1
|
Oliveira Souza RO, Yang C, Arrizabalaga G. Myosin A and F-Actin play a critical role in mitochondrial dynamics and inheritance in Toxoplasma gondii. PLoS Pathog 2024; 20:e1012127. [PMID: 39374269 PMCID: PMC11486366 DOI: 10.1371/journal.ppat.1012127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 10/17/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
The single mitochondrion of the obligate intracellular parasite Toxoplasma gondii is highly dynamic. Toxoplasma's mitochondrion changes morphology as the parasite moves from the intracellular to the extracellular environment and during division. Toxoplasma's mitochondrial dynamic is dependent on an outer mitochondrion membrane-associated protein LMF1 and its interaction with IMC10, a protein localized at the inner membrane complex (IMC). In the absence of either LMF1 or IMC10, parasites have defective mitochondrial morphology and inheritance defects. As little is known about mitochondrial inheritance in Toxoplasma, we have used the LMF1/IMC10 tethering complex as an entry point to dissect the machinery behind this process. Using a yeast two-hybrid screen, we previously identified Myosin A (MyoA) as a putative interactor of LMF1. Although MyoA is known to be located at the parasite's pellicle, we now show through ultrastructure expansion microscopy (U-ExM) that this protein accumulates around the mitochondrion in the late stages of parasite division. Parasites lacking MyoA show defective mitochondrial morphology and a delay in mitochondrion delivery to the daughter parasite buds during division, indicating that this protein is involved in organellar inheritance. Disruption of the parasite's actin network also affects mitochondrion morphology. We also show that parasite-extracted mitochondrion vesicles interact with actin filaments. Interestingly, mitochondrion vesicles extracted out of parasites lacking LMF1 pulled down less actin, showing that LMF1 might be important for mitochondrion and actin interaction. Accordingly, we are showing for the first time that actin and Myosin A are important for Toxoplasma mitochondrial morphology and inheritance.
Collapse
Affiliation(s)
- Rodolpho Ornitz Oliveira Souza
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Chunlin Yang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
2
|
Kent RS, Ward GE. Motility-dependent processes in Toxoplasma gondii tachyzoites and bradyzoites: same same but different. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.28.615543. [PMID: 39386639 PMCID: PMC11463423 DOI: 10.1101/2024.09.28.615543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The tachyzoite stage of the apicomplexan parasite Toxoplasma gondii utilizes motility for multiple purposes during its lytic cycle, including host cell invasion, egress from infected cells, and migration to new uninfected host cells to repeat the process. Bradyzoite stage parasites, which establish a new infection in a naïve host, must also use motility to escape from the cysts that are ingested by the new host and then migrate to the gut wall, where they either invade cells of the intestinal epithelium or squeeze between these cells to infect the underlying connective tissue. We know very little about the motility of bradyzoites, which we analyze in detail here and compare to the well-characterized motility and motility-dependent processes of tachyzoites. Unexpectedly, bradyzoites were found to be as motile as tachyzoites in a 3D model extracellular matrix, and they showed increased invasion into and transmigration across certain cell types, consistent with their need to establish the infection in the gut. The motility of the two stages was inhibited to the same extent by cytochalasin D and KNX-002, compounds known to target the parasite's actomyosin-based motor. In contrast, other compounds that impact tachyzoite motility (tachyplegin and enhancer 5) have less of an effect on bradyzoites, and rapid bradyzoite egress from infected cells is not triggered by treatment with calcium ionophores, as it is with tachyzoites. The similarities and differences between these two life cycle stages highlight the need to characterize both tachyzoites and bradyzoites for a more complete understanding of the role of motility in the parasite life cycle and the effect that potential therapeutics targeting parasite motility will have on disease establishment and progression.
Collapse
Affiliation(s)
- Robyn S Kent
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA 05405
- 1041 BMSB, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190
| | - Gary E Ward
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA 05405
| |
Collapse
|
3
|
Ghosh A, Varshney A, Narwal SK, Nirdosh, Gupta R, Mishra S. The novel Plasmodium berghei protein S14 is essential for sporozoite gliding motility and infectivity. J Cell Sci 2024; 137:jcs261857. [PMID: 38832798 DOI: 10.1242/jcs.261857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Plasmodium sporozoites are the infective forms of the malaria parasite in the mosquito and vertebrate host. Gliding motility allows sporozoites to migrate and invade mosquito salivary glands and mammalian hosts. Motility and invasion are powered by an actin-myosin motor complex linked to the glideosome, which contains glideosome-associated proteins (GAPs), MyoA and the myosin A tail-interacting protein (MTIP). However, the role of several proteins involved in gliding motility remains unknown. We identified that the S14 gene is upregulated in sporozoite from transcriptome data of Plasmodium yoelii and further confirmed its transcription in P. berghei sporozoites using real-time PCR. C-terminal 3×HA-mCherry tagging revealed that S14 is expressed and localized on the inner membrane complex of the sporozoites. We disrupted S14 in P. berghei and demonstrated that it is essential for sporozoite gliding motility, and salivary gland and hepatocyte invasion. The gliding and invasion-deficient S14 knockout sporozoites showed normal expression and organization of inner membrane complex and surface proteins. Taken together, our data show that S14 plays a role in the function of the glideosome and is essential for malaria transmission.
Collapse
Affiliation(s)
- Ankit Ghosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Aastha Varshney
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sunil Kumar Narwal
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nirdosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Roshni Gupta
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Chen Z, Cheng S, Chen X, Zhang Z, Du Y. New advances in immune mechanism and treatment during ocular toxoplasmosis. Front Immunol 2024; 15:1403025. [PMID: 38799473 PMCID: PMC11116678 DOI: 10.3389/fimmu.2024.1403025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Ocular toxoplasmosis (OT) is an intraocular infection caused by the parasite Toxoplasma gondii. OT is manifested as retinal choroiditis and is the most common infectious cause of posterior uveitis. Invasion of the retina by T. gondii leads to disruption of the blood-ocular barrier and promotes the migration of immune cells to the ocular tissues. Cytokines such as IFN-γ and IL-1β are effective for controlling parasite growth, but excessive inflammatory responses can cause damage to the host. In this review, we will discuss in detail the latest advances in the immunopathology and treatment of OT.
Collapse
Affiliation(s)
- Zijian Chen
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Shizhou Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xiaoming Chen
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Zuhai Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Yanhua Du
- Physical Examination Department, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
5
|
Ornitz Oliveira Souza R, Yang C, Arrizabalaga G. Myosin A and F-Actin play a critical role in mitochondrial dynamics and inheritance in Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585462. [PMID: 38562694 PMCID: PMC10983951 DOI: 10.1101/2024.03.18.585462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The single mitochondrion of the obligate intracellular parasite Toxoplasma gondii is highly dynamic. Toxoplasma's mitochondrion changes morphology as the parasite moves from the intracellular to the extracellular environment and during division. Toxoplasma's mitochondrial dynamic is dependent on an outer mitochondrion membrane-associated protein LMF1 and its interaction with IMC10, a protein localized at the inner membrane complex (IMC). In the absence of either LMF1 or IMC10, parasites have defective mitochondrial morphology and inheritance defects. As little is known about mitochondrial inheritance in Toxoplasma, we have used the LMF1/IMC10 tethering complex as an entry point to dissect the machinery behind this process. Using a yeast two-hybrid screen, we previously identified Myosin A (MyoA) as a putative interactor of LMF1. Although MyoA is known to be located at the parasite's pellicle, we now show through ultrastructure expansion microscopy (U-ExM) that this protein accumulates around the mitochondrion in the late stages of parasite division. Parasites lacking MyoA show defective mitochondrial morphology and a delay in mitochondrion delivery to the daughter parasite buds during division, indicating that this protein is involved in organellar inheritance. Disruption of the parasite's actin network also affects mitochondrion morphology. We also show that parasite-extracted mitochondrion vesicles interact with actin filaments. Interestingly, mitochondrion vesicles extracted out of parasites lacking LMF1 pulled down less actin, showing that LMF1 might be important for mitochondrion and actin interaction. Accordingly, we are showing for the first time that actin and Myosin A are important for Toxoplasma mitochondrial morphology and inheritance.
Collapse
Affiliation(s)
| | - Chunlin Yang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
| |
Collapse
|
6
|
He L, Qiu Y, Pang G, Li S, Wang J, Feng Y, Chen L, Zhu L, Liu Y, Cui L, Cao Y, Zhu X. Plasmodium falciparum GAP40 Plays an Essential Role in Merozoite Invasion and Gametocytogenesis. Microbiol Spectr 2023; 11:e0143423. [PMID: 37249423 PMCID: PMC10269477 DOI: 10.1128/spectrum.01434-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Cyclic invasion of red blood cells (RBCs) by Plasmodium merozoites is associated with the symptoms and pathology of malaria. Merozoite invasion is powered actively and rapidly by a parasite actomyosin motor called the glideosome. The ability of the glideosome to generate force to support merozoite entry into the host RBCs is thought to rely on its stable anchoring within the inner membrane complex (IMC) through membrane-resident proteins, such as GAP50 and GAP40. Using a conditional knockdown (KD) approach, we determined that PfGAP40 was required for asexual blood-stage replication. PfGAP40 is not needed for merozoite egress from host RBCs or for the attachment of merozoites to new RBCs. PfGAP40 coprecipitates with PfGAP45 and PfGAP50. During merozoite invasion, PfGAP40 is associated strongly with stabilizing the expression levels of PfGAP45 and PfGAP50 in the schizont stage. Although PfGAP40 KD did not influence IMC integrity, it impaired the maturation of gametocytes. In addition, PfGAP40 is phosphorylated, and mutations that block phosphorylation of PfGAP40 at the C-terminal serine residues S370, S372, S376, S405, S409, S420, and S445 reduced merozoite invasion efficiency. Overall, our findings implicate PfGAP40 as an important regulator for the gliding activity of merozoites and suggest that phosphorylation is required for PfGAP40 function. IMPORTANCE Red blood cell invasion is central to the pathogenesis of the malaria parasite, and the parasite proteins involved in this process are potential therapeutic targets. Gliding motility powers merozoite invasion and is driven by a unique molecular motor termed the glideosome. The glideosome is stably anchored to the parasite inner membrane complex (IMC) through membrane-resident proteins. In the present study, we demonstrate the importance of an IMC-resident glideosome component, PfGAP40, that plays a critical role in stabilizing the expression levels of glideosome components in the schizont stage. We determined that phosphorylation of PfGAP40 at C-terminal residues is required for efficient merozoite invasion.
Collapse
Affiliation(s)
- Lu He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yue Qiu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Geping Pang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Siqi Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jingjing Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yonghui Feng
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
- National Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Lumeng Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Liying Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yinjie Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Liwang Cui
- College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Kelsen A, Kent RS, Snyder AK, Wehri E, Bishop SJ, Stadler RV, Powell C, Martorelli di Genova B, Rompikuntal PK, Boulanger MJ, Warshaw DM, Westwood NJ, Schaletzky J, Ward GE. MyosinA is a druggable target in the widespread protozoan parasite Toxoplasma gondii. PLoS Biol 2023; 21:e3002110. [PMID: 37155705 PMCID: PMC10185354 DOI: 10.1371/journal.pbio.3002110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/15/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Toxoplasma gondii is a widespread apicomplexan parasite that can cause severe disease in its human hosts. The ability of T. gondii and other apicomplexan parasites to invade into, egress from, and move between cells of the hosts they infect is critical to parasite virulence and disease progression. An unusual and highly conserved parasite myosin motor (TgMyoA) plays a central role in T. gondii motility. The goal of this work was to determine whether the parasite's motility and lytic cycle can be disrupted through pharmacological inhibition of TgMyoA, as an approach to altering disease progression in vivo. To this end, we first sought to identify inhibitors of TgMyoA by screening a collection of 50,000 structurally diverse small molecules for inhibitors of the recombinant motor's actin-activated ATPase activity. The top hit to emerge from the screen, KNX-002, inhibited TgMyoA with little to no effect on any of the vertebrate myosins tested. KNX-002 was also active against parasites, inhibiting parasite motility and growth in culture in a dose-dependent manner. We used chemical mutagenesis, selection in KNX-002, and targeted sequencing to identify a mutation in TgMyoA (T130A) that renders the recombinant motor less sensitive to compound. Compared to wild-type parasites, parasites expressing the T130A mutation showed reduced sensitivity to KNX-002 in motility and growth assays, confirming TgMyoA as a biologically relevant target of KNX-002. Finally, we present evidence that KNX-002 can slow disease progression in mice infected with wild-type parasites, but not parasites expressing the resistance-conferring TgMyoA T130A mutation. Taken together, these data demonstrate the specificity of KNX-002 for TgMyoA, both in vitro and in vivo, and validate TgMyoA as a druggable target in infections with T. gondii. Since TgMyoA is essential for virulence, conserved in apicomplexan parasites, and distinctly different from the myosins found in humans, pharmacological inhibition of MyoA offers a promising new approach to treating the devastating diseases caused by T. gondii and other apicomplexan parasites.
Collapse
Affiliation(s)
- Anne Kelsen
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Anne K. Snyder
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Eddie Wehri
- Center for Emerging and Neglected Diseases, University of California Berkeley, California, United States of America
| | - Stephen J. Bishop
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Rachel V. Stadler
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Cameron Powell
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Bruno Martorelli di Genova
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Pramod K. Rompikuntal
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Nicholas J. Westwood
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Julia Schaletzky
- Center for Emerging and Neglected Diseases, University of California Berkeley, California, United States of America
| | - Gary E. Ward
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| |
Collapse
|
8
|
Singer M, Simon K, Forné I, Meissner M. A central CRMP complex essential for invasion in Toxoplasma gondii. PLoS Biol 2023; 21:e3001937. [PMID: 36602948 PMCID: PMC9815656 DOI: 10.1371/journal.pbio.3001937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Apicomplexa are obligate intracellular parasites. While most species are restricted to specific hosts and cell types, Toxoplasma gondii can invade every nucleated cell derived from warm-blooded animals. This broad host range suggests that this parasite can recognize multiple host cell ligands or structures, leading to the activation of a central protein complex, which should be conserved in all apicomplexans. During invasion, the unique secretory organelles (micronemes and rhoptries) are sequentially released and several micronemal proteins have been suggested to be required for host cell recognition and invasion. However, to date, only few micronemal proteins have been demonstrated to be essential for invasion, suggesting functional redundancy that might allow such a broad host range. Cysteine Repeat Modular Proteins (CRMPs) are a family of apicomplexan-specific proteins. In T. gondii, two CRMPs are present in the genome, CRMPA (TGGT1_261080) and CRMPB (TGGT1_292020). Here, we demonstrate that both proteins form a complex that contains the additional proteins MIC15 and the thrombospondin type 1 domain-containing protein (TSP1). Disruption of this complex results in a block of rhoptry secretion and parasites being unable to invade the host cell. In conclusion, this complex is a central invasion complex conserved in all apicomplexans.
Collapse
Affiliation(s)
- Mirko Singer
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig-Maximilians-University (LMU) Munich, Germany
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- * E-mail: (MS); (MM)
| | - Kathrin Simon
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig-Maximilians-University (LMU) Munich, Germany
| | - Ignasi Forné
- Faculty of Medicine, Protein Analysis Unit, Biomedical Center (BMC), Ludwig-Maximilians-University (LMU) Munich, Martinsried, Germany
| | - Markus Meissner
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig-Maximilians-University (LMU) Munich, Germany
- * E-mail: (MS); (MM)
| |
Collapse
|
9
|
Kehrer J, Formaglio P, Muthinja JM, Weber S, Baltissen D, Lance C, Ripp J, Grech J, Meissner M, Funaya C, Amino R, Frischknecht F. Plasmodium
sporozoite disintegration during skin passage limits malaria parasite transmission. EMBO Rep 2022; 23:e54719. [PMID: 35403820 PMCID: PMC9253755 DOI: 10.15252/embr.202254719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022] Open
Abstract
During transmission of malaria‐causing parasites from mosquitoes to mammals, Plasmodium sporozoites migrate rapidly in the skin to search for a blood vessel. The high migratory speed and narrow passages taken by the parasites suggest considerable strain on the sporozoites to maintain their shape. Here, we show that the membrane‐associated protein, concavin, is important for the maintenance of the Plasmodium sporozoite shape inside salivary glands of mosquitoes and during migration in the skin. Concavin‐GFP localizes at the cytoplasmic periphery and concavin(−) sporozoites progressively round up upon entry of salivary glands. Rounded concavin(−) sporozoites fail to pass through the narrow salivary ducts and are rarely ejected by mosquitoes, while normally shaped concavin(−) sporozoites are transmitted. Strikingly, motile concavin(−) sporozoites disintegrate while migrating through the skin leading to parasite arrest or death and decreased transmission efficiency. Collectively, we suggest that concavin contributes to cell shape maintenance by riveting the plasma membrane to the subtending inner membrane complex. Interfering with cell shape maintenance pathways might hence provide a new strategy to prevent a malaria infection.
Collapse
Affiliation(s)
- Jessica Kehrer
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
- Infectious Diseases Imaging Platform Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Pauline Formaglio
- Malaria Infection and Immunity Unit Department of Parasites and Insect Vectors Institut Pasteur Paris France
| | - Julianne Mendi Muthinja
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Sebastian Weber
- Electron Microscopy Core Facility Heidelberg University Heidelberg Germany
| | - Danny Baltissen
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Christopher Lance
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Johanna Ripp
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Janessa Grech
- Experimental Parasitology Ludwig Maximilian University Munich Planegg‐Martinsried Germany
| | - Markus Meissner
- Experimental Parasitology Ludwig Maximilian University Munich Planegg‐Martinsried Germany
| | - Charlotta Funaya
- Electron Microscopy Core Facility Heidelberg University Heidelberg Germany
| | - Rogerio Amino
- Malaria Infection and Immunity Unit Department of Parasites and Insect Vectors Institut Pasteur Paris France
| | - Friedrich Frischknecht
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg Heidelberg Germany
| |
Collapse
|
10
|
Ripp J, Smyrnakou X, Neuhoff M, Hentzschel F, Frischknecht F. Phosphorylation of myosin A regulates gliding motility and is essential for
Plasmodium
transmission. EMBO Rep 2022; 23:e54857. [PMID: 35506479 PMCID: PMC9253774 DOI: 10.15252/embr.202254857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Malaria‐causing parasites rely on an actin–myosin‐based motor for the invasion of different host cells and tissue traversal in mosquitoes and vertebrates. The unusual myosin A of Plasmodium spp. has a unique N‐terminal extension, which is important for red blood cell invasion by P. falciparum merozoites in vitro and harbors a phosphorylation site at serine 19. Here, using the rodent‐infecting P. berghei we show that phosphorylation of serine 19 increases ookinete but not sporozoite motility and is essential for efficient transmission of Plasmodium by mosquitoes as S19A mutants show defects in mosquito salivary gland entry. S19A along with E6R mutations slow ookinetes and salivary gland sporozoites in both 2D and 3D environments. In contrast to data from purified proteins, both E6R and S19D mutations lower force generation by sporozoites. Our data show that the phosphorylation cycle of S19 influences parasite migration and force generation and is critical for optimal migration of parasites during transmission from and to the mosquito.
Collapse
Affiliation(s)
- Johanna Ripp
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
| | - Xanthoula Smyrnakou
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
| | - Marie‐Therese Neuhoff
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
| | - Franziska Hentzschel
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
- German Center for Infection Research DZIF Partner Site Heidelberg Heidelberg Germany
| | - Friedrich Frischknecht
- Integrative Parasitology Center for Infectious Diseases University of Heidelberg Medical School Heidelberg Germany
- German Center for Infection Research DZIF Partner Site Heidelberg Heidelberg Germany
| |
Collapse
|
11
|
Boisard J, Duvernois-Berthet E, Duval L, Schrével J, Guillou L, Labat A, Le Panse S, Prensier G, Ponger L, Florent I. Marine gregarine genomes reveal the breadth of apicomplexan diversity with a partially conserved glideosome machinery. BMC Genomics 2022; 23:485. [PMID: 35780080 PMCID: PMC9250747 DOI: 10.1186/s12864-022-08700-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/13/2022] [Indexed: 12/29/2022] Open
Abstract
Our current view of the evolutionary history, coding and adaptive capacities of Apicomplexa, protozoan parasites of a wide range of metazoan, is currently strongly biased toward species infecting humans, as data on early diverging apicomplexan lineages infecting invertebrates is extremely limited. Here, we characterized the genome of the marine eugregarine Porospora gigantea, intestinal parasite of Lobsters, remarkable for the macroscopic size of its vegetative feeding forms (trophozoites) and its gliding speed, the fastest so far recorded for Apicomplexa. Two highly syntenic genomes named A and B were assembled. Similar in size (~ 9 Mb) and coding capacity (~ 5300 genes), A and B genomes are 10.8% divergent at the nucleotide level, corresponding to 16-38 My in divergent time. Orthogroup analysis across 25 (proto)Apicomplexa species, including Gregarina niphandrodes, showed that A and B are highly divergent from all other known apicomplexan species, revealing an unexpected breadth of diversity. Phylogenetically these two species branch sisters to Cephaloidophoroidea, and thus expand the known crustacean gregarine superfamily. The genomes were mined for genes encoding proteins necessary for gliding, a key feature of apicomplexans parasites, currently studied through the molecular model called glideosome. Sequence analysis shows that actin-related proteins and regulatory factors are strongly conserved within apicomplexans. In contrast, the predicted protein sequences of core glideosome proteins and adhesion proteins are highly variable among apicomplexan lineages, especially in gregarines. These results confirm the importance of studying gregarines to widen our biological and evolutionary view of apicomplexan species diversity, and to deepen our understanding of the molecular bases of key functions such as gliding, well known to allow access to the intracellular parasitic lifestyle in Apicomplexa.
Collapse
Affiliation(s)
- Julie Boisard
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France. .,Département Adaptations du Vivant (AVIV), Structure et instabilité des génomes (STRING UMR 7196 CNRS/INSERM U1154), Muséum National d'Histoire Naturelle, CNRS, INSERM, CP 26, 57 rue Cuvier, 75231 Cedex 05, Paris, France. .,Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.
| | - Evelyne Duvernois-Berthet
- Département Adaptations du Vivant (AVIV), Physiologie Moléculaire et Adaptation (PhyMA UMR 7221 CNRS), Muséum national d'Histoire naturelle, CNRS, CP 32, 7 rue Cuvier, 75005, Paris, France
| | - Linda Duval
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France
| | - Joseph Schrével
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France
| | - Laure Guillou
- CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, Sorbonne Université, 29680, Roscoff, France
| | - Amandine Labat
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France
| | - Sophie Le Panse
- Plateforme d'Imagerie Merimage, FR2424, Centre National de la Recherche Scientifique, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Gérard Prensier
- Cell biology and Electron Microscopy Laboratory, François Rabelais University, 10 Boulevard Tonnellé, 3223 Cedex, Tours, BP, France
| | - Loïc Ponger
- Département Adaptations du Vivant (AVIV), Structure et instabilité des génomes (STRING UMR 7196 CNRS/INSERM U1154), Muséum National d'Histoire Naturelle, CNRS, INSERM, CP 26, 57 rue Cuvier, 75231 Cedex 05, Paris, France.
| | - Isabelle Florent
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France.
| |
Collapse
|
12
|
Li W, Grech J, Stortz JF, Gow M, Periz J, Meissner M, Jimenez-Ruiz E. A splitCas9 phenotypic screen in Toxoplasma gondii identifies proteins involved in host cell egress and invasion. Nat Microbiol 2022; 7:882-895. [PMID: 35538310 DOI: 10.1038/s41564-022-01114-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Abstract
Apicomplexan parasites, such as Toxoplasma gondii, have specific adaptations that enable invasion and exit from the host cell. Owing to the phylogenetic distance between apicomplexan parasites and model organisms, comparative genomics has limited capacity to infer gene functions. Further, although CRISPR/Cas9-based screens have assigned roles to some Toxoplasma genes, the functions of encoded proteins have proven difficult to assign. To overcome this problem, we devised a conditional Cas9-system in T. gondii that enables phenotypic screens. Using an indicator strain for F-actin dynamics and apicoplast segregation, we screened 320 genes to identify those required for defined steps in the asexual life cycle. The detailed characterization of two genes identified in our screen, through the generation of conditional knockout parasites using the DiCre-system, revealed that signalling linking factor (SLF) is an integral part of a signalling complex required for early induction of egress, and a novel conoid protein (conoid gliding protein, CGP) functions late during egress and is required for the activation of gliding motility. Establishing different indicator lines and applying our conditional Cas9 screen could enable the identification of genes involved in organellar biogenesis, parasite replication or maintenance of the endosymbiotic organelles in the future.
Collapse
Affiliation(s)
- Wei Li
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany
| | - Janessa Grech
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany
| | - Johannes Felix Stortz
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK.,Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Matthew Gow
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany
| | - Javier Periz
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany
| | - Markus Meissner
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany. .,Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK.
| | - Elena Jimenez-Ruiz
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany.
| |
Collapse
|
13
|
Stadler RV, Nelson SR, Warshaw DM, Ward GE. A circular zone of attachment to the extracellular matrix provides directionality to the motility of Toxoplasma gondii in 3D. eLife 2022; 11:85171. [PMID: 36519527 PMCID: PMC9839348 DOI: 10.7554/elife.85171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Toxoplasma gondii is a protozoan parasite that infects 30-40% of the world's population. Infections are typically subclinical but can be severe and, in some cases, life threatening. Central to the virulence of T. gondii is an unusual form of substrate-dependent motility that enables the parasite to invade cells of its host and to disseminate throughout the body. A hetero-oligomeric complex of proteins that functions in motility has been characterized, but how these proteins work together to drive forward motion of the parasite remains controversial. A key piece of information needed to understand the underlying mechanism(s) is the directionality of the forces that a moving parasite exerts on the external environment. The linear motor model of motility, which has dominated the field for the past two decades, predicts continuous anterior-to-posterior force generation along the length of the parasite. We show here using three-dimensional traction force mapping that the predominant forces exerted by a moving parasite are instead periodic and directed in toward the parasite at a fixed circular location within the extracellular matrix. These highly localized forces, which are generated by the parasite pulling on the matrix, create a visible constriction in the parasite's plasma membrane. We propose that the ring of inward-directed force corresponds to a circumferential attachment zone between the parasite and the matrix, through which the parasite propels itself to move forward. The combined data suggest a closer connection between the mechanisms underlying parasite motility and host cell invasion than previously recognized. In parasites lacking the major surface adhesin, TgMIC2, neither the inward-directed forces nor the constriction of the parasite membrane are observed. The trajectories of the TgMIC2-deficient parasites are less straight than those of wild-type parasites, suggesting that the annular zone of TgMIC2-mediated attachment to the extracellular matrix normally constrains the directional options available to the parasite as it migrates through its surrounding environment.
Collapse
Affiliation(s)
- Rachel V Stadler
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of MedicineBurlingtonUnited States
| | - Shane R Nelson
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of MedicineBurlingtonUnited States
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of MedicineBurlingtonUnited States
| | - Gary E Ward
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of MedicineBurlingtonUnited States
| |
Collapse
|
14
|
Saini E, Sheokand PK, Sharma V, Agrawal P, Kaur I, Singh S, Mohmmed A, Malhotra P. Plasmodium falciparum PhIL1-associated complex plays an essential role in merozoite reorientation and invasion of host erythrocytes. PLoS Pathog 2021; 17:e1009750. [PMID: 34324609 PMCID: PMC8321122 DOI: 10.1371/journal.ppat.1009750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
The human malaria parasite, Plasmodium falciparum possesses unique gliding machinery referred to as the glideosome that powers its entry into the insect and vertebrate hosts. Several parasite proteins including Photosensitized INA-labelled protein 1 (PhIL1) have been shown to associate with glideosome machinery. Here we describe a novel PhIL1 associated protein complex that co-exists with the glideosome motor complex in the inner membrane complex of the merozoite. Using an experimental genetics approach, we characterized the role(s) of three proteins associated with PhIL1: a glideosome associated protein- PfGAPM2, an IMC structural protein- PfALV5, and an uncharacterized protein—referred here as PfPhIP (PhIL1 Interacting Protein). Parasites lacking PfPhIP or PfGAPM2 were unable to invade host RBCs. Additionally, the downregulation of PfPhIP resulted in significant defects in merozoite segmentation. Furthermore, the PfPhIP and PfGAPM2 depleted parasites showed abrogation of reorientation/gliding. However, initial attachment with host RBCs was not affected in these parasites. Together, the data presented here show that proteins of the PhIL1-associated complex play an important role in the orientation of P. falciparum merozoites following initial attachment, which is crucial for the formation of a tight junction and hence invasion of host erythrocytes. Invasion of Plasmodium merozoites into RBCs is a multistep process that involves initial attachment of merozoites to the RBC surface, their reorientation, and subsequent gliding into RBCs using glideosome machinery. The glideosome machinery lies between the plasma membrane and inner membrane complex (IMC) and consists of MyoA, its interacting protein; MTIP, gliding associated proteins (GAPs), and a Photosensitized INA labeled protein (PhIL1)-associated protein complex. Here, we demonstrate that the deletion of any of two components of the PhIL1-associated complex, PfPhIP or PfGAPM2, aborts merozoite reorientation and blocks their invasion into RBCs. The study thus provides new molecular and mechanistic insights into merozoite invasion of RBCs.
Collapse
Affiliation(s)
- Ekta Saini
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Vaibhav Sharma
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prakhar Agrawal
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Inderjeet Kaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail: (AM); (PM)
| | - Pawan Malhotra
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail: (AM); (PM)
| |
Collapse
|
15
|
Blocking Palmitoylation of Toxoplasma gondii Myosin Light Chain 1 Disrupts Glideosome Composition but Has Little Impact on Parasite Motility. mSphere 2021; 6:6/3/e00823-20. [PMID: 34011689 PMCID: PMC8265671 DOI: 10.1128/msphere.00823-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma gondii is a widespread apicomplexan parasite that causes severe disease in immunocompromised individuals and the developing fetus. Like other apicomplexans, T. gondii uses an unusual form of substrate-dependent gliding motility to invade cells of its hosts and to disseminate throughout the body during infection. It is well established that a myosin motor consisting of a class XIVa heavy chain (TgMyoA) and two light chains (TgMLC1 and TgELC1/2) plays an important role in parasite motility. The ability of the motor to generate force at the parasite periphery is thought to be reliant upon its anchoring and immobilization within a peripheral membrane-bound compartment, the inner membrane complex (IMC). The motor does not insert into the IMC directly; rather, this interaction is believed to be mediated by the binding of TgMLC1 to the IMC-anchored protein, TgGAP45. Therefore, the binding of TgMLC1 to TgGAP45 is considered a key element in the force transduction machinery of the parasite. TgMLC1 is palmitoylated, and we show here that palmitoylation occurs on two N-terminal cysteine residues, C8 and C11. Mutations that block TgMLC1 palmitoylation completely abrogate the binding of TgMLC1 to TgGAP45. Surprisingly, the loss of TgMLC1 binding to TgGAP45 in these mutant parasites has little effect on their ability to initiate or sustain movement. These results question a key tenet of the current model of apicomplexan motility and suggest that our understanding of gliding motility in this important group of human and animal pathogens is not yet complete. IMPORTANCE Gliding motility plays a central role in the life cycle of T. gondii and other apicomplexan parasites. The myosin motor thought to power motility is essential for virulence but distinctly different from the myosins found in humans. Consequently, an understanding of the mechanism(s) underlying parasite motility and the role played by this unusual myosin may reveal points of vulnerability that can be targeted for disease prevention or treatment. We show here that mutations that uncouple the motor from what is thought to be a key structural component of the motility machinery have little impact on parasite motility. This finding runs counter to predictions of the current, widely held “linear motor” model of motility, highlighting the need for further studies to fully understand how apicomplexan parasites generate the forces necessary to move into, out of, and between cells of the hosts they infect.
Collapse
|
16
|
Das S, Stortz JF, Meissner M, Periz J. The multiple functions of actin in apicomplexan parasites. Cell Microbiol 2021; 23:e13345. [PMID: 33885206 DOI: 10.1111/cmi.13345] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
The cytoskeletal protein actin is highly abundant and conserved in eukaryotic cells. It occurs in two different states- the globular (G-actin) form, which can polymerise into the filamentous (F-actin) form, fulfilling various critical functions including cytokinesis, cargo trafficking and cellular motility. In higher eukaryotes, there are several actin isoforms with nearly identical amino acid sequences. Despite the high level of amino acid identity, they display regulated expression patterns and unique non-redundant roles. The number of actin isoforms together with conserved sequences may reflect the selective pressure exerted by scores of actin binding proteins (ABPs) in higher eukaryotes. In contrast, in many protozoans such as apicomplexan parasites which possess only a few ABPs, the regulatory control of actin and its multiple functions are still obscure. Here, we provide a summary of the regulation and biological functions of actin in higher eukaryotes and compare it with the current knowledge in apicomplexans. We discuss future experiments that will help us understand the multiple, critical roles of this fascinating system in apicomplexans.
Collapse
Affiliation(s)
- Sujaan Das
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| | - Johannes Felix Stortz
- Department Metabolism of Infection, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Markus Meissner
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| | - Javier Periz
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
17
|
Cruz-Mirón R, Ramírez-Flores CJ, Lagunas-Cortés N, Mondragón-Castelán M, Ríos-Castro E, González-Pozos S, Aguirre-García MM, Mondragón-Flores R. Proteomic characterization of the pellicle of Toxoplasma gondii. J Proteomics 2021; 237:104146. [PMID: 33588107 DOI: 10.1016/j.jprot.2021.104146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 01/09/2023]
Abstract
Toxoplasma gondii is one of the most successful intracellular parasites in the world. The dynamic, adhesion, invasion, and even replication capabilities of Toxoplasma are based on dynamic machinery located in the pellicle, a three membrane complex that surrounds the parasite. Among the proteins that carry out these processes are inner membrane complex (IMC) proteins, gliding-associated proteins (GAP), diverse myosins, actin, tubulin, and SRS proteins. Despite the importance of the pellicle, the knowledge of its composition is limited. Broad protein identification from an enriched pellicle fraction was obtained by independent digestion with trypsin and chymotrypsin and quantified by mass spectrometry. By trypsin digestion, 548 proteins were identified, while by chymotrypsin digestion, additional 22 proteins were identified. Besides, a group of "sequences related to SAG1" proteins (SRS) were detected together with unidentified new proteins. From identified SRS proteins, SRS51 was chosen for analysis and modeling as its similarities with crystallized adhesion proteins, exhibiting the presence of a spatial groove that is apparently involved in adhesion and cell invasion. As SRS proteins have been reported to be involved in the activation of the host's immune response, further studies could consider them as targets in the design of vaccines or of drugs against Toxoplasma. SIGNIFICANCE: To date, the proteomic composition of the pellicle of Toxoplasma is unknown. Most proteins reported in Toxoplasma pellicle have been poorly studied, and many others remain unidentified. Herein, a group of new SRS proteins is described. Some SRS proteins previously described from pellicle fraction have adhesion properties to the host cell membrane, so their study would provide data related to invasion mechanism and to open possibilities for considering them as targets in the design of immunoprotective strategies or the design of new pharmacological treatments.
Collapse
Affiliation(s)
- Rosalba Cruz-Mirón
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | - Carlos J Ramírez-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Noé Lagunas-Cortés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | - Mónica Mondragón-Castelán
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | | | | | - M Magdalena Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Ricardo Mondragón-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico.
| |
Collapse
|
18
|
Pazicky S, Dhamotharan K, Kaszuba K, Mertens HDT, Gilberger T, Svergun D, Kosinski J, Weininger U, Löw C. Structural role of essential light chains in the apicomplexan glideosome. Commun Biol 2020; 3:568. [PMID: 33051581 PMCID: PMC7555893 DOI: 10.1038/s42003-020-01283-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 09/11/2020] [Indexed: 01/18/2023] Open
Abstract
Gliding, a type of motility based on an actin-myosin motor, is specific to apicomplexan parasites. Myosin A binds two light chains which further interact with glideosome associated proteins and assemble into the glideosome. The role of individual glideosome proteins is unclear due to the lack of structures of larger glideosome assemblies. Here, we investigate the role of essential light chains (ELCs) in Toxoplasma gondii and Plasmodium falciparum and present their crystal structures as part of trimeric sub-complexes. We show that although ELCs bind a conserved MyoA sequence, P. falciparum ELC adopts a distinct structure in the free and MyoA-bound state. We suggest that ELCs enhance MyoA performance by inducing secondary structure in MyoA and thus stiffen its lever arm. Structural and biophysical analysis reveals that calcium binding has no influence on the structure of ELCs. Our work represents a further step towards understanding the mechanism of gliding in Apicomplexa.
Collapse
Affiliation(s)
- Samuel Pazicky
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607, Hamburg, Germany
- Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Karthikeyan Dhamotharan
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607, Hamburg, Germany
- Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Karol Kaszuba
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607, Hamburg, Germany
- Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Haydyn D T Mertens
- Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Tim Gilberger
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, D-20359, Hamburg, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| | - Dmitri Svergun
- Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Jan Kosinski
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607, Hamburg, Germany
- Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Ulrich Weininger
- Martin-Luther-University Halle-Wittenberg, Institute of Physics, Biophysics, D-06120, Halle (Saale), Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607, Hamburg, Germany.
- Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany.
| |
Collapse
|
19
|
The Riveting Cellular Structures of Apicomplexan Parasites. Trends Parasitol 2020; 36:979-991. [PMID: 33011071 DOI: 10.1016/j.pt.2020.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Parasitic protozoa of the phylum Apicomplexa cause a range of human and animal diseases. Their complex life cycles - often heteroxenous with sexual and asexual phases in different hosts - rely on elaborate cytoskeletal structures to enable morphogenesis and motility, organize cell division, and withstand diverse environmental forces. This review primarily focuses on studies using Toxoplasma gondii and Plasmodium spp. as the best studied apicomplexans; however, many cytoskeletal adaptations are broadly conserved and predate the emergence of the parasitic phylum. After decades cataloguing the constituents of such structures, a dynamic picture is emerging of the assembly and maintenance of apicomplexan cytoskeletons, illuminating how they template and orient critical processes during infection. These observations impact our view of eukaryotic diversity and offer future challenges for cell biology.
Collapse
|
20
|
Pavlou G, Touquet B, Vigetti L, Renesto P, Bougdour A, Debarre D, Balland M, Tardieux I. Coupling Polar Adhesion with Traction, Spring, and Torque Forces Allows High-Speed Helical Migration of the Protozoan Parasite Toxoplasma. ACS NANO 2020; 14:7121-7139. [PMID: 32432851 DOI: 10.1021/acsnano.0c01893] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Among the eukaryotic cells that navigate through fully developed metazoan tissues, protozoans from the Apicomplexa phylum have evolved motile developmental stages that move much faster than the fastest crawling cells owing to a peculiar substrate-dependent type of motility, known as gliding. Best-studied models are the Plasmodium sporozoite and the Toxoplasma tachyzoite polarized cells for which motility is vital to achieve their developmental programs in the metazoan hosts. The gliding machinery is shared between the two parasites and is largely characterized. Localized beneath the cell surface, it includes actin filaments, unconventional myosin motors housed within a multimember glideosome unit, and apically secreted transmembrane adhesins. In contrast, less is known about the force mechanisms powering cell movement. Pioneered biophysical studies on the sporozoite and phenotypic analysis of tachyzoite actin-related mutants have added complexity to the general view that force production for parasite forward movement directly results from the myosin-driven rearward motion of the actin-coupled adhesion sites. Here, we have interrogated how forces and substrate adhesion-de-adhesion cycles operate and coordinate to allow the typical left-handed helical gliding mode of the tachyzoite. By combining quantitative traction force and reflection interference microscopy with micropatterning and expansion microscopy, we unveil at the millisecond and nanometer scales the integration of a critical apical anchoring adhesion with specific traction and spring-like forces. We propose that the acto-myoA motor directs the traction force which allows transient energy storage by the microtubule cytoskeleton and therefore sets the thrust force required for T. gondii tachyzoite vital helical gliding capacity.
Collapse
Affiliation(s)
- Georgios Pavlou
- Institute for Advanced Biosciences (IAB), Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, 38700 Grenoble, France
| | - Bastien Touquet
- Institute for Advanced Biosciences (IAB), Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, 38700 Grenoble, France
| | - Luis Vigetti
- Institute for Advanced Biosciences (IAB), Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, 38700 Grenoble, France
| | - Patricia Renesto
- Institute for Advanced Biosciences (IAB), Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, 38700 Grenoble, France
- TIMC-IMAG UMR 5525 - UGA CNRS, 38700 Grenoble, France
| | - Alexandre Bougdour
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions & Immunity to Infections, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, 38700 Grenoble, France
| | - Delphine Debarre
- Laboratoire Interdisciplinaire de Physique, UMR CNRS, 5588, Université Grenoble Alpes, Grenoble 38402, France
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, UMR CNRS, 5588, Université Grenoble Alpes, Grenoble 38402, France
| | - Isabelle Tardieux
- Institute for Advanced Biosciences (IAB), Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, 38700 Grenoble, France
| |
Collapse
|
21
|
Saunders CN, Cota E, Baum J, Tate EW. Peptide Probes for Plasmodium falciparum MyoA Tail Interacting Protein (MTIP): Exploring the Druggability of the Malaria Parasite Motor Complex. ACS Chem Biol 2020; 15:1313-1320. [PMID: 32383851 PMCID: PMC7309260 DOI: 10.1021/acschembio.0c00328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Malaria
remains an endemic tropical disease, and the emergence
of Plasmodium falciparum parasites resistant to current
front-line medicines means that new therapeutic targets are required.
The Plasmodium glideosome is a multiprotein complex
thought to be essential for efficient host red blood cell invasion.
At its core is a myosin motor, Myosin A (MyoA), which provides most
of the force required for parasite invasion. Here, we report the design
and development of improved peptide-based probes for the anchor point
of MyoA, the P. falciparum MyoA tail interacting
protein (PfMTIP). These probes combine low nanomolar
binding affinity with significantly enhanced cell penetration and
demonstrable competitive target engagement with native PfMTIP through a combination of Western blot and chemical proteomics.
These results provide new insights into the potential druggability
of the MTIP/MyoA interaction and a basis for the future design of
inhibitors.
Collapse
Affiliation(s)
| | - Ernesto Cota
- Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
22
|
Pavlou G, Tardieux I. Phenotyping Toxoplasma Invasive Skills by Fast Live Cell Imaging. Methods Mol Biol 2020; 2071:209-220. [PMID: 31758455 DOI: 10.1007/978-1-4939-9857-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Host cell invasion by Toxoplasma gondii/T. gondii tachyzoites is an obligate but complex multistep process occurring in second-scale. To capture the dynamic nature of the whole entry process requires fast and high-resolution live cell imaging. Recent advances in T. gondii/host cell genome editing and in quantitative live cell imaging-image acquisition and processing included-provide a systematic way to accurately phenotype T. gondii tachyzoite invasive behaviour and to highlight any variation or default from a standard scenario. Therefore, applying these combined strategies allows gaining deeper insights into the complex mechanisms underlying host cell invasion.
Collapse
Affiliation(s)
- Georgios Pavlou
- Institute for Advanced Biosciences (IAB), Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Isabelle Tardieux
- Institute for Advanced Biosciences (IAB), Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France.
| |
Collapse
|
23
|
Frénal K, Krishnan A, Soldati-Favre D. The Actomyosin Systems in Apicomplexa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:331-354. [PMID: 32451865 DOI: 10.1007/978-3-030-38062-5_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The phylum of Apicomplexa groups obligate intracellular parasites that exhibit unique classes of unconventional myosin motors. These parasites also encode a limited repertoire of actins, actin-like proteins, actin-binding proteins and nucleators of filamentous actin (F-actin) that display atypical properties. In the last decade, significant progress has been made to visualize F-actin and to unravel the functional contribution of actomyosin systems in the biology of Toxoplasma and Plasmodium, the most genetically-tractable members of the phylum. In addition to assigning specific roles to each myosin, recent biochemical and structural studies have begun to uncover mechanistic insights into myosin function at the atomic level. In several instances, the myosin light chains associated with the myosin heavy chains have been identified, helping to understand the composition of the motor complexes and their mode of regulation. Moreover, the considerable advance in proteomic methodologies and especially in assignment of posttranslational modifications is offering a new dimension to our understanding of the regulation of actin dynamics and myosin function. Remarkably, the actomyosin system contributes to three major processes in Toxoplasma gondii: (i) organelle trafficking, positioning and inheritance, (ii) basal pole constriction and intravacuolar cell-cell communication and (iii) motility, invasion, and egress from infected cells. In this chapter, we summarize how the actomyosin system harnesses these key events to ensure successful completion of the parasite life cycle.
Collapse
Affiliation(s)
- Karine Frénal
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, University of Bordeaux and CNRS, Bordeaux Cedex, France. .,Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
24
|
Del Rosario M, Periz J, Pavlou G, Lyth O, Latorre‐Barragan F, Das S, Pall GS, Stortz JF, Lemgruber L, Whitelaw JA, Baum J, Tardieux I, Meissner M. Apicomplexan F-actin is required for efficient nuclear entry during host cell invasion. EMBO Rep 2019; 20:e48896. [PMID: 31584242 PMCID: PMC6893294 DOI: 10.15252/embr.201948896] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/21/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022] Open
Abstract
The obligate intracellular parasites Toxoplasma gondii and Plasmodium spp. invade host cells by injecting a protein complex into the membrane of the targeted cell that bridges the two cells through the assembly of a ring-like junction. This circular junction stretches while the parasites apply a traction force to pass through, a step that typically concurs with transient constriction of the parasite body. Here we analyse F-actin dynamics during host cell invasion. Super-resolution microscopy and real-time imaging highlighted an F-actin pool at the apex of pre-invading parasite, an F-actin ring at the junction area during invasion but also networks of perinuclear and posteriorly localised F-actin. Mutant parasites with dysfunctional acto-myosin showed significant decrease of junctional and perinuclear F-actin and are coincidently affected in nuclear passage through the junction. We propose that the F-actin machinery eases nuclear passage by stabilising the junction and pushing the nucleus through the constriction. Our analysis suggests that the junction opposes resistance to the passage of the parasite's nucleus and provides the first evidence for a dual contribution of actin-forces during host cell invasion by apicomplexan parasites.
Collapse
Affiliation(s)
- Mario Del Rosario
- Wellcome Centre For Integrative ParasitologyInstitute of InfectionImmunity & Inflammation, Glasgow Biomedical Research CentreUniversity of GlasgowGlasgowUK
| | - Javier Periz
- Wellcome Centre For Integrative ParasitologyInstitute of InfectionImmunity & Inflammation, Glasgow Biomedical Research CentreUniversity of GlasgowGlasgowUK
| | - Georgios Pavlou
- Institute for Advanced BiosciencesCNRS, UMR5309, INSERM U1209Université Grenoble AlpesGrenobleFrance
| | - Oliver Lyth
- Department of Life SciencesImperial College LondonLondonUK
| | - Fernanda Latorre‐Barragan
- Wellcome Centre For Integrative ParasitologyInstitute of InfectionImmunity & Inflammation, Glasgow Biomedical Research CentreUniversity of GlasgowGlasgowUK
- Faculty of Science, Food Engineering and BiotechnologyTechnical University of AmbatoAmbatoEcuador
| | - Sujaan Das
- Wellcome Centre For Integrative ParasitologyInstitute of InfectionImmunity & Inflammation, Glasgow Biomedical Research CentreUniversity of GlasgowGlasgowUK
| | - Gurman S Pall
- Wellcome Centre For Integrative ParasitologyInstitute of InfectionImmunity & Inflammation, Glasgow Biomedical Research CentreUniversity of GlasgowGlasgowUK
| | - Johannes Felix Stortz
- Wellcome Centre For Integrative ParasitologyInstitute of InfectionImmunity & Inflammation, Glasgow Biomedical Research CentreUniversity of GlasgowGlasgowUK
| | - Leandro Lemgruber
- Wellcome Centre For Integrative ParasitologyInstitute of InfectionImmunity & Inflammation, Glasgow Biomedical Research CentreUniversity of GlasgowGlasgowUK
| | | | - Jake Baum
- Department of Life SciencesImperial College LondonLondonUK
| | - Isabelle Tardieux
- Institute for Advanced BiosciencesCNRS, UMR5309, INSERM U1209Université Grenoble AlpesGrenobleFrance
| | - Markus Meissner
- Wellcome Centre For Integrative ParasitologyInstitute of InfectionImmunity & Inflammation, Glasgow Biomedical Research CentreUniversity of GlasgowGlasgowUK
- Experimental ParasitologyDepartment for Veterinary SciencesLudwig‐Maximilians‐University Munich MunichGermany
| |
Collapse
|
25
|
Hunt A, Russell MRG, Wagener J, Kent R, Carmeille R, Peddie CJ, Collinson L, Heaslip A, Ward GE, Treeck M. Differential requirements for cyclase-associated protein (CAP) in actin-dependent processes of Toxoplasma gondii. eLife 2019; 8:e50598. [PMID: 31577230 PMCID: PMC6785269 DOI: 10.7554/elife.50598] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/26/2019] [Indexed: 12/26/2022] Open
Abstract
Toxoplasma gondii contains a limited subset of actin binding proteins. Here we show that the putative actin regulator cyclase-associated protein (CAP) is present in two different isoforms and its deletion leads to significant defects in some but not all actin dependent processes. We observe defects in cell-cell communication, daughter cell orientation and the juxtanuclear accumulation of actin, but only modest defects in synchronicity of division and no defect in the replication of the apicoplast. 3D electron microscopy reveals that loss of CAP results in a defect in formation of a normal central residual body, but parasites remain connected within the vacuole. This dissociates synchronicity of division and parasite rosetting and reveals that establishment and maintenance of the residual body may be more complex than previously thought. These results highlight the different spatial requirements for F-actin regulation in Toxoplasma which appear to be achieved by partially overlapping functions of actin regulators.
Collapse
Affiliation(s)
- Alex Hunt
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | | | - Jeanette Wagener
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Robyn Kent
- Department of Microbiology and Molecular GeneticsUniversity of Vermont Larner College of MedicineBurlingtonUnited States
| | - Romain Carmeille
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Christopher J Peddie
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Aoife Heaslip
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Gary E Ward
- Department of Microbiology and Molecular GeneticsUniversity of Vermont Larner College of MedicineBurlingtonUnited States
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
26
|
Wall RJ, Zeeshan M, Katris NJ, Limenitakis R, Rea E, Stock J, Brady D, Waller RF, Holder AA, Tewari R. Systematic analysis of Plasmodium myosins reveals differential expression, localisation, and function in invasive and proliferative parasite stages. Cell Microbiol 2019; 21:e13082. [PMID: 31283102 PMCID: PMC6851706 DOI: 10.1111/cmi.13082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 11/28/2022]
Abstract
The myosin superfamily comprises of actin-dependent eukaryotic molecular motors important in a variety of cellular functions. Although well studied in many systems, knowledge of their functions in Plasmodium, the causative agent of malaria, is restricted. Previously, six myosins were identified in this genus, including three Class XIV myosins found only in Apicomplexa and some Ciliates. The well characterized MyoA is a Class XIV myosin essential for gliding motility and invasion. Here, we characterize all other Plasmodium myosins throughout the parasite life cycle and show that they have very diverse patterns of expression and cellular location. MyoB and MyoE, the other two Class XIV myosins, are expressed in all invasive stages, with apical and basal locations, respectively. Gene deletion revealed that MyoE is involved in sporozoite traversal, MyoF and MyoK are likely essential in the asexual blood stages, and MyoJ and MyoB are not essential. Both MyoB and its essential light chain (MCL-B) are localised at the apical end of ookinetes but expressed at completely different time points. This work provides a better understanding of the role of actomyosin motors in Apicomplexan parasites, particularly in the motile and invasive stages of Plasmodium during sexual and asexual development within the mosquito.
Collapse
Affiliation(s)
- Richard J. Wall
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | - Mohammad Zeeshan
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | | | | | - Edward Rea
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | - Jessica Stock
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | - Declan Brady
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | - Ross F. Waller
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | | - Rita Tewari
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| |
Collapse
|
27
|
Toxoplasma gondii secretory proteins and their role in invasion and pathogenesis. Microbiol Res 2019; 227:126293. [DOI: 10.1016/j.micres.2019.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 01/28/2023]
|
28
|
Periz J, Del Rosario M, McStea A, Gras S, Loney C, Wang L, Martin-Fernandez ML, Meissner M. A highly dynamic F-actin network regulates transport and recycling of micronemes in Toxoplasma gondii vacuoles. Nat Commun 2019; 10:4183. [PMID: 31519913 PMCID: PMC6744512 DOI: 10.1038/s41467-019-12136-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/19/2019] [Indexed: 01/03/2023] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii replicates in an unusual process, described as internal budding. Multiple dausghter parasites are formed sequentially within a single mother cell, requiring replication and distribution of essential organelles such as micronemes. These organelles are thought to be formed de novo in the developing daughter cells. Using dual labelling of a microneme protein MIC2 and super-resolution microscopy, we show that micronemes are recycled from the mother to the forming daughter parasites using a highly dynamic F-actin network. While this recycling pathway is F-actin dependent, de novo synthesis of micronemes appears to be F-actin independent. The F-actin network connects individual parasites, supports long, multidirectional vesicular transport, and regulates transport, density and localisation of micronemal vesicles. The residual body acts as a storage and sorting station for these organelles. Our data describe an F-actin dependent mechanism in apicomplexans for transport and recycling of maternal organelles during intracellular development. Replication of Toxoplasma gondii requires replication and distribution of essential organelles such as micronemes. Here, Periz et al. show that micronemes are recycled from the mother to the forming daughter cells using a highly dynamic F-actin network that supports multidirectional vesicle transport.
Collapse
Affiliation(s)
- Javier Periz
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK.
| | - Mario Del Rosario
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - Alexandra McStea
- Central Laser Facility, Research Complex at Harwell Science & Technology Facilities Council, Harwell Campus, Didcot, UK
| | - Simon Gras
- Experimental Parasitology, Department for Veterinary Sciences, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Glasgow, UK
| | - Lin Wang
- Central Laser Facility, Research Complex at Harwell Science & Technology Facilities Council, Harwell Campus, Didcot, UK
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell Science & Technology Facilities Council, Harwell Campus, Didcot, UK
| | - Markus Meissner
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK. .,Experimental Parasitology, Department for Veterinary Sciences, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
29
|
Plasmodium myosin A drives parasite invasion by an atypical force generating mechanism. Nat Commun 2019; 10:3286. [PMID: 31337750 PMCID: PMC6650474 DOI: 10.1038/s41467-019-11120-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/11/2019] [Indexed: 12/03/2022] Open
Abstract
Plasmodium parasites are obligate intracellular protozoa and causative agents of malaria, responsible for half a million deaths each year. The lifecycle progression of the parasite is reliant on cell motility, a process driven by myosin A, an unconventional single-headed class XIV molecular motor. Here we demonstrate that myosin A from Plasmodium falciparum (PfMyoA) is critical for red blood cell invasion. Further, using a combination of X-ray crystallography, kinetics, and in vitro motility assays, we elucidate the non-canonical interactions that drive this motor’s function. We show that PfMyoA motor properties are tuned by heavy chain phosphorylation (Ser19), with unphosphorylated PfMyoA exhibiting enhanced ensemble force generation at the expense of speed. Regulated phosphorylation may therefore optimize PfMyoA for enhanced force generation during parasite invasion or for fast motility during dissemination. The three PfMyoA crystallographic structures presented here provide a blueprint for discovery of specific inhibitors designed to prevent parasite infection. Here, Robert-Paganin et al. show that myosin A from Plasmodium falciparum is critical for red blood cell invasion and that non-canonical interactions and regulated phosphorylation are important for force generation during parasite invasion.
Collapse
|
30
|
Stortz JF, Del Rosario M, Singer M, Wilkes JM, Meissner M, Das S. Formin-2 drives polymerisation of actin filaments enabling segregation of apicoplasts and cytokinesis in Plasmodium falciparum. eLife 2019; 8:e49030. [PMID: 31322501 PMCID: PMC6688858 DOI: 10.7554/elife.49030] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
In addition to its role in erythrocyte invasion, Plasmodium falciparum actin is implicated in endocytosis, cytokinesis and inheritance of the chloroplast-like organelle called the apicoplast. Previously, the inability to visualise filamentous actin (F-actin) dynamics had restricted the characterisation of both F-actin and actin regulatory proteins, a limitation we recently overcame for Toxoplasma (Periz et al, 2017). Here, we have expressed and validated actin-binding chromobodies as F-actin-sensors in Plasmodium falciparum and characterised in-vivo actin dynamics. F-actin could be chemically modulated, and genetically disrupted upon conditionally deleting actin-1. In a comparative approach, we demonstrate that Formin-2, a predicted nucleator of F-actin, is responsible for apicoplast inheritance in both Plasmodium and Toxoplasma, and additionally mediates efficient cytokinesis in Plasmodium. Finally, time-averaged local intensity measurements of F-actin in Toxoplasma conditional mutants revealed molecular determinants of spatiotemporally regulated F-actin flow. Together, our data indicate that Formin-2 is the primary F-actin nucleator during apicomplexan intracellular growth, mediating multiple essential functions.
Collapse
Affiliation(s)
- Johannes Felix Stortz
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
| | - Mario Del Rosario
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
| | - Mirko Singer
- Faculty of Veterinary Medicine, Experimental ParasitologyLudwig Maximilian UniversityMunichGermany
| | - Jonathan M Wilkes
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
| | - Markus Meissner
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
- Faculty of Veterinary Medicine, Experimental ParasitologyLudwig Maximilian UniversityMunichGermany
| | - Sujaan Das
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
- Faculty of Veterinary Medicine, Experimental ParasitologyLudwig Maximilian UniversityMunichGermany
| |
Collapse
|
31
|
Motility and cytoskeletal organisation in the archigregarine Selenidium pygospionis (Apicomplexa): observations on native and experimentally affected parasites. Parasitol Res 2019; 118:2651-2667. [PMID: 31270680 DOI: 10.1007/s00436-019-06381-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
Representatives of Apicomplexa perform various kinds of movements that are linked to the different stages of their life cycle. Ancestral apicomplexan lineages, including gregarines, represent organisms suitable for research into the evolution and diversification of motility within the group. The vermiform trophozoites and gamonts of the archigregarine Selenidium pygospionis perform a very active type of bending motility. Experimental assays and subsequent light, electron, and confocal microscopic analyses demonstrated the fundamental role of the cytoskeletal proteins actin and tubulin in S. pygospionis motility and allowed us to compare the mechanism of its movement to the gliding machinery (the so-called glideosome concept) described in apicomplexan zoites. Actin-modifying drugs caused a reduction in the movement speed (cytochalasin D) or stopped the motility of archigregarines completely (jasplakinolide). Microtubule-disrupting drugs (oryzalin and colchicine) had an even more noticeable effect on archigregarine motility. The fading and disappearance of microtubules were documented in ultrathin sections, along with the formation of α-tubulin clusters visible after the immunofluorescent labelling of drug-treated archigregarines. The obtained data indicate that subpellicular microtubules most likely constitute the main motor structure involved in S. pygospionis bending motility, while actin has rather a supportive function.
Collapse
|
32
|
Gras S, Jimenez-Ruiz E, Klinger CM, Schneider K, Klingl A, Lemgruber L, Meissner M. An endocytic-secretory cycle participates in Toxoplasma gondii in motility. PLoS Biol 2019; 17:e3000060. [PMID: 31233488 PMCID: PMC6611640 DOI: 10.1371/journal.pbio.3000060] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 07/05/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
Apicomplexan parasites invade host cells in an active process involving their ability to move by gliding motility. While the acto-myosin system of the parasite plays a crucial role in the formation and release of attachment sites during this process, there are still open questions regarding the involvement of other mechanisms in parasite motility. In many eukaryotes, a secretory-endocytic cycle leads to the recycling of receptors (integrins), necessary to form attachment sites, regulation of surface area during motility, and generation of retrograde membrane flow. Here, we demonstrate that endocytosis operates during gliding motility in Toxoplasma gondii and appears to be crucial for the establishment of retrograde membrane flow, because inhibition of endocytosis blocks retrograde flow and motility. We demonstrate that extracellular parasites can efficiently incorporate exogenous material, such as labelled phospholipids, nanogold particles (NGPs), antibodies, and Concanavalin A (ConA). Using labelled phospholipids, we observed that the endocytic and secretory pathways of the parasite converge, and endocytosed lipids are subsequently secreted, demonstrating the operation of an endocytic-secretory cycle. Together our data consolidate previous findings, and we propose an additional model, working in parallel to the acto-myosin motor, that reconciles parasite motility with observations in other eukaryotes: an apicomplexan fountain-flow-model for parasite motility.
Collapse
Affiliation(s)
- Simon Gras
- Lehrstuhl für experimentelle Parasitologie, Ludwig-Maximilians-Universität, LMU, Tierärztliche Fakultät, München, Germany
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Elena Jimenez-Ruiz
- Lehrstuhl für experimentelle Parasitologie, Ludwig-Maximilians-Universität, LMU, Tierärztliche Fakultät, München, Germany
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Christen M. Klinger
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Katja Schneider
- Pflanzliche Entwicklungsbiologie, Biozentrum der Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Andreas Klingl
- Pflanzliche Entwicklungsbiologie, Biozentrum der Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Leandro Lemgruber
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Markus Meissner
- Lehrstuhl für experimentelle Parasitologie, Ludwig-Maximilians-Universität, LMU, Tierärztliche Fakultät, München, Germany
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
33
|
Harding CR, Gow M, Kang JH, Shortt E, Manalis SR, Meissner M, Lourido S. Alveolar proteins stabilize cortical microtubules in Toxoplasma gondii. Nat Commun 2019; 10:401. [PMID: 30674885 PMCID: PMC6344517 DOI: 10.1038/s41467-019-08318-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
Single-celled protists use elaborate cytoskeletal structures, including arrays of microtubules at the cell periphery, to maintain polarity and rigidity. The obligate intracellular parasite Toxoplasma gondii has unusually stable cortical microtubules beneath the alveoli, a network of flattened membrane vesicles that subtends the plasmalemma. However, anchoring of microtubules along alveolar membranes is not understood. Here, we show that GAPM1a, an integral membrane protein of the alveoli, plays a role in maintaining microtubule stability. Degradation of GAPM1a causes cortical microtubule disorganisation and subsequent depolymerisation. These changes in the cytoskeleton lead to parasites becoming shorter and rounder, which is accompanied by a decrease in cellular volume. Extended GAPM1a depletion leads to severe defects in division, reminiscent of the effect of disrupting other alveolar proteins. We suggest that GAPM proteins link the cortical microtubules to the alveoli and are required to maintain the shape and rigidity of apicomplexan zoites. Cortical microtubules of Toxoplasma gondii are exceptionally stable, but it isn’t known how they are anchored along membranes. Here, Harding et al. show that GAPM proteins localize to the inner membrane complex and are essential for maintaining the structural stability of parasites.
Collapse
Affiliation(s)
- Clare R Harding
- Whitehead Institute for Biomedical Research, Cambridge, 02142, MA, USA.
| | - Matthew Gow
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Joon Ho Kang
- Department of Physics, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research, Cambridge, 02142, MA, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Markus Meissner
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, G12 8TA, UK.,Department of Veterinary Sciences, Ludwig-Maximilians-Universität, Munich, 80539, Germany
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, 02142, MA, USA. .,Biology Department, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.
| |
Collapse
|
34
|
Kumar V, Behl A, Kapoor P, Nayak B, Singh G, Singh AP, Mishra S, Kang TS, Mishra PC, Hora R. Inner membrane complex 1l protein of Plasmodium falciparum links membrane lipids with cytoskeletal element 'actin' and its associated motor 'myosin'. Int J Biol Macromol 2018; 126:673-684. [PMID: 30599160 DOI: 10.1016/j.ijbiomac.2018.12.239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 01/14/2023]
Abstract
The inner membrane complex (IMC) is a defining feature of apicomplexans comprising of lipid and protein components involved in gliding motility and host cell invasion. Motility of Plasmodium parasites is accomplished by an actin and myosin based glideosome machinery situated between the parasite plasma membrane (PPM) and IMC. Here, we have studied in vivo expression and localization of a Plasmodium falciparum (Pf) IMC protein 'PfIMC1l' and characterized it functionally by using biochemical assays. We have identified cytoskeletal protein 'actin' and motor protein 'myosin' as novel binding partners of PfIMC1l, alongside its interaction with the lipids 'cholesterol' and 'phosphatidyl-inositol 4, 5 bisphosphate' (PIP2). While actin and myosin compete for interaction with PfIMC1l, actin and either of the lipids (cholesterol or PIP2) simultaneously bind PfIMC1l. Interestingly, PfIMC1l showed enhanced binding with actin in the presence of calcium ions, and displayed direct binding with calcium. Based on our in silico analysis and experimental data showing PfIMC1l-actin/myosin and PfIMC1l-lipid interactions, we propose that this protein may anchor the IMC membrane with the parasite gliding apparatus. Considering its binding with key proteins involved in motility viz. myosin and actin (with calcium dependence), we suggest that PfIMC1l may have a role in the locomotion of Plasmodium.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Ankita Behl
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Payal Kapoor
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Bandita Nayak
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Gurbir Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Science, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Satish Mishra
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Tejwant Singh Kang
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Rachna Hora
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
35
|
Structural and mechanistic insights into the function of the unconventional class XIV myosin MyoA from Toxoplasma gondii. Proc Natl Acad Sci U S A 2018; 115:E10548-E10555. [PMID: 30348763 DOI: 10.1073/pnas.1811167115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Parasites of the phylum Apicomplexa are responsible for significant morbidity and mortality on a global scale. Central to the virulence of these pathogens are the phylum-specific, unconventional class XIV myosins that power the essential processes of parasite motility and host cell invasion. Notably, class XIV myosins differ from human myosins in key functional regions, yet they are capable of fast movement along actin filaments with kinetics rivaling previously studied myosins. Toward establishing a detailed molecular mechanism of class XIV motility, we determined the 2.6-Å resolution crystal structure of the Toxoplasma gondii MyoA (TgMyoA) motor domain. Structural analysis reveals intriguing strategies for force transduction and chemomechanical coupling that rely on a divergent SH1/SH2 region, the class-defining "HYAG"-site polymorphism, and the actin-binding surface. In vitro motility assays and hydrogen-deuterium exchange coupled with MS further reveal the mechanistic underpinnings of phosphorylation-dependent modulation of TgMyoA motility whereby localized regions of increased stability and order correlate with enhanced motility. Analysis of solvent-accessible pockets reveals striking differences between apicomplexan class XIV and human myosins. Extending these analyses to high-confidence homology models of Plasmodium and Cryptosporidium MyoA motor domains supports the intriguing potential of designing class-specific, yet broadly active, apicomplexan myosin inhibitors. The successful expression of the functional TgMyoA complex combined with our crystal structure of the motor domain provides a strong foundation in support of detailed structure-function studies and enables the development of small-molecule inhibitors targeting these devastating global pathogens.
Collapse
|
36
|
Lipchinsky A. Electromechanics of polarized cell growth. Biosystems 2018; 173:114-132. [PMID: 30300677 DOI: 10.1016/j.biosystems.2018.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/30/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
Abstract
One of the most challenging questions in cell and developmental biology is how molecular signals are translated into mechanical forces that ultimately drive cell growth and motility. Despite an impressive body of literature demonstrating the importance of cytoskeletal and motor proteins as well as osmotic stresses for cell developmental mechanics, a host of dissenting evidence strongly suggests that these factors per se cannot explain growth mechanics even at the level of a single tip-growing cell. The present study addresses this issue by exploring fundamental interrelations between electrical and mechanical fields operating in cells. In the first instance, we employ a simplified but instructive model of a quiescent cell to demonstrate that even in a quasi-equilibrium state, ion transport processes are conditioned principally by mechanical tenets. Then we inquire into the electromechanical conjugacy in growing pollen tubes as biologically relevant and physically tractable developmental systems owing to their extensively characterized growth-associated ionic fluxes and strikingly polarized growth and morphology. A comprehensive analysis of the multifold stress pattern in the growing apices of pollen tubes suggests that tip-focused ionic fluxes passing through the polyelectrolyte-rich apical cytoplasm give rise to electrokinetic flows that actualize otherwise isotropic intracellular turgor into anisotropic stress field. The stress anisotropy can be then imparted from the apical cytoplasm to the abutting frontal cell wall to induce its local extension and directional cell growth. Converging lines of evidence explored in the concluding sections attest that tip-focused ionic fluxes and associated interfacial transport phenomena are not specific for pollen tubes but are also employed by a vast variety of algal, plant, fungal and animal cells, rendering their cytoplasmic stress fields essentially anisotropic and ultimately instrumental in cell shaping, growth and motility.
Collapse
Affiliation(s)
- Andrei Lipchinsky
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia.
| |
Collapse
|
37
|
Hortua Triana MA, Márquez-Nogueras KM, Vella SA, Moreno SNJ. Calcium signaling and the lytic cycle of the Apicomplexan parasite Toxoplasma gondii. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1846-1856. [PMID: 30992126 DOI: 10.1016/j.bbamcr.2018.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 01/24/2023]
Abstract
Toxoplasma gondii has a complex life cycle involving different hosts and is dependent on fast responses, as the parasite reacts to changing environmental conditions. T. gondii causes disease by lysing the host cells that it infects and it does this by reiterating its lytic cycle, which consists of host cell invasion, replication inside the host cell, and egress causing host cell lysis. Calcium ion (Ca2+) signaling triggers activation of molecules involved in the stimulation and enhancement of each step of the parasite lytic cycle. Ca2+ signaling is essential for the cellular and developmental changes that support T. gondii parasitism. The characterization of the molecular players and pathways directly activated by Ca2+ signaling in Toxoplasma is sketchy and incomplete. The evolutionary distance between Toxoplasma and other eukaryotic model systems makes the comparison sometimes not informative. The advent of new genomic information and new genetic tools applicable for studying Toxoplasma biology is rapidly changing this scenario. The Toxoplasma genome reveals the presence of many genes potentially involved in Ca2+ signaling, even though the role of most of them is not known. The use of Genetically Encoded Calcium Indicators (GECIs) has allowed studies on the role of novel calcium-related proteins on egress, an essential step for the virulence and dissemination of Toxoplasma. In addition, the discovery of new Ca2+ players is generating novel targets for drugs, vaccines, and diagnostic tools and a better understanding of the biology of these parasites.
Collapse
Affiliation(s)
| | | | - Stephen A Vella
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
38
|
Baroni L, Pereira LM, Maciver SK, Yatsuda AP. Functional characterisation of the actin-depolymerising factor from the apicomplexan Neospora caninum (NcADF). Mol Biochem Parasitol 2018; 224:26-36. [PMID: 30040977 DOI: 10.1016/j.molbiopara.2018.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/15/2018] [Accepted: 07/15/2018] [Indexed: 01/20/2023]
Abstract
Neospora caninum is an apicomplexan parasite that causes infectious abortion in cows. As an obligate intracellular parasite, N. caninum requires a host cell environment to survive and replicate. The locomotion and invasion mechanisms of apicomplexan parasites are centred on the actin-myosin system to propel the parasite forwards and into the host cell. The functions of actin, an intrinsically dynamic protein, are modulated by actin-binding proteins (ABPs). Actin-depolymerising factor (ADF) is a ubiquitous ABP responsible for accelerating actin turnover in eukaryotic cells and is one of the few known conserved ABPs from apicomplexan parasites. Apicomplexan ADFs have nonconventional properties compared with ADF/cofilins from higher eukaryotes. In the present paper, we characterised the ADF from N. caninum (NcADF) using computational and in vitro biochemical approaches to investigate its function in rabbit muscle actin dynamics. Our predicted computational tertiary structure of NcADF demonstrated a conserved structure and phylogeny with respect to other ADF/cofilins, although certain differences in filamentous actin (F-actin) binding sites were present. The activity of recombinant NcADF on heterologous actin was regulated in part by pH and the presence of inorganic phosphate. In addition, our data suggest a comparatively weak disassembly of F-actin by NcADF. Taken together, the data presented herein represent a contribution to the field towards the understanding of the role of ADF in N. caninum and a comparative analysis of ABPs in the phylum Apicomplexa.
Collapse
Affiliation(s)
- Luciana Baroni
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-930, Ribeirão Preto, SP, Brazil
| | - Luiz M Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-930, Ribeirão Preto, SP, Brazil
| | - Sutherland K Maciver
- Centre for Discovery Brain Sciences, Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, Scotland, United Kingdom
| | - Ana P Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-930, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
39
|
Abstract
Apicomplexa are obligate intracellular parasites that actively invade, replicate within, and egress from host cells. The parasite actinomyosin-based molecular motor complex (often referred to as the glideosome) is considered an important mediator of parasite motility and virulence. Mature intracellular parasites often become motile just prior to egress from their host cells, and in some genera, this motility is important for successful egress as well as for subsequent invasion of new host cells. To determine whether actinomyosin-based motility is important in the red blood cell egress and invasion activities of the malaria parasite, we have used a conditional genetic approach to delete GAP45, a primary component of the glideosome, in asexual blood stages of Plasmodium falciparum Our results confirm the essential nature of GAP45 for invasion but show that P. falciparum does not require a functional motor complex to undergo egress from the red blood cell. Malarial egress therefore differs fundamentally from induced egress in the related apicomplexan Toxoplasma gondiiIMPORTANCE Clinical malaria results from cycles of replication of single-celled parasites of the genus Plasmodium in red blood cells. Intracellular parasite replication is followed by a highly regulated, protease-dependent process called egress, in which rupture of the bounding membranes allows explosive release of daughter merozoites which rapidly invade fresh red cells. A parasite actinomyosin-based molecular motor (the glideosome) has been proposed to provide the mechanical force to drive invasion. Studies of the related parasite Toxoplasma gondii have shown that induced egress requires parasite motility, mediated by a functional glideosome. However, whether the glideosome has a similar essential role in egress of malaria merozoites from red blood cells is unknown. Here, we show that although a functional glideosome is required for red blood cell invasion by Plasmodium falciparum merozoites, it is not required for egress. These findings place further emphasis on the key role of the protease cascade in malarial egress.
Collapse
|
40
|
Pavlou G, Biesaga M, Touquet B, Lagal V, Balland M, Dufour A, Hakimi MA, Tardieux I. Toxoplasma Parasite Twisting Motion Mechanically Induces Host Cell Membrane Fission to Complete Invasion within a Protective Vacuole. Cell Host Microbe 2018; 24:81-96.e5. [DOI: 10.1016/j.chom.2018.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/27/2018] [Accepted: 06/05/2018] [Indexed: 11/26/2022]
|
41
|
Mueller C, Graindorge A, Soldati-Favre D. Functions of myosin motors tailored for parasitism. Curr Opin Microbiol 2017; 40:113-122. [DOI: 10.1016/j.mib.2017.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 01/01/2023]
|
42
|
|
43
|
Das S, Lemgruber L, Tay CL, Baum J, Meissner M. Multiple essential functions of Plasmodium falciparum actin-1 during malaria blood-stage development. BMC Biol 2017; 15:70. [PMID: 28810863 PMCID: PMC5557482 DOI: 10.1186/s12915-017-0406-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/14/2017] [Indexed: 01/04/2023] Open
Abstract
Background The phylum Apicomplexa includes intracellular parasites causing immense global disease burden, the deadliest of them being the human malaria parasite Plasmodium falciparum, which invades and replicates within erythrocytes. The cytoskeletal protein actin is well conserved within apicomplexans but divergent from mammalian actins, and was primarily reported to function during host cell invasion. However, novel invasion mechanisms have been described for several apicomplexans, and specific functions of the acto-myosin system are being reinvestigated. Of the two actin genes in P. falciparum, actin-1 (pfact1) is ubiquitously expressed in all life-cycle stages and is thought to be required for erythrocyte invasion, although its functions during parasite development are unknown, and definitive in vivo characterisation during invasion is lacking. Results Here we have used a conditional Cre-lox system to investigate the functions of PfACT1 during P. falciparum blood-stage development and host cell invasion. We demonstrate that PfACT1 is crucially required for segregation of the plastid-like organelle, the apicoplast, and for efficient daughter cell separation during the final stages of cytokinesis. Surprisingly, we observe that egress from the host cell is not an actin-dependent process. Finally, we show that parasites lacking PfACT1 are capable of microneme secretion, attachment and formation of a junction with the erythrocyte, but are incapable of host cell invasion. Conclusions This study provides important mechanistic insights into the definitive essential functions of PfACT1 in P. falciparum, which are not only of biological interest, but owing to functional divergence from mammalian actins, could also form the basis for the development of novel therapeutics against apicomplexans. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0406-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sujaan Das
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.
| | - Leandro Lemgruber
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Chwen L Tay
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Markus Meissner
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK. .,Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
44
|
Gras S, Jackson A, Woods S, Pall G, Whitelaw J, Leung JM, Ward GE, Roberts CW, Meissner M. Parasites lacking the micronemal protein MIC2 are deficient in surface attachment and host cell egress, but remain virulent in vivo. Wellcome Open Res 2017. [PMID: 28630943 PMCID: PMC5473411 DOI: 10.12688/wellcomeopenres.11594.2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Micronemal proteins of the thrombospondin-related anonymous protein (TRAP) family are believed to play essential roles during gliding motility and host cell invasion by apicomplexan parasites, and currently represent major vaccine candidates against
Plasmodium falciparum, the causative agent of malaria. However, recent evidence suggests that they play multiple and different roles than previously assumed. Here, we analyse a null mutant for MIC2, the TRAP homolog in
Toxoplasma gondii.
Methods: We performed a careful analysis of parasite motility in a 3D-environment, attachment under shear stress conditions, host cell invasion and
in vivo virulence.
Results: We verified the role of MIC2 in efficient surface attachment, but were unable to identify any direct function of MIC2 in sustaining gliding motility or host cell invasion once initiated. Furthermore, we find that deletion of
mic2 causes a slightly delayed infection
in vivo, leading only to mild attenuation of virulence; like with wildtype parasites, inoculation with even low numbers of
mic2 KO parasites causes lethal disease in mice. However, deletion of
mic2 causes delayed host cell egress
in vitro, possibly via disrupted signal transduction pathways.
Conclusions: We confirm a critical role of MIC2 in parasite attachment to the surface, leading to reduced parasite motility and host cell invasion. However, MIC2 appears to not be critical for gliding motility or host cell invasion, since parasite speed during these processes is unaffected. Furthermore, deletion of MIC2 leads only to slight attenuation of the parasite.
Collapse
Affiliation(s)
- Simon Gras
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | - Allison Jackson
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Gurman Pall
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jamie Whitelaw
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jacqueline M Leung
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Department of Microbiology and Molecular Genetics, College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Gary E Ward
- Department of Microbiology and Molecular Genetics, College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Craig W Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Markus Meissner
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
45
|
Gras S, Jackson A, Woods S, Pall G, Whitelaw J, Leung JM, Ward GE, Roberts CW, Meissner M. Parasites lacking the micronemal protein MIC2 are deficient in surface attachment and host cell egress, but remain virulent in vivo. Wellcome Open Res 2017. [PMID: 28630943 DOI: 10.12688/wellcomeopenres.11594.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Micronemal proteins of the thrombospondin-related anonymous protein (TRAP) family are believed to play essential roles during gliding motility and host cell invasion by apicomplexan parasites, and currently represent major vaccine candidates against Plasmodium falciparum, the causative agent of malaria. However, recent evidence suggests that they play multiple and different roles than previously assumed. Here, we analyse a null mutant for MIC2, the TRAP homolog in Toxoplasma gondii. Methods: We performed a careful analysis of parasite motility in a 3D-environment, attachment under shear stress conditions, host cell invasion and in vivo virulence. Results: We verified the role of MIC2 in efficient surface attachment, but were unable to identify any direct function of MIC2 in sustaining gliding motility or host cell invasion once initiated. Furthermore, we find that deletion of mic2 causes a slightly delayed infection in vivo, leading only to mild attenuation of virulence; like with wildtype parasites, inoculation with even low numbers of mic2 KO parasites causes lethal disease in mice. However, deletion of mic2 causes delayed host cell egress in vitro, possibly via disrupted signal transduction pathways. Conclusions: We confirm a critical role of MIC2 in parasite attachment to the surface, leading to reduced parasite motility and host cell invasion. However, MIC2 appears to not be critical for gliding motility or host cell invasion, since parasite speed during these processes is unaffected. Furthermore, deletion of MIC2 leads only to slight attenuation of the parasite.
Collapse
Affiliation(s)
- Simon Gras
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | - Allison Jackson
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Gurman Pall
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jamie Whitelaw
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jacqueline M Leung
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Department of Microbiology and Molecular Genetics, College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Gary E Ward
- Department of Microbiology and Molecular Genetics, College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Craig W Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, G4 0RE, UK
| | - Markus Meissner
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
46
|
Valigurová A, Vaškovicová N, Diakin A, Paskerova GG, Simdyanov TG, Kováčiková M. Motility in blastogregarines (Apicomplexa): Native and drug-induced organisation of Siedleckia nematoides cytoskeletal elements. PLoS One 2017. [PMID: 28640849 PMCID: PMC5480980 DOI: 10.1371/journal.pone.0179709] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies on motility of Apicomplexa concur with the so-called glideosome concept applied for apicomplexan zoites, describing a unique mechanism of substrate-dependent gliding motility facilitated by a conserved form of actomyosin motor and subpellicular microtubules. In contrast, the gregarines and blastogregarines exhibit different modes and mechanisms of motility, correlating with diverse modifications of their cortex. This study focuses on the motility and cytoskeleton of the blastogregarine Siedleckia nematoides Caullery et Mesnil, 1898 parasitising the polychaete Scoloplos cf. armiger (Müller, 1776). The blastogregarine moves independently on a solid substrate without any signs of gliding motility; the motility in a liquid environment (in both the attached and detached forms) rather resembles a sequence of pendular, twisting, undulation, and sometimes spasmodic movements. Despite the presence of key glideosome components such as pellicle consisting of the plasma membrane and the inner membrane complex, actin, myosin, subpellicular microtubules, micronemes and glycocalyx layer, the motility mechanism of S. nematoides differs from the glideosome machinery. Nevertheless, experimental assays using cytoskeletal probes proved that the polymerised forms of actin and tubulin play an essential role in the S. nematoides movement. Similar to Selenidium archigregarines, the subpellicular microtubules organised in several layers seem to be the leading motor structures in blastogregarine motility. The majority of the detected actin was stabilised in a polymerised form and appeared to be located beneath the inner membrane complex. The experimental data suggest the subpellicular microtubules to be associated with filamentous structures (= cross-linking protein complexes), presumably of actin nature.
Collapse
Affiliation(s)
- Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
- * E-mail:
| | - Naděžda Vaškovicová
- Institute of Scientific Instruments of the CAS, v. v. i., Královopolská 147, Brno, Czech Republic
| | - Andrei Diakin
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Gita G. Paskerova
- Department of Invertebrate Zoology, Faculty of Biology, Saint-Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, Russian Federation
| | - Timur G. Simdyanov
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory 1–12, Moscow, Russian Federation
| | - Magdaléna Kováčiková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| |
Collapse
|
47
|
Frénal K, Jacot D, Hammoudi PM, Graindorge A, Maco B, Soldati-Favre D. Myosin-dependent cell-cell communication controls synchronicity of division in acute and chronic stages of Toxoplasma gondii. Nat Commun 2017; 8:15710. [PMID: 28593938 PMCID: PMC5477499 DOI: 10.1038/ncomms15710] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/17/2017] [Indexed: 01/20/2023] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii possesses a repertoire of 11 myosins. Three class XIV motors participate in motility, invasion and egress, whereas the class XXII myosin F is implicated in organelle positioning and inheritance of the apicoplast. Here we provide evidence that TgUNC acts as a chaperone dedicated to the folding, assembly and function of all Toxoplasma myosins. The conditional ablation of TgUNC recapitulates the phenome of the known myosins and uncovers two functions in parasite basal complex constriction and synchronized division within the parasitophorous vacuole. We identify myosin J and centrin 2 as essential for the constriction. We demonstrate the existence of an intravacuolar cell–cell communication ensuring synchronized division, a process dependent on myosin I. This connectivity contributes to the delayed death phenotype resulting from loss of the apicoplast. Cell–cell communication is lost in activated macrophages and during bradyzoite differentiation resulting in asynchronized, slow division in the cysts. The mechanism by which Toxoplasma gondii achieves synchronized cell division is incompletely understood. Here, the authors identify an intravacuolar cell-cell communication that ensures synchronized division and depends on myosin I.
Collapse
Affiliation(s)
- Karine Frénal
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Damien Jacot
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Pierre-Mehdi Hammoudi
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Arnault Graindorge
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| |
Collapse
|
48
|
Tardieux I, Baum J. Reassessing the mechanics of parasite motility and host-cell invasion. J Cell Biol 2017; 214:507-15. [PMID: 27573462 PMCID: PMC5004448 DOI: 10.1083/jcb.201605100] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/09/2016] [Indexed: 12/20/2022] Open
Abstract
The capacity to migrate is fundamental to multicellular and single-celled life. Apicomplexan parasites, an ancient protozoan clade that includes malaria parasites (Plasmodium) and Toxoplasma, achieve remarkable speeds of directional cell movement. This rapidity is achieved via a divergent actomyosin motor system, housed within a narrow compartment that lies underneath the length of the parasite plasma membrane. How this motor functions at a mechanistic level during motility and host cell invasion is a matter of debate. Here, we integrate old and new insights toward refining the current model for the function of this motor with the aim of revitalizing interest in the mechanics of how these deadly pathogens move.
Collapse
Affiliation(s)
- Isabelle Tardieux
- Institute of Advanced BioSciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
| | - Jake Baum
- Department of Life Sciences, Imperial College London, London SW7 2AZ, England, UK
| |
Collapse
|
49
|
Abstract
Early electron microscopy studies revealed the elaborate cellular features that define the unique adaptations of apicomplexan parasites. Among these were bulbous rhoptry (ROP) organelles and small, dense granules (GRAs), both of which are secreted during invasion of host cells. These early morphological studies were followed by the exploration of the cellular contents of these secretory organelles, revealing them to be comprised of highly divergent protein families with few conserved domains or predicted functions. In parallel, studies on host-pathogen interactions identified many host signaling pathways that were mysteriously altered by infection. It was only with the advent of forward and reverse genetic strategies that the connections between individual parasite effectors and the specific host pathways that they targeted finally became clear. The current repertoire of parasite effectors includes ROP kinases and pseudokinases that are secreted during invasion and that block host immune pathways. Similarly, many secretory GRA proteins alter host gene expression by activating host transcription factors, through modification of chromatin, or by inducing small noncoding RNAs. These effectors highlight novel mechanisms by which T. gondii has learned to harness host signaling to favor intracellular survival and will guide future studies designed to uncover the additional complexity of this intricate host-pathogen interaction.
Collapse
|
50
|
Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii. PLoS Pathog 2017; 13:e1006379. [PMID: 28475612 PMCID: PMC5435356 DOI: 10.1371/journal.ppat.1006379] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/17/2017] [Accepted: 04/26/2017] [Indexed: 01/09/2023] Open
Abstract
Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion. One of the most common motifs that binds calcium to transduce intracellular signals is called an EF hand- named after the globular domain structure first characterized in ovalbumin. A conserved cluster of four EF hands, each of which that binds one calcium atom, is a conserved feature of calmodulin, centrins, and calmodulin-like proteins, including myosin light chains. Although the presence of EF hands is predictive of calcium binding, it alone does not allow classification of biological function as this set of conserved proteins have very diverse functions. Here we used modified editing procedures based on CRISPR/Cas9 combined with a plant-like degradation system to define the roles of three calmodulin-like proteins in T. gondii. These proteins all localized to a specialized apical structure called the conoid where they overlap with the motor protein called MyoH. Additionally, biochemical and genetic studies suggest they coordinately regulate cell invasion. These new genomic editing tools, combined with an efficient system for protein degradation, expand the functional tool kit for an analysis of essential genes and proteins in T. gondii.
Collapse
|