboplatinum-paclitaxel chemotherapy, raising the question whether the sequence of treatment used today with chemotherapy followed by PARPi is optimal. In this study, we aim to evaluate if the sequence of PARPi followed by chemotherapy could be more beneficial. Methods BRCA1-mutated (UWB1.287, SNU-251), epigenetically-silenced (OVCAR8), and wild-type (SKOV3, A2780PAR & A2780CR) ovarian cancer cell lines were exposed to clinically relevant doses of PARPi followed by different doses of standard chemotherapy and compared to the inverse treatment. The therapeutic efficacy was assessed using colony formation assays. Flow cytometry was used to evaluate cell apoptosis rate and the changes in cell cycle. Finally, apoptotic and cell cycle protein expression was immunodetected using western blot. Results Exposure to PARPi prior to standard chemotherapy sensitized BRCA1-mutated or epigenetically-silenced BRCA1 cell lines to lower doses of chemotherapy. Similar results were observed in BRCA1 wild-type and cell lines in which BRCA1 functionality was restored. Moreover, this treatment increased the apoptotic rate in these cell lines. Conclusion Pre-treatment with PARPi followed by standard chemotherapy in vitro is more efficient in growth inhibition and induction of apoptosis compared to the administration of standard chemotherapy followed by PARPi. Electronic supplementary material The online version of this article (10.1186/s12885-018-5250-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tahira Baloch
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada.,Department of Experimental Surgery, McGill University, Montreal, QC, Canada
| | - Vanessa M López-Ozuna
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Qiong Wang
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Emad Matanis
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Roy Kessous
- Division of Gynecologic Oncology, Jewish General Hospital, McGill University, 3755 Cote Ste. Catherine Road, Montreal, QC, H3T 1E2, Canada.,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Liron Kogan
- Division of Gynecologic Oncology, Jewish General Hospital, McGill University, 3755 Cote Ste. Catherine Road, Montreal, QC, H3T 1E2, Canada.,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Amber Yasmeen
- Division of Gynecologic Oncology, Jewish General Hospital, McGill University, 3755 Cote Ste. Catherine Road, Montreal, QC, H3T 1E2, Canada. .,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada.
| | - Walter H Gotlieb
- Division of Gynecologic Oncology, Jewish General Hospital, McGill University, 3755 Cote Ste. Catherine Road, Montreal, QC, H3T 1E2, Canada.,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada.,Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Wang J, Song Y, Zhang M, Wu Z, Xu YJ, Lin J, Ling D, Sheng Y, Lu Y, Wu Q. A liposomal curcumol nanocomposite for magnetic resonance imaging and endoplasmic reticulum stress-mediated chemotherapy of human primary ovarian cancer. J Mater Chem B 2019. [DOI: 10.1039/c8tb03123a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A liposomal curcumol nanocomposite has been successfully synthesized for the theranostics of human primary ovarian cancer cells from solid tumor tissue in patients.
Collapse
Affiliation(s)
- Jing Wang
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- P. R. China
- Department of Obstetrics and Gynecology
| | - Yonghong Song
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Mingxun Zhang
- Department of Pathology
- Anhui Medical University
- Hefei
- P. R. China
| | - Zhensheng Wu
- Department of Pathology
- Anhui Medical University
- Hefei
- P. R. China
| | - Yun-Jun Xu
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Jun Lin
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Daishun Ling
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Youjing Sheng
- Department of Pathology
- Anhui Medical University
- Hefei
- P. R. China
| | - Yang Lu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Qiang Wu
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- P. R. China
- Department of Pathology
| |
Collapse
|
19
|
Satyavarapu EM, Das R, Mandal C, Mukhopadhyay A, Mandal C. Autophagy-independent induction of LC3B through oxidative stress reveals its non-canonical role in anoikis of ovarian cancer cells. Cell Death Dis 2018; 9:934. [PMID: 30224639 PMCID: PMC6141567 DOI: 10.1038/s41419-018-0989-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 01/04/2023]
Abstract
Cancer cells display abnormal redox metabolism. Autophagy, anoikis and reactive oxygen species (ROS) play a regulatory role during metastasis. LC3 is a well-known essential molecule for autophagy. Therefore, we wanted to explore the molecular interplay between autophagy, anoikis, and ROS in relation to LC3B. We observed enhanced LC3B level along with increased expression of p62 and modulation of other autophagy-related molecules (Atg 3, 5, 7, 12, 16L1 and Beclin1) by inducing oxidative-stress in ovarian cancer cells using a ROS-producing pro-oxidant molecule. Surprisingly, enhanced LC3B was unable to induce autophagosome formation rather promoted anoikis. ROS-induced inhibition of autophagosome-formation is possibly due to the instability of autophagy initiator, ULK1 complex. Moreover, such upregulation of LC3B via ROS enhanced several apoptotic molecules. Silencing LC3B reduced these apoptotic molecules and increased when overexpressed, suggesting its role in apoptosis. Furthermore, LC3B-dependent apoptosis was decreased by inhibiting ROS, indicating a possible link between ROS, LC3B, and apoptosis. Additionally, ROS-induced enhanced LC3B promoted detachment-induced cell death (anoikis). This was further reflected by reduced cell adhesion molecules (integrin-β3 and focal adhesion kinase) and mesenchymal markers (snail and slug). Our in vitro experimental data was further confirmed in primary tumors developed in syngeneic mice, which also showed ROS-mediated LC3B enhancement along with reduced autophagosomes, integrin-β3 and focal adhesion kinase ultimately leading to the decreased tumor mass. Additionally, primary cells from high-grade serous carcinoma patient's ascites exhibited LC3B enhancement and autophagy inhibition through ROS which provided a clinical relevance of our study. Taken together, this is the first evidence for a non-canonical role of LC3B in promoting anoikis in contrast to autophagy and may, therefore, consider as a potential therapeutic target molecule in ovarian cancer. Taken together, autophagy-inhibition may be an alternative approach to induce apoptosis/anoikis in cancer.
Collapse
Affiliation(s)
- Eswara Murali Satyavarapu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Ranjita Das
- Bose Institute, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata, 700054, India
| | - Chandan Mandal
- Tata Medical Center, 14 MAR, Rajarhat, Kolkata, 700156, India
| | - Asima Mukhopadhyay
- Tata Medical Center, 14 MAR, Rajarhat, Kolkata, 700156, India
- Northern Institute for Cancer Research, Newcastle University, Newcastle, UK
| | - Chitra Mandal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata, 700032, India.
| |
Collapse
|
20
|
Franklin M, Gentles L, Matheson E, Bown N, Cross P, Ralte A, Gilkes‐Immeson C, Bradbury A, Zanjirband M, Lunec J, Drew Y, O'Donnell R, Curtin NJ. Characterization and drug sensitivity of a novel human ovarian clear cell carcinoma cell line genomically and phenotypically similar to the original tumor. Cancer Med 2018; 7:4744-4754. [PMID: 30109783 PMCID: PMC6144150 DOI: 10.1002/cam4.1724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022] Open
Abstract
NUCOLL43 is a novel ovarian clear cell carcinoma (O-CCC) cell line that arose from a primary culture of a patient's malignant ascites. The cells grow reliably in cell culture with a doubling time of approx. 45 hours and form colonies at high efficiency. They have a very high degree of loss of heterozygosity (LOH) affecting approximately 85% of the genome, mostly copy neutral and almost identical to the original tumor. The cells express epithelial (pan-cytokeratin) and mesenchymal (vimentin) characteristics, CA125 and p16, like the original tumor. They also express ARID1A but not HNF-1β and, like the original tumor, and are negative for p53 expression, with no evidence of p53 function. NUCOLL43 cells express all other DNA damage response proteins investigated and have functional homologous recombination DNA repair. They are insensitive to cisplatin, the PARP inhibitor rucaparib, and MDM2 inhibitors but are sensitive to camptothecin, paclitaxel, and NVP-BEZ235. The NUCOLL43 cell line represents a distinct subtype of O-CCC that is p53 and HNF-1β null but expresses ARID1A. Its high degree of similarity with the original tumor genomically and proteomically, as well as the high level of LOH, make this an interesting cell line for O-CCC research. It has been deposited with Ximbio.
Collapse
Affiliation(s)
- Miriam Franklin
- Northern Institute for Cancer ResearchMedical SchoolNewcastle UniversityNewcastle upon TyneUK
- Division of Cancer SciencesSchool of Medical SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Lucy Gentles
- Northern Institute for Cancer ResearchMedical SchoolNewcastle UniversityNewcastle upon TyneUK
| | - Elizabeth Matheson
- Northern Institute for Cancer ResearchMedical SchoolNewcastle UniversityNewcastle upon TyneUK
| | - Nick Bown
- Northern Genetics ServiceInstitute of Genetic MedicineNewcastle upon TyneUK
| | - Paul Cross
- Pathology DepartmentQueen Elizabeth HospitalGatesheadUK
| | - Angela Ralte
- Pathology DepartmentQueen Elizabeth HospitalGatesheadUK
| | - Connor Gilkes‐Immeson
- Northern Institute for Cancer ResearchMedical SchoolNewcastle UniversityNewcastle upon TyneUK
| | - Alice Bradbury
- Northern Institute for Cancer ResearchMedical SchoolNewcastle UniversityNewcastle upon TyneUK
| | - Maryam Zanjirband
- Northern Institute for Cancer ResearchMedical SchoolNewcastle UniversityNewcastle upon TyneUK
- Department of BiologyFaculty of ScienceUniversity of IsfahanIsfahanIran
| | - John Lunec
- Northern Institute for Cancer ResearchMedical SchoolNewcastle UniversityNewcastle upon TyneUK
| | - Yvette Drew
- Northern Institute for Cancer ResearchMedical SchoolNewcastle UniversityNewcastle upon TyneUK
- Northern Centre for Cancer CareFreeman HospitalNewcastle upon TyneUK
| | - Rachel O'Donnell
- Northern Institute for Cancer ResearchMedical SchoolNewcastle UniversityNewcastle upon TyneUK
- Northern Gynaecological Oncology CentreQueen Elizabeth HospitalGatesheadUK
| | - Nicola J. Curtin
- Northern Institute for Cancer ResearchMedical SchoolNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
21
|
Liu Y, Feng Y, Liu H, Wu J, Tang Y, Wang Q. Real-time assessment of platinum sensitivity of primary culture from a patient with ovarian cancer with extensive metastasis and the platinum sensitivity enhancing effect by metformin. Oncol Lett 2018; 16:4253-4262. [PMID: 30250536 PMCID: PMC6144930 DOI: 10.3892/ol.2018.9223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/14/2018] [Indexed: 01/30/2023] Open
Abstract
The aim of the present study was to perform a rapid evaluation of the efficiency of commonly used platinum-based chemotherapy regimens for patients with ovarian cancer with extensive metastases using an in vitro method combined with culturing primary cells and real-time monitoring, and to further explore the enhanced effect of metformin on susceptibility of ovarian cancer cells to platinum-based chemotherapy. The primary omental metastatic (OM) cells were isolated from the omentum metastasis of a surgical patient with stage IIIc ovarian carcinoma. Drug sensitivity was evaluated using the xCELLigence system, and screening of the most effective platinum chemotherapy was performed through analysis of cell susceptibility to cisplatin, carboplatin, nedaplatin and paclitaxel or docetaxel alone or in combination. At the same time, this system was used to determine whether metformin was able to increase the sensitivity of cancer cells to platinum chemotherapy. The results revealed that nedaplatin exhibited the most marked cytotoxic effect on the OM cells, followed by those of carboplatin and cisplatin. The addition of docetaxel enhanced the cytotoxic effect, and the combination of platinum and paclitaxel also enhanced the effect. Metformin rapidly increased the sensitivity of cells to platinum-based chemotherapy, and this effect was dose-dependent. The sensitivity of OM cells to different platinum-based regimens was varied. The effect of metformin on chemotherapeutic sensitization of cancer cells is clear in vitro, and the real-time cell analyzer assay has the potential to assist in determining individualized drug regimens for patients with metastatic ovarian cancer.
Collapse
Affiliation(s)
- Yingzhao Liu
- Research Department, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yan Feng
- Research Department, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hongmei Liu
- Research Department, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jianyong Wu
- Research Department, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yong Tang
- Research Department, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Urology Department, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530199, P.R. China
| | - Qi Wang
- Research Department, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
22
|
Owens GL, Price MJ, Cheadle EJ, Hawkins RE, Gilham DE, Edmondson RJ. Ex vivo expanded tumour-infiltrating lymphocytes from ovarian cancer patients release anti-tumour cytokines in response to autologous primary ovarian cancer cells. Cancer Immunol Immunother 2018; 67:1519-1531. [PMID: 30039427 PMCID: PMC6182400 DOI: 10.1007/s00262-018-2211-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/17/2018] [Indexed: 11/24/2022]
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of gynaecological cancer-related death in Europe. Although most patients achieve an initial complete response with first-line treatment, recurrence occurs in more than 80% of cases. Thus, there is a clear unmet need for novel second-line treatments. EOC is frequently infiltrated with T lymphocytes, the presence of which has been shown to be associated with improved clinical outcomes. Adoptive T-cell therapy (ACT) using ex vivo-expanded tumour-infiltrating lymphocytes (TILs) has shown remarkable efficacy in other immunogenic tumours, and may represent a promising therapeutic strategy for EOC. In this preclinical study, we investigated the efficacy of using anti-CD3/anti-CD28 magnetic beads and IL-2 to expand TILs from freshly resected ovarian tumours. TILs were expanded for up to 3 weeks, and then subjected to a rapid-expansion protocol (REP) using irradiated feeder cells. Tumours were collected from 45 patients with EOC and TILs were successfully expanded from 89.7% of biopsies. Expanded CD4+ and CD8+ subsets demonstrated features associated with memory phenotypes, and had significantly higher expression of key activation and functional markers than unexpanded TILs. Expanded TILs produced anti-tumour cytokines when co-cultured with autologous tumour cells, inferring tumour cytotoxicity. Our findings demonstrate that it is possible to re-activate and expand tumour-reactive T cells from ovarian tumours. This presents a promising immunotherapy that could be used sequentially or in combination with current therapeutic strategies.
Collapse
Affiliation(s)
- Gemma L Owens
- Gynaecological Oncology, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research Floor, Oxford Road, Manchester, M13 9WL, UK.,Clinical and Experimental Immunotherapy, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, UK
| | - Marcus J Price
- Gynaecological Oncology, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research Floor, Oxford Road, Manchester, M13 9WL, UK
| | - Eleanor J Cheadle
- Targeted Therapy Group, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, UK
| | - Robert E Hawkins
- Clinical and Experimental Immunotherapy, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, UK
| | - David E Gilham
- Clinical and Experimental Immunotherapy, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, UK
| | - Richard J Edmondson
- Gynaecological Oncology, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK. .,St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research Floor, Oxford Road, Manchester, M13 9WL, UK.
| |
Collapse
|
23
|
Establishment of Primary Cell Culture From Ascitic Fluid and Solid Tumor Obtained From Epithelial Ovarian Carcinoma Patients. Int J Gynecol Cancer 2018; 27:2000-2005. [PMID: 28816710 DOI: 10.1097/igc.0000000000001087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Ovarian cancer is the seventh leading cause of cancer death worldwide. This is mainly due to late diagnosis and high rate of relapse and resistance following chemotherapy. In the present study, we describe simple and cost-effective method to establish primary culture from ascitic fluid and solid tumor obtained from epithelial ovarian carcinoma patient, which may provide a better tool for in vitro testing of drug sensitivity and designing individualized treatment protocol. METHODS Complete Dulbecco modified Eagle medium (DMEM) was prepared by supplementing DMEM with 10% fetal bovine serum and antibiotics (ciprofloxacin and amphotericin B). Establishment of primary culture of ovarian cancer cells from ascites fluid and solid tumor was done by using complete DMEM media. RESULTS Primary cultures of ovarian cancer cells were established from ascitic fluid and solid tumor tissue. Of the 7 ascitic fluid samples, we were able to establish 5 primary cultures of ovarian cancer cells. All the 7 samples were diagnosed as serous papillary adenocarcinoma. Some fibroblasts were also attached to culture flask on day 4; they were removed by exposing them to trypsin for a brief period. On day 7, grape-like clusters were visualized under inverted microscope. The cells became confluent on the 10th and 11th day and showed cobblestone appearance, which is a hallmark of ovarian cancer cells. Senescent irregularly shaped cells that have ceased dividing were seen after 8 to 10 passages. CONCLUSION This study highlights the fact that establishing primary cultures from ascitic fluid or solid tumor tissue may help us to understand the molecular profile of the cancer cells, which allow us to select the best chemotherapeutic agent for ovarian cancer patients and thus take a step toward patient-tailored therapy so that patients are not exposed to drugs to which they are not likely to respond.
Collapse
|
24
|
Functional characterisation of a novel ovarian cancer cell line, NUOC-1. Oncotarget 2018; 8:26832-26844. [PMID: 28460465 PMCID: PMC5432300 DOI: 10.18632/oncotarget.15821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/20/2017] [Indexed: 12/04/2022] Open
Abstract
Background Cell lines provide a powerful model to study cancer and here we describe a new spontaneously immortalised epithelial ovarian cancer cell line (NUOC-1) derived from the ascites collected at a time of primary debulking surgery for a mixed endometrioid / clear cell / High Grade Serous (HGS) histology. Results This spontaneously immortalised cell line was found to maintain morphology and epithelial markers throughout long-term culture. NUOC-1 cells grow as an adherent monolayer with a doubling time of 58 hours. The cells are TP53 wildtype, positive for PTEN, HER2 and HER3 expression but negative for oestrogen, progesterone and androgen receptor expression. NUOC-1 cells are competent in homologous recombination and non-homologous end joining, but base excision repair defective. Karyotype analysis demonstrated a complex tetraploid karyotype. SNP array analysis of parent and derived subpopulations (NUOC-1-A1 and NUOC-1-A2) cells demonstrated heterogeneous cell populations with numerous copy number alterations and a pro-amplification phenotype. The characteristics of this new cell line lends it to be an excellent model for investigation of a number of the identified targets. Materials and Methods The cell line has been characterised for growth, drug sensitivity, expression of common ovarian markers and mutations, clonogenic potential and ability to form xenografts in SCID mice. Copy number changes and clonal evolution were assessed by SNP arrays.
Collapse
|
25
|
da Silva RF, Cardozo DM, Rodrigues GOL, Souza-Araújo CND, Migita NA, Andrade LALDA, Derchain S, Yunes JA, Guimarães F. CAISMOV24, a new human low-grade serous ovarian carcinoma cell line. BMC Cancer 2017; 17:756. [PMID: 29132324 PMCID: PMC5683553 DOI: 10.1186/s12885-017-3716-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 10/30/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The spontaneous immortalization of primary malignant cells is frequently assigned to their genetic instability during in vitro culturing. In this study, the new epithelial ovarian cancer cell line CAISMOV24 was described and compared with its original low-grade serous ovarian carcinoma. METHODS The in vitro culture was established with cells isolated from ascites of a 60-year-old female patient with recurrent ovarian cancer. The CAISMOV24 line was assessed for cell growth, production of soluble biomarkers, expression of surface molecules and screened for typical mutations found in serous ovarian carcinoma. Additionally, comparative genomic hybridization was employed to compare genomic alterations between the CAISMOV24 cell line and its primary malignant cells. RESULTS CAISMOV24 has been in continuous culture for more than 30 months and more than 100 in vitro passages. The cell surface molecules EpCAM, PVR and CD73 are overexpressed on CAISMOV24 cells compared to the primary malignant cells. CAISMOV24 continues to produce CA125 and HE4 in vitro. Although the cell line had developed alongside the accumulation of genomic alterations (28 CNV in primary cells and 37 CNV in CAISMOV24), most of them were related to CNVs already present in primary malignant cells. CAISMOV24 cell line harbored KRAS mutation with wild type TP53, therefore it is characterized as low-grade serous carcinoma. CONCLUSION Our results corroborate with the idea that genomic alterations, depicted by CNVs, can be used for subtyping epithelial ovarian carcinomas. Additionally, CAISMOV24 cell line was characterized as a low-grade serous ovarian carcinoma, which still resembles its primary malignant cells.
Collapse
Affiliation(s)
| | | | - Gisele Olinto Libanio Rodrigues
- Instituto de Biologia, University of Campinas, Campinas, SP Brazil
- Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, SP Brazil
| | | | - Natacha Azussa Migita
- Instituto de Biologia, University of Campinas, Campinas, SP Brazil
- Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, SP Brazil
| | | | - Sophie Derchain
- Faculdade de Ciências Médicas, University of Campinas, Campinas, SP Brazil
- Women’s Hospital “Professor Doutor José Aristodemo Pinotti” – CAISM, University of Campinas, Rua Alexander Fleming 101, Campinas, SP 13083-881 Brazil
| | - José Andrés Yunes
- Faculdade de Ciências Médicas, University of Campinas, Campinas, SP Brazil
- Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, SP Brazil
| | - Fernando Guimarães
- Faculdade de Ciências Médicas, University of Campinas, Campinas, SP Brazil
- Women’s Hospital “Professor Doutor José Aristodemo Pinotti” – CAISM, University of Campinas, Rua Alexander Fleming 101, Campinas, SP 13083-881 Brazil
| |
Collapse
|
26
|
Wei ZT, Yu XW, He JX, Liu Y, Zhang SL. Characteristics of primary side population cervical cancer cells. Oncol Lett 2017; 14:3536-3544. [PMID: 28927110 PMCID: PMC5588017 DOI: 10.3892/ol.2017.6606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 03/09/2017] [Indexed: 01/12/2023] Open
Abstract
The aim of the present study was to identify and characterize side population (SP) cells in primary cervical cancer. A primary culture was successfully established, and the SP cells were isolated via fluorescence-activated cell sorting. Subsequently, in vitro analysis of clonogenic capacity by soft agar assay and in vivo analysis of tumorigenicity were performed. The isolated SP cells accounted for ~4.73% of the total primary culture cells. The SP cells had a decreased proliferation rate and an increased distribution in G0/G1 compared with non-SP (NSP) cells. Following isolation, SP cells exhibited increased proliferative and self-renewal potency compared with NSP cells. Furthermore, significant ATP binding cassette subfamily G member 2 (ABCG2) expression was detected in SP cells but not in NSP cells. The tumor formation rate of SP cells was longer, and the tumor size and tumor formation rate of SP cells were increased in non-obese diabetic/severe combined immunodeficiency mice. In conclusion, the present study demonstrated that SP cells can be isolated from primary cervical cancer cell culture, and SP cells are enriched with stem cell-like cells that have a high capacity for colony formation and tumorigenesis.
Collapse
Affiliation(s)
- Zhen-Tong Wei
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiao-Wei Yu
- Prenatal Diagnosis Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jia-Xue He
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Liu
- Genetic Engineering Laboratory of The Chinese People's Liberation Army, Military Veterinary Institute, Acadamy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Song-Ling Zhang
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
27
|
McCormick A, Donoghue P, Dixon M, O'Sullivan R, O'Donnell RL, Murray J, Kaufmann A, Curtin NJ, Edmondson RJ. Ovarian Cancers Harbor Defects in Nonhomologous End Joining Resulting in Resistance to Rucaparib. Clin Cancer Res 2017. [PMID: 27702817 DOI: 10.1158/1078-0432.ccr-16-0564] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: DNA damage defects are common in ovarian cancer and can be used to stratify treatment. Although most work has focused on homologous recombination (HR), DNA double-strand breaks are repaired primarily by nonhomologous end joining (NHEJ). Defects in NHEJ have been shown to contribute to genomic instability and have been associated with the development of chemoresistance.Experimental Design: NHEJ was assessed in a panel of ovarian cancer cell lines and 47 primary ascetic-derived ovarian cancer cultures, by measuring the ability of cell extracts to end-join linearized plasmid monomers into multimers. mRNA and protein expression of components of NHEJ was determined using RT-qPCR and Western blotting. Cytotoxicities of cisplatin and the PARP inhibitor rucaparib were assessed using sulforhodamine B (SRB) assays. HR function was assessed using γH2AX/RAD51 foci assay.Results: NHEJ was defective (D) in four of six cell lines and 20 of 47 primary cultures. NHEJ function was independent of HR competence (C). NHEJD cultures were resistant to rucaparib (P = 0.0022). When HR and NHEJ functions were taken into account, only NHEJC/HRD cultures were sensitive to rucaparib (compared with NHEJC/HRC P = 0.034, NHEJD/HRC P = 0.0002, and NHEJD/HRD P = 0.0045). The DNA-PK inhibitor, NU7441, induced resistance to rucaparib (P = 0.014) and HR function recovery in a BRCA1-defective cell line.Conclusions: This study has shown that NHEJ is defective in 40% of ovarian cancers, which is independent of HR function and associated with resistance to PARP inhibitors in ex vivo primary cultures. Clin Cancer Res; 23(8); 2050-60. ©2016 AACR.
Collapse
Affiliation(s)
- Aiste McCormick
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Peter Donoghue
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Michelle Dixon
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Richard O'Sullivan
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Rachel L O'Donnell
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom.,Northern Gynaecological Oncology Centre, Queen Elizabeth Hospital, Gateshead, United Kingdom
| | - James Murray
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Angelika Kaufmann
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom.,Northern Gynaecological Oncology Centre, Queen Elizabeth Hospital, Gateshead, United Kingdom
| | - Nicola J Curtin
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom.
| | - Richard J Edmondson
- Faculty Institute for Cancer Studies, University of Manchester, St Mary's Hospital, Oxford Road, Manchester, United Kingdom.
| |
Collapse
|
28
|
McCormick A, Donoghue P, Dixon M, O'Sullivan R, O'Donnell RL, Murray J, Kaufmann A, Curtin NJ, Edmondson RJ. Ovarian Cancers Harbor Defects in Nonhomologous End Joining Resulting in Resistance to Rucaparib. Clin Cancer Res 2017; 23:2050-2060. [PMID: 27702817 PMCID: PMC5393437 DOI: 10.1158/1078-0432.ccr-16-0564] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 11/16/2022]
Abstract
Purpose: DNA damage defects are common in ovarian cancer and can be used to stratify treatment. Although most work has focused on homologous recombination (HR), DNA double-strand breaks are repaired primarily by nonhomologous end joining (NHEJ). Defects in NHEJ have been shown to contribute to genomic instability and have been associated with the development of chemoresistance.Experimental Design: NHEJ was assessed in a panel of ovarian cancer cell lines and 47 primary ascetic-derived ovarian cancer cultures, by measuring the ability of cell extracts to end-join linearized plasmid monomers into multimers. mRNA and protein expression of components of NHEJ was determined using RT-qPCR and Western blotting. Cytotoxicities of cisplatin and the PARP inhibitor rucaparib were assessed using sulforhodamine B (SRB) assays. HR function was assessed using γH2AX/RAD51 foci assay.Results: NHEJ was defective (D) in four of six cell lines and 20 of 47 primary cultures. NHEJ function was independent of HR competence (C). NHEJD cultures were resistant to rucaparib (P = 0.0022). When HR and NHEJ functions were taken into account, only NHEJC/HRD cultures were sensitive to rucaparib (compared with NHEJC/HRC P = 0.034, NHEJD/HRC P = 0.0002, and NHEJD/HRD P = 0.0045). The DNA-PK inhibitor, NU7441, induced resistance to rucaparib (P = 0.014) and HR function recovery in a BRCA1-defective cell line.Conclusions: This study has shown that NHEJ is defective in 40% of ovarian cancers, which is independent of HR function and associated with resistance to PARP inhibitors in ex vivo primary cultures. Clin Cancer Res; 23(8); 2050-60. ©2016 AACR.
Collapse
Affiliation(s)
- Aiste McCormick
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Peter Donoghue
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Michelle Dixon
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Richard O'Sullivan
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Rachel L O'Donnell
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
- Northern Gynaecological Oncology Centre, Queen Elizabeth Hospital, Gateshead, United Kingdom
| | - James Murray
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Angelika Kaufmann
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
- Northern Gynaecological Oncology Centre, Queen Elizabeth Hospital, Gateshead, United Kingdom
| | - Nicola J Curtin
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom.
| | - Richard J Edmondson
- Faculty Institute for Cancer Studies, University of Manchester, St Mary's Hospital, Oxford Road, Manchester, United Kingdom.
| |
Collapse
|
29
|
Phosphatase and Tensin Homolog Is a Potential Target for Ovarian Cancer Sensitization to Cytotoxic Agents. Int J Gynecol Cancer 2017; 26:632-9. [PMID: 26905328 DOI: 10.1097/igc.0000000000000657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The phosphatase and tensin homolog (PTEN) tumor suppressor protein has been found to be inactivated or mutated in various human malignancies and to play a role in cisplatin and poly(ADP-ribose) polymerase inhibitor sensitivity. In this study, we assessed the association of PTEN loss with homologous recombination (HR) deficiency and increased chemosensitivity. MATERIALS AND METHODS The PTEN knockdown models were created using MISSION shRNA lentiviral transduction particles in cell lines derived from normal ovarian surface epithelium and a mixed endometrioid/clear-cell carcinoma. Sensitivity to common therapeutics was assessed using sulforhodamine B assay. Twenty-eight unselected primary epithelial ovarian cancer cultures derived from ascitic fluid collected at the time of surgery and matched genomic DNA were assessed for PTEN mutations using polymerase chain reaction amplification and Sanger sequencing and for mRNA expression using quantitative reverse transcription-polymerase chain reaction; HR was determined using γH2AX/RAD51 assay. The Cancer Genome Atlas data were analyzed using cBioPortal. RESULTS In the carcinoma cell line, the PTEN knockdown enhanced sensitivity to cisplatin, rucaparib, doxorubicin, camptothecin, paclitaxel, and irradiation. In the primary ovarian cancer cultures, 2 point mutations were found (1105T>TG, 25L>L in 6 cultures and 1508G>GA, 159R>R in 4 cultures). The PTEN mRNA expression varied over 40-fold between the cultures, but did not correlate with HR status or in vitro sensitivity to cisplatin or rucaparib. The Cancer Genome Atlas data showed a rate of 8% alteration in PTEN and a trend toward improved survival in PTEN-mutated cases. CONCLUSIONS These data indicate that although PTEN mutations in ovarian cancer are rare, PTEN inhibition results in therapeutic sensitization. Therefore, PTEN may be an important therapeutic target, in at least some cancers.
Collapse
|
30
|
Cerrato A, Morra F, Celetti A. Use of poly ADP-ribose polymerase [PARP] inhibitors in cancer cells bearing DDR defects: the rationale for their inclusion in the clinic. J Exp Clin Cancer Res 2016; 35:179. [PMID: 27884198 PMCID: PMC5123312 DOI: 10.1186/s13046-016-0456-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/09/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND DNA damage response (DDR) defects imply genomic instability and favor tumor progression but make the cells vulnerable to the pharmacological inhibition of the DNA repairing enzymes. Targeting cellular proteins like PARPs, which cooperate and complement molecular defects of the DDR process, induces a specific lethality in DDR defective cancer cells and represents an anti-cancer strategy. Normal cells can tolerate the DNA damage generated by PARP inhibition because of an efficient homologous recombination mechanism (HR); in contrast, cancer cells with a deficient HR are unable to manage the DSBs and appear especially sensitive to the PARP inhibitors (PARPi) effects. MAIN BODY In this review we discuss the proof of concept for the use of PARPi in different cancer types and the success and failure of their inclusion in clinical trials. The PARP inhibitor Olaparib [AZD2281] has been approved by the FDA for use in pretreated ovarian cancer patients with defective BRCA1/2 genes, and by the EMEA for maintenance therapy in platinum sensitive ovarian cancer patients with defective BRCA1/2 genes. BRCA mutations are now recognised as the molecular targets for PARPi sensitivity in several tumors. However, it is noteworthy that the use of PARPi has shown its efficacy also in non-BRCA related tumors. Several trials are ongoing to test different PARPi in different cancer types. Here we review the concept of BRCAness and the functional loss of proteins involved in DDR/HR mechanisms in cancer, including additional molecules that can influence the cancer cells sensitivity to PARPi. Given the complexity of the existing crosstalk between different DNA repair pathways, it is likely that a single biomarker may not be sufficient to predict the benefit of PARP inhibitors therapies. Novel general assays able to predict the DDR/HR proficiency in cancer cells and the PARPi sensitivity represent a challenge for a personalized therapy. CONCLUSIONS PARP inhibition is a potentially important strategy for managing a significant subset of tumors. The discovery of both germline and somatic DNA repair deficiencies in different cancer patients, together with the development of new PARP inhibitors that can kill selectively cancer cells is a potent example of targeting therapy to molecularly defined tumor subtypes.
Collapse
|
31
|
Hahn JM, McFarland KL, Combs KA, Supp DM. Partial epithelial-mesenchymal transition in keloid scars: regulation of keloid keratinocyte gene expression by transforming growth factor-β1. BURNS & TRAUMA 2016; 4:30. [PMID: 27574697 PMCID: PMC4994224 DOI: 10.1186/s41038-016-0055-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/04/2016] [Indexed: 12/17/2022]
Abstract
Background Keloids are an extreme form of abnormal scarring that result from a pathological fibroproliferative wound healing process. The molecular mechanisms driving keloid pathology remain incompletely understood, hindering development of targeted, effective therapies. Recent studies in our laboratory demonstrated that keloid keratinocytes exhibit adhesion abnormalities and display a transcriptional signature reminiscent of cells undergoing epithelial-mesenchymal transition (EMT), suggesting a role for EMT in keloid pathology. In the current study, we further define the EMT-like phenotype of keloid scars and investigate regulation of EMT-related genes in keloid. Methods Primary keratinocytes from keloid scar and normal skin were cultured in the presence or absence of transforming growth factor beta 1 (TGF-β1) +/− inhibitors of TGF-β1 and downstream signaling pathways. Gene expression was measured using quantitative polymerase chain reaction. Migration was analyzed using an in vitro wound healing assay. Proteins in keloid scar and normal skin sections were localized by immunohistochemistry. Statistical analyses utilized SigmaPlot (SyStat Software, San Jose, CA) or SAS® (SAS Institute, Cary, NC). Results In keloid and normal keratinocytes, TGF-β1 regulated expression of EMT-related genes, including hyaluronan synthase 2, vimentin, cadherin-11, wingless-type MMTV integration site family, member 5A, frizzled 7, ADAM metallopeptidase domain 19, and interleukin-6. Inhibition of canonical TGF-β1 signaling in keloid keratinocytes significantly inhibited expression of these genes, and TGF-β1 stimulation of normal keratinocytes increased their expression. The inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway or the p38 mitogen-activated protein kinase pathway attenuated TGF-β1-induced expression of subsets of these genes. Migration of keloid keratinocytes, previously shown to be increased compared with normal keratinocytes, was significantly reduced by inhibition of TGF-β1 or ERK1/2 signaling. Biomarkers of EMT, including reduced E-cadherin and increased active β-catenin, were observed in keloid epidermis in vivo. However, evidence of basement membrane breakdown in keloid scar was not observed. Conclusions The results suggest that keloid keratinocytes exist in an EMT-like metastable state, similar to activated keratinocytes in healing wounds. The EMT-like gene expression pattern of keloid keratinocytes is regulated by canonical and non-canonical TGF-β1 signaling pathways. Therefore, interventions targeting TGF-β1-regulated EMT-like gene expression in keloid keratinocytes may serve to suppress keloid scarring. Electronic supplementary material The online version of this article (doi:10.1186/s41038-016-0055-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer M Hahn
- Research Department, Shriners Hospitals for Children - Cincinnati, Cincinnati, OH USA
| | - Kevin L McFarland
- Research Department, Shriners Hospitals for Children - Cincinnati, Cincinnati, OH USA
| | - Kelly A Combs
- Research Department, Shriners Hospitals for Children - Cincinnati, Cincinnati, OH USA
| | - Dorothy M Supp
- Research Department, Shriners Hospitals for Children - Cincinnati, Cincinnati, OH USA ; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
32
|
Young K, Starling N, Cunningham D. Targeting deficient DNA damage repair in gastric cancer. Expert Opin Pharmacother 2016; 17:1757-66. [PMID: 27488684 DOI: 10.1080/14656566.2016.1217992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Over recent years our understanding of DNA damage repair has evolved leading to an expansion of therapies attempting to exploit DNA damage repair deficiencies across multiple solid tumours. Gastric cancer has been identified as a tumour where a subgroup of patients demonstrates deficiencies in the homologous recombination pathway providing a potential novel treatment approach for this poor prognosis disease. AREA COVERED This review provides an overview of DNA damage repair and how this has been targeted to date in other tumour types exploiting the concept of synthetic lethality. This is followed by a discussion of how deficiencies in homologous recombination may be identified across tumour types and on recent progress in targeting DNA repair deficiencies in gastric cancer. EXPERT OPINION Gastric cancer remains a difficult malignancy to treat and the possibility of targeting deficient DNA repair in a subgroup of patients is an exciting prospect. Future combinations with immunotherapy and radiotherapy are appealing and appear to have a sound biological rationale. However, much work remains to be done to understand the significance of the genetic and epigenetic alterations involved, to elucidate the optimum predictive signatures or biomarkers and to consider means of overcoming treatment resistance.
Collapse
Affiliation(s)
- Kate Young
- a Department of Medicine , The Royal Marsden NHS Foundation Trust, GI and Lymphoma Unit , Sutton , UK
| | - Naureen Starling
- a Department of Medicine , The Royal Marsden NHS Foundation Trust, GI and Lymphoma Unit , Sutton , UK
| | - David Cunningham
- a Department of Medicine , The Royal Marsden NHS Foundation Trust, GI and Lymphoma Unit , Sutton , UK
| |
Collapse
|
33
|
Advanced Ovarian Cancer Displays Functional Intratumor Heterogeneity That Correlates to Ex Vivo Drug Sensitivity. Int J Gynecol Cancer 2016; 26:1004-11. [DOI: 10.1097/igc.0000000000000745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IntroductionEpithelial ovarian cancer is recognized to be heterogeneous but is currently treated with a single treatment strategy. Successful patient stratification of emerging chemotherapy agents is dependent upon the availability of reliable biomarkers indicative of the entire tumor.AimThe aim of this study was to evaluate intertumor and intratumor heterogeneity within a series of epithelial ovarian cancer using homologous recombination (HR) DNA repair status.MethodsPrimary cultures generated from ascites and solid tumor from multiple intra-abdominal sites were characterized by their morphology and expression of protein markers. Results were compared with Formalin fixed paraffin embedded tissue pathology.Homologous recombination function was determined by quantification of nuclear Rad51 foci. Growth inhibition (sulforhodamine B) assays were used to calculate the GI50 for cisplatin and rucaparib.ResultsAscites with matched solid tumor were cultured from 25 patients.Concordance in functional HR status between ascites and solid tumor subcultures was seen in only 13 (52%) of 25 patients. Heterogeneity in HR status was seen even in patients with homogeneous histological subtype. Homologous recombination defective cultures were significantly more sensitive to cisplatin and rucaparib.Additionally, intertumor and intratumor heterogeneity was seen between the expression of epithelial and ovarian markers (EpCAM, cytokeratin, CA125, MOC-31, and vimentin). There was no relationship between heterogeneity of HR functional status and antigen expression.ConclusionsIntertumor and intratumor functional HR heterogeneity exists that cannot be detected using histological classification. This has implications for biomarker-directed treatment.
Collapse
|
34
|
Abstract
Over the past 20 years, there has been considerable progress in our understanding of the biological functions of the BRCA1 and BRCA2 cancer susceptibility genes. This has led to the development of new therapeutic approaches that target tumours with loss-of-function mutations in either BRCA1 or BRCA2. Tumours that share molecular features of BRCA-mutant tumours - that is, those with 'BRCAness' - may also respond to similar therapeutic approaches. Several paradigm shifts require a reassessment of the concept of BRCAness, how this property is assayed and its relevance to our understanding of tumour biology and the treatment of cancer.
Collapse
Affiliation(s)
- Christopher J Lord
- Cancer Research UK Gene Function Laboratory and Breast Cancer Now Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158, USA
| |
Collapse
|
35
|
BRCAness revisited. NATURE REVIEWS. CANCER 2016. [PMID: 26775620 DOI: 10.1038/nrc.2015.21]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over the past 20 years, there has been considerable progress in our understanding of the biological functions of the BRCA1 and BRCA2 cancer susceptibility genes. This has led to the development of new therapeutic approaches that target tumours with loss-of-function mutations in either BRCA1 or BRCA2. Tumours that share molecular features of BRCA-mutant tumours - that is, those with 'BRCAness' - may also respond to similar therapeutic approaches. Several paradigm shifts require a reassessment of the concept of BRCAness, how this property is assayed and its relevance to our understanding of tumour biology and the treatment of cancer.
Collapse
|
36
|
Abstract
Over the past 20 years, there has been considerable progress in our understanding of the biological functions of the BRCA1 and BRCA2 cancer susceptibility genes. This has led to the development of new therapeutic approaches that target tumours with loss-of-function mutations in either BRCA1 or BRCA2. Tumours that share molecular features of BRCA-mutant tumours - that is, those with 'BRCAness' - may also respond to similar therapeutic approaches. Several paradigm shifts require a reassessment of the concept of BRCAness, how this property is assayed and its relevance to our understanding of tumour biology and the treatment of cancer.
Collapse
|
37
|
Microsatellite instable and microsatellite stable primary endometrial carcinoma cells and their subcutaneous and orthotopic xenografts recapitulate the characteristics of the corresponding primary tumor. Int J Gynecol Cancer 2015; 25:363-71. [PMID: 25695543 DOI: 10.1097/igc.0000000000000363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Well-characterized, low-passage, primary cell cultures established directly from patient tumors are an important tool for drug screening because these cultures faithfully recapitulate the genomic features of primary tumors. Here, we aimed to establish these cell cultures from primary endometrial carcinomas (ECs) and to develop subcutaneous and orthotopic xenograft models as a model to validate promising treatment options for EC in the in vivo setting. METHODS Primary cell cultures of EC tumors were established and validated by analysing histologic and genetic characteristics, telomerase activity, and in vitro and in vivo growth characteristics. Using these primary cell cultures, subcutaneous and orthotopic mouse models were subsequently established. RESULTS We established and characterized 7 primary EC cell cultures and corresponding xenograft models of different types of endometrioid tumors. Interestingly, we observed that the chance to successfully establish a primary cell culture seems higher for microsatellite instable than microsatellite stable tumors. For the first time, we also established an orthotopic murine model for EC derived from a primary cell culture. In contrast to EC cell lines, grafted tumor cultures preserved the original tumor structure and mimicked all histologic features. They also established abdominal and distant metastases, reflecting the tumorigenic behavior in the clinical setting. Remarkably, the established cell cultures and xenograft tumors also preserved the genetic characteristics of the primary tumor. CONCLUSIONS The established EC cultures reflect the epithelial genetic characteristics of the primary tumor. Therefore, they provide an appropriate model to investigate EC biology and apply high-throughput drug screening experiments. In addition, the established murine xenograft models, in particular the orthotopic model, will be useful to validate promising therapeutic strategies in vivo, as the grafted tumors closely resemble the primary tumors from which they were derived. Microsatellite instable status seems to determine the success rate of establishing primary cell cultures.
Collapse
|
38
|
Alkema NG, Wisman GBA, van der Zee AGJ, van Vugt MATM, de Jong S. Studying platinum sensitivity and resistance in high-grade serous ovarian cancer: Different models for different questions. Drug Resist Updat 2015; 24:55-69. [PMID: 26830315 DOI: 10.1016/j.drup.2015.11.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/04/2015] [Accepted: 11/19/2015] [Indexed: 12/21/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) has the highest mortality rate among all gynecological cancers. Patients are generally diagnosed in an advanced stage with the majority of cases displaying platinum resistant relapses. Recent genomic interrogation of large numbers of HGSOC patient samples indicated high complexity in terms of genetic aberrations, intra- and intertumor heterogeneity and underscored their lack of targetable oncogenic mutations. Sub-classifications of HGSOC based on expression profiles, termed 'differentiated', 'immunoreactive', 'mesenchymal' and 'proliferative', were shown to have prognostic value. In addition, in almost half of all HGSOC patients, a deficiency in homologous recombination (HR) was found that potentially can be targeted using PARP inhibitors. Developing precision medicine requires advanced experimental models. In the current review, we discuss experimental HGSOC models in which resistance to platinum therapy and the use of novel therapeutics can be carefully studied. Panels of better-defined primary cell lines need to be established to capture the full spectrum of HGSOC subtypes. Further refinement of cell lines is obtained with a 3-dimensional culture model mimicking the tumor microenvironment. Alternatively, ex vivo ovarian tumor tissue slices are used. For in vivo studies, larger panels of ovarian cancer patient-derived xenografts (PDXs) are being established, encompassing all expression subtypes. Ovarian cancer PDXs grossly retain tumor heterogeneity and clinical response to platinum therapy is preserved. PDXs are currently used in drug screens and as avatars for patient response. The role of the immune system in tumor responses can be assessed using humanized PDXs and immunocompetent genetically engineered mouse models. Dynamic tracking of genetic alterations in PDXs as well as patients during treatment and after relapse is feasible by sequencing circulating cell-free tumor DNA and analyzing circulating tumor cells. We discuss how various models and methods can be combined to delineate the molecular mechanisms underlying platinum resistance and to select HGSOC patients other than BRCA1/2-mutation carriers that could potentially benefit from the synthetic lethality of PARP inhibitors. This integrated approach is a first step to improve therapy outcomes in specific subgroups of HGSOC patients.
Collapse
Affiliation(s)
- Nicolette G Alkema
- Department of Gynecologic Oncology, Cancer Research Centre Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G Bea A Wisman
- Department of Gynecologic Oncology, Cancer Research Centre Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ate G J van der Zee
- Department of Gynecologic Oncology, Cancer Research Centre Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, Cancer Research Centre Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Steven de Jong
- Department of Medical Oncology, Cancer Research Centre Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
39
|
Uusi-Kerttula H, Hulin-Curtis S, Davies J, Parker AL. Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications. Viruses 2015; 7:6009-42. [PMID: 26610547 PMCID: PMC4664994 DOI: 10.3390/v7112923] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 02/06/2023] Open
Abstract
Adenoviruses (Ad) are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies.
Collapse
Affiliation(s)
- Hanni Uusi-Kerttula
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Sarah Hulin-Curtis
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - James Davies
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Alan L Parker
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
40
|
Bowtell DD, Böhm S, Ahmed AA, Aspuria PJ, Bast RC, Beral V, Berek JS, Birrer MJ, Blagden S, Bookman MA, Brenton JD, Chiappinelli KB, Martins FC, Coukos G, Drapkin R, Edmondson R, Fotopoulou C, Gabra H, Galon J, Gourley C, Heong V, Huntsman DG, Iwanicki M, Karlan BY, Kaye A, Lengyel E, Levine DA, Lu KH, McNeish IA, Menon U, Narod SA, Nelson BH, Nephew KP, Pharoah P, Powell DJ, Ramos P, Romero IL, Scott CL, Sood AK, Stronach EA, Balkwill FR. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer 2015; 15:668-79. [PMID: 26493647 PMCID: PMC4892184 DOI: 10.1038/nrc4019] [Citation(s) in RCA: 831] [Impact Index Per Article: 83.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of ovarian cancer deaths, and overall survival has not changed significantly for several decades. In this Opinion article, we outline a set of research priorities that we believe will reduce incidence and improve outcomes for women with this disease. This 'roadmap' for HGSOC was determined after extensive discussions at an Ovarian Cancer Action meeting in January 2015.
Collapse
Affiliation(s)
- David D Bowtell
- Cancer Genomics and Genetics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 8006, Australia; and the Kinghorn Cancer Centre, Garvan Institute for Medical Research, Darlinghurst, Sydney, 2010 New South Wales, Australia
| | - Steffen Böhm
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, UK
| | - Ahmed A Ahmed
- Nuffield Department of Obstetrics and Gynaecology and the Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Paul-Joseph Aspuria
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Robert C Bast
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | - Valerie Beral
- University of Oxford, Headington, Oxford, OX3 7LF, UK
| | | | | | - Sarah Blagden
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | | | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | | | - Filipe Correia Martins
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - George Coukos
- University Hospital of Lausanne, Lausanne, Switzerland
| | - Ronny Drapkin
- University of Pennsylvania, Penn Ovarian Cancer Research Center, Philadelphia, Pennsylvania 19104, USA
| | | | - Christina Fotopoulou
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Jérôme Galon
- Institut National de la Santé et de la Recherche Médicale, UMRS1138, Laboratory of Integrative Cancer Immunology, Cordeliers Research Center, Université Paris Descartes, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ Paris 06, 75006 Paris, France
| | - Charlie Gourley
- Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Valerie Heong
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - David G Huntsman
- University of British Columbia, Departments of Pathology and Laboratory Medicine and Obstetrics and Gynecology, Faculty of Medicine, Vancouver, British Columbia V6T 2B5, Canada
| | | | - Beth Y Karlan
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | | | | | - Douglas A Levine
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Karen H Lu
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | | | - Usha Menon
- Women's Cancer, Institute for Women's Health, University College London, London WC1E 6BT, UK
| | - Steven A Narod
- Women's College Research Institute, Toronto, Ontario M5G 1N8, Canada
| | - Brad H Nelson
- British Columbia Cancer Agency, Victoria, British Columbia V8R 6V5, Canada
| | - Kenneth P Nephew
- Indiana University School of Medicine &Simon Cancer Center, Bloomington, IN 47405-4401, USA
| | - Paul Pharoah
- University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - Daniel J Powell
- University of Pennsylvania, Philadelphia, PA 19104-5156, USA
| | - Pilar Ramos
- Translational Genomics Research Institute (Tgen), Phoenix, Arizona 85004, USA
| | | | - Clare L Scott
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - Anil K Sood
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | - Euan A Stronach
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Frances R Balkwill
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, UK
| |
Collapse
|
41
|
Amin O, Beauchamp MC, Nader PA, Laskov I, Iqbal S, Philip CA, Yasmeen A, Gotlieb WH. Suppression of Homologous Recombination by insulin-like growth factor-1 inhibition sensitizes cancer cells to PARP inhibitors. BMC Cancer 2015; 15:817. [PMID: 26510816 PMCID: PMC4625613 DOI: 10.1186/s12885-015-1803-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/16/2015] [Indexed: 01/22/2023] Open
Abstract
Background Impairment of homologous recombination (HR) is found in close to 50 % of ovarian and breast cancer. Tumors with BRCA1 mutations show increased expression of the Insulin-like growth factor type 1 receptor (IGF-1R). We previously have shown that inhibition of IGF-1R results in growth inhibition and apoptosis of ovarian tumor cells. In the current study, we aimed to investigate the correlation between HR and sensitivity to IGF-1R inhibition. Further, we hypothesized that IGF-1R inhibition might sensitize HR proficient cancers to Poly ADP ribose polymerase (PARP) inhibitors. Methods Using ovarian and breast cancer cellular models with known BRCA1 status, we evaluated their HR functionality by RAD51 foci formation assay. The 50 % lethal concentration (LC50) of Insulin-like growth factor type 1 receptor kinase inhibitor (IGF-1Rki) in these cells was assessed, and western immunoblotting was performed to determine the expression of proteins involved in the IGF-1R pathway. Moreover, IGF-1R inhibitors were added on HR proficient cell lines to assess mRNA and protein expression of RAD51 by qPCR and western blot. Also, we explored the interaction between RAD51 and Insulin receptor substance 1 (IRS-1) by immunoprecipitation. Next, combination effect of IGF-1R and PARP inhibitors was evaluated by clonogenic assay. Results Cells with mutated/methylated BRCA1 showed an impaired HR function, and had an overactivation of the IGF-1R pathway. These cells were more sensitive to IGF-1R inhibition compared to HR proficient cells. In addition, the IGF-IR inhibitor reduced RAD51 expression at mRNA and protein levels in HR proficient cells, and sensitized these cells to PARP inhibitor. Conclusion Targeting IGF-1R might lead to improved personalized therapeutic approaches in cancer patients with HR deficiency. Targeting both PARP and IGF-1R might increase the clinical efficacy in HR deficient patients and increase the population of patients who may benefit from PARP inhibitors.
Collapse
Affiliation(s)
- Oreekha Amin
- Division of Gynecologic Oncology, Jewish General Hospital, McGill University, 3755 Cote Ste. Catherine Road, Montreal, H3T 1E2, QC, Canada. .,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, 3755 Cote Ste. Catherine Road, Montreal, H3T 1E2, QC, Canada.
| | - Marie-Claude Beauchamp
- Division of Gynecologic Oncology, Jewish General Hospital, McGill University, 3755 Cote Ste. Catherine Road, Montreal, H3T 1E2, QC, Canada. .,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, 3755 Cote Ste. Catherine Road, Montreal, H3T 1E2, QC, Canada.
| | - Paul Abou Nader
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, 3755 Cote Ste. Catherine Road, Montreal, H3T 1E2, QC, Canada.
| | - Ido Laskov
- Division of Gynecologic Oncology, Jewish General Hospital, McGill University, 3755 Cote Ste. Catherine Road, Montreal, H3T 1E2, QC, Canada. .,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, 3755 Cote Ste. Catherine Road, Montreal, H3T 1E2, QC, Canada.
| | - Sanaa Iqbal
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, 3755 Cote Ste. Catherine Road, Montreal, H3T 1E2, QC, Canada.
| | - Charles-André Philip
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, 3755 Cote Ste. Catherine Road, Montreal, H3T 1E2, QC, Canada.
| | - Amber Yasmeen
- Division of Gynecologic Oncology, Jewish General Hospital, McGill University, 3755 Cote Ste. Catherine Road, Montreal, H3T 1E2, QC, Canada. .,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, 3755 Cote Ste. Catherine Road, Montreal, H3T 1E2, QC, Canada. .,Department of Oncology, McGill University, Montreal, QC, Canada.
| | - Walter H Gotlieb
- Division of Gynecologic Oncology, Jewish General Hospital, McGill University, 3755 Cote Ste. Catherine Road, Montreal, H3T 1E2, QC, Canada. .,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, 3755 Cote Ste. Catherine Road, Montreal, H3T 1E2, QC, Canada. .,Department of Oncology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
42
|
Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. NATURE REVIEWS. CANCER 2015. [PMID: 26493647 DOI: 10.1038/nrc4019]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of ovarian cancer deaths, and overall survival has not changed significantly for several decades. In this Opinion article, we outline a set of research priorities that we believe will reduce incidence and improve outcomes for women with this disease. This 'roadmap' for HGSOC was determined after extensive discussions at an Ovarian Cancer Action meeting in January 2015.
Collapse
|
43
|
Bowtell DD, Böhm S, Ahmed AA, Aspuria PJ, Bast RC, Beral V, Berek JS, Birrer MJ, Blagden S, Bookman MA, Brenton JD, Chiappinelli KB, Martins FC, Coukos G, Drapkin R, Edmondson R, Fotopoulou C, Gabra H, Galon J, Gourley C, Heong V, Huntsman DG, Iwanicki M, Karlan BY, Kaye A, Lengyel E, Levine DA, Lu KH, McNeish IA, Menon U, Narod SA, Nelson BH, Nephew KP, Pharoah P, Powell DJ, Ramos P, Romero IL, Scott CL, Sood AK, Stronach EA, Balkwill FR. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. NATURE REVIEWS. CANCER 2015. [PMID: 26493647 DOI: 10.1038/nrc4019] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of ovarian cancer deaths, and overall survival has not changed significantly for several decades. In this Opinion article, we outline a set of research priorities that we believe will reduce incidence and improve outcomes for women with this disease. This 'roadmap' for HGSOC was determined after extensive discussions at an Ovarian Cancer Action meeting in January 2015.
Collapse
Affiliation(s)
- David D Bowtell
- Cancer Genomics and Genetics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 8006, Australia; and the Kinghorn Cancer Centre, Garvan Institute for Medical Research, Darlinghurst, Sydney, 2010 New South Wales, Australia
| | - Steffen Böhm
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, UK
| | - Ahmed A Ahmed
- Nuffield Department of Obstetrics and Gynaecology and the Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Paul-Joseph Aspuria
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Robert C Bast
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | - Valerie Beral
- University of Oxford, Headington, Oxford, OX3 7LF, UK
| | | | | | - Sarah Blagden
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | | | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | | | - Filipe Correia Martins
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - George Coukos
- University Hospital of Lausanne, Lausanne, Switzerland
| | - Ronny Drapkin
- University of Pennsylvania, Penn Ovarian Cancer Research Center, Philadelphia, Pennsylvania 19104, USA
| | | | - Christina Fotopoulou
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Jérôme Galon
- Institut National de la Santé et de la Recherche Médicale, UMRS1138, Laboratory of Integrative Cancer Immunology, Cordeliers Research Center, Université Paris Descartes, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ Paris 06, 75006 Paris, France
| | - Charlie Gourley
- Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Valerie Heong
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - David G Huntsman
- University of British Columbia, Departments of Pathology and Laboratory Medicine and Obstetrics and Gynecology, Faculty of Medicine, Vancouver, British Columbia V6T 2B5, Canada
| | | | - Beth Y Karlan
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | | | | | - Douglas A Levine
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Karen H Lu
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | | | - Usha Menon
- Women's Cancer, Institute for Women's Health, University College London, London WC1E 6BT, UK
| | - Steven A Narod
- Women's College Research Institute, Toronto, Ontario M5G 1N8, Canada
| | - Brad H Nelson
- British Columbia Cancer Agency, Victoria, British Columbia V8R 6V5, Canada
| | - Kenneth P Nephew
- Indiana University School of Medicine &Simon Cancer Center, Bloomington, IN 47405-4401, USA
| | - Paul Pharoah
- University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - Daniel J Powell
- University of Pennsylvania, Philadelphia, PA 19104-5156, USA
| | - Pilar Ramos
- Translational Genomics Research Institute (Tgen), Phoenix, Arizona 85004, USA
| | | | - Clare L Scott
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - Anil K Sood
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | - Euan A Stronach
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Frances R Balkwill
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, UK
| |
Collapse
|
44
|
Choi SYC, Lin D, Gout PW, Collins CC, Xu Y, Wang Y. Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv Drug Deliv Rev 2014; 79-80:222-37. [PMID: 25305336 DOI: 10.1016/j.addr.2014.09.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 09/02/2014] [Accepted: 09/23/2014] [Indexed: 12/21/2022]
Abstract
The development of novel cancer therapeutics is often plagued by discrepancies between drug efficacies obtained in preclinical studies and outcomes of clinical trials. The inconsistencies can be attributed to a lack of clinical relevance of the cancer models used for drug testing. While commonly used in vitro culture systems are advantageous for addressing specific experimental questions, they are often gross, fidelity-lacking simplifications that largely ignore the heterogeneity of cancers as well as the complexity of the tumor microenvironment. Factors such as tumor architecture, interactions among cancer cells and between cancer and stromal cells, and an acidic tumor microenvironment are critical characteristics observed in patient-derived cancer xenograft models and in the clinic. By mimicking these crucial in vivo characteristics through use of 3D cultures, co-culture systems and acidic culture conditions, an in vitro cancer model/microenvironment that is more physiologically relevant may be engineered to produce results more readily applicable to the clinic.
Collapse
Affiliation(s)
- Stephen Yiu Chuen Choi
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada.
| | - Dong Lin
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada.
| | - Peter W Gout
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.
| | - Colin C Collins
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada.
| | - Yong Xu
- Department of Urology, Second Affiliated Hospital of Tianjin Medical University, Tianjin, P.R. China.
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada.
| |
Collapse
|
45
|
Bolyard C, Yoo JY, Wang PY, Saini U, Rath KS, Cripe TP, Zhang J, Selvendiran K, Kaur B. Doxorubicin synergizes with 34.5ENVE to enhance antitumor efficacy against metastatic ovarian cancer. Clin Cancer Res 2014; 20:6479-94. [PMID: 25294909 DOI: 10.1158/1078-0432.ccr-14-0463] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Novel therapeutic regimens are needed to improve dismal outcomes associated with late-stage ovarian cancer. Oncolytic viruses are currently being tested in patients with ovarian cancer. Here, we tested the therapeutic efficacy of combining doxorubicin with 34.5ENVE, an oncolytic herpes simplex virus transcriptionally driven by a modified stem cell-specific nestin promoter, and encoding for antiangiogenic Vasculostatin-120 (VStat120) for use against progressive ovarian cancer. EXPERIMENTAL DESIGN Antitumor efficacy of 34.5ENVE was assessed in ovarian cancer cell lines, mouse ascites-derived tumor cells, and primary patient ascites-derived tumor cells by standard MTT assay. The ability of conditioned medium derived from 34.5ENVE-infected ovarian cancer cells to inhibit endothelial cell migration was measured by a Transwell chamber assay. Scope of cytotoxic interactions between 34.5ENVE and doxorubicin were evaluated using Chou-Talalay synergy analysis. Viral replication, herpes simplex virus receptor expression, and apoptosis were evaluated. Efficacy of oncolytic viral therapy in combination with doxorubicin was evaluated in vivo in the murine xenograft model of human ovarian cancer. RESULTS Treatment with 34.5ENVE reduced cell viability of ovarian cancer cell lines, and mouse ascites-derived and patient ascites-derived ovarian tumor cells. Conditioned media from tumor cells infected with 34.5ENVE reduced endothelial cell migration. When combined with doxorubicin, 34.5ENVE killed synergistically with a significant increase in caspase-3/7 activation, and an increase in sub-G1 population of cells. The combination of doxorubicin and 34.5ENVE significantly prolonged survival in nude mice bearing intraperitoneal ovarian cancer tumors. CONCLUSIONS This study indicates significant antitumor efficacy of 34.5ENVE alone, and in combination with doxorubicin against disseminated peritoneal ovarian cancer.
Collapse
Affiliation(s)
- Chelsea Bolyard
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, The Ohio State University, Columbus, Ohio
| | - Ji Young Yoo
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, The Ohio State University, Columbus, Ohio
| | - Pin-Yi Wang
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Uksha Saini
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio
| | - Kellie S Rath
- Ohio Health Gynecologic Cancer Surgeons, Ohio Health Systems, Columbus, Ohio
| | - Timothy P Cripe
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Jianying Zhang
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio
| | - Balveen Kaur
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, The Ohio State University, Columbus, Ohio.
| |
Collapse
|