1
|
Saager ES, Iwamura T, Jucker T, Murray KA. Deforestation for oil palm increases microclimate suitability for the development of the disease vector Aedes albopictus. Sci Rep 2023; 13:9514. [PMID: 37308504 PMCID: PMC10260943 DOI: 10.1038/s41598-023-35452-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/18/2023] [Indexed: 06/14/2023] Open
Abstract
A major trade-off of land-use change is the potential for increased risk of infectious diseases, a.o. through impacting disease vector life-cycles. Evaluating the public health implications of land-use conversions requires spatially detailed modelling linking land-use to vector ecology. Here, we estimate the impact of deforestation for oil palm cultivation on the number of life-cycle completions of Aedes albopictus via its impact on local microclimates. We apply a recently developed mechanistic phenology model to a fine-scaled (50-m resolution) microclimate dataset that includes daily temperature, rainfall and evaporation. Results of this combined model indicate that the conversion from lowland rainforest to plantations increases suitability for A. albopictus development by 10.8%, moderated to 4.7% with oil palm growth to maturity. Deforestation followed by typical plantation planting-maturation-clearance-replanting cycles is predicted to create pulses of high development suitability. Our results highlight the need to explore sustainable land-use scenarios that resolve conflicts between agricultural and human health objectives.
Collapse
Affiliation(s)
- E S Saager
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - T Iwamura
- Department F.-A. Forel for Aquatic and Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - T Jucker
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - K A Murray
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| |
Collapse
|
2
|
Ouedraogo R, Nyantakyi EK, Sorgho B, Siabi EK, Amproche AA, Obiri-Yeboah A, Zongo T, Mortey E, Domfeh MK, Owusu PA. The emergence of artisanal gold mining and local perceptions in the Hounde municipality, Burkina Faso. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
3
|
Mohd Hanafiah K, Abd Mutalib AH, Miard P, Goh CS, Mohd Sah SA, Ruppert N. Impact of Malaysian palm oil on sustainable development goals: co-benefits and trade-offs across mitigation strategies. SUSTAINABILITY SCIENCE 2022; 17:1639-1661. [PMID: 34667481 PMCID: PMC8517301 DOI: 10.1007/s11625-021-01052-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/28/2021] [Indexed: 05/10/2023]
Abstract
UNLABELLED Palm oil (PO) is an important source of livelihood, but unsustainable practices and widespread consumption may threaten human and planetary health. We reviewed 234 articles and summarized evidence on the impact of PO on health, social and economic aspects, environment, and biodiversity in the Malaysian context, and discuss mitigation strategies based on the sustainable development goals (SDGs). The evidence on health impact of PO is equivocal, with knowledge gaps on whether moderate consumption elevates risk for chronic diseases, but the benefits of phytonutrients (SDG2) and sensory characteristics of PO seem offset by its high proportion of saturated fat (SDG3). While PO contributes to economic growth (SDG9, 12), poverty alleviation (SDG1, 8, 10), enhanced food security (SDG2), alternative energy (SDG9), and long-term employment opportunities (SDG1), human rights issues and inequities attributed to PO production persist (SDG8). Environmental impacts arise through large-scale expansion of monoculture plantations associated with increased greenhouse gas emissions (SDG13), especially from converted carbon-rich peat lands, which can cause forest fires and annual trans-boundary haze; changes in microclimate properties and soil nutrient content (SDG6, 13); increased sedimentation and change of hydrological properties of streams near slopes (SDG6); and increased human wildlife conflicts, increase of invasive species occurrence, and reduced biodiversity (SDG14, 15). Practices such as biological pest control, circular waste management, multi-cropping and certification may mitigate negative impacts on environmental SDGs, without hampering progress of socioeconomic SDGs. While strategies focusing on improving practices within and surrounding plantations offer co-benefits for socioeconomic, environment and biodiversity-related SDGs, several challenges in achieving scalable solutions must be addressed to ensure holistic sustainability of PO in Malaysia for various stakeholders. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11625-021-01052-4.
Collapse
Affiliation(s)
- Khayriyyah Mohd Hanafiah
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
- Life Sciences, Macfarlane Burnet Institute, Melbourne, VIC 3004 Australia
| | - Aini Hasanah Abd Mutalib
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
| | - Priscillia Miard
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Chun Sheng Goh
- Jeffrey Cheah Institute on Southeast Asia, Sunway University, 47500 Bandar Sunway, Selangor Malaysia
| | | | - Nadine Ruppert
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
4
|
Hamer KC, Sasu MA, Ofosuhene L, Asare R, Ossom B, Parr CL, Scriven SA, Asante W, Addico R, Hill JK. Proximity to forest mediates trade‐offs between yields and biodiversity of birds in oil palm smallholdings. Biotropica 2021. [DOI: 10.1111/btp.12997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Michael A. Sasu
- School of Biology University of Leeds Leeds UK
- Nature Conservation Research Centre Accra Ghana
| | - Linda Ofosuhene
- School of Biology University of Leeds Leeds UK
- Nature Conservation Research Centre Accra Ghana
| | | | | | - Catherine L. Parr
- Department of Earth, Ocean and Ecological Sciences University of Liverpool Liverpool UK
| | - Sarah A. Scriven
- Leverhulme Centre for Anthropocene Biodiversity Department of Biology University of York York UK
| | - Winston Asante
- Department of Silviculture and Forest Management Kwame Nkrumah University of Science and Technology Kumasi Ghana
| | | | - Jane K. Hill
- Leverhulme Centre for Anthropocene Biodiversity Department of Biology University of York York UK
| |
Collapse
|
5
|
Absalome MA, Massara CC, Alexandre AA, Gervais K, Chantal GGA, Ferdinand D, Rhedoor AJ, Coulibaly I, George TG, Brigitte T, Marion M, Jean-Paul C. Biochemical properties, nutritional values, health benefits and sustainability of palm oil. Biochimie 2020; 178:81-95. [DOI: 10.1016/j.biochi.2020.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
|
6
|
Chan KMA, Satterfield T. The maturation of ecosystem services: Social and policy research expands, but whither biophysically informed valuation? PEOPLE AND NATURE 2020. [DOI: 10.1002/pan3.10137] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Kai M. A. Chan
- Institute of Resources, Environment and Sustainability The University of British Columbia Vancouver BC Canada
| | - Terre Satterfield
- Institute of Resources, Environment and Sustainability The University of British Columbia Vancouver BC Canada
| |
Collapse
|
7
|
Quantifying the Economic Value of Ecosystem Services in Oil Palm Dominated Landscapes in Riau Province in Sumatra, Indonesia. LAND 2020. [DOI: 10.3390/land9060194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ecosystem services in oil palm plantations owned by smallholders in four villages in the Riau Province, Indonesia were identified and valued. Nine provisioning, three regulating and maintenance, one cultural ecosystem service, and a single ecosystem dis-service, were identified from interviews with 62 farming households. Direct and indirect market valuation methods were used to estimate the total economic value (TEV) of these services, which averaged USD 6520 ha−1 year−1 (range = USD 2970–7729 ha−1 year−1). The values of provisioning services were USD 4331 ha−1 year−1 (range = USD 2263–5489 ha−1 year−1), regulating and maintenance services were valued at USD 1880 ha−1 year−1 (range of USD 707–3110 ha−1 year−1), and cultural services were USD 309 ha−1 year−1. We conclude that identifying and valuing ecosystem services offers an opportunity to improve the environmental and economic sustainability of smallholders in oil palm landscapes in Indonesia.
Collapse
|
8
|
|
9
|
Luke SH, Slade EM, Gray CL, Annammala KV, Drewer J, Williamson J, Agama AL, Ationg M, Mitchell SL, Vairappan CS, Struebig MJ. Riparian buffers in tropical agriculture: Scientific support, effectiveness and directions for policy. J Appl Ecol 2018. [DOI: 10.1111/1365-2664.13280] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sarah H. Luke
- Durrell Institute of Conservation and Ecology (DICE)School of Anthropology and ConservationUniversity of Kent Canterbury UK
- Department of ZoologyUniversity of Cambridge Cambridge UK
| | - Eleanor M. Slade
- Department of ZoologyUniversity of Oxford Oxford UK
- Lancaster Environment CentreUniversity of Lancaster Lancaster UK
| | | | - Kogila V. Annammala
- Centre for Environmental Sustainability and Water Security (IPASA)Universiti Teknologi Malaysia Johor Bahru Malaysia
| | - Julia Drewer
- Centre for Ecology and Hydrology (CEH) Edinburgh UK
| | - Joseph Williamson
- School of Biological and Chemical SciencesQueen Mary University of London London UK
| | - Agnes L. Agama
- South East Asia Rainforest Research Partnership (SEARRP) Lahad Datu Malaysia
| | - Miklin Ationg
- Department of Irrigation and DrainageWater Resources Management Section Kota Kinabalu Malaysia
| | - Simon L. Mitchell
- Durrell Institute of Conservation and Ecology (DICE)School of Anthropology and ConservationUniversity of Kent Canterbury UK
| | - Charles S. Vairappan
- Institute for Tropical Biology and ConservationUniversiti Malaysia Sabah Kota Kinabalu Malaysia
| | - Matthew J. Struebig
- Durrell Institute of Conservation and Ecology (DICE)School of Anthropology and ConservationUniversity of Kent Canterbury UK
| |
Collapse
|
10
|
Luskin MS, Lee JS, Edwards DP, Gibson L, Potts MD. Study context shapes recommendations of land-sparing and sharing; a quantitative review. GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT 2018. [DOI: 10.1016/j.gfs.2017.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Dislich C, Keyel AC, Salecker J, Kisel Y, Meyer KM, Auliya M, Barnes AD, Corre MD, Darras K, Faust H, Hess B, Klasen S, Knohl A, Kreft H, Meijide A, Nurdiansyah F, Otten F, Pe'er G, Steinebach S, Tarigan S, Tölle MH, Tscharntke T, Wiegand K. A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biol Rev Camb Philos Soc 2016; 92:1539-1569. [PMID: 27511961 DOI: 10.1111/brv.12295] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 11/28/2022]
Abstract
Oil palm plantations have expanded rapidly in recent decades. This large-scale land-use change has had great ecological, economic, and social impacts on both the areas converted to oil palm and their surroundings. However, research on the impacts of oil palm cultivation is scattered and patchy, and no clear overview exists. We address this gap through a systematic and comprehensive literature review of all ecosystem functions in oil palm plantations, including several (genetic, medicinal and ornamental resources, information functions) not included in previous systematic reviews. We compare ecosystem functions in oil palm plantations to those in forests, as the conversion of forest to oil palm is prevalent in the tropics. We find that oil palm plantations generally have reduced ecosystem functioning compared to forests: 11 out of 14 ecosystem functions show a net decrease in level of function. Some functions show decreases with potentially irreversible global impacts (e.g. reductions in gas and climate regulation, habitat and nursery functions, genetic resources, medicinal resources, and information functions). The most serious impacts occur when forest is cleared to establish new plantations, and immediately afterwards, especially on peat soils. To variable degrees, specific plantation management measures can prevent or reduce losses of some ecosystem functions (e.g. avoid illegal land clearing via fire, avoid draining of peat, use of integrated pest management, use of cover crops, mulch, and compost) and we highlight synergistic mitigation measures that can improve multiple ecosystem functions simultaneously. The only ecosystem function which increases in oil palm plantations is, unsurprisingly, the production of marketable goods. Our review highlights numerous research gaps. In particular, there are significant gaps with respect to socio-cultural information functions. Further, there is a need for more empirical data on the importance of spatial and temporal scales, such as differences among plantations in different environments, of different sizes, and of different ages, as our review has identified examples where ecosystem functions vary spatially and temporally. Finally, more research is needed on developing management practices that can offset the losses of ecosystem functions. Our findings should stimulate research to address the identified gaps, and provide a foundation for more systematic research and discussion on ways to minimize the negative impacts and maximize the positive impacts of oil palm cultivation.
Collapse
Affiliation(s)
- Claudia Dislich
- Department of Ecosystem Modelling, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, 37077, Göttingen, Germany.,Department of Ecological Modelling, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Alexander C Keyel
- Department of Ecosystem Modelling, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, 37077, Göttingen, Germany
| | - Jan Salecker
- Department of Ecosystem Modelling, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, 37077, Göttingen, Germany
| | - Yael Kisel
- Department of Ecosystem Modelling, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, 37077, Göttingen, Germany
| | - Katrin M Meyer
- Department of Ecosystem Modelling, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, 37077, Göttingen, Germany
| | - Mark Auliya
- Department of Conservation Biology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Andrew D Barnes
- Department of Systemic Conservation Biology, Faculty of Biology and Psychology, University of Göttingen, 37073, Göttingen, Germany
| | - Marife D Corre
- Department of Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, 37077, Göttingen, Germany
| | - Kevin Darras
- Department of Crop Sciences, Faculty of Agricultural Sciences, University of Göttingen, 37077, Göttingen, Germany
| | - Heiko Faust
- Department of Human Geography, Faculty of Geoscience and Geography, University of Göttingen, 37077, Göttingen, Germany
| | - Bastian Hess
- Department of Ecosystem Modelling, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, 37077, Göttingen, Germany
| | - Stephan Klasen
- Department of Development Economics, Faculty of Economic Science, University of Göttingen, 37073, Göttingen, Germany
| | - Alexander Knohl
- Department of Bioclimatology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, 37077, Göttingen, Germany
| | - Holger Kreft
- Department of Biodiversity, Macroecology & Conservation Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, 37077, Göttingen, Germany
| | - Ana Meijide
- Department of Bioclimatology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, 37077, Göttingen, Germany
| | - Fuad Nurdiansyah
- Department of Ecosystem Modelling, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, 37077, Göttingen, Germany.,Department of Crop Sciences, Faculty of Agricultural Sciences, University of Göttingen, 37077, Göttingen, Germany
| | - Fenna Otten
- Department of Human Geography, Faculty of Geoscience and Geography, University of Göttingen, 37077, Göttingen, Germany
| | - Guy Pe'er
- Department of Conservation Biology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv), 04103, Leipzig, Germany
| | - Stefanie Steinebach
- Institute of Social and Cultural Anthropology, Faculty of Social Sciences, University of Göttingen, 37073, Göttingen, Germany
| | - Suria Tarigan
- Department of Soil Sciences and Land Resources Management, Bogor Agriculture University, Bogor, Indonesia
| | - Merja H Tölle
- Department of Bioclimatology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, 37077, Göttingen, Germany.,Institute for Geography, University of Giessen, 35390, Giessen, Germany
| | - Teja Tscharntke
- Department of Crop Sciences, Faculty of Agricultural Sciences, University of Göttingen, 37077, Göttingen, Germany
| | - Kerstin Wiegand
- Department of Ecosystem Modelling, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
12
|
Biteen JS, Blainey PC, Cardon ZG, Chun M, Church GM, Dorrestein PC, Fraser SE, Gilbert JA, Jansson JK, Knight R, Miller JF, Ozcan A, Prather KA, Quake SR, Ruby EG, Silver PA, Taha S, van den Engh G, Weiss PS, Wong GCL, Wright AT, Young TD. Tools for the Microbiome: Nano and Beyond. ACS NANO 2016; 10:6-37. [PMID: 26695070 DOI: 10.1021/acsnano.5b07826] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The microbiome presents great opportunities for understanding and improving the world around us and elucidating the interactions that compose it. The microbiome also poses tremendous challenges for mapping and manipulating the entangled networks of interactions among myriad diverse organisms. Here, we describe the opportunities, technical needs, and potential approaches to address these challenges, based on recent and upcoming advances in measurement and control at the nanoscale and beyond. These technical needs will provide the basis for advancing the largely descriptive studies of the microbiome to the theoretical and mechanistic understandings that will underpin the discipline of microbiome engineering. We anticipate that the new tools and methods developed will also be more broadly useful in environmental monitoring, medicine, forensics, and other areas.
Collapse
Affiliation(s)
- Julie S Biteen
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Paul C Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology , and Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02138, United States
| | - Zoe G Cardon
- The Ecosystems Center, Marine Biological Laboratory , Woods Hole, Massachusetts 02543-1015, United States
| | - Miyoung Chun
- The Kavli Foundation , Oxnard, California 93030, United States
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering and Biophysics Program, Harvard University , Boston, Massachusetts 02115, United States
| | | | - Scott E Fraser
- Translational Imaging Center, University of Southern California , Molecular and Computational Biology, Los Angeles, California 90089, United States
| | - Jack A Gilbert
- Institute for Genomic and Systems Biology, Argonne National Laboratory , Argonne, Illinois 60439, United States
- Department of Ecology and Evolution and Department of Surgery, University of Chicago , Chicago, Illinois 60637, United States
| | - Janet K Jansson
- Earth and Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | | | | | | | | | | | - Edward G Ruby
- Kewalo Marine Laboratory, University of Hawaii-Manoa , Honolulu, Hawaii 96813, United States
| | - Pamela A Silver
- Wyss Institute for Biologically Inspired Engineering and Biophysics Program, Harvard University , Boston, Massachusetts 02115, United States
| | - Sharif Taha
- The Kavli Foundation , Oxnard, California 93030, United States
| | - Ger van den Engh
- Center for Marine Cytometry , Concrete, Washington 98237, United States
- Instituto Milenio de Oceanografía, Universidad de Concepción , Concepción, Chile
| | | | | | - Aaron T Wright
- Earth and Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | | |
Collapse
|
13
|
Edwards D, Gilroy J, Thomas G, Uribe C, Haugaasen T. Land-Sparing Agriculture Best Protects Avian Phylogenetic Diversity. Curr Biol 2015; 25:2384-91. [DOI: 10.1016/j.cub.2015.07.063] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
|
14
|
Warren-Thomas E, Dolman PM, Edwards DP. Increasing Demand for Natural Rubber Necessitates a Robust Sustainability Initiative to Mitigate Impacts on Tropical Biodiversity. Conserv Lett 2015. [DOI: 10.1111/conl.12170] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
| | - Paul M. Dolman
- School of Environmental Sciences; University of East Anglia; Norwich NR4 7TJ UK
| | - David P. Edwards
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| |
Collapse
|
15
|
Gilroy JJ, Prescott GW, Cardenas JS, Castañeda PGDP, Sánchez A, Rojas-Murcia LE, Medina Uribe CA, Haugaasen T, Edwards DP. Minimizing the biodiversity impact of Neotropical oil palm development. GLOBAL CHANGE BIOLOGY 2015; 21:1531-40. [PMID: 25175402 DOI: 10.1111/gcb.12696] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 05/16/2023]
Abstract
Oil palm agriculture is rapidly expanding in the Neotropics, at the expense of a range of natural and seminatural habitats. A key question is how this expansion should be managed to reduce negative impacts on biodiversity. Focusing on the Llanos of Colombia, a mixed grassland-forest system identified as a priority zone for future oil palm development, we survey communities of ants, dung beetles, birds and herpetofauna occurring in oil palm plantations and the other principal form of agriculture in the region--improved cattle pasture--together with those of surrounding natural forests. We show that oil palm plantations have similar or higher species richness across all four taxonomic groups than improved pasture. For dung beetles, species richness in oil palm was equal to that of forest, whereas the other three taxa had highest species richness in forests. Hierarchical modelling of species occupancy probabilities indicated that oil palm plantations supported a higher proportion of species characteristic of forests than did cattle pastures. Across the bird community, occupancy probabilities within oil palm were positively influenced by increasing forest cover in a surrounding 250 m radius, whereas surrounding forest cover did not strongly influence the occurrence of other taxonomic groups in oil palm. Overall, our results suggest that the conversion of existing improved pastures to oil palm has limited negative impacts on biodiversity. As such, existing cattle pastures of the Colombian Llanos could offer a key opportunity to meet governmental targets for oil palm development without incurring significant biodiversity costs. Our results also highlight the value of preserving remnant forests within these agricultural landscapes, protecting high biodiversity and exporting avian 'spill-over' effects into oil palm plantations.
Collapse
Affiliation(s)
- James J Gilroy
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gray CL, Lewis OT. Do riparian forest fragments provide ecosystem services or disservices in surrounding oil palm plantations? Basic Appl Ecol 2014. [DOI: 10.1016/j.baae.2014.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|