1
|
Lu W, Zha B, Lyu J, LingHu C, Chen J, Deng S, Zhang X, Li L, Wang G. Whole-genome sequencing and genomic analysis of four Akkermansia strains newly isolated from human feces. Front Microbiol 2024; 15:1500886. [PMID: 39736996 PMCID: PMC11683593 DOI: 10.3389/fmicb.2024.1500886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Background Numerous studies have demonstrated that Akkermansia is closely associated with human health. These bacteria colonize the mucus layer of the gastrointestinal tract and utilize mucin as their sole source of carbon and nitrogen. Akkermansia spp. exhibit potential as probiotics under specific conditions. However, the gene accumulation curve derived from pan-genome analysis suggests that the genome of Akkermansia strains remains open. Consequently, current genome mining efforts are insufficient to fully capture the intraspecific and interspecific characteristics of Akkermansia, necessitating continuous exploration of the genomic and phenotypic diversity of new isolates. Methods Based on this finding, we sequenced, assembled, and functionally annotated the whole genomes of four new human isolates from our laboratory: AKK-HX001, AKK-HX002, AKK-HX003, and AKK-HX004. Results Phylogenetic analysis revealed that all four isolates belonged to the AmII phylogroup, whereas the type strain DSM 22959 is classified within the AmI phylogroup. Moreover, 2,184 shared homologous genes were identified among the four isolates. Functional annotation using the COG, KEGG, and CAZy databases indicated that the functional genes of the four isolates were primarily associated with metabolism. Two antibiotic resistance genes were identified in AKK-HX001 and AKK-HX002, while three resistance genes were detected in AKK-HX003 and AKK-HX004. Additionally, each of the four isolates possessed two virulence genes and three pathogenicity genes, none of which were associated with pathogenicity. The prediction of mobile genetic elements indicated unequal distributions of GIs among the isolates, and a complete CRISPR system was identified in all isolates except AKK-HX003. Two annotated regions of secondary metabolite biosynthesis genes, both belonging to Terpene, were detected using the antiSMASH online tool. Conclusion These findings indicate that the four Akkermansia isolates, which belong to a phylogroup distinct from the model strain DSM 22959, exhibit lower genetic risk and may serve as potential probiotic resources for future research.
Collapse
Affiliation(s)
- Wenjing Lu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Biqing Zha
- Jiujiang Center for Disease Control and Prevention, Jiujiang, China
| | - Jie Lyu
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition and Health, Guangzhou, China
| | - Chenxi LingHu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jing Chen
- Chengdu East New District Public Health Center, Chengdu, China
| | - Sisi Deng
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Xiangling Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Liang Li
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition and Health, Guangzhou, China
| | - Guoqing Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Hasan N, Luthfiyah W, Palungan J, Ullah M, Mustopa AZ, Nurfatwa M, Irawan H, Usmar U, Putranto A, Yoo JW. Nitric oxide-releasing self-healing hydrogel for antibacterial and antibiofilm efficacy against polymicrobial infection. Future Microbiol 2024; 19:1559-1571. [PMID: 39535131 DOI: 10.1080/17460913.2024.2411817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: Bacterial infections and the formation of biofilms are currently key factors in the delay of wound healing. S-Nitroso glutathione (GSNO) is recognized as a nitric oxide (NO) donor that exhibits potent antibacterial and antibiofilm activities. However, some of the stability limitations of NO require it to be prepared pharmaceutically.Materials & methods: Here, we developed a self-healing hydrogel dressing consisting of GSNO, polyvinyl alcohol/borax (PVA/B) and carboxymethyl chitosan (cmCHI). This research aimed to determine the antibacterial and antibiofilm activities of a self-healing hydrogel (PVA-B-cmCHI/GSNO) against multiple bacteria and polymicrobial biofilms.Results: Forty mg/ml PVA-B-cmCHI/GSNO significantly increased the antibacterial activity against Pseudomonas aeruginosa, S. aureus, Methicillin resistant Staphylococcus aureus (MRSA), as indicated by a >5 log reduction in bacterial viability (∼99.999% killing). PVA-B-cmCHI/GSNO showed antibiofilm activity three-times greater than that of the blank self-healing hydrogel (PVA-B-cmCHI) by inhibiting 80% of the biofilm formation.Conclusion: The results suggest that the NO-releasing self-healing hydrogels exhibit notable antibacterial and antibiofilm properties and thus could be a promising approach for the treatment of bacterial or biofilm-infected wounds.
Collapse
Affiliation(s)
- Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Widya Luthfiyah
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Juliana Palungan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, National Research & Innovation Agency (BRIN), Bogor, 16911, Republic of Indonesia
| | - Maritsa Nurfatwa
- Research Center for Genetic Engineering, National Research & Innovation Agency (BRIN), Bogor, 16911, Republic of Indonesia
| | - Herman Irawan
- Research Center for Genetic Engineering, National Research & Innovation Agency (BRIN), Bogor, 16911, Republic of Indonesia
| | - Usmar Usmar
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Aliyah Putranto
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan, 46241, Republic of Korea
| |
Collapse
|
3
|
Al-Momani H, Aolymat I, Ibrahim L, Albalawi H, Al Balawi D, Albiss BA, Almasri M, Alghweiri S. Low-dose zinc oxide nanoparticles trigger the growth and biofilm formation of Pseudomonas aeruginosa: a hormetic response. BMC Microbiol 2024; 24:290. [PMID: 39095741 PMCID: PMC11297655 DOI: 10.1186/s12866-024-03441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Hormesis describes an inverse dose-response relationship, whereby a high dose of a toxic compound is inhibitory, and a low dose is stimulatory. This study explores the hormetic response of low concentrations of zinc oxide nanoparticles (ZnO NPs) toward Pseudomonas aeruginosa. METHOD Samples of P. aeruginosa, i.e. the reference strain, ATCC 27,853, together with six strains recovered from patients with cystic fibrosis, were exposed to ten decreasing ZnO NPs doses (0.78-400 µg/mL). The ZnO NPs were manufactured from Peganum harmala using a chemical green synthesis approach, and their properties were verified utilizing X-ray diffraction and scanning electron microscopy. A microtiter plate technique was employed to investigate the impact of ZnO NPs on the growth, biofilm formation and metabolic activity of P. aeruginosa. Real-time polymerase chain reactions were performed to determine the effect of ZnO NPs on the expression of seven biofilm-encoding genes. RESULT The ZnO NPs demonstrated concentration-dependent bactericidal and antibiofilm efficiency at concentrations of 100-400 µg/mL. However, growth was significantly stimulated at ZnO NPs concentration of 25 µg/mL (ATCC 27853, Pa 3 and Pa 4) and at 12.5 µg/mL and 6.25 µg/mL (ATCC 27853, Pa 2, Pa 4 and Pa 5). No significant positive growth was detected at dilutions < 6.25 µg/mL. similarly, biofilm formation was stimulated at concentration of 12.5 µg/mL (ATCC 27853 and Pa 1) and at 6.25 µg/mL (Pa 4). At concentration of 12.5 µg/mL, ZnO NPs upregulated the expression of LasB ( ATCC 27853, Pa 1 and Pa 4) and LasR and LasI (ATCC 27853 and Pa 1) as well as RhII expression (ATCC 27853, Pa 2 and Pa 4). CONCLUSION When exposed to low ZnO NPs concentrations, P. aeruginosa behaves in a hormetic manner, undergoing positive growth and biofilm formation. These results highlight the importance of understanding the response of P. aeruginosa following exposure to low ZnO NPs concentrations.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan.
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan
| | - Lujain Ibrahim
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Hadeel Albalawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Dua'a Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Borhan Aldeen Albiss
- Nanotechnology Institute, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Muna Almasri
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Sahar Alghweiri
- Medical Laboratory Department, Prince Hashem Military Hospital, Zarqa, 13133, Jordan
| |
Collapse
|
4
|
Kim JH, Dong J, Le BH, Lonergan ZR, Gu W, Girke T, Zhang W, Newman DK, Martins-Green M. Pseudomonas aeruginosa Activates Quorum Sensing, Antioxidant Enzymes and Type VI Secretion in Response to Oxidative Stress to Initiate Biofilm Formation and Wound Chronicity. Antioxidants (Basel) 2024; 13:655. [PMID: 38929094 PMCID: PMC11200925 DOI: 10.3390/antiox13060655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic pathogen frequently isolated from cutaneous chronic wounds. How PA, in the presence of oxidative stress (OS), colonizes chronic wounds and forms a biofilm is still unknown. The purpose of this study is to investigate the changes in gene expression seen when PA is challenged with the high levels of OS present in chronic wounds. We used a biofilm-forming PA strain isolated from the chronic wounds of our murine model (RPA) and performed a qPCR to obtain gene expression patterns as RPA developed a biofilm in vitro in the presence of high levels of OS, and then compared the findings in vivo, in our mouse model of chronic wounds. We found that the planktonic bacteria under OS conditions overexpressed quorum sensing genes that are important for the bacteria to communicate with each other, antioxidant stress genes important to reduce OS in the microenvironment for survival, biofilm formation genes and virulence genes. Additionally, we performed RNAseq in vivo and identified the activation of novel genes/pathways of the Type VI Secretion System (T6SS) involved in RPA pathogenicity. In conclusion, RPA appears to survive the high OS microenvironment in chronic wounds and colonizes these wounds by turning on virulence, biofilm-forming and survival genes. These findings reveal pathways that may be promising targets for new therapies aimed at disrupting PA-containing biofilms immediately after debridement to facilitate the treatment of chronic human wounds.
Collapse
Affiliation(s)
- Jane H. Kim
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Julianna Dong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Brandon H. Le
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Zachery R. Lonergan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Weifeng Gu
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Thomas Girke
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Wei Zhang
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Manuela Martins-Green
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
5
|
Kuper TJ, Islam MM, Peirce-Cottler SM, Papin JA, Ford RM. Spatial transcriptome-guided multi-scale framework connects P. aeruginosa metabolic states to oxidative stress biofilm microenvironment. PLoS Comput Biol 2024; 20:e1012031. [PMID: 38669236 PMCID: PMC11051585 DOI: 10.1371/journal.pcbi.1012031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
With the generation of spatially resolved transcriptomics of microbial biofilms, computational tools can be used to integrate this data to elucidate the multi-scale mechanisms controlling heterogeneous biofilm metabolism. This work presents a Multi-scale model of Metabolism In Cellular Systems (MiMICS) which is a computational framework that couples a genome-scale metabolic network reconstruction (GENRE) with Hybrid Automata Library (HAL), an existing agent-based model and reaction-diffusion model platform. A key feature of MiMICS is the ability to incorporate multiple -omics-guided metabolic models, which can represent unique metabolic states that yield different metabolic parameter values passed to the extracellular models. We used MiMICS to simulate Pseudomonas aeruginosa regulation of denitrification and oxidative stress metabolism in hypoxic and nitric oxide (NO) biofilm microenvironments. Integration of P. aeruginosa PA14 biofilm spatial transcriptomic data into a P. aeruginosa PA14 GENRE generated four PA14 metabolic model states that were input into MiMICS. Characteristic of aerobic, denitrification, and oxidative stress metabolism, the four metabolic model states predicted different oxygen, nitrate, and NO exchange fluxes that were passed as inputs to update the agent's local metabolite concentrations in the extracellular reaction-diffusion model. Individual bacterial agents chose a PA14 metabolic model state based on a combination of stochastic rules, and agents sensing local oxygen and NO. Transcriptome-guided MiMICS predictions suggested microscale denitrification and oxidative stress metabolic heterogeneity emerged due to local variability in the NO biofilm microenvironment. MiMICS accurately predicted the biofilm's spatial relationships between denitrification, oxidative stress, and central carbon metabolism. As simulated cells responded to extracellular NO, MiMICS revealed dynamics of cell populations heterogeneously upregulating reactions in the denitrification pathway, which may function to maintain NO levels within non-toxic ranges. We demonstrated that MiMICS is a valuable computational tool to incorporate multiple -omics-guided metabolic models to mechanistically map heterogeneous microbial metabolic states to the biofilm microenvironment.
Collapse
Affiliation(s)
- Tracy J. Kuper
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Mohammad Mazharul Islam
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Shayn M. Peirce-Cottler
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Roseanne M Ford
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
6
|
da Cruz Nizer WS, Adams ME, Inkovskiy V, Beaulieu C, Overhage J. The secondary metabolite hydrogen cyanide protects Pseudomonas aeruginosa against sodium hypochlorite-induced oxidative stress. Front Microbiol 2023; 14:1294518. [PMID: 38033579 PMCID: PMC10687435 DOI: 10.3389/fmicb.2023.1294518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
The high pathogenicity of Pseudomonas aeruginosa is attributed to the production of many virulence factors and its resistance to several antimicrobials. Among them, sodium hypochlorite (NaOCl) is a widely used disinfectant due to its strong antimicrobial effect. However, bacteria develop many mechanisms to survive the damage caused by this agent. Therefore, this study aimed to identify novel mechanisms employed by P. aeruginosa to resist oxidative stress induced by the strong oxidizing agent NaOCl. We analyzed the growth of the P. aeruginosa mutants ΔkatA, ΔkatE, ΔahpC, ΔahpF, ΔmsrA at 1 μg/mL NaOCl, and showed that these known H2O2 resistance mechanisms are also important for the survival of P. aeruginosa under NaOCl stress. We then conducted a screening of the P. aeruginosa PA14 transposon insertion mutant library and identified 48 mutants with increased susceptibility toward NaOCl. Among them were 10 mutants with a disrupted nrdJa, bvlR, hcnA, orn, sucC, cysZ, nuoJ, PA4166, opmQ, or thiC gene, which also exhibited a significant growth defect in the presence of NaOCl. We focussed our follow-up experiments (i.e., growth analyzes and kill-kinetics) on mutants with defect in the synthesis of the secondary metabolite hydrogen cyanide (HCN). We showed that HCN produced by P. aeruginosa contributes to its resistance toward NaOCl as it acts as a scavenger molecule, quenching the toxic effects of NaOCl.
Collapse
Affiliation(s)
| | | | | | | | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
7
|
Zargar S, Altwaijry N, Wani TA, Alkahtani HM. Evaluation of the Possible Pathways Involved in the Protective Effects of Quercetin, Naringenin, and Rutin at the Gene, Protein and miRNA Levels Using In-Silico Multidimensional Data Analysis. Molecules 2023; 28:4904. [PMID: 37446564 DOI: 10.3390/molecules28134904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Flavonoids are secondary metabolites that are non-essential for plant growth or survival, and they also provide numerous health benefits to humans. They are antioxidants that shield plants from the ill effects of ultraviolet light, pests, and diseases. They are beneficial to health for several reasons, including lowering inflammation, boosting cardiovascular health, and lowering cancer risk. This study looked into the physicochemical features of these substances to determine the potential pharmacological pathways involved in their protective actions. Potential targets responsible for the protective effects of quercetin, naringenin, and rutin were identified with SwissADME. The associated biological processes and protein-protein networks were analyzed by using the GeneMANIA, Metascape, and STRING servers. All the flavonoids were predicted to be orally bioavailable, with more than 90% targets as enzymes, including kinases and lyases, and with common targets such as NOS2, CASP3, CASP9, CAT, BCL2, TNF, and HMOX1. TNF was shown to be a major target in over 250 interactions. To extract the "biological meanings" from the MCODE networks' constituent parts, a GO enrichment analysis was performed on each one. The most important transcription factors in gene regulation were RELA, NFKB1, PPARG, and SP1. Treatment with quercetin, naringenin, or rutin increased the expression and interaction of the microRNAs' hsa-miR-34a-5p, hsa-miR-30b-5p, hsa-let-7a-5p, and hsa-miR-26a-1-3p. The anticancer effects of hsa-miR-34a-5p have been experimentally confirmed. It also plays a critical role in controlling other cancer-related processes such as cell proliferation, apoptosis, EMT, and metastasis. This study's findings might lead to a deeper comprehension of the mechanisms responsible for flavonoids' protective effects and could present new avenues for exploration.
Collapse
Affiliation(s)
- Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Nojood Altwaijry
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Streptococcus agalactiae npx Is Required for Survival in Human Placental Macrophages and Full Virulence in a Model of Ascending Vaginal Infection during Pregnancy. mBio 2022; 13:e0287022. [PMID: 36409087 PMCID: PMC9765263 DOI: 10.1128/mbio.02870-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a Gram-positive encapsulated bacterium that colonizes the gastrointestinal tract of 30 to 50% of humans. GBS causes invasive infection during pregnancy that can lead to chorioamnionitis, funisitis, preterm prelabor rupture of membranes (PPROM), preterm birth, neonatal sepsis, and maternal and fetal demise. Upon infecting the host, GBS encounters sentinel innate immune cells, such as macrophages, within reproductive tissues. Once phagocytosed by macrophages, GBS upregulates the expression of the gene npx, which encodes an NADH peroxidase. GBS mutants with an npx deletion (Δnpx) are exquisitely sensitive to reactive oxygen stress. Furthermore, we have shown that npx is required for GBS survival in both THP-1 and placental macrophages. In an in vivo murine model of ascending GBS vaginal infection during pregnancy, npx is required for invading reproductive tissues and is critical for inducing disease progression, including PPROM and preterm birth. Reproductive tissue cytokine production was also significantly diminished in Δnpx mutant-infected animals compared to that in animals infected with wild-type (WT) GBS. Complementation in trans reversed this phenotype, indicating that npx is critical for GBS survival and the initiation of proinflammatory signaling in the gravid host. IMPORTANCE This study sheds new light on the way that group B Streptococcus (GBS) defends itself against oxidative stress in the infected host. The enzyme encoded by the GBS gene npx is an NADH peroxidase that, our study reveals, provides defense against macrophage-derived reactive oxygen stress and facilitates infections of the uterus during pregnancy. This enzyme could represent a tractable target for future treatment strategies against invasive GBS infections.
Collapse
|
9
|
Li J, Ran X, Zhou M, Wang K, Wang H, Wang Y. Oxidative stress and antioxidant mechanisms of obligate anaerobes involved in biological waste treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156454. [PMID: 35667421 DOI: 10.1016/j.scitotenv.2022.156454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In-depth understanding of the molecular mechanisms and physiological consequences of oxidative stress is still limited for anaerobes. Anaerobic biotechnology has become widely accepted by the wastewater/sludge industry as a better alternative to more conventional but costly aerobic processes. However, the functional anaerobic microorganisms used in anaerobic biotechnology are frequently hampered by reactive oxygen/nitrogen species (ROS/RNS)-mediated oxidative stress caused by exposure to stressful factors (e.g., oxygen and heavy metals), which negatively impact treatment performance. Thus, identifying stressful factors and understanding antioxidative defense mechanisms of functional obligate anaerobes are crucial for the optimization of anaerobic bioprocesses. Herein, we present a comprehensive overview of oxidative stress and antioxidant mechanisms of obligate anaerobes involved in anaerobic bioprocesses; as examples, we focus on anaerobic ammonium oxidation bacteria and methanogenic archaea. We summarize the primary stress factors in anaerobic bioprocesses and the cellular antioxidant defense systems of functional anaerobes, a consortia of enzymatic and nonenzymatic mechanisms. The dual role of ROS/RNS in cellular processes is elaborated; at low concentrations, they have vital cell signaling functions, but at high concentrations, they cause oxidative damage. Finally, we highlight gaps in knowledge and future work to uncover antioxidant and damage repair mechanisms in obligate anaerobes. This review provides in-depth insights and guidance for future research on oxidative stress of obligate anaerobes to boost the accurate regulation of anaerobic bioprocesses in challenging and changing operating conditions.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
10
|
Forte E, Nastasi MR, Borisov VB. Preparations of Terminal Oxidase Cytochrome bd-II Isolated from Escherichia coli Reveal Significant Hydrogen Peroxide Scavenging Activity. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:720-730. [PMID: 36171653 DOI: 10.1134/s0006297922080041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 06/16/2023]
Abstract
Cytochrome bd-II is one of the three terminal quinol oxidases of the aerobic respiratory chain of Escherichia coli. Preparations of the detergent-solubilized untagged bd-II oxidase isolated from the bacterium were shown to scavenge hydrogen peroxide (H2O2) with high rate producing molecular oxygen (O2). Addition of H2O2 to the same buffer that does not contain enzyme or contains thermally denatured cytochrome bd-II does not lead to any O2 production. The latter observation rules out involvement of adventitious transition metals bound to the protein. The H2O2-induced O2 production is not susceptible to inhibition by N-ethylmaleimide (the sulfhydryl binding compound), antimycin A (the compound that binds specifically to a quinol binding site), and CO (diatomic gas that binds specifically to the reduced heme d). However, O2 formation is inhibited by cyanide (IC50 = 4.5 ± 0.5 µM) and azide. Addition of H2O2 in the presence of dithiothreitol and ubiquinone-1 does not inactivate cytochrome bd-II and apparently does not affect the O2 reductase activity of the enzyme. The ability of cytochrome bd-II to detoxify H2O2 could play a role in bacterial physiology by conferring resistance to the peroxide-mediated stress.
Collapse
Affiliation(s)
- Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, I-00185, Italy
| | - Martina R Nastasi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, I-00185, Italy
| | - Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
11
|
Baty JJ, Huffines JT, Stoner SN, Scoffield JA. A Commensal Streptococcus Dysregulates the Pseudomonas aeruginosa Nitrosative Stress Response. Front Cell Infect Microbiol 2022; 12:817336. [PMID: 35619650 PMCID: PMC9127344 DOI: 10.3389/fcimb.2022.817336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic infections in the cystic fibrosis (CF) airway are composed of both pathogenic and commensal bacteria. However, chronic Pseudomonas aeruginosa infections are the leading cause of lung deterioration in individuals with CF. Interestingly, oral commensals can translocate to the CF lung and their presence is associated with improved lung function, presumably due to their ability to antagonize P. aeruginosa. We have previously shown that one commensal, Streptococcus parasanguinis, produces hydrogen peroxide that reacts with nitrite to generate reactive nitrogen intermediates (RNI) which inhibit P. aeruginosa growth. In this study, we sought to understand the global impact of commensal-mediated RNI on the P. aeruginosa transcriptome. RNA sequencing analysis revealed that S. parasanguinis and nitrite-mediated RNI dysregulated expression of denitrification genes in a CF isolate of P. aeruginosa compared to when this isolate was only exposed to S. parasanguinis. Further, loss of a nitric oxide reductase subunit (norB) rendered an acute P. aeruginosa isolate more susceptible to S. parasanguinis-mediated RNI. Additionally, S. parasanguinis-mediated RNI inactivated P. aeruginosa aconitase activity. Lastly, we report that P. aeruginosa isolates recovered from CF individuals are uniquely hypersensitive to S. parasanguinis-mediated RNI compared to acute infection or environmental P. aeruginosa isolates. These findings illustrate that S. parasanguinis hinders the ability of P. aeruginosa to respond to RNI, which potentially prevents P. aeruginosa CF isolates from resisting commensal and host-induced RNI in the CF airway.
Collapse
|
12
|
Wang H, Yan Y, Zhang L, Wang Y. Response of antioxidant defense to oxidative stress induced by H 2O 2 and NO in anammox bacteria. CHEMOSPHERE 2021; 282:131008. [PMID: 34082311 DOI: 10.1016/j.chemosphere.2021.131008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/08/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Exposure to the stressful environment results in excessive generation of reactive oxygen species (ROS) or reactive nitrogen species (RNS) in anaerobes, which causes deterioration of microbial activities in biological wastewater treatment systems. Although the genes involved in oxidative stress defense have been primarily identified in the genome of Candidatus Kuenenia stuttgartiensis (a typical anammox species), their function is still not verified. Therefore, the expression of putative antioxidation genes kat, sor, and sod in anammox bacteria was studied by in situ transcription and function validated by heterologous expression under the typical ROS (H2O2) and RNS (NO) stress. After H2O2 and NO additions, the genes involved in the anammox central metabolism (nirS, hzsB, and hdh) were immediately down expressed consistent with the decreased anammox activity. However, the expression of putative antioxidation gene kat did not rise when exposed to H2O2; whereas, its encoding protein KAT enhanced the antioxidant actively of anammox bacteria by H2O2 decomposition like the oxidoreductase enzyme catalase. The sod and sor gene were upregulated with NO treatment, and SOD and SOR can combine with NO and decrease its concentration efficiently. These confirmed the important role of kat, sod, and sor as ROS/RNS scavengers in anammox bacteria, with which anammox bacteria protect themselves when they are exposed to the stressful environment. These verified functional enzymes provide directions for the future regulation of anammox systems, which helps to mitigate the inhibitory effect of the stressful environment on anammox bacteria.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Yuan Yan
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China.
| | - Lingmin Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
13
|
Oxidative Stress Response in Pseudomonas aeruginosa. Pathogens 2021; 10:pathogens10091187. [PMID: 34578219 PMCID: PMC8466533 DOI: 10.3390/pathogens10091187] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative environmental and human opportunistic pathogen highly adapted to many different environmental conditions. It can cause a wide range of serious infections, including wounds, lungs, the urinary tract, and systemic infections. The high versatility and pathogenicity of this bacterium is attributed to its genomic complexity, the expression of several virulence factors, and its intrinsic resistance to various antimicrobials. However, to thrive and establish infection, P. aeruginosa must overcome several barriers. One of these barriers is the presence of oxidizing agents (e.g., hydrogen peroxide, superoxide, and hypochlorous acid) produced by the host immune system or that are commonly used as disinfectants in a variety of different environments including hospitals. These agents damage several cellular molecules and can cause cell death. Therefore, bacteria adapt to these harsh conditions by altering gene expression and eliciting several stress responses to survive under oxidative stress. Here, we used PubMed to evaluate the current knowledge on the oxidative stress responses adopted by P. aeruginosa. We will describe the genes that are often differently expressed under oxidative stress conditions, the pathways and proteins employed to sense and respond to oxidative stress, and how these changes in gene expression influence pathogenicity and the virulence of P. aeruginosa. Understanding these responses and changes in gene expression is critical to controlling bacterial pathogenicity and developing new therapeutic agents.
Collapse
|
14
|
Dar D, Dar N, Cai L, Newman DK. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 2021; 373:373/6556/eabi4882. [PMID: 34385369 DOI: 10.1126/science.abi4882] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/25/2021] [Indexed: 01/02/2023]
Abstract
Capturing the heterogeneous phenotypes of microbial populations at relevant spatiotemporal scales is highly challenging. Here, we present par-seqFISH (parallel sequential fluorescence in situ hybridization), a transcriptome-imaging approach that records gene expression and spatial context within microscale assemblies at a single-cell and molecule resolution. We applied this approach to the opportunistic pathogen Pseudomonas aeruginosa, analyzing about 600,000 individuals across dozens of conditions in planktonic and biofilm cultures. We identified numerous metabolic- and virulence-related transcriptional states that emerged dynamically during planktonic growth, as well as highly spatially resolved metabolic heterogeneity in sessile populations. Our data reveal that distinct physiological states can coexist within the same biofilm just several micrometers away, underscoring the importance of the microenvironment. Our results illustrate the complex dynamics of microbial populations and present a new way of studying them at high resolution.
Collapse
Affiliation(s)
- Daniel Dar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Nina Dar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. .,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
15
|
Hassett DJ, Kovall RA, Schurr MJ, Kotagiri N, Kumari H, Satish L. The Bactericidal Tandem Drug, AB569: How to Eradicate Antibiotic-Resistant Biofilm Pseudomonas aeruginosa in Multiple Disease Settings Including Cystic Fibrosis, Burns/Wounds and Urinary Tract Infections. Front Microbiol 2021; 12:639362. [PMID: 34220733 PMCID: PMC8245851 DOI: 10.3389/fmicb.2021.639362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
The life-threatening pandemic concerning multi-drug resistant (MDR) bacteria is an evolving problem involving increased hospitalizations, billions of dollars in medical costs and a remarkably high number of deaths. Bacterial pathogens have demonstrated the capacity for spontaneous or acquired antibiotic resistance and there is virtually no pool of organisms that have not evolved such potentially clinically catastrophic properties. Although many diseases are linked to such organisms, three include cystic fibrosis (CF), burn/blast wounds and urinary tract infections (UTIs), respectively. Thus, there is a critical need to develop novel, effective antimicrobials for the prevention and treatment of such problematic infections. One of the most formidable, naturally MDR bacterial pathogens is Pseudomonas aeruginosa (PA) that is particularly susceptible to nitric oxide (NO), a component of our innate immune response. This susceptibility sets the translational stage for the use of NO-based therapeutics during the aforementioned human infections. First, we discuss how such NO therapeutics may be able to target problematic infections in each of the aforementioned infectious scenarios. Second, we describe a recent discovery based on years of foundational information, a novel drug known as AB569. AB569 is capable of forming a "time release" of NO from S-nitrosothiols (RSNO). AB569, a bactericidal tandem consisting of acidified NaNO2 (A-NO2 -) and Na2-EDTA, is capable of killing all pathogens that are associated with the aforementioned disorders. Third, we described each disease state in brief, the known or predicted effects of AB569 on the viability of PA, its potential toxicity and highly remote possibility for resistance to develop. Finally, we conclude that AB569 can be a viable alternative or addition to conventional antibiotic regimens to treat such highly problematic MDR bacterial infections for civilian and military populations, as well as the economical burden that such organisms pose.
Collapse
Affiliation(s)
- Daniel J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, Cincinnati, OH, United States
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, Cincinnati, OH, United States
| | - Michael J Schurr
- Department of Immunology and Microbiology, University of Colorado Health Sciences, Denver, CO, United States
| | - Nalinikanth Kotagiri
- Division of Pharmacy, University of Colorado Health Sciences, Denver, CO, United States
| | - Harshita Kumari
- Division of Pharmacy, University of Colorado Health Sciences, Denver, CO, United States
| | - Latha Satish
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Shriners Hospitals for Children-Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
16
|
Borisov VB, Siletsky SA, Nastasi MR, Forte E. ROS Defense Systems and Terminal Oxidases in Bacteria. Antioxidants (Basel) 2021; 10:antiox10060839. [PMID: 34073980 PMCID: PMC8225038 DOI: 10.3390/antiox10060839] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) comprise the superoxide anion (O2•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen (1O2). ROS can damage a variety of macromolecules, including DNA, RNA, proteins, and lipids, and compromise cell viability. To prevent or reduce ROS-induced oxidative stress, bacteria utilize different ROS defense mechanisms, of which ROS scavenging enzymes, such as superoxide dismutases, catalases, and peroxidases, are the best characterized. Recently, evidence has been accumulating that some of the terminal oxidases in bacterial respiratory chains may also play a protective role against ROS. The present review covers this role of terminal oxidases in light of recent findings.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia;
- Correspondence: (V.B.B.); (E.F.)
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia;
| | - Martina R. Nastasi
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
- Correspondence: (V.B.B.); (E.F.)
| |
Collapse
|
17
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|
18
|
Sartorio MG, Cortez N, González JM. Structure and functional properties of the cold-adapted catalase from Acinetobacter sp. Ver3 native to the Atacama plateau in northern Argentina. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:369-379. [PMID: 33645540 DOI: 10.1107/s2059798321000929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/26/2021] [Indexed: 11/10/2022]
Abstract
Heme catalases remove hydrogen peroxide by catalyzing its dismutation into water and molecular oxygen, thereby protecting the cell from oxidative damage. The Atacama plateau in northern Argentina, located 4000 m above sea level, is a desert area characterized by extreme UV radiation, high salinity and a large temperature variation between day and night. Here, the heme catalase KatE1 from an Atacama Acinetobacter sp. isolate was cloned, expressed and purified, with the aim of investigating its extremophilic properties. Kinetic and stability assays indicate that KatE1 is maximally active at 50°C in alkaline media, with a nearly unchanged specific activity between 0°C and 40°C in the pH range 5.5-11.0. In addition, its three-dimensional crystallographic structure was solved, revealing minimal structural differences compared with its mesophilic and thermophilic analogues, except for a conserved methionine residue on the distal heme side, which is proposed to comprise a molecular adaptation to oxidative damage.
Collapse
Affiliation(s)
- Mariana G Sartorio
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, Rosario, S2002LRK Santa Fe, Argentina
| | - Néstor Cortez
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, Rosario, S2002LRK Santa Fe, Argentina
| | - Javier M González
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), RN9, Km1125, Villa El Zanjón, G4206XCP Santiago del Estero, Argentina
| |
Collapse
|
19
|
Yan Y, Wang W, Wu M, Jetten MSM, Guo J, Ma J, Wang H, Dai X, Wang Y. Transcriptomics Uncovers the Response of Anammox Bacteria to Dissolved Oxygen Inhibition and the Subsequent Recovery Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14674-14685. [PMID: 33147001 DOI: 10.1021/acs.est.0c02842] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the recovery of anaerobic ammonium-oxidizing (anammox) bacteria after inhibition by dissolved oxygen (DO) is critical for the successful applications of anammox-based processes. Therefore, the effects of oxygen exposure (2 mg L-1 DO for 90 min) and subsequent recovery treatments [N2 purging or nano zero-valent iron (nZVI) addition] on the activity and gene expression in a Kuenenia stuttgartiensis enrichment culture were examined. Combining the self-organizing map clustering and enrichment analysis, we proposed the oxidative stress response of anammox bacteria based on the existing concepts of oxidative stress in microbes: the DO exposure triggered a stringent response in K. stuttgartiensis, which downregulated the transcription levels of genes involved in the central metabolism and diverted energy to a flagellar assembly and metal transport modules; these changes possibly promoted survival during the inhibition of anammox activity. According to the cotranscription with central catabolism genes, putative reactive oxygen species (ROS) scavenger genes (kat and sod) were presumed to detoxify the anammox intermediates rather than ROS. In addition, both activity and mRNA profiles with appropriate amount of nZVI addition (5 and 25 mg L-1) were close to that of control, which proved the effectiveness of nZVI addition in anammox recovery. These results would be relevant to the physio-biochemistry development of anammox bacteria and further enhancement of nitrogen removal in wastewater treatment.
Collapse
Affiliation(s)
- Yuan Yan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Mengxiong Wu
- Advanced Water Management Centre (AWMC), The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Mike S M Jetten
- Microbiology, IWWR, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, AJ Nijmegen 6525, The Netherlands
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Jie Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
20
|
McDaniel CT, Panmanee W, Winsor GL, Gill E, Bertelli C, Schurr MJ, Dongare P, Paul AT, Ko SHB, Lau GW, Dasgupta N, Bogue AL, Miller WE, Mortensen JE, Haslam DB, Dexheimer P, Muruve DA, Aronow BJ, Forbes MDE, Danilczuk M, Brinkman FSL, Hancock REW, Meyer TJ, Hassett DJ. AB569, a nontoxic chemical tandem that kills major human pathogenic bacteria. Proc Natl Acad Sci U S A 2020; 117:4921-4930. [PMID: 32071223 PMCID: PMC7060718 DOI: 10.1073/pnas.1911927117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant superbug bacteria represent a global health problem with no imminent solutions. Here we demonstrate that the combination (termed AB569) of acidified nitrite (A-NO2-) and Na2-EDTA (disodium ethylenediaminetetraacetic acid) inhibited all Gram-negative and Gram-positive bacteria tested. AB569 was also efficacious at killing the model organism Pseudomonas aeruginosa in biofilms and in a murine chronic lung infection model. AB569 was not toxic to human cell lines at bactericidal concentrations using a basic viability assay. RNA-Seq analyses upon treatment of P. aeruginosa with AB569 revealed a catastrophic loss of the ability to support core pathways encompassing DNA, RNA, protein, ATP biosynthesis, and iron metabolism. Electrochemical analyses elucidated that AB569 produced more stable SNO proteins, potentially explaining one mechanism of bacterial killing. Our data implicate that AB569 is a safe and effective means to kill pathogenic bacteria, suggesting that simple strategies could be applied with highly advantageous therapeutic/toxicity index ratios to pathogens associated with a myriad of periepithelial infections and related disease scenarios.
Collapse
Affiliation(s)
- Cameron T McDaniel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Warunya Panmanee
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Geoffrey L Winsor
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Erin Gill
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Claire Bertelli
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Michael J Schurr
- Department of Microbiology and Immunology, University of Colorado at Denver, Aurora, CO 80045
| | - Prateek Dongare
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Andrew T Paul
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Seung-Hyun B Ko
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Gee W Lau
- College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802
| | - Nupur Dasgupta
- Computational Medicine Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Amy L Bogue
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - William E Miller
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Joel E Mortensen
- Diagnostic and Infectious Disease Testing Laboratory, Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - David B Haslam
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Phillip Dexheimer
- Computational Medicine Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Daniel A Muruve
- Department of Medicine, University of Calgary, Calgary, AB T2N4Z6, Canada
| | - Bruce J Aronow
- Computational Medicine Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Malcolm D E Forbes
- Center for Photochemical Studies, Bowling Green State University, Bowling Green, OH 43403
| | - Marek Danilczuk
- Center for Photochemical Studies, Bowling Green State University, Bowling Green, OH 43403
| | - Fiona S L Brinkman
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
| | - Daniel J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267;
| |
Collapse
|
21
|
Zhou G, Wang YS, Peng H, Shen PF, Xie XB, Shi QS. Functional roles ofnorCBinPseudomonas aeruginosaATCC 9027 under aerobic conditions. J Basic Microbiol 2019; 59:1154-1162. [DOI: 10.1002/jobm.201900267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/25/2019] [Accepted: 08/29/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Gang Zhou
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology; Guangdong Academy of Sciences; Guangzhou Guangdong China
| | - Ying-Si Wang
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology; Guangdong Academy of Sciences; Guangzhou Guangdong China
| | - Hong Peng
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology; Guangdong Academy of Sciences; Guangzhou Guangdong China
| | - Peng-Fei Shen
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology; Guangdong Academy of Sciences; Guangzhou Guangdong China
| | - Xiao-Bao Xie
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology; Guangdong Academy of Sciences; Guangzhou Guangdong China
| | - Qing-Shan Shi
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology; Guangdong Academy of Sciences; Guangzhou Guangdong China
| |
Collapse
|
22
|
Lack of the Major Multifunctional Catalase KatA in Pseudomonas aeruginosa Accelerates Evolution of Antibiotic Resistance in Ciprofloxacin-Treated Biofilms. Antimicrob Agents Chemother 2019; 63:AAC.00766-19. [PMID: 31307984 DOI: 10.1128/aac.00766-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/30/2019] [Indexed: 01/20/2023] Open
Abstract
During chronic biofilm infections, Pseudomonas aeruginosa bacteria are exposed to increased oxidative stress as a result of the inflammatory response. As reactive oxygen species (ROS) are mutagenic, the evolution of resistance to ciprofloxacin (CIP) in biofilms under oxidative stress conditions was investigated. We experimentally evolved six replicate populations of P. aeruginosa lacking the major catalase KatA in colony biofilms and stationary-phase cultures for seven passages in the presence of subinhibitory levels (0.1 mg/liter) of CIP or without CIP (eight replicate lineages for controls) under aerobic conditions. In CIP-evolved biofilms, a larger CIP-resistant subpopulation was isolated in the ΔkatA strain than in the wild-type (WT) PAO1 population, suggesting oxidative stress as a promoter of the development of antibiotic resistance. A higher number of mutations identified by population sequencing were observed in evolved ΔkatA biofilm populations (CIP and control) than in WT PAO1 populations evolved under the same conditions. Genes involved in iron assimilation were found to be exclusively mutated in CIP-evolved ΔkatA biofilm populations, probably as a defense mechanism against ROS formation resulting from Fenton reactions. Furthermore, a hypermutable lineage due to mutL inactivation developed in one CIP-evolved ΔkatA biofilm lineage. In CIP-evolved biofilms of both the ΔkatA strain and WT PAO1, mutations in nfxB, the negative regulator of the MexCD-OprJ efflux pump, were observed while in CIP-evolved planktonic cultures of both the ΔkatA strain and WT PAO1, mutations in mexR and nalD, regulators of the MexAB-OprM efflux pump, were repeatedly found. In conclusion, these results emphasize the role of oxidative stress as an environmental factor that might increase the development of antibiotic resistance in in vivo biofilms.
Collapse
|
23
|
Zhou G, Peng H, Wang YS, Li CL, Shen PF, Huang XM, Xie XB, Shi QS. Biological functions of nirS in Pseudomonas aeruginosa ATCC 9027 under aerobic conditions. J Ind Microbiol Biotechnol 2019; 46:1757-1768. [PMID: 31512096 DOI: 10.1007/s10295-019-02232-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/23/2019] [Indexed: 01/10/2023]
Abstract
Through our previous study, we found an up-regulation in the expression of nitrite reductase (nirS) in the isothiazolone-resistant strain of Pseudomonas aeruginosa. However, the definitive molecular role of nirS in ascribing the resistance remained elusive. In the present study, the nirS gene was deleted from the chromosome of P. aeruginosa ATCC 9027 and the resulting phenotypic changes of ΔnirS were studied alongside the wild-type (WT) strain under aerobic conditions. The results demonstrated a decline in the formations of biofilms but not planktonic growth by ΔnirS as compared to WT, especially in the presence of benzisothiazolinone (BIT). Meanwhile, the deletion of nirS impaired swimming motility of P. aeruginosa under the stress of BIT. To assess the influence of nirS on the transcriptome of P. aeruginosa, RNA-seq experiments comparing the ΔnirS with WT were also performed. A total of 694 genes were found to be differentially expressed in ΔnirS, of which 192 were up-regulated, while 502 were down-regulated. In addition, these differently expressed genes were noted to significantly enrich the carbon metabolism along with glyoxylate and dicarboxylate metabolisms. Meanwhile, results from RT-PCR suggested the contribution of mexEF-oprN to the development of BIT resistance by ΔnirS. Further, c-di-GMP was less in ΔnirS than in WT, as revealed by HPLC. Taken together, our results confirm that nirS of P. aeruginosa ATCC 9027 plays a role in BIT resistance along with biofilm formation and further affects several metabolic patterns under aerobic conditions.
Collapse
Affiliation(s)
- Gang Zhou
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, People's Republic of China
| | - Hong Peng
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, People's Republic of China
| | - Ying-Si Wang
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, People's Republic of China
| | - Cai-Ling Li
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, People's Republic of China
| | - Peng-Fei Shen
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, People's Republic of China
| | - Xiao-Mo Huang
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, People's Republic of China
| | - Xiao-Bao Xie
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, People's Republic of China.
| | - Qing-Shan Shi
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, People's Republic of China.
| |
Collapse
|
24
|
Oxidative stress under low oxygen conditions triggers hyperflagellation and motility in the Antarctic bacterium Pseudomonas extremaustralis. Extremophiles 2019; 23:587-597. [PMID: 31250111 DOI: 10.1007/s00792-019-01110-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species and nitrogen species (ROS and RNS), produced in a wide range of physiological process even under low oxygen availability, are among the main stressors found in the environment. Strategies developed to combat them constitute key features in bacterial adaptability and survival. Pseudomonas extremaustralis is a metabolic versatile and stress resistant Antarctic bacterium, able to grow under different oxygen conditions. The present work explores the effect of oxidative stress under low oxygen conditions in P. extremaustralis, by combining RNA deep sequencing analysis and physiological studies. Cells grown under microaerobiosis exhibited more oxidative damage in macromolecules and lower survival rates than under aerobiosis. RNA-seq analysis showed an up-regulation of genes related with oxidative stress response, flagella, chemotaxis and biofilm formation while chaperones and cytochromes were down-regulated. Microaerobic cultures exposed to H2O2 also displayed a hyper-flagellated phenotype coupled with a high motility behavior. Moreover, cells that were subjected to oxidative stress presented increased biofilm formation. Altogether, our results suggest that a higher motile behavior and augmented capacity to form biofilm structures could work in addition to well-known antioxidant enzymes and non-enzymatic ROS scavenging mechanisms to cope with oxidative stress at low oxygen tensions.
Collapse
|
25
|
Malhotra S, Hayes D, Wozniak DJ. Cystic Fibrosis and Pseudomonas aeruginosa: the Host-Microbe Interface. Clin Microbiol Rev 2019; 32:e00138-18. [PMID: 31142499 PMCID: PMC6589863 DOI: 10.1128/cmr.00138-18] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In human pathophysiology, the clash between microbial infection and host immunity contributes to multiple diseases. Cystic fibrosis (CF) is a classical example of this phenomenon, wherein a dysfunctional, hyperinflammatory immune response combined with chronic pulmonary infections wreak havoc upon the airway, leading to a disease course of substantial morbidity and shortened life span. Pseudomonas aeruginosa is an opportunistic pathogen that commonly infects the CF lung, promoting an accelerated decline of pulmonary function. Importantly, P. aeruginosa exhibits significant resistance to innate immune effectors and to antibiotics, in part, by expressing specific virulence factors (e.g., antioxidants and exopolysaccharides) and by acquiring adaptive mutations during chronic infection. In an effort to review our current understanding of the host-pathogen interface driving CF pulmonary disease, we discuss (i) the progression of disease within the primitive CF lung, specifically focusing on the role of host versus bacterial factors; (ii) critical, neutrophil-derived innate immune effectors that are implicated in CF pulmonary disease, including reactive oxygen species (ROS) and antimicrobial peptides (e.g., LL-37); (iii) P. aeruginosa virulence factors and adaptive mutations that enable evasion of the host response; and (iv) ongoing work examining the distribution and colocalization of host and bacterial factors within distinct anatomical niches of the CF lung.
Collapse
Affiliation(s)
- Sankalp Malhotra
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Don Hayes
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Daniel J Wozniak
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
26
|
Panmanee W, Su S, Schurr MJ, Lau GW, Zhu X, Ren Z, McDaniel CT, Lu LJ, Ohman DE, Muruve DA, Panos RJ, Yu HD, Thompson TB, Tseng BS, Hassett DJ. The anti-sigma factor MucA of Pseudomonas aeruginosa: Dramatic differences of a mucA22 vs. a ΔmucA mutant in anaerobic acidified nitrite sensitivity of planktonic and biofilm bacteria in vitro and during chronic murine lung infection. PLoS One 2019; 14:e0216401. [PMID: 31158231 PMCID: PMC6546240 DOI: 10.1371/journal.pone.0216401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/20/2019] [Indexed: 11/29/2022] Open
Abstract
Mucoid mucA22 Pseudomonas aeruginosa (PA) is an opportunistic lung pathogen of cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) patients that is highly sensitive to acidified nitrite (A-NO2-). In this study, we first screened PA mutant strains for sensitivity or resistance to 20 mM A-NO2- under anaerobic conditions that represent the chronic stages of the aforementioned diseases. Mutants found to be sensitive to A-NO2- included PA0964 (pmpR, PQS biosynthesis), PA4455 (probable ABC transporter permease), katA (major catalase, KatA) and rhlR (quorum sensing regulator). In contrast, mutants lacking PA0450 (a putative phosphate transporter) and PA1505 (moaA2) were A-NO2- resistant. However, we were puzzled when we discovered that mucA22 mutant bacteria, a frequently isolated mucA allele in CF and to a lesser extent COPD, were more sensitive to A-NO2- than a truncated ΔmucA deletion (Δ157–194) mutant in planktonic and biofilm culture, as well as during a chronic murine lung infection. Subsequent transcriptional profiling of anaerobic, A-NO2--treated bacteria revealed restoration of near wild-type transcript levels of protective NO2- and nitric oxide (NO) reductase (nirS and norCB, respectively) in the ΔmucA mutant in contrast to extremely low levels in the A-NO2--sensitive mucA22 mutant. Proteins that were S-nitrosylated by NO derived from A-NO2- reduction in the sensitive mucA22 strain were those involved in anaerobic respiration (NirQ, NirS), pyruvate fermentation (UspK), global gene regulation (Vfr), the TCA cycle (succinate dehydrogenase, SdhB) and several double mutants were even more sensitive to A-NO2-. Bioinformatic-based data point to future studies designed to elucidate potential cellular binding partners for MucA and MucA22. Given that A-NO2- is a potentially viable treatment strategy to combat PA and other infections, this study offers novel developments as to how clinicians might better treat problematic PA infections in COPD and CF airway diseases.
Collapse
Affiliation(s)
- Warunya Panmanee
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH United States of America
| | - Shengchang Su
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH United States of America
| | - Michael J. Schurr
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO United States of America
| | - Gee W. Lau
- College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL United States of America
| | - Xiaoting Zhu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH United States of America
| | - Zhaowei Ren
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH United States of America
| | - Cameron T. McDaniel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH United States of America
| | - Long J. Lu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH United States of America
| | - Dennis E. Ohman
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA United States of America
- McGuire Veterans Affairs Medical Center, Richmond, VA United States of America
| | - Daniel A. Muruve
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ralph J. Panos
- Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH United States of America
- Pulmonary, Critical Care, and Sleep Division, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH United States of America
| | - Hongwei D. Yu
- Department of Biochemistry and Microbiology, Marshall University, Huntington, WV United States of America
| | - Thomas B. Thompson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH United States of America
| | - Boo Shan Tseng
- Department of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV United States of America
| | - Daniel J. Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH United States of America
- * E-mail:
| |
Collapse
|
27
|
González-Flores YE, de Dios R, Reyes-Ramírez F, Santero E. The response of Sphingopyxis granuli strain TFA to the hostile anoxic condition. Sci Rep 2019; 9:6297. [PMID: 31000749 PMCID: PMC6472365 DOI: 10.1038/s41598-019-42768-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/05/2019] [Indexed: 01/02/2023] Open
Abstract
Sphingomonads comprises a group of interesting aerobic bacteria because of their ubiquity and metabolic capability of degrading many recalcitrant contaminants. The tetralin-degrader Sphingopyxis granuli strain TFA has been recently reported as able to anaerobically grow using nitrate as the alternative electron acceptor and so far is the only bacterium with this ability within the sphingomonads group. To understand how strain TFA thrives under anoxic conditions, a differential transcriptomic analysis while growing under aerobic or anoxic conditions was performed. This analysis has been validated and complemented with transcription kinetics of representative genes of different functional categories. Results show an extensive change of the expression pattern of this strain in the different conditions. Consistently, the most induced operon in anoxia codes for proteases, presumably required for extensive changes in the protein profile. Besides genes that respond to lack of oxygen in other bacteria, there are a number of genes that respond to stress or to damage of macromolecules, including genes of the SOS DNA-damage response, which suggest that anoxic conditions represent a hostile environment for this bacterium. Interestingly, growth under anoxic conditions also resulted in repression of all flagellar and type IV pilin genes, which suggested that this strain shaves its appendages off while growing in anaerobiosis.
Collapse
Affiliation(s)
- Yolanda Elisabet González-Flores
- Centro Andaluz de Biología del Desarrollo/CSIC/Universidad Pablo de Olavide/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Rubén de Dios
- Centro Andaluz de Biología del Desarrollo/CSIC/Universidad Pablo de Olavide/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Francisca Reyes-Ramírez
- Centro Andaluz de Biología del Desarrollo/CSIC/Universidad Pablo de Olavide/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain.
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo/CSIC/Universidad Pablo de Olavide/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| |
Collapse
|
28
|
Olwal CO, Ang'ienda PO, Ochiel DO. Alternative sigma factor B (σ B) and catalase enzyme contribute to Staphylococcus epidermidis biofilm's tolerance against physico-chemical disinfection. Sci Rep 2019; 9:5355. [PMID: 30926870 PMCID: PMC6440968 DOI: 10.1038/s41598-019-41797-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus epidermidis is the predominant cause of recalcitrant biofilm-associated infections, which are often highly resistant to antibiotics. Thus, the use of physico-chemical agents for disinfection offers a more effective approach to the control of S. epidermidis biofilm infections. However, the underlying tolerance mechanisms employed by S. epidermidis biofilm against these physico-chemical disinfectants remain largely unknown. The expression of a σB-dependent gene, alkaline shock protein 23 (asp23) and catalase activity by S. epidermidis biofilm and planktonic cells exposed to heat (50 °C), 0.8 M sodium chloride (NaCl), 5 mM sodium hypochlorite (NaOCl) or 50 μM hydrogen peroxide (H2O2) for 60 minutes were compared. Significantly higher asp23 expression levels were observed in biofilms exposed to 50 °C, 5 mM NaOCl or 50 μM H2O2 compared to the corresponding planktonic cells (p < 0.05). Conversely, asp23 expression levels in biofilm and planktonic cells exposed to 0.8 M NaCl were not significantly different (p > 0.05). Further, biofilms exposed to 50 °C, 0.8 M NaCl, 5 mM NaOCl or 50 μM H2O2 exhibited significantly higher catalase activity than the planktonic cells (p < 0.05). These results suggest that activities of σB and catalase may be involved in the tolerance of S. epidermidis biofilm against physico-chemical disinfection.
Collapse
|
29
|
Chung IY, Kim BO, Jang HJ, Cho YH. Dual promoters of the major catalase (KatA) govern distinct survival strategies of Pseudomonas aeruginosa. Sci Rep 2016; 6:31185. [PMID: 27491679 PMCID: PMC4974557 DOI: 10.1038/srep31185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/13/2016] [Indexed: 11/15/2022] Open
Abstract
KatA is the major catalase required for hydrogen peroxide (H2O2) resistance and acute virulence in Pseudomonas aeruginosa PA14, whose transcription is driven from the promoter (katAp1) located at 155 nucleotide (nt) upstream of the start codon. Here, we identified another promoter (katAp2), the +1 of which was mapped at the 51 nt upstream of the start codon, which was responsible for the basal transcription during the planktonic culture and down-regulated upon H2O2 treatment under the control by the master regulator of anaerobiosis, Anr. To dissect the roles of the dual promoters in conditions involving KatA, we created the promoter mutants for each -10 box (p1m, p2m, and p1p2m) and found that katAp1 is required for the function of KatA in the logarithmic growth phase during the planktonic culture as well as in acute virulence, whereas katAp2 is required for the function of KatA in the stationary phase as well as in the prolonged biofilm culture. This dismantling of the dual promoters of katA sheds light on the roles of KatA in stress resistance in both proliferative and growth-restrictive conditions and thus provides an insight into the regulatory impacts of the major catalase on the survival strategies of P. aeruginosa.
Collapse
Affiliation(s)
- In-Young Chung
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, 13488, Korea
| | - Bi-O Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, 13488, Korea
| | - Hye-Jeong Jang
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, 13488, Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, 13488, Korea
| |
Collapse
|
30
|
Pezzoni M, Tribelli PM, Pizarro RA, López NI, Costa CS. Exposure to low UVA doses increases KatA and KatB catalase activities, and confers cross-protection against subsequent oxidative injuries in Pseudomonas aeruginosa. Microbiology (Reading) 2016; 162:855-864. [DOI: 10.1099/mic.0.000268] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Magdalena Pezzoni
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Paula M. Tribelli
- IQUIBICEN-CONICET-Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Ramón A. Pizarro
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Nancy I. López
- IQUIBICEN-CONICET-Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Cristina S. Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| |
Collapse
|
31
|
McDaniel C, Su S, Panmanee W, Lau GW, Browne T, Cox K, Paul AT, Ko SHB, Mortensen JE, Lam JS, Muruve DA, Hassett DJ. A Putative ABC Transporter Permease Is Necessary for Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa under Aerobic and Anaerobic Planktonic and Biofilm Conditions. Front Microbiol 2016; 7:291. [PMID: 27064218 PMCID: PMC4817314 DOI: 10.3389/fmicb.2016.00291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/23/2016] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is an important airway pathogen of cystic fibrosis and chronic obstructive disease patients. Multiply drug resistant PA is becoming increasing prevalent and new strategies are needed to combat such insidious organisms. We have previously shown that a mucoid, mucA22 mutant PA is exquisitely sensitive to acidified nitrite (A-NO2−, pH 6.5) at concentrations that are well tolerated in humans. Here, we used a transposon mutagenesis approach to identify PA mutants that are hypersensitive to A-NO2−. Among greater than 10,000 mutants screened, we focused on PA4455, in which the transposon was found to disrupt the production of a putative cytoplasmic membrane-spanning ABC transporter permease. The PA4455 mutant was not only highly sensitive to A-NO2−, but also the membrane perturbing agent, EDTA and the antibiotics doxycycline, tigecycline, colistin, and chloramphenicol, respectively. Treatment of bacteria with A-NO2− plus EDTA, however, had the most dramatic and synergistic effect, with virtually all bacteria killed by 10 mM A-NO2−, and EDTA (1 mM, aerobic, anaerobic). Most importantly, the PA4455 mutant was also sensitive to A-NO2− in biofilms. A-NO2− sensitivity and an anaerobic growth defect was also noted in two mutants (rmlC and wbpM) that are defective in B-band LPS synthesis, potentially indicating a membrane defect in the PA4455 mutant. Finally, this study describes a gene, PA4455, that when mutated, allows for dramatic sensitivity to the potential therapeutic agent, A-NO2− as well as EDTA. Furthermore, the synergy between the two compounds could offer future benefits against antibiotic resistant PA strains.
Collapse
Affiliation(s)
- Cameron McDaniel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Shengchang Su
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Warunya Panmanee
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Gee W Lau
- College of Veterinary Medicine, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Tristan Browne
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Kevin Cox
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Andrew T Paul
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Seung-Hyun B Ko
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Joel E Mortensen
- Diagnostic and Infectious Diseases Testing Laboratory, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Joseph S Lam
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Daniel A Muruve
- Department of Medicine, University of Calgary Calgary, AB, Canada
| | - Daniel J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of MedicineCincinnati, OH, USA; Department of Research Services, Cincinnati Veteran's Association Medical CenterCincinnati, OH, USA
| |
Collapse
|
32
|
Scoffield JA, Wu H. Nitrite reductase is critical for Pseudomonas aeruginosa survival during co-infection with the oral commensal Streptococcus parasanguinis. MICROBIOLOGY-SGM 2015; 162:376-383. [PMID: 26673783 DOI: 10.1099/mic.0.000226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pseudomonas aeruginosa is the major aetiological agent of chronic pulmonary infections in cystic fibrosis (CF) patients. However, recent evidence suggests that the polymicrobial community of the CF lung may also harbour oral streptococci, and colonization by these micro-organisms may have a negative impact on P. aeruginosa within the CF lung. Our previous studies demonstrated that nitrite abundance plays an important role in P. aeruginosa survival during co-infection with oral streptococci. Nitrite reductase is a key enzyme involved in nitrite metabolism. Therefore, the objective of this study was to examine the role nitrite reductase (gene nirS) plays in P. aeruginosa survival during co-infection with an oral streptococcus, Streptococcus parasanguinis. Inactivation of nirS in both the chronic CF isolate FRD1 and acute wound isolate PAO1 reduced the survival rate of P. aeruginosa when co-cultured with S. parasanguinis. Growth of both mutants was restored when co-cultured with S. parasanguinis that was defective for H2O2 production. Furthermore, the nitrite reductase mutant was unable to kill Drosophila melanogaster during co-infection with S. parasanguinis. Taken together, these results suggest that nitrite reductase plays an important role for survival of P. aeruginosa during co-infection with S. parasanguinis.
Collapse
Affiliation(s)
- Jessica A Scoffield
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hui Wu
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
33
|
Liu J, Pan T, You X, Xu Y, Liang J, Limpanont Y, Sun X, Okanurak K, Zheng H, Wu Z, Lv Z. SjCa8, a calcium-binding protein from Schistosoma japonicum, inhibits cell migration and suppresses nitric oxide release of RAW264.7 macrophages. Parasit Vectors 2015; 8:513. [PMID: 26445908 PMCID: PMC4597762 DOI: 10.1186/s13071-015-1119-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/28/2015] [Indexed: 11/10/2022] Open
Abstract
Background Schistosomiasis is considered second only to malaria as the most devastating parasitic disease in tropical countries. Schistosome cercariae invade the host by penetrating the skin and migrate though the lungs and portal circulation to their final destination in the hepatic portal system and eventually the mesenteric veins. Previous studies have shown that the cytotoxic pathways that target schistosomulum in the lung-stage involve nitric oxide (NO) produced by macrophages. By contrast, skin-stage schistosomulas can evade clearance, indicating that they might be freed from macrophage NO-mediated cytotoxicity to achieve immune evasion; however, the critical molecules and mechanisms involved remain unknown. Methods Recombinant SjCa8 (rSjCa8), an 8-kDa calcium-binding protein that is stage-specifically expressed in cercaria and early skin-stage schistosomulas of Schistosoma japonicum, was incubated with mouse RAW264.7 macrophages. Effects on macrophage proliferation were determined using Cell Counting Kit-8. Next, transwell assay was carried out to further investigate the role of rSjCa8 in macrophage migration. The effects of rSjCa8 on macrophage apoptosis were evaluated using confocal microscopy and flow cytometry. Additional impacts of rSjCa8 on NO release by lipopolysaccharide (LPS)-stimulated macrophages as well as the underlying mechanisms were explored using fluorescent probe, nitric oxide signaling pathway microarray, quantitative real-time PCR, mutagenesis, and neutralizing antibody approaches. Results rSjCa8 exhibited a striking inhibitory effect on macrophage migration, but did not markedly increase cell proliferation or apoptosis. Additionally, rSjCa8 potently inhibited NO release by LPS-stimulated macrophages in a dose- and time-dependent manner, and the inhibitory mechanism was closely associated with intracellular Ca2+ levels, the up-regulation of catalase expression, and the down-regulation of the expression of 47 genes, including Myc, Gadd45a, Txnip, Fas, Sod2, Nos2, and Hmgb1. Vaccination with rSjCa8 increased NO concentration in the challenging skin area of infected mice and reduced the number of migrated schistosomula after skin penetration by cercariae. Conclusions Our findings indicate that SjCa8 might be a novel molecule that plays a critical role in immune evasion by S. japonicum cercaria during the process of skin penetration. The inhibitory impacts of rSjCa8 on macrophage migration and [Ca2+]i-dependent NO release suggest it might represent a novel vaccine candidate and chemotherapeutic target for the prevention and treatment of schistosomiasis. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1119-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ji Liu
- Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Tong Pan
- Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xu You
- Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yiyue Xu
- Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Jinyi Liang
- Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Xi Sun
- Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Kamolnetr Okanurak
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Huanqin Zheng
- Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zhongdao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zhiyue Lv
- Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
34
|
Vázquez-Torres A, Bäumler AJ. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens. Curr Opin Microbiol 2015; 29:1-8. [PMID: 26426528 DOI: 10.1016/j.mib.2015.09.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 01/16/2023]
Abstract
The electrochemical gradient that ensues from the enzymatic activity of cytochromes such as nitrate reductase, nitric oxide reductase, and quinol oxidase contributes to the bioenergetics of the bacterial cell. Reduction of nitrogen oxides by bacterial pathogens can, however, be uncoupled from proton translocation and biosynthesis of ATP or NH4(+), but still linked to quinol and NADH oxidation. Ancestral nitric oxide reductases, as well as cytochrome c oxidases and quinol bo oxidases evolved from the former, are capable of binding and detoxifying nitric oxide to nitrous oxide. The NO-metabolizing activity associated with these cytochromes can be a sizable source of antinitrosative defense in bacteria during their associations with host cells. Nitrosylation of terminal cytochromes arrests respiration, reprograms bacterial metabolism, stimulates antioxidant defenses and alters antibiotic cytotoxicity. Collectively, the bioenergetics and regulation of redox homeostasis that accompanies the utilization of nitrogen oxides and detoxification of nitric oxide by cytochromes of the electron transport chain increases fitness of many Gram-positive and -negative pathogens during their associations with invertebrate and vertebrate hosts.
Collapse
Affiliation(s)
- Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States; Veterans Affairs Eastern Colorado Health Care System, Denver, CO, United States.
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, University of California Davis, School of Medicine, Davis, CA, United States.
| |
Collapse
|
35
|
Nurhasni H, Cao J, Choi M, Kim I, Lee BL, Jung Y, Yoo JW. Nitric oxide-releasing poly(lactic-co-glycolic acid)-polyethylenimine nanoparticles for prolonged nitric oxide release, antibacterial efficacy, and in vivo wound healing activity. Int J Nanomedicine 2015; 10:3065-80. [PMID: 25960648 PMCID: PMC4411019 DOI: 10.2147/ijn.s82199] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nitric oxide (NO)-releasing nanoparticles (NPs) have emerged as a wound healing enhancer and a novel antibacterial agent that can circumvent antibiotic resistance. However, the NO release from NPs over extended periods of time is still inadequate for clinical application. In this study, we developed NO-releasing poly(lactic-co-glycolic acid)-polyethylenimine (PEI) NPs (NO/PPNPs) composed of poly(lactic-co-glycolic acid) and PEI/diazeniumdiolate (PEI/NONOate) for prolonged NO release, antibacterial efficacy, and wound healing activity. Successful preparation of PEI/NONOate was confirmed by proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, and ultraviolet/visible spectrophotometry. NO/PPNPs were characterized by particle size, surface charge, and NO loading. The NO/PPNPs showed a prolonged NO release profile over 6 days without any burst release. The NO/PPNPs exhibited potent bactericidal efficacy against methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa concentration-dependently and showed the ability to bind on the surface of the bacteria. We also found that the NO released from the NO/PPNPs mediates bactericidal efficacy and is not toxic to healthy fibroblast cells. Furthermore, NO/PPNPs accelerated wound healing and epithelialization in a mouse model of a MRSA-infected wound. Therefore, our results suggest that the NO/PPNPs presented in this study could be a suitable approach for treating wounds and various skin infections.
Collapse
Affiliation(s)
- Hasan Nurhasni
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Jiafu Cao
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Moonjeong Choi
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Il Kim
- Department of Polymer Science and Engineering, Pusan National University, Busan, South Korea
| | - Bok Luel Lee
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, South Korea
| |
Collapse
|
36
|
Choi G, Hassett DJ, Choi S. A paper-based microbial fuel cell array for rapid and high-throughput screening of electricity-producing bacteria. Analyst 2015; 140:4277-83. [DOI: 10.1039/c5an00492f] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a 48-well, paper-based sensing platform was developed for the high-throughput and rapid characterization of the electricity-producing capability of microbes.
Collapse
Affiliation(s)
- Gihoon Choi
- Bioelectronics & Microsystems Laboratory
- Department of Electrical & Computer Engineering
- State University of New York-Binghamton
- Binghamton
- USA
| | - Daniel J. Hassett
- Department of Molecular Genetics
- Biochemistry and Microbiology
- University of Cincinnati College of Medicine
- Cincinnati
- USA
| | - Seokheun Choi
- Bioelectronics & Microsystems Laboratory
- Department of Electrical & Computer Engineering
- State University of New York-Binghamton
- Binghamton
- USA
| |
Collapse
|
37
|
Zemke AC, Shiva S, Burns JL, Moskowitz SM, Pilewski JM, Gladwin MT, Bomberger JM. Nitrite modulates bacterial antibiotic susceptibility and biofilm formation in association with airway epithelial cells. Free Radic Biol Med 2014; 77:307-16. [PMID: 25229185 PMCID: PMC4278422 DOI: 10.1016/j.freeradbiomed.2014.08.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/08/2014] [Accepted: 08/04/2014] [Indexed: 11/16/2022]
Abstract
Pseudomonas aeruginosa is the major pathogenic bacteria in cystic fibrosis and other forms of bronchiectasis. Growth in antibiotic-resistant biofilms contributes to the virulence of this organism. Sodium nitrite has antimicrobial properties and has been tolerated as a nebulized compound at high concentrations in human subjects with pulmonary hypertension; however, its effects have not been evaluated on biotic biofilms or in combination with other clinically useful antibiotics. We grew P. aeruginosa on the apical surface of primary human airway epithelial cells to test the efficacy of sodium nitrite against biotic biofilms. Nitrite alone prevented 99% of biofilm growth. We then identified significant cooperative interactions between nitrite and polymyxins. For P. aeruginosa growing on primary CF airway cells, combining nitrite and colistimethate resulted in an additional log of bacterial inhibition compared to treating with either agent alone. Nitrite and colistimethate additively inhibited oxygen consumption by P. aeruginosa. Surprisingly, whereas the antimicrobial effects of nitrite in planktonic, aerated cultures are nitric oxide (NO) dependent, antimicrobial effects under other growth conditions are not. The inhibitory effect of nitrite on bacterial oxygen consumption and biofilm growth did not require NO as an intermediate as chemically scavenging NO did not block growth inhibition. These data suggest an NO-radical independent nitrosative or oxidative inhibition of respiration. The combination of nebulized sodium nitrite and colistimethate may provide a novel therapy for chronic P. aeruginosa airway infections, because sodium nitrite, unlike other antibiotic respiratory chain "poisons," can be safely nebulized at high concentration in humans.
Collapse
Affiliation(s)
- Anna C Zemke
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Sruti Shiva
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jane L Burns
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Samuel M Moskowitz
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Mark T Gladwin
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Pittsburgh, PA 15219, USA
| | - Jennifer M Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
38
|
cbb3-type cytochrome c oxidases, aerobic respiratory enzymes, impact the anaerobic life of Pseudomonas aeruginosa PAO1. J Bacteriol 2014; 196:3881-9. [PMID: 25182494 DOI: 10.1128/jb.01978-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
For bacteria, many studies have focused on the role of respiratory enzymes in energy conservation; however, their effect on cell behavior is poorly understood. Pseudomonas aeruginosa can perform both aerobic respiration and denitrification. Previous studies demonstrated that cbb3-type cytochrome c oxidases that support aerobic respiration are more highly expressed in P. aeruginosa under anoxic conditions than are other aerobic respiratory enzymes. However, little is known about their role under such conditions. In this study, it was shown that cbb3 oxidases of P. aeruginosa PAO1 alter anaerobic growth, the denitrification process, and cell morphology under anoxic conditions. Furthermore, biofilm formation was promoted by the cbb3 oxidases under anoxic conditions. cbb3 oxidases led to the accumulation of nitric oxide (NO), which is produced during denitrification. Cell elongation induced by NO accumulation was reported to be required for robust biofilm formation of P. aeruginosa PAO1 under anoxic conditions. Our data show that cbb3 oxidases promote cell elongation by inducing NO accumulation during the denitrification process, which further leads to robust biofilms. Our findings show that cbb3 oxidases, which have been well studied as aerobic respiratory enzymes, are also involved in denitrification and influence the lifestyle of P. aeruginosa PAO1 under anoxic conditions.
Collapse
|
39
|
Involvement of stress-related genes polB and PA14_46880 in biofilm formation of Pseudomonas aeruginosa. Infect Immun 2014; 82:4746-57. [PMID: 25156741 DOI: 10.1128/iai.01915-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic infections of Pseudomonas aeruginosa are generally established through production of biofilm. During biofilm formation, production of an extracellular matrix and establishment of a distinct bacterial phenotype make these infections difficult to eradicate. However, biofilm studies have been hampered by the fact that most assays utilize nonliving surfaces as biofilm attachment substrates. In an attempt to better understand the mechanisms behind P. aeruginosa biofilm formation, we performed a genetic screen to identify novel factors involved in biofilm formation on biotic and abiotic surfaces. We found that deletion of genes polB and PA14_46880 reduced biofilm formation significantly compared to that in the wild-type strain PA14 in an abiotic biofilm system. In a biotic biofilm model, wherein biofilms form on cultured airway cells, the ΔpolB and ΔPA14_46880 strains showed increased cytotoxic killing of the airway cells independent of the total number of bacteria bound. Notably, deletion mutant strains were more resistant to ciprofloxacin treatment. This phenotype was linked to decreased expression of algR, an alginate transcriptional regulatory gene, under ciprofloxacin pressure. Moreover, we found that pyocyanin production was increased in planktonic cells of mutant strains. These results indicate that inactivation of polB and PA14_46880 may inhibit transition of P. aeruginosa from a more acute infection lifestyle to the biofilm phenotype. Future investigation of these genes may lead to a better understanding of P. aeruginosa biofilm formation and chronic biofilm infections.
Collapse
|