1
|
Russell CA, Fouchier RAM, Ghaswalla P, Park Y, Vicic N, Ananworanich J, Nachbagauer R, Rudin D. Seasonal influenza vaccine performance and the potential benefits of mRNA vaccines. Hum Vaccin Immunother 2024; 20:2336357. [PMID: 38619079 PMCID: PMC11020595 DOI: 10.1080/21645515.2024.2336357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Influenza remains a public health threat, partly due to suboptimal effectiveness of vaccines. One factor impacting vaccine effectiveness is strain mismatch, occurring when vaccines no longer match circulating strains due to antigenic drift or the incorporation of inadvertent (eg, egg-adaptive) mutations during vaccine manufacturing. In this review, we summarize the evidence for antigenic drift of circulating viruses and/or egg-adaptive mutations occurring in vaccine strains during the 2011-2020 influenza seasons. Evidence suggests that antigenic drift led to vaccine mismatch during four seasons and that egg-adaptive mutations caused vaccine mismatch during six seasons. These findings highlight the need for alternative vaccine development platforms. Recently, vaccines based on mRNA technology have demonstrated efficacy against SARS-CoV-2 and respiratory syncytial virus and are under clinical evaluation for seasonal influenza. We discuss the potential for mRNA vaccines to address strain mismatch, as well as new multi-component strategies using the mRNA platform to improve vaccine effectiveness.
Collapse
Affiliation(s)
- Colin A. Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
2
|
Hauguel T, Sharma A, Mastrocola E, Lowry S, Maddur MS, Hu CH, Rajput S, Vitsky A, Choudhary S, Manickam B, De Souza I, Chervona Y, Moreno RM, Abdon C, Falcao L, Tompkins K, Illenberger D, Smith R, Meng F, Shi S, Efferen KS, Markiewicz V, Umemoto C, Hu J, Chen W, Scully I, Rohde CM, Anderson AS, Suphaphiphat Allen P. Preclinical immunogenicity and safety of hemagglutinin-encoding modRNA influenza vaccines. NPJ Vaccines 2024; 9:183. [PMID: 39375384 PMCID: PMC11488230 DOI: 10.1038/s41541-024-00980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Seasonal epidemics of influenza viruses are responsible for a significant global public health burden. Vaccination remains the most effective way to prevent infection; however, due to the persistence of antigenic drift, vaccines must be updated annually. The selection of vaccine strains occurs months in advance of the influenza season to allow adequate time for production in eggs. RNA vaccines offer the potential to accelerate production and improve efficacy of influenza vaccines. We leveraged the nucleoside-modified RNA (modRNA) platform technology and lipid nanoparticle formulation process of the COVID-19 mRNA vaccine (BNT162b2; Comirnaty®) to create modRNA vaccines encoding hemagglutinin (HA) (modRNA-HA) for seasonal human influenza strains and evaluated their preclinical immunogenicity and toxicity. In mice, a monovalent modRNA vaccine encoding an H1 HA demonstrated robust antibody responses, HA-specific Th1-type CD4+ T cell responses, and HA-specific CD8+ T cell responses. In rhesus and cynomolgus macaques, the vaccine exhibited durable functional antibody responses and HA-specific IFN-γ+ CD4+ T cell responses. Immunization of mice with monovalent, trivalent, and quadrivalent modRNA-HA vaccines generated functional antibody responses targeting the seasonal influenza virus(es) encoded in the vaccines that were greater than, or similar to, those of a licensed quadrivalent influenza vaccine. Monovalent and quadrivalent modRNA-HA vaccines were well-tolerated by Wistar Han rats, with no evidence of systemic toxicity. These nonclinical immunogenicity and safety data support further evaluation of the modRNA-HA vaccines in clinical studies.
Collapse
Affiliation(s)
- Teresa Hauguel
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Amy Sharma
- Drug Safety Research & Development, Pfizer Inc., Pearl River, NY, USA
| | - Emily Mastrocola
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Susan Lowry
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Mohan S Maddur
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Cheng Hui Hu
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Swati Rajput
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Allison Vitsky
- Drug Safety Research & Development, Pfizer Inc., La Jolla, CA, USA
| | | | | | - Ivna De Souza
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Yana Chervona
- Drug Safety Research & Development, Pfizer Inc., Pearl River, NY, USA
| | | | - Charisse Abdon
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Larissa Falcao
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Kristin Tompkins
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | | | - Rachel Smith
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Fanyu Meng
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Shuai Shi
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | | | | | - Cinthia Umemoto
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Jianfang Hu
- Global Biometrics & Data Management, Pfizer Inc., Collegeville, PA, USA
| | - Wei Chen
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Ingrid Scully
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Cynthia M Rohde
- Drug Safety Research & Development, Pfizer Inc., Pearl River, NY, USA
| | | | | |
Collapse
|
3
|
Harada Y, Takahashi H, Fujimoto T, Horikoshi F, Chida S, Tanaka K, Minari K, Tanimoto Y, Fujisaki S, Miura H, Nakauchi M, Shimasaki N, Suzuki Y, Arita T, Hamamoto I, Yamamoto N, Hasegawa H, Odagiri T, Tashiro M, Nobusawa E. Evaluation of a qualified MDCK cell line for virus isolation to develop cell-based influenza vaccine viruses with appropriate antigenicity. Vaccine 2024; 42:126242. [PMID: 39213922 DOI: 10.1016/j.vaccine.2024.126242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
We established a qualified Madin-Darby canine kidney cell line (qMDCK-Cs) and investigated its suitability for source virus isolation to develop cell-based seasonal influenza vaccine viruses using vaccine manufacturer cells (Manuf-Cs). When inoculated with 81 influenza-positive clinical specimens, the initial virus isolation efficiency of qMDCK-Cs was exceeded 70%. Among the qMDCK-C isolates, 100% of the A/H1N1pdm09, B/Victoria and B/Yamagata strains and >70% of the A/H3N2 strains showed antigenicity equivalent to that of the contemporary vaccine or relevant viruses in haemagglutination inhibition (HI) or virus neutralization (VN) tests using ferret antisera. These qMDCK-C isolates were propagated in Manuf-Cs (MDCK and Vero cells) (Manuf-C viruses) to develop vaccine viruses. In reciprocal antigenicity tests, ferret antisera raised against corresponding reference viruses and Manuf-C viruses recognized 29 of 31 Manuf-C viruses and corresponding reference viruses, respectively at HI or VN titres more than half of the homologous virus titres, which is the antigenicity criterion for cell culture seasonal influenza vaccine viruses specified by the World Health Organization. Furthermore, ferret antisera against these Manuf-C viruses recognized ≥95% of the viruses circulating during the relevant influenza season with HI or VN titres greater than one-quarter of the homologous virus titres. No cell line-specific amino acid substitutions were observed in the resulting viruses. However, polymorphisms at positions 158/160 of H3HA, 148/151 of N2NA and 197/199 of B/Victoria HA were occasionally detected in the qMDCK-C and Manuf-C viruses but barely affected the viral antigenicity. These results indicated that qMDCK-Cs are suitable for isolating influenza viruses that can serve as a source of antigenically appropriate vaccine viruses. The use of the qMDCK-C isolates will eliminates the need for clinical sample collection, virus isolation, and antigenicity analysis every season, and is expected to contribute to the promotion of vaccine virus development using manufacturer cells.
Collapse
Affiliation(s)
- Yuichi Harada
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan; Department of Virology III, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Hitoshi Takahashi
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Takao Fujimoto
- BIKEN CO., Ltd., 4-1-70, Seto-Cho, Kan-Onji, Kagawa 768-0065, Japan
| | | | - Shuhei Chida
- BIKEN CO., Ltd., 4-1-70, Seto-Cho, Kan-Onji, Kagawa 768-0065, Japan
| | - Kenji Tanaka
- Daiichi Sankyo Biotech Co., Ltd., 6-111 Arai, Kitamoto City, Saitama Prefecture 364-0026, Japan
| | - Kenji Minari
- Takeda Pharmaceutical Company Limited, Hikari Plant, 4720 Takeda, Mitsui, Hikari City, Yamaguchi 743-8502, Japan
| | - Yoshimi Tanimoto
- Takeda Pharmaceutical Company Limited, Hikari Plant, 4720 Takeda, Mitsui, Hikari City, Yamaguchi 743-8502, Japan
| | - Seiichiro Fujisaki
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Hideka Miura
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Mina Nakauchi
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Noriko Shimasaki
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan; Department of Virology III, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Yasushi Suzuki
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Tomoko Arita
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Itsuki Hamamoto
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Norio Yamamoto
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Hideki Hasegawa
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Takato Odagiri
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Masato Tashiro
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Eri Nobusawa
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan.
| |
Collapse
|
4
|
Clark TW, Tregoning JS, Lister H, Poletti T, Amin F, Nguyen-Van-Tam JS. Recent advances in the influenza virus vaccine landscape: a comprehensive overview of technologies and trials. Clin Microbiol Rev 2024:e0002524. [PMID: 39360831 DOI: 10.1128/cmr.00025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
SUMMARYIn the United Kingdom (UK) in 2022/23, influenza virus infections returned to the levels recorded before the COVID-19 pandemic, exerting a substantial burden on an already stretched National Health Service (NHS) through increased primary and emergency care visits and subsequent hospitalizations. Population groups ≤4 years and ≥65 years of age, and those with underlying health conditions, are at the greatest risk of influenza-related hospitalization. Recent advances in influenza virus vaccine technologies may help to mitigate this burden. This review aims to summarize advances in the influenza virus vaccine landscape by describing the different technologies that are currently in use in the UK and more widely. The review also describes vaccine technologies that are under development, including mRNA, and universal influenza virus vaccines which aim to provide broader or increased protection. This is an exciting and important era for influenza virus vaccinations, and advances are critical to protect against a disease that still exerts a substantial burden across all populations and disproportionately impacts the most vulnerable, despite it being over 80 years since the first influenza virus vaccines were deployed.
Collapse
Affiliation(s)
- Tristan W Clark
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - John S Tregoning
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
5
|
Perofsky AC, Huddleston J, Hansen CL, Barnes JR, Rowe T, Xu X, Kondor R, Wentworth DE, Lewis N, Whittaker L, Ermetal B, Harvey R, Galiano M, Daniels RS, McCauley JW, Fujisaki S, Nakamura K, Kishida N, Watanabe S, Hasegawa H, Sullivan SG, Barr IG, Subbarao K, Krammer F, Bedford T, Viboud C. Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States. eLife 2024; 13:RP91849. [PMID: 39319780 PMCID: PMC11424097 DOI: 10.7554/elife.91849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997-2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity.
Collapse
MESH Headings
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- United States/epidemiology
- Influenza, Human/epidemiology
- Influenza, Human/virology
- Influenza, Human/immunology
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Epidemics
- Antigenic Drift and Shift/genetics
- Child
- Adult
- Neuraminidase/genetics
- Neuraminidase/immunology
- Adolescent
- Child, Preschool
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Young Adult
- Evolution, Molecular
- Seasons
- Middle Aged
Collapse
Affiliation(s)
- Amanda C Perofsky
- Fogarty International Center, National Institutes of Health, Bethesda, United States
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, United States
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, United States
| | - Chelsea L Hansen
- Fogarty International Center, National Institutes of Health, Bethesda, United States
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, United States
| | - John R Barnes
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, United States
| | - Thomas Rowe
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, United States
| | - Xiyan Xu
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, United States
| | - Rebecca Kondor
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, United States
| | - David E Wentworth
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, United States
| | - Nicola Lewis
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Lynne Whittaker
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Burcu Ermetal
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Ruth Harvey
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Monica Galiano
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Rodney Stuart Daniels
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - John W McCauley
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuya Nakamura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriko Kishida
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinji Watanabe
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sheena G Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Florian Krammer
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Trevor Bedford
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, United States
- Department of Genome Sciences, University of Washington, Seattle, United States
- Howard Hughes Medical Institute, Seattle, United States
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, United States
| |
Collapse
|
6
|
Sullivan S, Khvorov A, Carolan L, Dowson L, Hadiprodjo J, Sánchez-Ovando S, Liu Y, Leung V, Hodgson D, Blyth C, Macnish M, Cheng A, Hagenauer M, Clark J, Dougherty S, Macartney K, Koirala A, Khatami A, Jadhav A, Marshall H, Riley K, Wark P, Delahunty C, Subbarao K, Kucharski A, Fox A. Antibody responses against influenza A decline with successive years of annual influenza vaccination: results from an Australian Healthcare Worker cohort. RESEARCH SQUARE 2024:rs.3.rs-4854923. [PMID: 39372918 PMCID: PMC11451718 DOI: 10.21203/rs.3.rs-4854923/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Influenza vaccine effectiveness and immunogenicity can be compromised with repeated vaccination. We assessed immunological markers in a cohort of healthcare workers (HCW) from six public hospitals around Australia during 2020-2021. Sera were collected pre-vaccination and ~14 and ~ 180 days post-vaccination and assessed in haemagglutination inhibition assay against egg-grown vaccine and equivalent cell-grown viruses. Responses to vaccination were compared by the number of prior vaccinations. Baseline sera were available for 595 HCW in 2020 and 1031 in 2021. 5% had not been vaccinated during five years prior to enrolment and 55% had been vaccinated every year. Post-vaccination titres for all vaccine antigens were lowest among HCW vaccinated in all 5-prior years and highest among HCW with 0 or 1 prior vaccinations, even after adjustment. This was observed for both influenza A subtypes and was dependent on pre-vaccination titre. Expanded cohorts are needed to better understand how this translates to vaccine effectiveness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kathryn Riley
- Adelaide Medical School and Robinson Research Institute
| | | | | | | | | | - Annette Fox
- Peter Doherty Institute for Infection and Immunity
| |
Collapse
|
7
|
Badruzzaman ATM, Cheng YC, Sung WC, Lee MS. Insect Cell-Based Quadrivalent Seasonal Influenza Virus-like Particles Vaccine Elicits Potent Immune Responses in Mice. Vaccines (Basel) 2024; 12:667. [PMID: 38932396 PMCID: PMC11209530 DOI: 10.3390/vaccines12060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza viruses can cause highly infectious respiratory diseases, posing noteworthy epidemic and pandemic threats. Vaccination is the most cost-effective intervention to prevent influenza and its complications. However, reliance on embryonic chicken eggs for commercial influenza vaccine production presents potential risks, including reductions in efficacy due to HA gene mutations and supply delays due to scalability challenges. Thus, alternative platforms are needed urgently to replace egg-based methods and efficiently meet the increasing demand for vaccines. In this study, we employed a baculovirus expression vector system to engineer HA, NA, and M1 genes from seasonal influenza strains A/H1N1, A/H3N2, B/Yamagata, and B/Victoria, generating virus-like particle (VLP) vaccine antigens, H1N1-VLP, H3N2-VLP, Yamagata-VLP, and Victoria-VLP. We then assessed their functional and antigenic characteristics, including hemagglutination assay, protein composition, morphology, stability, and immunogenicity. We found that recombinant VLPs displayed functional activity, resembling influenza virions in morphology and size while maintaining structural integrity. Comparative immunogenicity assessments in mice showed that our quadrivalent VLPs were consistent in inducing hemagglutination inhibition and neutralizing antibody titers against homologous viruses compared to both commercial recombinant HA and egg-based vaccines (Vaxigrip). The findings highlight insect cell-based VLP vaccines as promising candidates for quadrivalent seasonal influenza vaccines. Further studies are worth conducting.
Collapse
Affiliation(s)
- A. T. M. Badruzzaman
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 320, Taiwan
| | - Yu-Chieh Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
| |
Collapse
|
8
|
Wadey C, Rockman S. Analysing the Potency of a Seasonal Influenza Vaccine Using Reference Antisera from Heterologous Strains. Vaccines (Basel) 2024; 12:596. [PMID: 38932325 PMCID: PMC11209104 DOI: 10.3390/vaccines12060596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
The potency of inactivated seasonal influenza vaccine is harmonised by establishing the haemagglutinin (HA) content using the compendial single radial diffusion (SRD) method. SRD reagents (antigens and antisera) are prepared, calibrated and distributed by regulatory agencies as standards for potency testing, following the biannual World Health Organization (WHO) announcements of the virus strains suitable for inclusion in the vaccine. The generation of a homologous hyperimmune sheep antiserum constrains the time to vaccine release. This study tests the application of heterologous antisera to determine the potency of influenza vaccine compared to that of a standard homologous antiserum. The results indicate that the selected heterologous sheep antisera directed to seasonal H1N1, H3N2 or B Victoria virus strains can be used to determine the accurate potency of inactivated seasonal influenza vaccines. Individually selected antisera could be useful for two to fourteen seasons. A limitation to the heterologous antiserum approach is the diversity of each individual serum, indicating that the empirical determination of a specific serum is required. This application has the potential to enable the earlier availability of a seasonal vaccine and reduce animal usage.
Collapse
Affiliation(s)
| | - Steven Rockman
- CSL Seqirus, Melbourne, VIC 3000, Australia;
- Department of Immunology and Microbiology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
9
|
Perofsky AC, Huddleston J, Hansen C, Barnes JR, Rowe T, Xu X, Kondor R, Wentworth DE, Lewis N, Whittaker L, Ermetal B, Harvey R, Galiano M, Daniels RS, McCauley JW, Fujisaki S, Nakamura K, Kishida N, Watanabe S, Hasegawa H, Sullivan SG, Barr IG, Subbarao K, Krammer F, Bedford T, Viboud C. Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.10.02.23296453. [PMID: 37873362 PMCID: PMC10593063 DOI: 10.1101/2023.10.02.23296453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997-2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection dynamics, presumably via heterosubtypic cross-immunity.
Collapse
Affiliation(s)
- Amanda C Perofsky
- Fogarty International Center, National Institutes of Health, United States
- Brotman Baty Institute for Precision Medicine, University of Washington, United States
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, United States
| | - Chelsea Hansen
- Fogarty International Center, National Institutes of Health, United States
- Brotman Baty Institute for Precision Medicine, University of Washington, United States
| | - John R Barnes
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), United States
| | - Thomas Rowe
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), United States
| | - Xiyan Xu
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), United States
| | - Rebecca Kondor
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), United States
| | - David E Wentworth
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), United States
| | - Nicola Lewis
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - Lynne Whittaker
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - Burcu Ermetal
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - Ruth Harvey
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - Monica Galiano
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - Rodney Stuart Daniels
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - John W McCauley
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Japan
| | - Kazuya Nakamura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Japan
| | - Noriko Kishida
- Influenza Virus Research Center, National Institute of Infectious Diseases, Japan
| | - Shinji Watanabe
- Influenza Virus Research Center, National Institute of Infectious Diseases, Japan
| | - Hideki Hasegawa
- Influenza Virus Research Center, National Institute of Infectious Diseases, Japan
| | - Sheena G Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Australia
| | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Australia
| | - Florian Krammer
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, United States
| | - Trevor Bedford
- Brotman Baty Institute for Precision Medicine, University of Washington, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, United States
- Department of Genome Sciences, University of Washington, United States
- Howard Hughes Medical Institute, Seattle, United States
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, United States
| |
Collapse
|
10
|
Stein AN, Mills CW, McGovern I, McDermott KW, Dean A, Bogdanov AN, Sullivan SG, Haag MDM. Relative Vaccine Effectiveness of Cell- vs Egg-Based Quadrivalent Influenza Vaccine Against Test-Confirmed Influenza Over 3 Seasons Between 2017 and 2020 in the United States. Open Forum Infect Dis 2024; 11:ofae175. [PMID: 38698895 PMCID: PMC11064727 DOI: 10.1093/ofid/ofae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Background Influenza vaccine viruses grown in eggs may acquire egg-adaptive mutations that may reduce antigenic similarity between vaccine and circulating influenza viruses and decrease vaccine effectiveness. We compared cell- and egg-based quadrivalent influenza vaccines (QIVc and QIVe, respectively) for preventing test-confirmed influenza over 3 US influenza seasons (2017-2020). Methods Using a retrospective test-negative design, we estimated the relative vaccine effectiveness (rVE) of QIVc vs QIVe among individuals aged 4 to 64 years who had an acute respiratory or febrile illness and were tested for influenza in routine outpatient care. Exposure, outcome, and covariate data were obtained from electronic health records linked to pharmacy and medical claims. Season-specific rVE was estimated by comparing the odds of testing positive for influenza among QIVc vs QIVe recipients. Models were adjusted for age, sex, geographic region, influenza test date, and additional unbalanced covariates. A doubly robust approach was used combining inverse probability of treatment weights with multivariable regression. Results The study included 31 824, 33 388, and 34 398 patients in the 2017-2018, 2018-2019, and 2019-2020 seasons, respectively; ∼10% received QIVc and ∼90% received QIVe. QIVc demonstrated superior effectiveness vs QIVe in prevention of test-confirmed influenza: rVEs were 14.8% (95% CI, 7.0%-22.0%) in 2017-2018, 12.5% (95% CI, 4.7%-19.6%) in 2018-2019, and 10.0% (95% CI, 2.7%-16.7%) in 2019-2020. Conclusions This study demonstrated consistently superior effectiveness of QIVc vs QIVe in preventing test-confirmed influenza over 3 seasons characterized by different circulating viruses and degrees of egg adaptation.
Collapse
Affiliation(s)
- Alicia N Stein
- Centre for Outcomes Research and Epidemiology, CSL Seqirus, Melbourne, Australia
| | | | - Ian McGovern
- Centre for Outcomes Research and Epidemiology, CSL Seqirus, Waltham, Massachusetts, USA
| | | | - Alex Dean
- Real World Evidence, Veradigm, Chicago, Illinois, USA
| | | | - Sheena G Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, and Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute of Infection and Immunity, Melbourne, Australia
- Department of Epidemiology, University of California, Los Angeles, California, USA
| | - Mendel D M Haag
- Centre for Outcomes Research and Epidemiology, CSL Seqirus, Amsterdam, Netherlands
| |
Collapse
|
11
|
Hodgson D, Sánchez-Ovando S, Carolan L, Liu Y, Hadiprodjo AJ, Fox A, Sullivan SG, Kucharski AJ. Quantifying the impact of pre-vaccination titre and vaccination history on influenza vaccine immunogenicity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.24.24301614. [PMID: 38343865 PMCID: PMC10854332 DOI: 10.1101/2024.01.24.24301614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Epidemiological studies suggest that heterogeneity in influenza vaccine antibody response is associated with host factors, including pre-vaccination immune status, age, gender, and vaccination history. However, the pattern of reported associations varies between studies. To better understand the underlying influences on antibody responses, we combined host factors and vaccine-induced in-host antibody kinetics from a cohort study conducted across multiple seasons with a unified analysis framework. We developed a flexible individual-level Bayesian model to estimate associations and interactions between host factors, including pre-vaccine HAI titre, age, sex, vaccination history and study setting, and vaccine-induced HAI titre antibody boosting and waning. We applied the model to derive population-level and individual effects of post-vaccine antibody kinetics for vaccinating and circulating strains for A(H1N1) and A(H3N2) influenza subtypes. We found that post-vaccine HAI titre dynamics were significantly influenced by pre-vaccination HAI titre and vaccination history and that lower pre-vaccination HAI titre results in longer durations of seroprotection (HAI titre equal to 1:40 or higher). Consequently, for A(H1N1), our inference finds that the expected duration of seroprotection post-vaccination was 171 (95% Posterior Predictive Interval[PPI] 128-220) and 159 (95% PPI 120-200) days longer for those who are infrequently vaccinated (<2 vaccines in last five years) compared to those who are frequently vaccinated (2 or more vaccines in the last five years) at pre-vaccination HAI titre values of 1:10 and 1:20 respectively. In addition, we found significant differences in the empirical distributions that describe the individual-level duration of seroprotection for A(H1N1) circulating strains. In future, studies that rely on serological endpoints should include the impact of pre-vaccine HAI titre and prior vaccination status on seropositivity and seroconversion estimates, as these significantly influence an individual's post-vaccination antibody kinetics.
Collapse
Affiliation(s)
- David Hodgson
- Center of Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Stephany Sánchez-Ovando
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Louise Carolan
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yi Liu
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - A. Jessica Hadiprodjo
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Annette Fox
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sheena G. Sullivan
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Adam J. Kucharski
- Center of Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
12
|
Gao C, Wen F, Guan M, Hatuwal B, Li L, Praena B, Tang CY, Zhang J, Luo F, Xie H, Webby R, Tao YJ, Wan XF. MAIVeSS: streamlined selection of antigenically matched, high-yield viruses for seasonal influenza vaccine production. Nat Commun 2024; 15:1128. [PMID: 38321021 PMCID: PMC10847134 DOI: 10.1038/s41467-024-45145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Vaccines are the main pharmaceutical intervention used against the global public health threat posed by influenza viruses. Timely selection of optimal seed viruses with matched antigenicity between vaccine antigen and circulating viruses and with high yield underscore vaccine efficacy and supply, respectively. Current methods for selecting influenza seed vaccines are labor intensive and time-consuming. Here, we report the Machine-learning Assisted Influenza VaccinE Strain Selection framework, MAIVeSS, that enables streamlined selection of naturally circulating, antigenically matched, and high-yield influenza vaccine strains directly from clinical samples by using molecular signatures of antigenicity and yield to support optimal candidate vaccine virus selection. We apply our framework on publicly available sequences to select A(H1N1)pdm09 vaccine candidates and experimentally confirm that these candidates have optimal antigenicity and growth in cells and eggs. Our framework can potentially reduce the optimal vaccine candidate selection time from months to days and thus facilitate timely supply of seasonal vaccines.
Collapse
Affiliation(s)
- Cheng Gao
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, 65211, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Feng Wen
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, 39762, USA
| | - Minhui Guan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Bijaya Hatuwal
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, 65211, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
- Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Beatriz Praena
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Cynthia Y Tang
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA
| | - Jieze Zhang
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Feng Luo
- University School of Computing, Clemson University, Clemson, SC, 29634, USA
| | - Hang Xie
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 63141, USA
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, TX, 77251, USA
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, 65211, USA.
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, 65211, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, 39762, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
13
|
Chatterjee A, Ambrose K, Canaday DH, Delair S, Ezike N, Huber VC, Jhaveri R, Nyquist AC, Sporer A, Varman M, Vivekanandan R, Wojcik R, Jandhyala R. The association between influenza vaccine effectiveness and egg-based manufacturing technology: literature review and US expert consensus. Curr Med Res Opin 2024; 40:335-343. [PMID: 38054898 DOI: 10.1080/03007995.2023.2284386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Influenza is associated with significant disease burden in the US and is currently best controlled by vaccination programs. Influenza vaccine effectiveness (VE) is low and may be reduced by several factors, including egg adaptations. Although non-egg-based influenza vaccines reportedly have greater VE in egg-adapted seasons, evidence for egg adaptations' reduction of VE is indirect and dissociated, apart from two previous European consensuses. METHODS This study replicated the methodology used in a 2020 literature review and European consensus, providing an updated review and consensus opinion of 10 US experts on the evidence for a mechanistic basis for reduction of VE due to egg-based manufacturing methods. A mechanistic basis was assumed if sufficient evidence was found for underlying principles proposed to give rise to such an effect. Evidence for each principle was brought forward from the 2020 review and identified here by structured literature review and expert panel. Experts rated the strength of support for each principle and a mechanistic basis for reduction of VE due to egg-based influenza vaccine manufacture in a consensus method (consensus for strong/very strong evidence = ≥ 3.5 on 5-point Likert scale). RESULTS Experts assessed 251 references (from previous study: 185; this study: 66). The majority of references for all underlying principles were rated as strong or very strong supporting evidence (52-86%). Global surveillance, WHO candidate vaccine virus selection, and manufacturing stages involving eggs were identified as most likely to impact influenza VE. CONCLUSION After review of extensive evidence for reduction of VE due to egg-based influenza vaccine manufacture, influenza experts in the US joined those in Europe in unanimous agreement for a mechanistic basis for the effect. Vaccine providers and administrators should consider use of non-egg-based influenza vaccine manufacture to reduce the risk of egg adaptations and likely impact on VE.
Collapse
Affiliation(s)
- Archana Chatterjee
- Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | | | | | | | | | | - Ravi Jhaveri
- Feinberg School of Medicine, Northwestern, IL, USA
| | | | | | | | | | | | - Ravi Jandhyala
- Medialis Ltd, Milton Keynes, UK
- King's College London, London, UK
| |
Collapse
|
14
|
Chung H, Campitelli MA, Buchan SA, Campigotto A, Crowcroft NS, Gubbay JB, Jung JK, Karnauchow T, Katz K, McGeer AJ, McNally JD, Richardson DC, Richardson SE, Rosella LC, Russell ML, Schwartz KL, Simor A, Smieja M, Sundaram ME, Warshawsky BF, Zahariadis G, Kwong JC. Measuring waning protection from seasonal influenza vaccination during nine influenza seasons, Ontario, Canada, 2010/11 to 2018/19. Euro Surveill 2024; 29. [PMID: 38390652 PMCID: PMC10899815 DOI: 10.2807/1560-7917.es.2024.29.8.2300239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
BackgroundWaning immunity from seasonal influenza vaccination can cause suboptimal protection during peak influenza activity. However, vaccine effectiveness studies assessing waning immunity using vaccinated and unvaccinated individuals are subject to biases.AimWe examined the association between time since vaccination and laboratory-confirmed influenza to assess the change in influenza vaccine protection over time.MethodsUsing linked laboratory and health administrative databases in Ontario, Canada, we identified community-dwelling individuals aged ≥ 6 months who received an influenza vaccine before being tested for influenza by RT-PCR during the 2010/11 to 2018/19 influenza seasons. We estimated the adjusted odds ratio (aOR) for laboratory-confirmed influenza by time since vaccination (categorised into intervals) and for every 28 days.ResultsThere were 53,065 individuals who were vaccinated before testing for influenza, with 10,264 (19%) influenza-positive cases. The odds of influenza increased from 1.05 (95% CI: 0.91-1.22) at 42-69 days after vaccination and peaked at 1.27 (95% CI: 1.04-1.55) at 126-153 days when compared with the reference interval (14-41 days). This corresponded to 1.09-times increased odds of influenza every 28 days (aOR = 1.09; 95% CI: 1.04-1.15). Individuals aged 18-64 years showed the greatest decline in protection against influenza A(H1N1) (aORper 28 days = 1.26; 95% CI: 0.97-1.64), whereas for individuals aged ≥ 65 years, it was against influenza A(H3N2) (aORper 28 days = 1.20; 95% CI: 1.08-1.33). We did not observe evidence of waning vaccine protection for individuals aged < 18 years.ConclusionsInfluenza vaccine protection wanes during an influenza season. Understanding the optimal timing of vaccination could ensure robust protection during seasonal influenza activity.
Collapse
Affiliation(s)
| | | | - Sarah A Buchan
- Public Health Ontario, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- ICES, Toronto, Canada
| | - Aaron Campigotto
- London Health Sciences Centre, London, Canada
- Hospital for Sick Children, Toronto, Canada
| | - Natasha S Crowcroft
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Centre for Vaccine Preventable Diseases, University of Toronto, Toronto, Canada
- Public Health Ontario, Toronto, Canada
- ICES, Toronto, Canada
| | - Jonathan B Gubbay
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Hospital for Sick Children, Toronto, Canada
- Public Health Ontario, Toronto, Canada
| | | | - Timothy Karnauchow
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Kevin Katz
- North York General Hospital, Toronto, Canada
| | - Allison J McGeer
- Sinai Health System, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | | | | | - Susan E Richardson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Hospital for Sick Children, Toronto, Canada
| | - Laura C Rosella
- Public Health Ontario, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- ICES, Toronto, Canada
| | | | - Kevin L Schwartz
- Public Health Ontario, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- ICES, Toronto, Canada
| | - Andrew Simor
- Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | - Maria E Sundaram
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, United States
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- ICES, Toronto, Canada
| | - Bryna F Warshawsky
- Western University, London, Canada
- Public Health Ontario, Toronto, Canada
| | - George Zahariadis
- Newfoundland and Labrador Public Health Laboratory, St. John's, Canada
- London Health Sciences Centre, London, Canada
| | - Jeffrey C Kwong
- ICES, Toronto, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, Canada
- University Health Network, Toronto, Canada
- Centre for Vaccine Preventable Diseases, University of Toronto, Toronto, Canada
- Public Health Ontario, Toronto, Canada
| |
Collapse
|
15
|
Eshchenko N, Sergeeva M, Zhuravlev E, Kudria K, Goncharova E, Komissarov A, Stepanov G. A Knockout of the IFITM3 Gene Increases the Sensitivity of WI-38 VA13 Cells to the Influenza A Virus. Int J Mol Sci 2024; 25:625. [PMID: 38203797 PMCID: PMC10778886 DOI: 10.3390/ijms25010625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
One of the ways to regulate the sensitivity of human cells to the influenza virus is to knock out genes of the innate immune response. Promising targets for the knockout are genes of the interferon-inducible transmembrane protein (IFITM) family, in particular the IFITM3 gene, whose product limits the entry of a virus into the cell by blocking the fusion of the viral and endosomal membranes. In this study, by means of genome-editing system CRISPR/Cas9, monoclonal cell lines with an IFITM3 knockout were obtained based on WI-38 VA13 cells (human origin). It was found that such cell lines are more sensitive to infection by influenza A viruses of various subtypes. Nevertheless, this feature is not accompanied by an increased titer of newly formed viral particles in a culture medium.
Collapse
Affiliation(s)
- Natalya Eshchenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (N.E.); (M.S.); (E.G.); (A.K.); (G.S.)
| | - Mariia Sergeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (N.E.); (M.S.); (E.G.); (A.K.); (G.S.)
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg 197376, Russia;
| | - Evgenii Zhuravlev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (N.E.); (M.S.); (E.G.); (A.K.); (G.S.)
| | - Kira Kudria
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg 197376, Russia;
| | - Elena Goncharova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (N.E.); (M.S.); (E.G.); (A.K.); (G.S.)
| | - Andrey Komissarov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (N.E.); (M.S.); (E.G.); (A.K.); (G.S.)
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg 197376, Russia;
| | - Grigory Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (N.E.); (M.S.); (E.G.); (A.K.); (G.S.)
| |
Collapse
|
16
|
Chi CY, Cheng MF, Ko K, Mould JF, Chen CJ, Huang YC, Lee PI. Cost-effectiveness analysis of cell-based versus egg-based quadrivalent influenza vaccines in the pediatric population in Taiwan. J Med Virol 2024; 96:e29279. [PMID: 38196182 DOI: 10.1002/jmv.29279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 01/11/2024]
Abstract
Cell-based influenza vaccines avoid egg-adaptive mutations, potentially improving vaccine effectiveness. We assessed the one-season cost-effectiveness of cell-based quadrivalent influenza vaccine (QIVc) against that of egg-derived quadrivalent influenza vaccines (QIVe) in children (6 months to 17 years of age) from payer and societal perspectives in Taiwan using an age-stratified static model. Base case and high egg adaptation scenarios were assessed. Deterministic and probabilistic sensitivity analyses were performed. The incremental cost-effectiveness ratio (ICER) threshold in Taiwan was assumed to be USD 99 177/quality-adjusted life year (QALY). Compared to QIVe, QIVc would prevent 15 665 influenza cases, 2244 complicated cases, and 259 hospitalizations per year. The base case ICER was USD 68 298/QALY and USD 40 085/QALY from the payer and societal perspective, respectively. In the high egg adaptation scenario, the ICER was USD 45 782/QALY from the payer's perspective and USD 17 489/QALY from the societal perspective. Deterministic sensitivity analyses indicated that infection incidence rate, vaccination coverage, and prevalence of the A/H3N2 strain were the main drivers of ICER. In conclusion, switching the immunization strategy from QIVe to QIVc is predicted to reduce the influenza-associated disease burden and be cost-effective for the pediatric population in Taiwan. The potential benefits of QIVc would be even higher during influenza seasons with high levels of egg adaptation.
Collapse
Affiliation(s)
- Chia-Yu Chi
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Fang Cheng
- Department of Paediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Karam Ko
- Medical Affairs, Seqirus Korea Ltd., Seoul, Korea
| | - Joaquin F Mould
- Global Medical Affairs, CSL Seqirus USA Inc., Summit, New Jersey, USA
| | - Chih-Jung Chen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yhu-Chering Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ping-Ing Lee
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
17
|
Dardas LA, Al-leimon O, Jaber AR, Saadeh M, Al-leimon A, Al-Hurani A, Jaber AR, Aziziye O, Al-salieby F, Aljahalin M, Van de Water B. Flu Shots Unveiled: A Global Systematic Review of Healthcare Providers' Uptake of, Perceptions, and Attitudes toward Influenza Vaccination. Vaccines (Basel) 2023; 11:1760. [PMID: 38140165 PMCID: PMC10747442 DOI: 10.3390/vaccines11121760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Influenza, with its potential for widespread transmission and significant health repercussions for individuals and populations, demands the immediate implementation of effective preventive measures. Vaccination stands as a long-standing evidence-based strategic approach to bolster immunity, especially for healthcare providers at heightened risk due to repeated exposure. Nevertheless, studies indicate a variance in adherence to recommended vaccination protocols and a notable prevalence of hesitancy and negative attitudes toward influenza vaccination among this critical group globally. Recognizing the multifaceted nature of attitudes is essential for the development of targeted interventions and strategies tailored to address the specific concerns and motivations of healthcare providers. To this end, this study synthesized the evidence gathered from an exhaustive systematic review of studies on healthcare providers' uptake of and perceptions and attitudes toward influenza vaccination. METHODS A systematic literature search was conducted across the databases PubMed, CINAHL, PsycINFO, Scopus, Web of Science, and EMBASE. The review adhered to PRISMA guidelines, using Covidence for screening. The process involved 4970 references, with 2684 screened after duplicate removals and 1891 excluded, leaving 793 full texts evaluated, resulting in a final 368 selected references for analysis. Due to the considerable heterogeneity observed among the studies, a narrative synthesis method was employed. RESULTS Five themes emerged from the systematic review's analysis, offering a multifaceted perspective on healthcare providers' attitudes toward influenza vaccination: (1) fostering positive views: factors promoting attitudes toward influenza vaccines; (2) navigating hesitancy: barriers and challenges to attitudes on influenza vaccines; (3) empowering change: interventions and their impact on healthcare providers' attitudes; (4) pandemic overlap: intersecting attitudes toward influenza and COVID-19 vaccines; and (5) twin challenges: the impact of mandatory policy on attitudes and influenza vaccination. CONCLUSIONS Healthcare providers' attitudes toward influenza vaccination are complex and influenced by intrinsic and extrinsic motivations, barriers, demographics, organizational factors, interventions, pandemic contexts, and policy considerations. Effective strategies for promoting influenza vaccination should be multifaceted, adaptable, and tailored to address these interconnected aspects, ultimately contributing to improved vaccination rates and public health outcomes.
Collapse
Affiliation(s)
| | - Obada Al-leimon
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | | | - Mohammed Saadeh
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ahmad Al-leimon
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ahmad Al-Hurani
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | | | - Omer Aziziye
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Fadi Al-salieby
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | | | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The successes of the coronavirus disease 2019 (COVID-19) mRNA vaccines have accelerated the development of mRNA vaccines against other respiratory pathogens. The aim of this review is to highlight COVID-19 mRNA vaccine advances and provide an update on the progress of mRNA vaccine development against other respiratory pathogens. RECENT FINDINGS The COVID-19 mRNA vaccines demonstrated effectiveness in preventing severe COVID-19 and death. H7N9 and H10N8 avian influenza mRNA vaccines have demonstrated safety and immunogenicity in phase 1 clinical trials. Numerous seasonal influenza mRNA vaccines are in phase 1-3 clinical trials. Respiratory syncytial virus (RSV) mRNA vaccines have progressed to phase 2-3 clinical trials in adults and a phase 1 clinical trial in children. A combined human metapneumovirus and parainfluenza-3 mRNA vaccines was found to be well tolerated and immunogenic in a phase 1 trial among adults and trials are being conducted among children. Clinical trials of mRNA vaccines combining antigens from multiple respiratory viruses are underway. SUMMARY The development of mRNA vaccines against respiratory viruses has progressed rapidly in recent years. Promising vaccine candidates are moving through the clinical development pathway to test their efficacy in preventing disease against respiratory viral pathogens.
Collapse
Affiliation(s)
| | - Hana M El Sahly
- Department of Molecular Virology and Microbiology
- Department of Medicine
| | - C Mary Healy
- Department of Pediatrics, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
19
|
Boudreau CM, Burke JS, Yousif AS, Sangesland M, Jastrzebski S, Verschoor C, Kuchel G, Lingwood D, Kleanthous H, De Bruijn I, Landolfi V, Sridhar S, Alter G. Antibody-mediated NK cell activation as a correlate of immunity against influenza infection. Nat Commun 2023; 14:5170. [PMID: 37620306 PMCID: PMC10449820 DOI: 10.1038/s41467-023-40699-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Antibodies play a critical role in protection against influenza; yet titers and viral neutralization represent incomplete correlates of immunity. Instead, the ability of antibodies to leverage the antiviral power of the innate immune system has been implicated in protection from and clearance of influenza infection. Here, post-hoc analysis of the humoral immune response to influenza is comprehensively profiled in a cohort of vaccinated older adults (65 + ) monitored for influenza infection during the 2012/2013 season in the United States (NCT: 01427309). While robust humoral immune responses arose against the vaccine and circulating strains, influenza-specific antibody effector profiles differed in individuals that later became infected with influenza, who are deficient in NK cell activating antibodies to both hemagglutinin and neuraminidase, compared to individuals who remained uninfected. Furthermore, NK cell activation was strongly associated with the NK cell senescence marker CD57, arguing for the need for selective induction of influenza-specific afucosylated NK activating antibodies in older adults to achieve protection. High dose vaccination, currently used for older adults, was insufficient to generate this NK cell-activating humoral response. Next generation vaccines able to selectively bolster NK cell activating antibodies may be required to achieve protection in the setting of progressively senescent NK cells.
Collapse
Affiliation(s)
- Carolyn M Boudreau
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02129, USA
- PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, 02115, USA
| | - John S Burke
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02129, USA
| | - Ashraf S Yousif
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02129, USA
| | - Maya Sangesland
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02129, USA
- PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, 02115, USA
| | | | - Chris Verschoor
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - George Kuchel
- Center on Aging, UCONN Health Center, Farmington, CT, 06030, USA
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02129, USA
| | | | | | | | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02129, USA.
| |
Collapse
|
20
|
Martins JP, Santos M, Martins A, Felgueiras M, Santos R. Seasonal Influenza Vaccine Effectiveness in Persons Aged 15-64 Years: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2023; 11:1322. [PMID: 37631889 PMCID: PMC10459161 DOI: 10.3390/vaccines11081322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Influenza is a respiratory disease caused by the influenza virus, which is highly transmissible in humans. This paper presents a systematic review and meta-analysis of randomized controlled trials (RCTs) and test-negative designs (TNDs) to assess the vaccine effectiveness (VE) of seasonal influenza vaccines (SIVs) in humans aged 15 to 64 years. An electronic search to identify all relevant studies was performed. The outcome measure of interest was VE on laboratory-confirmed influenza (any strain). Quality assessment was performed using the Cochrane risk-of-bias tool for RCTs and the ROBINS-I tool for TNDs. The search identified a total of 2993 records, but only 123 studies from 73 papers were included in the meta-analysis. Of these studies, 9 were RCTs and 116 were TNDs. The pooled VE was 48% (95% CI: 42-54) for RCTs, 55.4% (95% CI: 43.2-64.9) when there was a match between the vaccine and most prevalent circulating strains and 39.3% (95% CI: 23.5-51.9) otherwise. The TNDs' adjusted VE was equal to 39.9% (95% CI: 31-48), 45.1 (95% CI: 38.7-50.8) when there was a match and 35.1 (95% CI: 29.0-40.7) otherwise. The match between strains included in the vaccine and strains in circulation is the most important factor in the VE. It increases by more than 25% when there is a match with the most prevalent circulating strains. The laboratorial method for confirmation of influenza is a possible source of bias when estimating VE.
Collapse
Affiliation(s)
- João Paulo Martins
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- CEAUL—Centro de Estatística e Aplicações, Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.F.); (R.S.)
| | - Marlene Santos
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Centro de Investigação em Saúde e Ambiente, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - André Martins
- Centro de Investigação em Saúde e Ambiente, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Miguel Felgueiras
- CEAUL—Centro de Estatística e Aplicações, Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.F.); (R.S.)
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, Campus 2, Morro do Lena—Alto do Vieiro, Apartado 4163, 2411-901 Leiria, Portugal
| | - Rui Santos
- CEAUL—Centro de Estatística e Aplicações, Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.F.); (R.S.)
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, Campus 2, Morro do Lena—Alto do Vieiro, Apartado 4163, 2411-901 Leiria, Portugal
| |
Collapse
|
21
|
Swanson NJ, Marinho P, Dziedzic A, Jedlicka A, Liu H, Fenstermacher K, Rothman R, Pekosz A. 2019-2020 H1N1 clade A5a.1 viruses have better in vitro fitness compared with the co-circulating A5a.2 clade. Sci Rep 2023; 13:10223. [PMID: 37353648 PMCID: PMC10290074 DOI: 10.1038/s41598-023-37122-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
Surveillance for emerging human influenza virus clades is important for identifying changes in viral fitness and assessing antigenic similarity to vaccine strains. While fitness and antigenic structure are both important aspects of virus success, they are distinct characteristics and do not always change in a complementary manner. The 2019-2020 Northern Hemisphere influenza season saw the emergence of two H1N1 clades: A5a.1 and A5a.2. While several studies indicated that A5a.2 showed similar or even increased antigenic drift compared with A5a.1, the A5a.1 clade was still the predominant circulating clade that season. Clinical isolates of representative viruses from these clades were collected in Baltimore, Maryland during the 2019-2020 season and multiple assays were performed to compare both antigenic drift and viral fitness between clades. Neutralization assays performed on serum from healthcare workers pre- and post-vaccination during the 2019-2020 season show a comparable drop in neutralizing titers against both A5a.1 and A5a.2 viruses compared with the vaccine strain, indicating that A5a.1 did not have antigenic advantages over A5a.2 that would explain its predominance in this population. Plaque assays were performed to investigate fitness differences, and the A5a.2 virus produced significantly smaller plaques compared with viruses from A5a.1 or the parental A5a clade. To assess viral replication, low MOI growth curves were performed on both MDCK-SIAT and primary differentiated human nasal epithelial cell cultures. In both cell cultures, A5a.2 yielded significantly reduced viral titers at multiple timepoints post-infection compared with A5a.1 or A5a. Receptor binding was then investigated through glycan array experiments which showed a reduction in receptor binding diversity for A5a.2, with fewer glycans bound and a higher percentage of total binding attributable to the top three highest bound glycans. Together these data indicate that the A5a.2 clade had a reduction in viral fitness, including reductions in receptor binding, that may have contributed to the limited prevalence observed after emergence.
Collapse
Affiliation(s)
- Nicholas J Swanson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Paula Marinho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Amanda Dziedzic
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Anne Jedlicka
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Katherine Fenstermacher
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA.
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
22
|
Zhang J, Nian X, Liu B, Zhang Z, Zhao W, Han X, Ma Y, Jin D, Ma H, Zhang Q, Qiu R, Li F, Gong Z, Li X, Yang Y, Tian Y, Zhou L, Duan K, Li X, Ma Z, Yang X. Development of MDCK-based quadrivalent split seasonal influenza virus vaccine with high safety and immunoprotection: A preclinical study. Antiviral Res 2023; 216:105639. [PMID: 37270159 DOI: 10.1016/j.antiviral.2023.105639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/12/2023] [Accepted: 05/17/2023] [Indexed: 06/05/2023]
Abstract
Vaccination remains the best prevention strategy against influenza. The MDCK-based influenza vaccine prompted the development of innovative cell culture manufacturing processes. In the present study, we report the effects of multiple administrations of a candidate, seasonal, MDCK-based, quadrivalent split influenza virus vaccine MDCK-QIV in Sprague-Dawley (SD) rats. Moreover, the effects of the vaccine were evaluated in terms of fertility and early embryonic development, embryo-fetal development, and perinatal toxicity in the SD rats and immunogenicity in Wistar rats and BALB/c mice. Regarding the safety profile, MDCK-QIV demonstrated tolerance in local stimulation with repeated dose administration and presented no significant effect on the development, growth, behavior, fertility, and reproductive performance of the adult male rats, maternal rats, and their offspring. MDCK-QIV elicited strong hemagglutination inhibition neutralizing antibody response and protection against the influenza virus in the mouse model. Thus, data supported that MDCK-QIV could be further evaluated in human clinical trial, which is currently underway.
Collapse
Affiliation(s)
- Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Bo Liu
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Zhegang Zhang
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Wei Zhao
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Xixin Han
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Yumei Ma
- Lanzhou BaiLing Biotech Co., Ltd, 730010, Lanzhou, China
| | - Dongwu Jin
- Lanzhou BaiLing Biotech Co., Ltd, 730010, Lanzhou, China
| | - Hua Ma
- Lanzhou BaiLing Biotech Co., Ltd, 730010, Lanzhou, China
| | - Qingmei Zhang
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Ran Qiu
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Fang Li
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Zheng Gong
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Xuedan Li
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Ying Yang
- Hubei Topgene Biotechnology Co., Ltd, 430074, Wuhan, China
| | - Yichao Tian
- Hubei Topgene Biotechnology Co., Ltd, 430074, Wuhan, China
| | - Li Zhou
- Hubei Topgene Biotechnology Co., Ltd, 430074, Wuhan, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Zhongren Ma
- Lanzhou BaiLing Biotech Co., Ltd, 730010, Lanzhou, China.
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China; China National Biotec Group Company Limited, 100029, Beijing, China.
| |
Collapse
|
23
|
Xie Y, Tian X, Zhang X, Yao H, Wu N. Immune interference in effectiveness of influenza and COVID-19 vaccination. Front Immunol 2023; 14:1167214. [PMID: 37153582 PMCID: PMC10154574 DOI: 10.3389/fimmu.2023.1167214] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Vaccines are known to function as the most effective interventional therapeutics for controlling infectious diseases, including polio, smallpox, rabies, tuberculosis, influenza and SARS-CoV-2. Smallpox has been eliminated completely and polio is almost extinct because of vaccines. Rabies vaccines and Bacille Calmette-Guérin (BCG) vaccines could effectively protect humans against respective infections. However, both influenza vaccines and COVID-19 vaccines are unable to eliminate these two infectious diseases of their highly variable antigenic sites in viral proteins. Vaccine effectiveness (VE) could be negatively influenced (i.e., interfered with) by immune imprinting of previous infections or vaccinations, and repeated vaccinations could interfere with VE against infections due to mismatch between vaccine strains and endemic viral strains. Moreover, VE could also be interfered with when more than one kind of vaccine is administrated concomitantly (i.e., co-administrated), suggesting that the VE could be modulated by the vaccine-induced immunity. In this review, we revisit the evidence that support the interfered VE result from immune imprinting or repeated vaccinations in influenza and COVID-19 vaccine, and the interference in co-administration of these two types of vaccines is also discussed. Regarding the development of next-generation COVID-19 vaccines, the researchers should focus on the induction of cross-reactive T-cell responses and naive B-cell responses to overcome negative effects from the immune system itself. The strategy of co-administrating influenza and COVID-19 vaccine needs to be considered more carefully and more clinical data is needed to verify this strategy to be safe and immunogenic.
Collapse
Affiliation(s)
- Yiwen Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Xuebin Tian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Xiaodi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| |
Collapse
|
24
|
Swanson NJ, Marinho P, Dziedzic A, Jedlicka A, Liu H, Fenstermacher K, Rothman R, Pekosz A. 2019-20 H1N1 clade A5a.1 viruses have better in vitro replication compared with the co-circulating A5a.2 clade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530085. [PMID: 36865250 PMCID: PMC9980287 DOI: 10.1101/2023.02.26.530085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Surveillance for emerging human influenza virus clades is important for identifying changes in viral fitness and assessing antigenic similarity to vaccine strains. While fitness and antigenic structure are both important aspects of virus success, they are distinct characteristics and do not always change in a complementary manner. The 2019-20 Northern Hemisphere influenza season saw the emergence of two H1N1 clades: A5a.1 and A5a.2. While several studies indicated that A5a.2 showed similar or even increased antigenic drift compared with A5a.1, the A5a.1 clade was still the predominant circulating clade that season. Clinical isolates of representative viruses from these clades were collected in Baltimore, Maryland during the 2019-20 season and multiple assays were performed to compare both antigenic drift and viral fitness between clades. Neutralization assays performed on serum from healthcare workers pre- and post-vaccination during the 2019-20 season show a comparable drop in neutralizing titers against both A5a.1 and A5a.2 viruses compared with the vaccine strain, indicating that A5a.1 did not have antigenic advantages over A5a.2 that would explain its predominance in this population. Plaque assays were performed to investigate fitness differences, and the A5a.2 virus produced significantly smaller plaques compared with viruses from A5a.1 or the parental A5a clade. To assess viral replication, low MOI growth curves were performed on both MDCK-SIAT and primary differentiated human nasal epithelial cell cultures. In both cell cultures, A5a.2 yielded significantly reduced viral titers at multiple timepoints post-infection compared with A5a.1 or A5a. Receptor binding was then investigated through glycan array experiments which showed a reduction in receptor binding diversity for A5a.2, with fewer glycans bound and a higher percentage of total binding attributable to the top three highest bound glycans. Together these data indicate that the A5a.2 clade had a reduction in viral fitness, including reductions in receptor binding, that may have contributed to the limited prevalence observed after emergence.
Collapse
Affiliation(s)
- Nicholas J Swanson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Paula Marinho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amanda Dziedzic
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anne Jedlicka
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Katherine Fenstermacher
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Antigenic Landscape Analysis of Individuals Vaccinated with a Universal Influenza Virus Vaccine Candidate Reveals Induction of Cross-Subtype Immunity. J Virol 2023; 97:e0107022. [PMID: 36533948 PMCID: PMC9888246 DOI: 10.1128/jvi.01070-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Current influenza virus vaccines have to be closely matched to circulating strains to provide good protection, and antigenic drift and emerging pandemic influenza virus strains present a difficult challenge for them. Universal influenza virus vaccines, including chimeric hemagglutinin (cHA)-based constructs that target the conserved stalk domain of hemagglutinin, are in clinical development. Due to the conservation of the stalk domain, antibodies directed to it show broad binding profiles, usually within group 1 and group 2 influenza A or influenza B virus phylogenies. However, determining the binding breadth of these antibodies with commonly used immunological methods can be challenging. Here, we analyzed serum samples from a phase I clinical trial (CVIA057, NCT03300050) using an influenza virus protein microarray (IVPM). The IVPM technology allowed us to assess immune responses not only to a large number of group 1 hemagglutinins but also group 2 and influenza B virus hemagglutinins. In CVIA057, different vaccine modalities, including a live attenuated influenza virus vaccine and inactivated influenza virus vaccines with or without adjuvant, all in the context of cHA constructs, were tested. We found that vaccination with adjuvanted, inactivated vaccines induced a very broad antibody response covering group 1 hemagglutinins, with limited induction of antibodies to group 2 hemagglutinins. Our data show that cHA constructs do indeed induce very broad immune responses and that the IVPM technology is a useful tool to measure this breadth that broadly protective or universal influenza virus vaccines aim to induce. IMPORTANCE The development of a universal influenza virus vaccine that protects against seasonal drifted, zoonotic, or emerging pandemic influenza viruses would be an extremely useful public health tool. Here, we test a technology designed to measure the breadth of antibody responses induced by this new class of vaccines.
Collapse
|
26
|
Einav T, Kosikova M, Radvak P, Kuo YC, Kwon HJ, Xie H. Mapping the Antibody Repertoires in Ferrets with Repeated Influenza A/H3 Infections: Is Original Antigenic Sin Really "Sinful"? Viruses 2023; 15:374. [PMID: 36851590 PMCID: PMC9959794 DOI: 10.3390/v15020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The influenza-specific antibody repertoire is continuously reshaped by infection and vaccination. The host immune response to contemporary viruses can be redirected to preferentially boost antibodies specific for viruses encountered early in life, a phenomenon called original antigenic sin (OAS) that is suggested to be responsible for diminished vaccine effectiveness after repeated seasonal vaccination. Using a new computational tool called Neutralization Landscapes, we tracked the progression of hemagglutination inhibition antibodies within ferret antisera elicited by repeated influenza A/H3 infections and deciphered the influence of prior exposures on the de novo antibody response to evolved viruses. The results indicate that a broadly neutralizing antibody signature can nevertheless be induced by repeated exposures despite OAS induction. Our study offers a new way to visualize how immune history shapes individual antibodies within a repertoire, which may help to inform future universal influenza vaccine design.
Collapse
Affiliation(s)
- Tal Einav
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Martina Kosikova
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Peter Radvak
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yuan-Chia Kuo
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Hyung Joon Kwon
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Hang Xie
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
27
|
Williams KV, Moehling Geffel K, Alcorn JF, Patricia Nowalk M, Levine MZ, Kim SS, Flannery B, Susick M, Zimmerman RK. Factors associated with humoral immune response in older adults who received egg-free influenza vaccine. Vaccine 2023; 41:862-869. [PMID: 36543682 PMCID: PMC9850444 DOI: 10.1016/j.vaccine.2022.12.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/11/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Immune responses to influenza vaccination tend to be lower among older, frequently vaccinated adults. Use of egg-free influenza vaccines is increasing, but limited data exist on factors associated with their immunogenicity in older adults. METHODS Community-dwelling older adults ≥ 56 years of age were enrolled in a prospective, observational study of immunogenicity of 2018-2019 influenza vaccine. Hemagglutination inhibition (HAI) antibody titers were measured pre-vaccination (Day 0) and four weeks after vaccination (Day 28) to calculate geometric mean titers, seropositivity (HAI titers ≥ 1:40), seroconversion (fourfold rise in HAI titer with post-vaccination titer ≥ 1:40) and geometric mean fold rise (GMFR). Linear regression models assessed the association of predictors of GMFR for each vaccine antigen. RESULTS Among 91 participants who received egg-free influenza vaccines, 84 (92.3 %) received quadrivalent recombinant influenza vaccine (RIV4, Flublok, Sanofi Pasteur), and 7 (7.7 %) received quadrivalent cell culture-based influenza vaccine (ccIIV4, Flucelvax, Seqirus). Pre-vaccination seropositivity was 52.8 % for A(H1N1), 94.5 % for A(H3N2), 61.5 % for B/Colorado and 48.4 % for B/Phuket. Seroconversion by antigen ranged from 16.5 % for A(H1N1) and B/Colorado to 37.4 % for A(H3N2); 40 participants failed to seroconvert to any antigen. Factors independently associated with higher GMFR in multivariable models included lower pre-vaccination HAI antibody titer for A(H1N1), B/Colorado and B/Phuket, and younger age for A(H1N1). CONCLUSION Overall pre-vaccination seropositivity was high and just over half of the cohort seroconverted to ≥ 1 vaccine antigen. Antibody responses were highest among participants with lower pre-vaccination titers. Among older adults with high pre-existing antibody titers, approaches to improve immune responses are needed.
Collapse
Affiliation(s)
- Katherine V Williams
- Department of Family Medicine, University of Pittsburgh, 4420 Bayard Street, Suite 520, Pittsburgh, PA 15260, USA.
| | - Krissy Moehling Geffel
- Department of Family Medicine, University of Pittsburgh, 4420 Bayard Street, Suite 520, Pittsburgh, PA 15260, USA
| | - John F Alcorn
- Department of Immunology, University of Pittsburgh, 9127 Rangos Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh, 3520 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | - Mary Patricia Nowalk
- Department of Family Medicine, University of Pittsburgh, 4420 Bayard Street, Suite 520, Pittsburgh, PA 15260, USA.
| | - Min Z Levine
- National Center Immunizations and Respiratory Disease, Center for Disease Control and Prevention, Atlanta, GA, USA.
| | - Sara S Kim
- National Center Immunizations and Respiratory Disease, Center for Disease Control and Prevention, Atlanta, GA, USA.
| | - Brendan Flannery
- National Center Immunizations and Respiratory Disease, Center for Disease Control and Prevention, Atlanta, GA, USA.
| | - Michael Susick
- Department of Family Medicine, University of Pittsburgh, 4420 Bayard Street, Suite 520, Pittsburgh, PA 15260, USA.
| | - Richard K Zimmerman
- Department of Family Medicine, University of Pittsburgh, 4420 Bayard Street, Suite 520, Pittsburgh, PA 15260, USA.
| |
Collapse
|
28
|
Jones-Gray E, Robinson EJ, Kucharski AJ, Fox A, Sullivan SG. Does repeated influenza vaccination attenuate effectiveness? A systematic review and meta-analysis. THE LANCET. RESPIRATORY MEDICINE 2023; 11:27-44. [PMID: 36152673 PMCID: PMC9780123 DOI: 10.1016/s2213-2600(22)00266-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Influenza vaccines require annual readministration; however, several reports have suggested that repeated vaccination might attenuate the vaccine's effectiveness. We aimed to estimate the reduction in vaccine effectiveness associated with repeated influenza vaccination. METHODS In this systematic review and meta-analysis, we searched MEDLINE, EMBASE, and CINAHL Complete databases for articles published from Jan 1, 2016, to June 13, 2022, and Web of Science for studies published from database inception to June 13, 2022. For studies published before Jan 1, 2016, we consulted published systematic reviews. Two reviewers (EJ-G and EJR) independently screened, extracted data using a data collection form, assessed studies' risk of bias using the Risk Of Bias In Non-Randomized Studies of Interventions (ROBINS-I) and evaluated the weight of evidence by Grading of Recommendations Assessment, Development, and Evaluation (GRADE). We included observational studies and randomised controlled trials that reported vaccine effectiveness against influenza A(H1N1)pdm09, influenza A(H3N2), or influenza B using four vaccination groups: current season; previous season; current and previous seasons; and neither season (reference). For each study, we calculated the absolute difference in vaccine effectiveness (ΔVE) for current season only and previous season only versus current and previous season vaccination to estimate attenuation associated with repeated vaccination. Pooled vaccine effectiveness and ∆VE were calculated by season, age group, and overall. This study is registered with PROSPERO, CRD42021260242. FINDINGS We identified 4979 publications, selected 681 for full review, and included 83 in the systematic review and 41 in meta-analyses. ΔVE for vaccination in both seasons compared with the current season was -9% (95% CI -16 to -1, I2=0%; low certainty) for influenza A(H1N1)pdm09, -18% (-26 to -11, I2=7%; low certainty) for influenza A(H3N2), and -7% (-14 to 0, I2=0%; low certainty) for influenza B, indicating lower protection with consecutive vaccination. However, for all types, A subtypes and B lineages, vaccination in both seasons afforded better protection than not being vaccinated. INTERPRETATION Our estimates suggest that, although vaccination in the previous year attenuates vaccine effectiveness, vaccination in two consecutive years provides better protection than does no vaccination. The estimated effects of vaccination in the previous year are concerning and warrant additional investigation, but are not consistent or severe enough to support an alternative vaccination regimen at this time. FUNDING WHO and the US National Institutes of Health.
Collapse
Affiliation(s)
- Elenor Jones-Gray
- Department of Infectious Diseases, University of Melbourne, Melbourne, VIC, Australia
| | - Elizabeth J Robinson
- Department of Infectious Diseases, University of Melbourne, Melbourne, VIC, Australia
| | - Adam J Kucharski
- Centre for the Mathematical Modelling of Infectious Diseases (CMMID), London School of Hygiene and Tropical Medicine, London, UK
| | - Annette Fox
- Department of Infectious Diseases, University of Melbourne, Melbourne, VIC, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sheena G Sullivan
- Department of Infectious Diseases, University of Melbourne, Melbourne, VIC, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Epidemiology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
29
|
HEMMI J, MAKINO S, YOKOO T, KANO H, ASAMI Y, TAKEDA K, SUZUKI Y, KAWAI S, NAGAOKA I, SAWAKI K, OKUMURA K. Consumption of yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 augments serum antibody titers against seasonal influenza vaccine in healthy adults. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:73-80. [PMID: 36660594 PMCID: PMC9816052 DOI: 10.12938/bmfh.2022-037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
Seasonal influenza is a major upper respiratory tract infection occurring in winter. Vaccination is the best method for preventing this infection. We conducted two randomized, double-blind, placebo-controlled trials to examine whether consumption of yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1, which has been reported to reduce the risk of catching the common cold, augments serum antibody titers against seasonal influenza vaccines. In the first trial, which included university students, serum antibody titers against influenza A (H3N2) and B viruses were significantly higher in the yogurt group than in the placebo group. According to the guidelines established by the European Medicines Agency (EMA) for the assessment of vaccines, the seroconversion rate and mean geometric increase of influenza A (H3N2) and seroprotection of influenza B met the criteria only in the yogurt group. In the second trial, which included healthy adults, serum antibody titers against influenza A (H1N1) and B viruses were significantly higher in the yogurt group than in the placebo group. The seroconversion rate and mean geometric increase of influenza B met the EMA criteria only in the yogurt group. Furthermore, the cumulative days of ill health, such as throat complaints, upper respiratory inflammation, and cold, were significantly lower in the yogurt group than in the placebo group. Therefore, daily intake of yogurt fermented with L. bulgaricus OLL1073R-1 could reduce the duration of symptoms caused by respiratory infections and act as a mucosal adjuvant enhancing acquired immune responses against vaccines, leading to the improvement of public health.
Collapse
Affiliation(s)
- Jun HEMMI
- Food Microbiology and Function Research Laboratories, R&D
Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| | - Seiya MAKINO
- Food Microbiology and Function Research Laboratories, R&D
Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan,Department of Biofunctional Microbiota, Graduate School of
Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan,*Corresponding author. Seiya Makino (E-mail: )
| | - Takehiro YOKOO
- Food Microbiology and Function Research Laboratories, R&D
Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| | - Hiroshi KANO
- Food Microbiology and Function Research Laboratories, R&D
Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan,Department of Biofunctional Microbiota, Graduate School of
Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yukio ASAMI
- Food Microbiology and Function Research Laboratories, R&D
Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| | - Kazuyoshi TAKEDA
- Department of Biofunctional Microbiota, Graduate School of
Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan,Laboratory of Cell Biology, Research Support Center, Graduate
School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421,
Japan
| | - Yoshio SUZUKI
- Graduate School of Health and Sports Science, Juntendo
University, 1-1 Hiragagakuendai, Inzai, Chiba 270-1695, Japan
| | - Sachio KAWAI
- Graduate School of Health and Sports Science, Juntendo
University, 1-1 Hiragagakuendai, Inzai, Chiba 270-1695, Japan
| | - Isao NAGAOKA
- Department of Host Defense and Biochemical Research, Graduate
School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421,
Japan
| | - Keisuke SAWAKI
- Graduate School of Health and Sports Science, Juntendo
University, 1-1 Hiragagakuendai, Inzai, Chiba 270-1695, Japan
| | - Ko OKUMURA
- Department of Biofunctional Microbiota, Graduate School of
Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan,Atopy (Allergy) Research Center, Graduate School of Medicine,
Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
30
|
Wilasang C, Suttirat P, Chadsuthi S, Wiratsudakul A, Modchang C. Competitive evolution of H1N1 and H3N2 influenza viruses in the United States: A mathematical modeling study. J Theor Biol 2022; 555:111292. [PMID: 36179800 DOI: 10.1016/j.jtbi.2022.111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 01/14/2023]
Abstract
Seasonal influenza causes vast public health and economic impact globally. The prevention and control of the annual epidemics remain a challenge due to the antigenic evolution of the viruses. Here, we presented a novel modeling framework based on changes in amino acid sequences and relevant epidemiological data to retrospectively investigate the competitive evolution and transmission of H1N1 and H3N2 influenza viruses in the United States during October 2002 and April 2019. To do so, we estimated the time-varying disease transmission rate from the reported influenza cases and the time-varying antigenic change rate of the viruses from the changes in amino acid sequences. By incorporating the time-varying antigenic change rate into the transmission models, we found that the models could capture the evolutionary transmission dynamics of influenza viruses in the United States. Our modeling results also showed that the antigenic change of the virus plays an essential role in seasonal influenza dynamics.
Collapse
Affiliation(s)
- Chaiwat Wilasang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pikkanet Suttirat
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Anuwat Wiratsudakul
- Department of Clinical Sciences and Public Health, and the Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Centre of Excellence in Mathematics, MHESI, Bangkok 10400, Thailand; Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand.
| |
Collapse
|
31
|
The impact of repeated vaccination on relative influenza vaccine effectiveness among vaccinated adults in the United Kingdom. Epidemiol Infect 2022; 150:e198. [PMID: 36331053 PMCID: PMC9987024 DOI: 10.1017/s0950268822001753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Annual seasonal influenza vaccination is recommended for individuals at high risk of developing post-infection complications in many locations. However, reduced vaccine immunogenicity and effectiveness have been observed among repeat vaccinees in some influenza seasons. We investigated the impact of repeated influenza vaccination on relative vaccine effectiveness (VE) among individuals who were recommended for influenza vaccination in the United Kingdom with a retrospective cohort study using primary healthcare data from the Clinical Practice Research Datalink, a primary care database in the United Kingdom. Relative VE was estimated against general practitioner-diagnosed influenza-like illnesses (GP-ILI) and medically attended acute respiratory illnesses (MAARI) among participants who have been repeatedly vaccinated compared with first-time vaccinees using proportional hazards models. Relative VE against MAARI may be reduced for individuals above 65 years old who were vaccinated in the current and previous influenza seasons for some influenza seasons. However, these findings were not conclusive as we could not exclude the possibility of residual confounding in our dataset. The use of routinely collected data from electronic health records to examine the effects of repeated vaccination needs to be complemented with sufficient efforts to include negative control outcomes to rule out residual confounding.
Collapse
|
32
|
Richard SA, Fairchok M, Coles C, Burgess TH, Colombo RE. Influenza Vaccine Effectiveness: Analysis of the Impact of Repeated Vaccinations in Military Health System Beneficiaries. Open Forum Infect Dis 2022; 9:ofac497. [PMID: 36275868 PMCID: PMC9578161 DOI: 10.1093/ofid/ofac497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/26/2022] [Indexed: 10/01/2023] Open
Abstract
Background Influenza has long burdened the Military Health System (MHS). This study assesses the impact of repeated annual vaccination on influenza vaccine effectiveness (VE). Methods This retrospective, case control study using the test-negative design utilized data extracted from the MHS Data Repository (MDR). Cases had a positive influenza test and controls sought care for an influenza-like illness within 2 weeks of a case, had no positive influenza tests, and were matched by sex, race, age, and location. Vaccine effectiveness was assessed using conditional logistic regression separately for those who received inactivated and live attenuated influenza vaccines (LAIV). Results A total of 6860 cases and controls were identified in the MDR, among whom 53% were vaccinated in all 3 seasons. Among those who received inactivated influenza vaccine during the current season, VE ranged from 26% to 37% (2012/13 [A(H3N2)]: VE 26%, 95% confidence interval [CI] = 1%-45%; 2013/14 [A(H1N1)pdm09]: VE 37%, 95% CI = 18%-52%; 2014/15 [A(H3N2)]: VE 31%, 95% CI = 17%-42%). The VE ranged from 25% to 49% for those only vaccinated this season (2012/13 [A(H3N2)]: VE 38%, 95% CI = -3% to 63%; 2013/14 [A(H1N1)pdm09]: VE 49%, 95% CI = 11%-71%; 2014/15 [A(H3N2)]: VE 25%, 95% CI = -7% to 48%). The VE was more variable in those who received LAIV in the current season. No statistically significant differences in VE were observed between those frequently vaccinated and those vaccinated only during the current season. Conclusions These results underscore the value of annual influenza vaccinations for preventing infection while highlighting the need for continued improvements in influenza vaccine effectiveness.
Collapse
Affiliation(s)
- Stephanie A Richard
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Mary Fairchok
- Mary Bridge Children's Hospital, MultiCare Health System, Tacoma, Washington, USA
| | - Christian Coles
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Timothy H Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Rhonda E Colombo
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Madigan Army Medical Center, Tacoma, Washington, USA
| |
Collapse
|
33
|
Urueña A, Micone P, Magneres MC, McGovern I, Mould-Quevedo J, Sarmento TTR, Giglio N. Cost-Effectiveness Analysis of Cell Versus Egg-Based Seasonal Influenza Vaccination in Children and Adults in Argentina. Vaccines (Basel) 2022; 10:vaccines10101627. [PMID: 36298493 PMCID: PMC9612026 DOI: 10.3390/vaccines10101627] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Quadrivalent cell-based influenza vaccines (QIVc) avoid egg-adaptive mutations and can be more effective than traditional quadrivalent egg-based influenza vaccines (QIVe). This analysis compared the cost-effectiveness of QIVc and QIVe in Argentinian populations < 65 years old from the payer and societal perspectives. Methods: A static decision tree model compared the costs and health benefits of vaccination with QIVc vs. QIVe using a one-year time horizon. The relative vaccine effectiveness of QIVc vs. QIVe was assumed to be 8.1% for children and 11.4% for adults. An alternative high egg-adaptation scenario was also assessed. Model inputs were sourced from Argentina or the international literature. Deterministic and probabilistic sensitivity analyses were performed. Results: Compared to QIVe, QIVc would prevent 17,857 general practitioner visits, 2418 complications, 816 hospitalizations, and 12 deaths per year. From the payers’ perspective, the incremental cost-effectiveness ratio per quality-adjusted life years gained was USD12,214 in the base case and USD2311 in the high egg-adaptation scenario. QIVc was cost-saving from the societal perspective in both scenarios. Conclusions: QIVc in Argentina would be cost-effective relative to QIVe. The potential health benefits and savings would be even higher in high egg-adaptation seasons.
Collapse
Affiliation(s)
- Analía Urueña
- Centre for the Study of Prevention and Control of Transmissible Diseases(CEPyCET), ISalud University, Buenos Aires C1095AAS, Argentina
- Correspondence:
| | - Paula Micone
- Gynecology Department, Hospital Carlos G Durand, Buenos Aires C1095AAS, Argentina
| | | | - Ian McGovern
- Seqirus USA Inc., Medical Affairs, Summit, NJ 07901, USA
| | | | | | - Norberto Giglio
- Epidemiology Department, Hospital de Niños Ricardo Gutiérrez, Buenos Aires C1095AAS, Argentina
| |
Collapse
|
34
|
Liang W, Tan TJC, Wang Y, Lv H, Sun Y, Bruzzone R, Mok CKP, Wu NC. Egg-adaptive mutations of human influenza H3N2 virus are contingent on natural evolution. PLoS Pathog 2022; 18:e1010875. [PMID: 36155668 PMCID: PMC9536752 DOI: 10.1371/journal.ppat.1010875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/06/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Egg-adaptive mutations in influenza hemagglutinin (HA) often emerge during the production of egg-based seasonal influenza vaccines, which contribute to the largest share in the global influenza vaccine market. While some egg-adaptive mutations have minimal impact on the HA antigenicity (e.g. G186V), others can alter it (e.g. L194P). Here, we show that the preference of egg-adaptive mutation in human H3N2 HA is strain-dependent. In particular, Thr160 and Asn190, which are found in many recent H3N2 strains, restrict the emergence of L194P but not G186V. Our results further suggest that natural amino acid variants at other HA residues also play a role in determining the preference of egg-adaptive mutation. Consistently, recent human H3N2 strains from different clades acquire different mutations during egg passaging. Overall, these results demonstrate that natural mutations in human H3N2 HA can influence the preference of egg-adaptation mutation, which has important implications in seed strain selection for egg-based influenza vaccine.
Collapse
Affiliation(s)
- Weiwen Liang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Timothy J. C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Huibin Lv
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanxin Sun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Istituto Pasteur Italia, Rome, Italy
- Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Chris K. P. Mok
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail: (CKPM); (NCW)
| | - Nicholas C. Wu
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (CKPM); (NCW)
| |
Collapse
|
35
|
Jones RP, Ponomarenko A. Roles for Pathogen Interference in Influenza Vaccination, with Implications to Vaccine Effectiveness (VE) and Attribution of Influenza Deaths. Infect Dis Rep 2022; 14:710-758. [PMID: 36286197 PMCID: PMC9602062 DOI: 10.3390/idr14050076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 08/29/2023] Open
Abstract
Pathogen interference is the ability of one pathogen to alter the course and clinical outcomes of infection by another. With up to 3000 species of human pathogens the potential combinations are vast. These combinations operate within further immune complexity induced by infection with multiple persistent pathogens, and by the role which the human microbiome plays in maintaining health, immune function, and resistance to infection. All the above are further complicated by malnutrition in children and the elderly. Influenza vaccination offers a measure of protection for elderly individuals subsequently infected with influenza. However, all vaccines induce both specific and non-specific effects. The specific effects involve stimulation of humoral and cellular immunity, while the nonspecific effects are far more nuanced including changes in gene expression patterns and production of small RNAs which contribute to pathogen interference. Little is known about the outcomes of vaccinated elderly not subsequently infected with influenza but infected with multiple other non-influenza winter pathogens. In this review we propose that in certain years the specific antigen mix in the seasonal influenza vaccine inadvertently increases the risk of infection from other non-influenza pathogens. The possibility that vaccination could upset the pathogen balance, and that the timing of vaccination relative to the pathogen balance was critical to success, was proposed in 2010 but was seemingly ignored. Persons vaccinated early in the winter are more likely to experience higher pathogen interference. Implications to the estimation of vaccine effectiveness and influenza deaths are discussed.
Collapse
Affiliation(s)
- Rodney P Jones
- Healthcare Analysis and Forecasting, Wantage OX12 0NE, UK
| | - Andrey Ponomarenko
- Department of Biophysics, Informatics and Medical Instrumentation, Odessa National Medical University, Valikhovsky Lane 2, 65082 Odessa, Ukraine
| |
Collapse
|
36
|
Liu Y, Chen H, Duan W, Zhang X, He X, Nielsen R, Ma L, Zhai W. Predicting Egg Passage Adaptations to Design Better Vaccines for the H3N2 Influenza Virus. Viruses 2022; 14:v14092065. [PMID: 36146872 PMCID: PMC9501976 DOI: 10.3390/v14092065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Seasonal H3N2 influenza evolves rapidly, leading to an extremely poor vaccine efficacy. Substitutions employed during vaccine production using embryonated eggs (i.e., egg passage adaptation) contribute to the poor vaccine efficacy (VE), but the evolutionary mechanism remains elusive. Using an unprecedented number of hemagglutinin sequences (n = 89,853), we found that the fitness landscape of passage adaptation is dominated by pervasive epistasis between two leading residues (186 and 194) and multiple other positions. Convergent evolutionary paths driven by strong epistasis explain most of the variation in VE, which has resulted in extremely poor vaccines for the past decade. Leveraging the unique fitness landscape, we developed a novel machine learning model that can predict egg passage substitutions for any candidate vaccine strain before the passage experiment, providing a unique opportunity for the selection of optimal vaccine viruses. Our study presents one of the most comprehensive characterizations of the fitness landscape of a virus and demonstrates that evolutionary trajectories can be harnessed for improved influenza vaccines.
Collapse
Affiliation(s)
- Yunsong Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Chen
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Wenyuan Duan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xionglei He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94707, USA
- Department of Statistics, University of California-Berkeley, Berkeley, CA 94707, USA
- Globe Institute, University of Copenhagen, 1350 København, Copenhagen, Denmark
| | - Liang Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Correspondence:
| |
Collapse
|
37
|
Chen Z, Bancej C, Lee L, Champredon D. Antigenic drift and epidemiological severity of seasonal influenza in Canada. Sci Rep 2022; 12:15625. [PMID: 36115880 PMCID: PMC9482630 DOI: 10.1038/s41598-022-19996-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/07/2022] [Indexed: 12/05/2022] Open
Abstract
Seasonal influenza epidemics circulate globally every year with varying levels of severity. One of the major drivers of this seasonal variation is thought to be the antigenic drift of influenza viruses, resulting from the accumulation of mutations in viral surface proteins. In this study, we aimed to investigate the association between the genetic drift of seasonal influenza viruses (A/H1N1, A/H3N2 and B) and the epidemiological severity of seasonal epidemics within a Canadian context. We obtained hemagglutinin protein sequences collected in Canada between the 2006/2007 and 2019/2020 flu seasons from GISAID and calculated Hamming distances in a sequence-based approach to estimating inter-seasonal antigenic differences. We also gathered epidemiological data on cases, hospitalizations and deaths from national surveillance systems and other official sources, as well as vaccine effectiveness estimates to address potential effect modification. These aggregate measures of disease severity were integrated into a single seasonal severity index. We performed linear regressions of our severity index with respect to the inter-seasonal antigenic distances, controlling for vaccine effectiveness. We did not find any evidence of a statistical relationship between antigenic distance and seasonal influenza severity in Canada. Future studies may need to account for additional factors, such as co-circulation of other respiratory pathogens, population imprinting, cohort effects and environmental parameters, which may drive seasonal influenza severity.
Collapse
Affiliation(s)
- Zishu Chen
- National Microbiology Laboratory, Public Health Risk Sciences Division, Public Health Agency of Canada, Guelph, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Christina Bancej
- Surveillance and Epidemiology Division, Centre for Immunization and Respiratory Infectious Disease, Public Health Agency of Canada, Ottawa, ON, Canada
| | - Liza Lee
- Surveillance and Epidemiology Division, Centre for Immunization and Respiratory Infectious Disease, Public Health Agency of Canada, Ottawa, ON, Canada
| | - David Champredon
- National Microbiology Laboratory, Public Health Risk Sciences Division, Public Health Agency of Canada, Guelph, ON, Canada.
| |
Collapse
|
38
|
Sominina A, Danilenko D, Komissarov A, Karpova L, Pisareva M, Fadeev A, Konovalova N, Eropkin M, Stolyarov K, Shtro A, Burtseva E, Lioznov D. Resurgence of Influenza Circulation in the Russian Federation during the Delta and Omicron COVID-19 Era. Viruses 2022; 14:1909. [PMID: 36146716 PMCID: PMC9506591 DOI: 10.3390/v14091909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Influenza circulation was substantially reduced after March 2020 in the European region and globally due to the wide introduction of non-pharmaceutical interventions (NPIs) against COVID-19. The virus, however, has been actively circulating in natural reservoirs. In summer 2021, NPIs were loosened in Russia, and influenza activity resumed shortly thereafter. Here, we summarize the epidemiological and virological data on the influenza epidemic in Russia in 2021-2022 obtained by the two National Influenza Centers. We demonstrate that the commonly used baseline for acute respiratory infection (ARI) is no longer sufficiently sensitive and BL for ILI incidence was more specific for early recognition of the epidemic. We also present the results of PCR detection of influenza, SARS-CoV-2 and other respiratory viruses as well as antigenic and genetic analysis of influenza viruses. Influenza A(H3N2) prevailed this season with influenza B being detected at low levels at the end of the epidemic. The majority of A(H3N2) viruses were antigenically and genetically homogenous and belonged to the clade 3C.2a1b.2a.2 of the vaccine strain A/Darwin/9/2021 for the season 2022-2023. All influenza B viruses belonged to the Victoria lineage and were similar to the influenza B/Austria/1359417/2021 virus. No influenza A(H1N1)pdm09 and influenza B/Yamagata lineage was isolated last season.
Collapse
Affiliation(s)
- Anna Sominina
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | - Daria Danilenko
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | - Andrey Komissarov
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | - Ludmila Karpova
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | - Maria Pisareva
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | - Artem Fadeev
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | - Nadezhda Konovalova
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | - Mikhail Eropkin
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | - Kirill Stolyarov
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | - Anna Shtro
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
| | - Elena Burtseva
- National Research Center for Epidemiology and Microbiology Named after N.F. Gamaleya, 123098 Moscow, Russia
| | - Dmitry Lioznov
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia
- Department of Infectious Diseases and Epidemiology, First Pavlov State Medical University, 197022 Saint Petersburg, Russia
| |
Collapse
|
39
|
Wang WC, Sayedahmed EE, Sambhara S, Mittal SK. Progress towards the Development of a Universal Influenza Vaccine. Viruses 2022; 14:v14081684. [PMID: 36016306 PMCID: PMC9415875 DOI: 10.3390/v14081684] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Influenza viruses are responsible for millions of cases globally and significantly threaten public health. Since pandemic and zoonotic influenza viruses have emerged in the last 20 years and some of the viruses have resulted in high mortality in humans, a universal influenza vaccine is needed to provide comprehensive protection against a wide range of influenza viruses. Current seasonal influenza vaccines provide strain-specific protection and are less effective against mismatched strains. The rapid antigenic drift and shift in influenza viruses resulted in time-consuming surveillance and uncertainty in the vaccine protection efficacy. Most recent universal influenza vaccine studies target the conserved antigen domains of the viral surface glycoproteins and internal proteins to provide broader protection. Following the development of advanced vaccine technologies, several innovative strategies and vaccine platforms are being explored to generate robust cross-protective immunity. This review provides the latest progress in the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Wen-Chien Wang
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.)
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.)
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Correspondence: (S.S.); (S.K.M.)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.)
- Correspondence: (S.S.); (S.K.M.)
| |
Collapse
|
40
|
Liu Y, Jin W, Guan W, Zeng Z, Yang Z. The genetic characterization of hemagglutinin (HA), neuraminidase (NA) and polymerase acidic (PA) genes of H3N2 influenza viruses circulated in Guangdong Province of China during 2019-2020. Virus Genes 2022; 58:392-402. [PMID: 35900664 DOI: 10.1007/s11262-022-01923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/24/2022] [Indexed: 11/24/2022]
Abstract
The evolution of seasonal influenza viruses, which can cause virus antigenic drift to escape human herd immunity, is a significant public health problem. Here, we obtained hemagglutinin (HA), neuraminidase (NA), and polymerase acidic protein (PA) the gene sequences of 84 influenza virus isolates collected in Guangdong Province during the 2019-2020 influenza season. Phylogenetic analyses revealed all these isolates were genetically similar to the viruses of clade 3C2a A1b, specifically those within subclades of A1b 137F (59 cases), A1b 186D (19 cases), and A1b 94 N (6 cases). The influenza virus isolates were distinct from the World Health Organization recommended influenza A vaccine virus for the 2019-2020 Northern Hemisphere season (A/Kansas/14/2017; H3N2). Phylogenies inferred from the individual gene segment sequences revealed that one reassortment event occurred among these clades. The genetic variation involved mutations within viral antigenic epitopes and two N-glycosylation site alterations. The novel mutation sites of G202D and D206N in the HA gene, E344K in the NA gene, and K626R in the PA gene which may affect the spread of the virus were observed. We investigated the evolution of these genes and found that the HA and NA genes were under greater pressure than PA gene. Mutations associated with conferring resistance to NA inhibitors or baloxavir acid were not found. Our results suggest that a rapid evolution of the H3N2 influenza virus occurred, thus continuous monitoring is critical for establishing appropriate vaccine formulations or drug delivery for targeting influenza.
Collapse
Affiliation(s)
- Yong Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Kingmed Virology Diagnostic & Translational Center, Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| | - Wenxiang Jin
- Kingmed Virology Diagnostic & Translational Center, Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| | - Wenda Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiqi Zeng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China. .,Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou, China.
| |
Collapse
|
41
|
Trombetta CM, Marchi S, Montomoli E. The baculovirus expression vector system: a modern technology for the future of influenza vaccine manufacturing. Expert Rev Vaccines 2022; 21:1233-1242. [DOI: 10.1080/14760584.2022.2085565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
- VisMederi Research srl, Siena, Italy
| |
Collapse
|
42
|
MADE: A Computational Tool for Predicting Vaccine Effectiveness for the Influenza A(H3N2) Virus Adapted to Embryonated Eggs. Vaccines (Basel) 2022; 10:vaccines10060907. [PMID: 35746515 PMCID: PMC9227319 DOI: 10.3390/vaccines10060907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 01/29/2023] Open
Abstract
Seasonal Influenza H3N2 virus poses a great threat to public health, but its vaccine efficacy remains suboptimal. One critical step in influenza vaccine production is the viral passage in embryonated eggs. Recently, the strength of egg passage adaptation was found to be rapidly increasing with time driven by convergent evolution at a set of functionally important codons in the hemagglutinin (HA1). In this study, we aim to take advantage of the negative correlation between egg passage adaptation and vaccine effectiveness (VE) and develop a computational tool for selecting the best candidate vaccine virus (CVV) for vaccine production. Using a probabilistic approach known as mutational mapping, we characterized the pattern of sequence evolution driven by egg passage adaptation and developed a new metric known as the adaptive distance (AD) which measures the overall strength of egg passage adaptation. We found that AD is negatively correlated with the influenza H3N2 vaccine effectiveness (VE) and ~75% of the variability in VE can be explained by AD. Based on these findings, we developed a computational package that can Measure the Adaptive Distance and predict vaccine Effectiveness (MADE). MADE provides a powerful tool for the community to calibrate the effect of egg passage adaptation and select more reliable strains with minimum egg-passaged changes as the seasonal A/H3N2 influenza vaccine.
Collapse
|
43
|
Hamamoto I, Takahashi H, Shimazaki N, Nakamura K, Mizuta K, Sato K, Nishimura H, Yamamoto N, Hasegawa H, Odagiri T, Tashiro M, Nobusawa E. Suitability of NIID-MDCK cells as a substrate for cell-based influenza vaccine development from the perspective of adventitious virus susceptibility. Microbiol Immunol 2022; 66:361-370. [PMID: 35545856 DOI: 10.1111/1348-0421.12985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 05/08/2022] [Indexed: 11/30/2022]
Abstract
The practical use of cell-based seasonal influenza vaccines is currently being considered in Japan. From the perspective of adventitious virus contamination, we assessed the suitability of NIID-MDCK cells (NIID-MDCK-Cs) as a safe substrate for the isolation of influenza viruses from clinical specimens. We first established a sensitive multiplex real-time PCR system to screen for 27 respiratory viruses and used it on 34 virus samples that were isolated by passaging influenza-positive clinical specimens in NIID-MDCK-Cs. Incidentally, the limit of detection of the system was 100 or fewer genome copies per reaction. In addition to influenza viruses, human enterovirus 68 (HEV-D68) genomes were detected in two samples after two or three passages in NIID-MDCK-Cs. To further investigate the susceptibility of NIID-MDCK-Cs to adventitious viruses, eight common respiratory viruses were subjected to passages in NIID-MDCK-Cs. The genome copy numbers of seven viruses other than parainfluenza 3 decreased below the limit of detection (LOD) by passage 4. By passaging in NIID-MDCK-Cs, the genome numbers of the input HEV-D68, 1 x 108 copies, declined to 102 at passage 3 and to under the LOD at passage 4, whereas those of the other six viruses were under the LOD by passage 3. These results implied that during the process of isolating influenza viruses with NIID-MDCK-Cs, contaminating viruses other than parainfluenza 3 can be efficiently removed by passages in NIID-MDCK-Cs. NIID-MDCK-Cs could be a safe substrate for isolating influenza viruses that can be used to develop cell-based influenza vaccine candidate viruses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Itsuki Hamamoto
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Hitoshi Takahashi
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Noriko Shimazaki
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Kazuya Nakamura
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Katsumi Mizuta
- Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| | - Ko Sato
- Virus Research Center, Sendai Medical Center, National Hospital Organization, Sendai, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Sendai Medical Center, National Hospital Organization, Sendai, Japan
| | - Norio Yamamoto
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan.,Department of Microbiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hideki Hasegawa
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Takato Odagiri
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Masato Tashiro
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Eri Nobusawa
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| |
Collapse
|
44
|
Skowronski DM, Leir S, Sabaiduc S, Chambers C, Zou M, Rose C, Olsha R, Dickinson JA, Winter AL, Jassem A, Gubbay JB, Drews SJ, Charest H, Chan T, Hickman R, Bastien N, Li Y, Krajden M, De Serres G. Influenza Vaccine Effectiveness by A(H3N2) Phylogenetic Subcluster and Prior Vaccination History: 2016-2017 and 2017-2018 Epidemics in Canada. J Infect Dis 2022; 225:1387-1398. [PMID: 32215564 PMCID: PMC9016427 DOI: 10.1093/infdis/jiaa138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The influenza A(H3N2) vaccine was updated from clade 3C.3a in 2015-2016 to 3C.2a for 2016-2017 and 2017-2018. Circulating 3C.2a viruses showed considerable hemagglutinin glycoprotein diversification and the egg-adapted vaccine also bore mutations. METHODS Vaccine effectiveness (VE) in 2016-2017 and 2017-2018 was assessed by test-negative design, explored by A(H3N2) phylogenetic subcluster and prior season's vaccination history. RESULTS In 2016-2017, A(H3N2) VE was 36% (95% confidence interval [CI], 18%-50%), comparable with (43%; 95% CI, 24%-58%) or without (33%; 95% CI, -21% to 62%) prior season's vaccination. In 2017-2018, VE was 14% (95% CI, -8% to 31%), lower with (9%; 95% CI, -18% to 30%) versus without (45%; 95% CI, -7% to 71%) prior season's vaccination. In 2016-2017, VE against predominant clade 3C.2a1 viruses was 33% (95% CI, 11%-50%): 18% (95% CI, -40% to 52%) for 3C.2a1a defined by a pivotal T135K loss of glycosylation; 60% (95% CI, 19%-81%) for 3C.2a1b (without T135K); and 31% (95% CI, 2%-51%) for other 3C.2a1 variants (with/without T135K). VE against 3C.2a2 viruses was 45% (95% CI, 2%-70%) in 2016-2017 but 15% (95% CI, -7% to 33%) in 2017-2018 when 3C.2a2 predominated. VE against 3C.2a1b in 2017-2018 was 37% (95% CI, -57% to 75%), lower at 12% (95% CI, -129% to 67%) for a new 3C.2a1b subcluster (n = 28) also bearing T135K. CONCLUSIONS Exploring VE by phylogenetic subcluster and prior vaccination history reveals informative heterogeneity. Pivotal mutations affecting glycosylation sites, and repeat vaccination using unchanged antigen, may reduce VE.
Collapse
Affiliation(s)
- Danuta M Skowronski
- British Columbia Centre for Disease Control, Vancouver, Canada
- University of British Columbia, Vancouver, Canada
| | - Siobhan Leir
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - Suzana Sabaiduc
- British Columbia Centre for Disease Control, Vancouver, Canada
| | | | - Macy Zou
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - Caren Rose
- British Columbia Centre for Disease Control, Vancouver, Canada
- University of British Columbia, Vancouver, Canada
| | | | | | | | - Agatha Jassem
- British Columbia Centre for Disease Control, Vancouver, Canada
- University of British Columbia, Vancouver, Canada
| | - Jonathan B Gubbay
- Public Health Ontario, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Steven J Drews
- Provincial Laboratory for Public Health, Edmonton, Alberta
- University of Alberta, Edmonton, Canada
| | - Hugues Charest
- Institut National de Santé Publique du Québec, Québec, Canada
| | - Tracy Chan
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - Rebecca Hickman
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - Nathalie Bastien
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Yan Li
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control, Vancouver, Canada
- University of British Columbia, Vancouver, Canada
| | - Gaston De Serres
- Institut National de Santé Publique du Québec, Québec, Canada
- Laval University, Quebec, Canada
- Centre Hospitalier Universitaire de Québec, Québec, Canada
| |
Collapse
|
45
|
Wang Y, Tang CY, Wan XF. Antigenic characterization of influenza and SARS-CoV-2 viruses. Anal Bioanal Chem 2022; 414:2841-2881. [PMID: 34905077 PMCID: PMC8669429 DOI: 10.1007/s00216-021-03806-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
Antigenic characterization of emerging and re-emerging viruses is necessary for the prevention of and response to outbreaks, evaluation of infection mechanisms, understanding of virus evolution, and selection of strains for vaccine development. Primary analytic methods, including enzyme-linked immunosorbent/lectin assays, hemagglutination inhibition, neuraminidase inhibition, micro-neutralization assays, and antigenic cartography, have been widely used in the field of influenza research. These techniques have been improved upon over time for increased analytical capacity, and some have been mobilized for the rapid characterization of the SARS-CoV-2 virus as well as its variants, facilitating the development of highly effective vaccines within 1 year of the initially reported outbreak. While great strides have been made for evaluating the antigenic properties of these viruses, multiple challenges prevent efficient vaccine strain selection and accurate assessment. For influenza, these barriers include the requirement for a large virus quantity to perform the assays, more than what can typically be provided by the clinical samples alone, cell- or egg-adapted mutations that can cause antigenic mismatch between the vaccine strain and circulating viruses, and up to a 6-month duration of vaccine development after vaccine strain selection, which allows viruses to continue evolving with potential for antigenic drift and, thus, antigenic mismatch between the vaccine strain and the emerging epidemic strain. SARS-CoV-2 characterization has faced similar challenges with the additional barrier of the need for facilities with high biosafety levels due to its infectious nature. In this study, we review the primary analytic methods used for antigenic characterization of influenza and SARS-CoV-2 and discuss the barriers of these methods and current developments for addressing these challenges.
Collapse
Affiliation(s)
- Yang Wang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Cynthia Y Tang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Xiu-Feng Wan
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA.
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
46
|
Jordan K, Murchu EO, Comber L, Hawkshaw S, Marshall L, O'Neill M, Teljeur C, Harrington P, Carnahan A, Pérez-Martín JJ, Robertson AH, Johansen K, Jonge JD, Krause T, Nicolay N, Nohynek H, Pavlopoulou I, Pebody R, Penttinen P, Soler-Soneira M, Wichmann O, Ryan M. Systematic review of the efficacy, effectiveness and safety of cell-based seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals ≥18 years of age. Rev Med Virol 2022; 33:e2332. [PMID: 35137512 DOI: 10.1002/rmv.2332] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/06/2022]
Abstract
The most effective means of preventing seasonal influenza is through strain-specific vaccination. In this study, we investigated the efficacy, effectiveness and safety of cell-based trivalent and quadrivalent influenza vaccines. A systematic literature search was conducted in electronic databases and grey literature sources up to 7 February 2020. Randomised controlled trials (RCTs) and non-randomised studies of interventions (NRSIs) were eligible for inclusion. Two reviewers independently screened, extracted data and assessed the risk of bias of included studies. Certainty of evidence for key outcomes was assessed using the GRADE methodology. The search returned 28,846 records, of which 868 full-text articles were assessed for relevance. Of these, 19 studies met the inclusion criteria. No relative efficacy data were identified for the direct comparison of cell-based vaccines compared with traditional vaccines (egg-based). Efficacy data were available comparing cell-based trivalent influenza vaccines with placebo in adults (aged 18-49 years). Overall vaccine efficacy was 70% against any influenza subtype (95% CI 61%-77%, two RCTS), 82% against influenza A(H1N1) (95% CI 71%-89%, 2 RCTs), 72% against influenza A(H3N2) (95% CI 39%-87%, 2 RCTs) and 52% against influenza B (95% CI 30%-68%, 2 RCTs). Limited and heterogeneous data were presented for effectiveness when compared with no vaccination. One NRSI compared cell-based trivalent and quadrivalent vaccination with traditional trivalent and quadrivalent vaccination, finding a small but significant difference in favour of cell-based vaccines for influenza-related hospitalisation, hospital encounters and physician office visits. The safety profile of cell-based trivalent vaccines was comparable to traditional trivalent influenza vaccines. Compared with placebo, cell-based trivalent influenza vaccines have demonstrated greater efficacy in adults aged 18-49 years. Overall cell-based vaccines are well-tolerated in adults, however, evidence regarding the effectiveness of these vaccines compared with traditional seasonal influenza vaccines is limited.
Collapse
Affiliation(s)
- Karen Jordan
- Health Technology Assessment, Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Eamon O Murchu
- Health Technology Assessment, Health Information and Quality Authority (HIQA), Dublin, Ireland.,Department of Health Policy & Management, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Laura Comber
- Health Technology Assessment, Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Sarah Hawkshaw
- Health Technology Assessment, Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Liam Marshall
- Health Technology Assessment, Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Michelle O'Neill
- Health Technology Assessment, Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Conor Teljeur
- Health Technology Assessment, Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Patricia Harrington
- Health Technology Assessment, Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Annasara Carnahan
- Public Health Agency of Sweden, Solna, Sweden.,European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden
| | - Jaime Jesús Pérez-Martín
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,General Directorate of Public Health and Addictions, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Anna Hayman Robertson
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kari Johansen
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Jorgen de Jonge
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Tyra Krause
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,Statens Serum Institut, Copenhagen, Denmark
| | - Nathalie Nicolay
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Hanna Nohynek
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Ioanna Pavlopoulou
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,School of Health Sciences, Faculty of Nursing, Pediatric Research Laboratory, National and Kapodistrian University of Athens, Athens, Greece.,National Advisory Committee on Immunisation, Hellenic Ministry of Health, Athens, Greece
| | - Richard Pebody
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,Institute of Epidemiology & Health, University College London, London, UK
| | - Pasi Penttinen
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Marta Soler-Soneira
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,Vigilancia de Enfermedades Prevenibles por Vacunación, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| | - Ole Wichmann
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) collaboration on newer and enhanced inactivated seasonal influenza vaccines, Stockholm, Sweden.,Immunization Unit, Robert Koch-Institute, Berlin, Germany
| | - Máirín Ryan
- Health Technology Assessment, Health Information and Quality Authority (HIQA), Dublin, Ireland.,Department of Pharmacology & Therapeutics, Trinity College Dublin, Trinity. Health Sciences, Dublin, Ireland
| |
Collapse
|
47
|
Xia M, Hoq MR, Huang P, Jiang W, Jiang X, Tan M. Bioengineered pseudovirus nanoparticles displaying the HA1 antigens of influenza viruses for enhanced immunogenicity. NANO RESEARCH 2022; 15:4181-4190. [PMID: 35106126 PMCID: PMC8795936 DOI: 10.1007/s12274-021-4011-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 04/14/2023]
Abstract
Even with implementation of current influenza vaccines, influenza still claims up to 500,000 lives worldwide annually, indicating a need for a better vaccine strategy. We have developed a technology to generate unique S60-HA1 pseudovirus nanoparticles (PVNPs) that display the receptor-binding HA1 domains of influenza viruses. Each self-assembled S60-HA1 PVNP consists of a T = 1 icosahedral S60 nanoparticle that resembles the inner shell of norovirus capsid and 60 surface-displayed HA1 antigens that are excellent vaccine targets. Soluble S60-HA1 PVNPs presenting HA1 antigens of H7N9 influenza virus subtypes have been produced efficiently in large amount. Their three-dimensional (3D) structures have been solved by cryogenic electron microscopy. The PVNP-displayed HA1 antigens react with HA-specific antibody, and retain authentic sialic acid binding specificity and hemagglutinate human erythrocytes. The PVNPs are highly immunogenic, eliciting high titers of HA1-specific antibodies in mice and the mouse sera strongly inhibited hemagglutinations of homologous and heterologous influenza virus HA proteins. Therefore, the S60-HA1 PVNPs may provide useful reagents to study influenza viruses and offer a potential new vaccine tactic to fight the deadly influenza disease.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Md Rejaul Hoq
- Department of Biological Sciences, Purdue Cryo-EM Facility, Purdue University, West Lafayette, IN 47907 USA
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Wen Jiang
- Department of Biological Sciences, Purdue Cryo-EM Facility, Purdue University, West Lafayette, IN 47907 USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA
| |
Collapse
|
48
|
Liu L, Li Z, Zhou J, Liu J, Li X, Huang W, Xiao N, Wang D. Homologous PB1 gene promotes the replication efficiency of avian influenza H7N4 candidate vaccine virus. Influenza Other Respir Viruses 2022; 16:577-584. [PMID: 35037399 PMCID: PMC8983892 DOI: 10.1111/irv.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/27/2022] Open
Abstract
Background The first and only case of human infection with the avian influenza A (H7N4) virus in China emerged in 2018. The H7N4 virus was distinct from previous H7N9 viruses and raised public concerns. Therefore, developing a suitable H7N4 candidate vaccine virus (CVV) remains crucial for potential pandemic preparedness. Methods We constructed a reassortant virus with a (6 + 2) genome composition, then introduced the polymerase basic protein 1 (PB1) from a wild‐type virus to develop a (5 + 3) reassortant virus through reverse genetics. We performed whole‐genome sequencing to confirm the genome stability, assessed the growth ability in MDCK cells, and analyzed virus antigenicity using hemagglutination inhibition assays. Subsequently, the effect of homologous PB1 on polymerase activity, viral protein yield, and pathogenicity was assessed. Results The (5 + 3) virus harbouring the homologous PB1 gene exhibited significantly improved growth characteristics, higher viral protein yield, and polymerase activity than the (6 + 2) virus. After successive passage in embryonated eggs, glutamic acid (E) substituted glycine(G) at position 218 (H3 numbering) in the hemagglutinin (HA) gene of both (5 + 3) and (6 + 2) viruses. The substitution improved the growth of the (6 + 2) virus but exhibited no significant effect or alteration on the antigenicity of the (5 + 3) virus. Moreover, the (5 + 3) virus exhibited low pathogenicity in chickens and ferrets. Conclusion Homologous PB1 of the H7N4 virus improves the growth ability while sustaining low pathogenicity. Collectively, the gene composition of the (5 + 3) reassortant virus is a suitable H7N4 CVV for potential pandemic preparedness.
Collapse
Affiliation(s)
- Liqi Liu
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Zi Li
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Jianfang Zhou
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Jia Liu
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Xiyan Li
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Weijuan Huang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Ning Xiao
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Dayan Wang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| |
Collapse
|
49
|
Kang M, Zanin M, Wong SS. Subtype H3N2 Influenza A Viruses: An Unmet Challenge in the Western Pacific. Vaccines (Basel) 2022; 10:vaccines10010112. [PMID: 35062773 PMCID: PMC8778411 DOI: 10.3390/vaccines10010112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Subtype H3N2 influenza A viruses (A(H3N2)) have been the dominant strain in some countries in the Western Pacific region since the 2009 influenza A(H1N1) pandemic. Vaccination is the most effective way to prevent influenza; however, low vaccine effectiveness has been reported in some influenza seasons, especially for A(H3N2). Antigenic mismatch introduced by egg-adaptation during vaccine production between the vaccine and circulating viral stains is one of the reasons for low vaccine effectiveness. Here we review the extent of this phenomenon, the underlying molecular mechanisms and discuss recent strategies to ameliorate this, including new vaccine platforms that may provide better protection and should be considered to reduce the impact of A(H3N2) in the Western Pacific region.
Collapse
Affiliation(s)
- Min Kang
- School of Public Health, Southern Medical University, Guangzhou 510515, China;
- Guangdong Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Mark Zanin
- State Key Laboratory for Respiratory Diseases and National Clinical Research Centre for Respiratory Disease, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 511436, China;
- School of Public Health, The University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong, China
| | - Sook-San Wong
- State Key Laboratory for Respiratory Diseases and National Clinical Research Centre for Respiratory Disease, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 511436, China;
- School of Public Health, The University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong, China
- Correspondence: ; Tel.: +86-178-2584-6078
| |
Collapse
|
50
|
Relative Effectiveness of Cell-Cultured versus Egg-Based Seasonal Influenza Vaccines in Preventing Influenza-Related Outcomes in Subjects 18 Years Old or Older: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020818. [PMID: 35055642 PMCID: PMC8775496 DOI: 10.3390/ijerph19020818] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023]
Abstract
Avian mutations in vaccine strains obtained from embryonated eggs could impair vaccine effectiveness. We performed a systematic review and meta-analysis of the adjusted relative vaccine effectiveness (arVE) of seed cell-cultured influenza vaccines (ccIV) compared to egg-based influenza vaccines (eIV) in preventing laboratory-confirmed influenza related outcomes (IRO) or IRO by clinical codes, in subjects 18 and over. We completed the literature search in January 2021; applied exclusion criteria, evaluated risk of bias of the evidence, and performed heterogeneity, publication bias, qualitative, quantitative and sensitivity analyses. All estimates were computed using a random approach. International Prospective Register of Systematic Reviews, CRD42021228290. We identified 12 publications that reported 26 adjusted arVE results. Five publications reported 13 laboratory confirmed arVE and seven reported 13 code-ascertained arVE. Nine publications with 22 results were at low risk of bias. Heterogeneity was explained by season. We found a significant 11% (8 to 14%) adjusted arVE favoring ccIV in preventing any IRO in the 2017–2018 influenza season. The arVE was 3% (−2% to 7%) in the 2018–2019 influenza season. We found moderate evidence of a significant advantage of the ccIV in preventing IRO, compared to eIV, in a well-matched A(H3N2) predominant season.
Collapse
|