1
|
Ramasamy C, Neelamegam K, Ramachandran S, Xia H, Kapusta DR, Danesh FR, Pandey KN. Podocyte cell-specific Npr1 is required for blood pressure and renal homeostasis in male and female mice: role of sex-specific differences. Physiol Genomics 2024; 56:672-690. [PMID: 39101921 PMCID: PMC11495182 DOI: 10.1152/physiolgenomics.00137.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/20/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
Atrial and brain natriuretic peptides (ANP and BNP) bind to guanylyl cyclase A/natriuretic peptide receptor A (GC-A/NPRA), stimulating natriuresis and diuresis and reducing blood pressure (BP), but the role of ANP/NPRA signaling in podocytes (highly specialized epithelial cells covering the outer surfaces of renal glomerular capillaries) remains unclear. This study aimed to determine the effect of conditional deletion of podocyte-specific Npr1 (encoding NPRA) gene knockout (KO) in male and female mice. Tamoxifen-treated wild-type control (PD Npr1 f/f; WT), heterozygous (PD-Cre-Npr1 f/+; HT), and KO (PD-Cre-Npr1 f/-) mice were fed a normal-, low-, or high-salt diet for 4 wk. Podocytes isolated from HT and KO male and female mice showed complete absence of Npr1 mRNA and NPRA protein compared with WT mice. BP, plasma creatinine, plasma sodium, urinary protein, and albumin/creatinine ratio were significantly increased, whereas plasma total protein, albumin, creatinine clearance, and urinary sodium levels were significantly reduced in the HT and KO male and female mice compared with WT mice. These changes were significantly greater in males than in females. On a normal-salt diet, glomerular filtration rate was significantly decreased in PD Npr1 HT and KO male and female mice compared with WT mice. Immunofluorescence of podocin and synaptopodin was also significantly reduced in HT and KO mice compared with WT mice. These observations suggest that in podocytes, ANP/NPRA signaling may be crucial in the maintenance and regulation of glomerular filtration and BP and serve as a biomarker of renal function in a sex-dependent manner.NEW & NOTEWORTHY Our results demonstrate that the podocyte-specific deletion of Npr1 showed increased blood pressure (BP) and altered biomarkers of renal functions, with greater magnitudes in animals fed a high-salt diet in a sex-dependent manner. The results suggest a direct and sex-dependent effect of Npr1 ablation in podocytes on the regulation of BP and renal function and reveal that podocytes may be considered an important target for the ANP-BNP/NPRA/cGMP signaling cascade.
Collapse
Affiliation(s)
- Chandramohan Ramasamy
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States
| | - Kandasamy Neelamegam
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States
| | - Samivel Ramachandran
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States
| | - Huijing Xia
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - Daniel R Kapusta
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - Farhad R Danesh
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Kailash N Pandey
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States
| |
Collapse
|
2
|
Tong Z, Yin Z. Distribution, contribution and regulation of nestin + cells. J Adv Res 2024; 61:47-63. [PMID: 37648021 PMCID: PMC11258671 DOI: 10.1016/j.jare.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Nestin is an intermediate filament first reported in neuroepithelial stem cells. Nestin expression could be found in a variety of tissues throughout all systems of the body, especially during tissue development and tissue regeneration processes. AIM OF REVIEW This review aimed to summarize and discuss current studies on the distribution, contribution and regulation of nestin+ cells in different systems of the body, to discuss the feasibility ofusing nestin as a marker of multilineage stem/progenitor cells, and better understand the potential roles of nestin+ cells in tissue development, regeneration and pathological processes. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the potential of nestin as a marker of multilineage stem/progenitor cells, and as a key factor in tissue development and tissue regeneration. The article discussed the current findings, limitations, and potential clinical implications or applications of nestin+ cells. Additionally, it included the relationship of nestin+ cells to other cell populations. We propose potential future research directions to encourage further investigation in the field.
Collapse
Affiliation(s)
- Ziyang Tong
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
3
|
Luxen M, Zwiers PJ, Meester F, Jongman RM, Kuiper T, Moser J, Pultar M, Skalicky S, Diendorfer AB, Hackl M, van Meurs M, Molema G. Unique miRNome and transcriptome profiles underlie microvascular heterogeneity in mouse kidney. Am J Physiol Renal Physiol 2023; 325:F299-F316. [PMID: 37410897 PMCID: PMC10511173 DOI: 10.1152/ajprenal.00005.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Endothelial cells in blood vessels in the kidney exert different functions depending on the (micro)vascular bed they are located in. The present study aimed to investigate microRNA and mRNA transcription patterns that underlie these differences. We zoomed in on microvascular compartments in the mouse renal cortex by laser microdissecting the microvessels prior to small RNA- and RNA-sequencing analyses. By these means, we characterized microRNA and mRNA transcription profiles of arterioles, glomeruli, peritubular capillaries, and postcapillary venules. Quantitative RT-PCR, in situ hybridization, and immunohistochemistry were used to validate sequencing results. Unique microRNA and mRNA transcription profiles were found in all microvascular compartments, with dedicated marker microRNAs and mRNAs showing enriched transcription in a single microvascular compartment. In situ hybridization validated the localization of microRNAs mmu-miR-140-3p in arterioles, mmu-miR-322-3p in glomeruli, and mmu-miR-451a in postcapillary venules. Immunohistochemical staining showed that von Willebrand factor protein was mainly expressed in arterioles and postcapillary venules, whereas GABRB1 expression was enriched in glomeruli, and IGF1 was enriched in postcapillary venules. More than 550 compartment-specific microRNA-mRNA interaction pairs were identified that carry functional implications for microvascular behavior. In conclusion, our study identified unique microRNA and mRNA transcription patterns in microvascular compartments of the mouse kidney cortex that underlie microvascular heterogeneity. These patterns provide important molecular information for future studies into differential microvascular engagement in health and disease.NEW & NOTEWORTHY Renal endothelial cells display a high level of heterogeneity depending on the (micro)vascular bed they reside in. The molecular basis contributing to these differences is poorly understood yet of high importance to increase understanding of microvascular engagement in the kidney in health and disease. This report describes m(icro)RNA expression profiles of microvascular beds in the mouse renal cortex and uncovers microvascular compartment-specific m(icro)RNAs and miRNA-mRNA pairs, thereby revealing important molecular mechanisms underlying renal microvascular heterogeneity.
Collapse
Affiliation(s)
- Matthijs Luxen
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter J Zwiers
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Femke Meester
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rianne M Jongman
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Timara Kuiper
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jill Moser
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | - Matijs van Meurs
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Grietje Molema
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Eucarbwenstols A-H, eight novel compounds from Eucalyptus robusta prevents MPC-5 injury via ROS modulation and regulation of mitochondrial membrane potential. Bioorg Chem 2022; 129:106159. [PMID: 36155091 DOI: 10.1016/j.bioorg.2022.106159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND The damage of podocytes is a primary hallmark of lupus nephritis (LN). Therefore, finding an effective way to inhibit the podocyte injury is important for improving the survival and development of patients with LN. Eucalyptus robusta exhibits anti-inflammatory properties. However, whether Formyl phloroglucinol meroterpenoids (FPMs), which are specialized metabolites of the genus Eucalyptus, is an anti-inflammatory active ingredient of E. robusta remains to be determined. PURPOSE This study asimed to identify novel FPMs from E. robusta and investigated their anti-inflammatory effects. METHODS Various separation methods were used to isolate and identify the compounds in the PE extract of E. robusta. The structures of the isolates were determined using 1D/2D NMR data and electron circular dichroism (ECD) calculations. The level of mitochondrial reactive oxygen species (ROS) level and mitochondrial membrane potential (MMP) of the podocyte cell line, MPC-5, were assessed using a multifunctional microplate reader combined with flow cytometry and fluorescence microscopy. RESULTS Eight novel FPMs (1-8, Eucarbwenstols A-H, Fig. 1) and 15 known FPMs (9-23) were purified from the PE extract of E. robusta. It is noteworthy that compound 1 possesses an unprecedented FPM carbon skeleton. Among these compounds, compounds 1, 2, 4 and 5 showed the most promising potential for protecting MPC-5 cells because pretreatment with pro-inflammatory cytokines TGF-β, IFN-α and IL-6 decreased ROS production and ameliorated the mitochondrial state. CONCLUSIONS Our research contributes to the characterization of E. robusta constituents and highlights the anti-inflammatory effects of FPMs.
Collapse
|
5
|
Grochowalska K, Pikul P, Piwkowska A. Insights into the regulation of podocyte and glomerular function by lactate and its metabolic sensor G-protein-coupled receptor 81. J Cell Physiol 2022; 237:4097-4111. [PMID: 36084306 DOI: 10.1002/jcp.30874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022]
Abstract
Podocytes and their foot processes are an important cellular layer of the renal filtration barrier that is involved in regulating glomerular permeability. Disturbances of podocyte function play a central role in the development of proteinuria in diabetic nephropathy. The retraction and effacement of podocyte foot processes that form slit diaphragms are a common feature of proteinuria. Correlations between the retraction of foot processes and the development of proteinuria are not well understood. Unraveling peculiarities of podocyte energy metabolism notably under diabetic conditions will provide insights into the pathogenesis of diabetic nephropathy. Intracellular metabolism in the cortical area of podocytes is regulated by glycolysis, whereas energy balance in the central area is controlled by oxidative phosphorylation and glycolysis. High glucose concentrations were recently reported to force podocytes to switch from mitochondrial oxidative phosphorylation to glycolysis, resulting in lactic acidosis. In this review, we hypothesize that the lactate receptor G-protein-coupled receptor 81 (also known as hydroxycarboxylic acid receptor 81) may contribute to the control of podocyte function in both health and disease.
Collapse
Affiliation(s)
- Klaudia Grochowalska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Piotr Pikul
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland.,Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
6
|
Yi SS. Disease predictability review using common biomarkers appearing in diabetic nephropathy and neurodegeneration of experimental animals. Lab Anim Res 2022; 38:3. [PMID: 35130988 PMCID: PMC8822750 DOI: 10.1186/s42826-022-00113-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/29/2022] [Indexed: 12/29/2022] Open
Abstract
It is recently known that the kidney and brain have a very rich distribution of blood vessels, and the histological structures of micro-vessels are very similar. Therefore, a number of studies have reported that renal diseases like chronic kidney disease (CKD) caused by various causes have a very close relationship with the occurrence of neurodegenerative diseases. On the other hand, since diabetic nephropathy, which is caused by chronic inflammation, such as diabetes, often shows very different prognoses even in patients at the same clinical stage, the judgment of their disease prognosis will have a critical meaning in clinical practice. Recently, many studies of cerebro-renal interaction have been reported using experimental animals. The discovery of common biomarkers found in both organs can predict the prognosis of renal disease and the possibility of neurodegenerative disease progression. More associations can be found with novel common biomarkers found in the brain and kidneys that seem entirely unrelated. In that case, it will ultimately be a research field that can expand predictive models of patients' complex diseases through these biomarkers in clinical practice. It is presented biomarkers such as α-klotho, Nephrin, and Synaptopodin. These markers are observed in both the brain and kidney, and it has been reported that both organs show a very significant change in function according to their expression. Even though the brain and kidneys perform very independent functions, it is thought that it has a crucial diagnostic significance that the genes commonly expressed in both organs are functionally effective. With the discovery of novel biomarkers that share cerebro-renal interactions at the early stage of diabetic nephropathy, physicians can predict post-clinical symptoms and prevent severe neurodegenerative and cerebrovascular diseases. Therefore, further study for the diseases of these two organs in laboratory animals means that the field of research on this relationship can be expanded in the future. In the future, more attention and research will be needed on the possibility of prediction for the prevention of neurological diseases caused by CKD in disease animal models.
Collapse
|
7
|
Harnessing the Physiological Functions of Cellular Prion Protein in the Kidneys: Applications for Treating Renal Diseases. Biomolecules 2021; 11:biom11060784. [PMID: 34067472 PMCID: PMC8224798 DOI: 10.3390/biom11060784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
A cellular prion protein (PrPC) is a ubiquitous cell surface glycoprotein, and its physiological functions have been receiving increased attention. Endogenous PrPC is present in various kidney tissues and undergoes glomerular filtration. In prion diseases, abnormal prion proteins are found to accumulate in renal tissues and filtered into urine. Urinary prion protein could serve as a diagnostic biomarker. PrPC plays a role in cellular signaling pathways, reno-protective effects, and kidney iron uptake. PrPC signaling affects mitochondrial function via the ERK pathway and is affected by the regulatory influence of microRNAs, small molecules, and signaling proteins. Targeting PrPC in acute and chronic kidney disease could help improve iron homeostasis, ameliorate damage from ischemia/reperfusion injury, and enhance the efficacy of mesenchymal stem/stromal cell or extracellular vesicle-based therapeutic strategies. PrPC may also be under the influence of BMP/Smad signaling and affect the progression of TGF-β-related renal fibrosis. PrPC conveys TNF-α resistance in some renal cancers, and therefore, the coadministration of anti-PrPC antibodies improves chemotherapy. PrPC can be used to design antibody-drug conjugates, aptamer-drug conjugates, and customized tissue inhibitors of metalloproteinases to suppress cancer. With preclinical studies demonstrating promising results, further research on PrPC in the kidney may lead to innovative PrPC-based therapeutic strategies for renal disease.
Collapse
|
8
|
Tian Y, Guo H, Miao X, Xu J, Yang R, Zhao L, Liu J, Yang L, Gao F, Zhang W, Liu Q, Sun S, Tian Y, Li H, Huang J, Gu C, Liu S, Feng X. Nestin protects podocyte from injury in lupus nephritis by mitophagy and oxidative stress. Cell Death Dis 2020; 11:319. [PMID: 32371936 PMCID: PMC7200703 DOI: 10.1038/s41419-020-2547-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 11/10/2022]
Abstract
Podocyte injury is the main cause of proteinuria in lupus nephritis (LN). Nestin, an important cytoskeleton protein, is expressed stably in podocytes and is associated with podocyte injury. However, the role of nestin in the pathogenesis of proteinuria in LN remains unclear. The correlations among nestin, nephrin and proteinuria were analyzed in LN patients and MRL/lpr lupus-prone mice. The expression of nestin in mouse podocyte lines (MPCs) and MRL/lpr mice was knocked down to determine the role of nestin in podocyte injury. Inhibitors and RNAi method were used to explore the role of mitophagy and oxidative stress in nestin protection of podocyte from damage. There was a significantly negative correlation between nestin and proteinuria both in LN patients and MRL/lpr mice, whereas the expression of nephrin was positively correlated with nestin. Knockdown of nestin resulted in not only the decrease of nephrin, p-nephrin (Y1217) and mitophagy-associated proteins in cultured podocytes and the podocytes of MRL/lpr mice, but also mitochondrial dysfunction in podocytes stimulated with LN plasma. The expression and phosphorylation of nephrin was significantly decreased by reducing the level of mitophagy or production of reactive oxygen species (ROS) in cultured podocytes. Our findings suggested that nestin regulated the expression of nephrin through mitophagy and oxidative stress to protect the podocytes from injury in LN.
Collapse
Affiliation(s)
- Yuexin Tian
- Department of Pathology, Hebei Key Laboratory of Nephrology, Center of Metabolic Diseases and Cancer Research, Hebei Medical University, 050017, Shijiazhuang, China
| | - Huifang Guo
- Department of Rheumatology, The Second Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Xinyan Miao
- Department of Pathology, Hebei Key Laboratory of Nephrology, Center of Metabolic Diseases and Cancer Research, Hebei Medical University, 050017, Shijiazhuang, China
| | - Jie Xu
- Department of Pathology, Hebei Key Laboratory of Nephrology, Center of Metabolic Diseases and Cancer Research, Hebei Medical University, 050017, Shijiazhuang, China
| | - Ran Yang
- Department of Pathology, Hebei Province Hospital of Chinese Medicine, 050017, Shijiazhuang, China
| | - Lu Zhao
- Department of Pathology, Hebei Key Laboratory of Nephrology, Center of Metabolic Diseases and Cancer Research, Hebei Medical University, 050017, Shijiazhuang, China
| | - Jinxi Liu
- Department of Pathology, Hebei Key Laboratory of Nephrology, Center of Metabolic Diseases and Cancer Research, Hebei Medical University, 050017, Shijiazhuang, China
| | - Lin Yang
- Department of Nephrology, The Second Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Fan Gao
- Department of Pathology, Hebei Key Laboratory of Nephrology, Center of Metabolic Diseases and Cancer Research, Hebei Medical University, 050017, Shijiazhuang, China
| | - Wei Zhang
- Department of Pathology, Hebei Key Laboratory of Nephrology, Center of Metabolic Diseases and Cancer Research, Hebei Medical University, 050017, Shijiazhuang, China
| | - Qingjuan Liu
- Department of Pathology, Hebei Key Laboratory of Nephrology, Center of Metabolic Diseases and Cancer Research, Hebei Medical University, 050017, Shijiazhuang, China
| | - Shaoguang Sun
- Department of Biochemistry and Molecular Biology, Hebei Medical University, 050017, Shijiazhuang, China
| | - Yu Tian
- Department of Pathology, Hebei Key Laboratory of Nephrology, Center of Metabolic Diseases and Cancer Research, Hebei Medical University, 050017, Shijiazhuang, China
| | - Hongbo Li
- Department of Pathology, Hebei Key Laboratory of Nephrology, Center of Metabolic Diseases and Cancer Research, Hebei Medical University, 050017, Shijiazhuang, China
| | - Jie Huang
- Department of Pathology, Hebei Key Laboratory of Nephrology, Center of Metabolic Diseases and Cancer Research, Hebei Medical University, 050017, Shijiazhuang, China
| | - Cunyang Gu
- Department of Pathology, Hebei Key Laboratory of Nephrology, Center of Metabolic Diseases and Cancer Research, Hebei Medical University, 050017, Shijiazhuang, China
| | - Shuxia Liu
- Department of Pathology, Hebei Key Laboratory of Nephrology, Center of Metabolic Diseases and Cancer Research, Hebei Medical University, 050017, Shijiazhuang, China.
| | - Xiaojuan Feng
- Department of Pathology, Hebei Key Laboratory of Nephrology, Center of Metabolic Diseases and Cancer Research, Hebei Medical University, 050017, Shijiazhuang, China.
| |
Collapse
|
9
|
Tao QQ, Chen YC, Wu ZY. The role of CD2AP in the Pathogenesis of Alzheimer's Disease. Aging Dis 2019; 10:901-907. [PMID: 31440393 PMCID: PMC6675523 DOI: 10.14336/ad.2018.1025] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by irreversible decline in cognition with unclear pathogenesis. Recently, accumulating evidence has revealed that CD2 associated protein (CD2AP), a scaffolding molecule regulates signal transduction and cytoskeletal molecules, is implicated in AD pathogenesis. Several single nucleotide polymorphisms (SNPs) in CD2AP gene are associated with higher risk for AD and mRNA levels of CD2AP are decreased in peripheral lymphocytes of sporadic AD patients. Furthermore, CD2AP loss of function is linked to enhanced Aβ production, Tau-induced neurotoxicity, abnormal neurite structure modulation and reduced blood-brain barrier integrity. This review is to summarize the recent discoveries about the genetics and known functions of CD2AP. The recent evidence concerning the roles of CD2AP in the AD pathogenesis is summarized and CD2AP can be a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Qing-Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Chao Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Espiritu EB, Jiang H, Moreau-Marquis S, Sullivan M, Yan K, Beer Stolz D, Sampson MG, Hukriede NA, Swiatecka-Urban A. The human nephrin Y 1139RSL motif is essential for podocyte foot process organization and slit diaphragm formation during glomerular development. J Biol Chem 2019; 294:10773-10788. [PMID: 31152064 DOI: 10.1074/jbc.ra119.008235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/16/2019] [Indexed: 11/06/2022] Open
Abstract
Nephrin is an immunoglobulin-type cell-adhesion molecule with a key role in the glomerular interpodocyte slit diaphragm. Mutations in the nephrin gene are associated with defects in the slit diaphragm, leading to early-onset nephrotic syndrome, typically resistant to treatment. Although the endocytic trafficking of nephrin is essential for the assembly of the slit diaphragm, nephrin's specific endocytic motifs remain unknown. To search for endocytic motifs, here we performed a multisequence alignment of nephrin and identified a canonical YXXØ-type motif, Y1139RSL, in the nephrin cytoplasmic tail, expressed only in primates. Using site-directed mutagenesis, various biochemical methods, single-plane illumination microscopy, a human podocyte line, and a human nephrin-expressing zebrafish model, we found that Y1139RSL is a novel endocytic motif and a structural element for clathrin-mediated nephrin endocytosis that functions as a phosphorylation-sensitive signal. We observed that Y1139RSL motif-mediated endocytosis helps to localize nephrin to specialized plasma membrane domains in podocytes and is essential for normal foot process organization into a functional slit diaphragm between neighboring foot processes in zebrafish. The importance of nephrin Y1139RSL for healthy podocyte development was supported by population-level analyses of genetic variations at this motif, revealing that such variations are very rare, suggesting that mutations in this motif have autosomal-recessive negative effects on kidney health. These findings expand our understanding of the mechanism underlying nephrin endocytosis and may lead to improved diagnostic tools or therapeutic strategies for managing early-onset, treatment-resistant nephrotic syndrome.
Collapse
Affiliation(s)
- Eugenel B Espiritu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
| | - Huajun Jiang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Sophie Moreau-Marquis
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Mara Sullivan
- Department of Nephrology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
| | - Kunimasa Yan
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan, and
| | - Donna Beer Stolz
- Department of Nephrology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
| | - Matthew G Sampson
- Department of Pediatrics-Nephrology University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
| | - Agnieszka Swiatecka-Urban
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224,.
| |
Collapse
|
11
|
Stefanski M, Grzeszkiewicz K, Ptak M, Hreniak D, Strek W. Structural and optical characterization of RbLaP 4O 12:Ln 3+ (Ln 3+ = Ce 3+, Nd 3+, Tm 3+, or Yb 3+). J Chem Phys 2019; 150:094706. [PMID: 30849893 DOI: 10.1063/1.5085343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, for the first time, detailed structural and optical characterization of RbLaP4O12 doped with different concentrations of Ce3+, Nd3+, Tm3+, or Yb3+ ions is reported. The samples were obtained via a precipitation technique. Their structural characterization was performed using X-ray diffraction (XRD), and infrared and Raman spectroscopies. Following XRD data, the unit cell parameters of host lattices were calculated using Rietveld refinement. It was found that an increase in the dopant content leads to a decrease in the unit cell volume. The optical characterization of RbLaP4O12:Ln3+ was carried out by collecting absorption and emission spectra, as well as luminescence decay profiles. Following absorption spectra, the energy band gap of the studied matrix was determined. It was found that the broad absorption band located in the ultra-violet range, in most cases ascribed to charge transfer or f-d transitions, is in fact related to the absorption of the host lattice. The analysis of luminescence properties allowed us to investigate possible ways of depopulation emission levels of impurities.
Collapse
Affiliation(s)
- M Stefanski
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - K Grzeszkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - M Ptak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - D Hreniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - W Strek
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| |
Collapse
|
12
|
Hurcombe JA, Hartley P, Lay AC, Ni L, Bedford JJ, Leader JP, Singh S, Murphy A, Scudamore CL, Marquez E, Barrington AF, Pinto V, Marchetti M, Wong LF, Uney J, Saleem MA, Mathieson PW, Patel S, Walker RJ, Woodgett JR, Quaggin SE, Welsh GI, Coward RJM. Podocyte GSK3 is an evolutionarily conserved critical regulator of kidney function. Nat Commun 2019; 10:403. [PMID: 30679422 PMCID: PMC6345761 DOI: 10.1038/s41467-018-08235-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 12/21/2018] [Indexed: 01/18/2023] Open
Abstract
Albuminuria affects millions of people, and is an independent risk factor for kidney failure, cardiovascular morbidity and death. The key cell that prevents albuminuria is the terminally differentiated glomerular podocyte. Here we report the evolutionary importance of the enzyme Glycogen Synthase Kinase 3 (GSK3) for maintaining podocyte function in mice and the equivalent nephrocyte cell in Drosophila. Developmental deletion of both GSK3 isoforms (α and β) in murine podocytes causes late neonatal death associated with massive albuminuria and renal failure. Similarly, silencing GSK3 in nephrocytes is developmentally lethal for this cell. Mature genetic or pharmacological podocyte/nephrocyte GSK3 inhibition is also detrimental; producing albuminuric kidney disease in mice and nephrocyte depletion in Drosophila. Mechanistically, GSK3 loss causes differentiated podocytes to re-enter the cell cycle and undergo mitotic catastrophe, modulated via the Hippo pathway but independent of Wnt-β-catenin. This work clearly identifies GSK3 as a critical regulator of podocyte and hence kidney function.
Collapse
Affiliation(s)
- J A Hurcombe
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - P Hartley
- Bournemouth University, Bournemouth, BH12 5BB, UK
| | - A C Lay
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - L Ni
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - J J Bedford
- Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| | - J P Leader
- Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| | - S Singh
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - A Murphy
- Department of Pathology, Southern General Hospital, Glasgow, G51 4TF, UK
| | - C L Scudamore
- Mary Lyon Centre, MRC Harwell, Didcot, Oxford, OX11 0RD, UK
| | - E Marquez
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - A F Barrington
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - V Pinto
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - M Marchetti
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - L-F Wong
- Translational Health Sciences, University of Bristol, Bristol, BS2 8DZ, UK
| | - J Uney
- Translational Health Sciences, University of Bristol, Bristol, BS2 8DZ, UK
| | - M A Saleem
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - P W Mathieson
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
- The University of Hong Kong, Pokfulam, Hong Kong
| | - S Patel
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System & University of Toronto, Toronto, M5G 1X5, Canada
- Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R J Walker
- Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| | - J R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System & University of Toronto, Toronto, M5G 1X5, Canada
| | - S E Quaggin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - G I Welsh
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - R J M Coward
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK.
| |
Collapse
|
13
|
Bai Y, Shen W, Zhu M, Zhang L, Wei Y, Tang H, Zhao J. Combined detection of estrogen and tumor markers is an important reference factor in the diagnosis and prognosis of lung cancer. J Cell Biochem 2018; 120:105-114. [PMID: 30216488 DOI: 10.1002/jcb.27130] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/07/2018] [Indexed: 11/06/2022]
Abstract
The correlation between lung cancer tumor markers and sex differences in lung cancer remains a clinical problem that is worthy of further study. This study investigated the significance of the combined detection of 17β-estrogen (E2) and tumor markers in the diagnosis and prognosis of lung cancer. A total of 174 patients, including 117 patients with non-small-cell lung cancer (NSCLC) and 57 patients with benign pulmonary lesions (BPL), were enrolled. An enzyme-linked immunosorbent assay was used to detect the expression of E2, carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and cytokeratin 19 fragment antigen 21-1 (CYFRA21-1) in patients with NSCLC and BPL to analyze the correlation between E2 and CEA, NSE or CYFRA21-1 expression, and its correlation with clinicopathological features and prognosis. The expression of tumor markers was then examined in different lung cancer cells (A549, H1795, H460, and SK-MES-1). The expression of tumor markers was detected by a real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. The expressions of p-p44/42 mitogen-activated protein kinase (MAPK) and phospho-AKT (p-AKT) were detected by Western blot analysis. The expression levels of E2, CEA, NSE, and CYFRA21-1 in patients with NSCLC were significantly higher than those in patients with BPL ( P < .05); E2 was positively correlated with tumor markers ( P < .01). Patients with a high expression of E2 and tumor markers showed a poor prognosis ( P < .05). RT-quantitative PCR and Western blot analysis showed that the expression levels of CEA, NSE, CYFRA21-1, p-p44/42 MAPK, and p-AKT in the E2 group were higher than those in the other groups ( P < .05). These studies indicate that the interaction of E2 and tumor markers can significantly improve the role of tumor markers in the diagnosis and prognosis of lung cancer.
Collapse
Affiliation(s)
- Yuquan Bai
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wulin Shen
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Minglin Zhu
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li Zhang
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanhong Wei
- Department of Nephrology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hexiao Tang
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinping Zhao
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Tang H, Bai Y, Shen W, Wei Y, Xu M, Zhou X, Zhao J. Clinical significance of combined detection of interleukin-6 and tumour markers in lung cancer. Autoimmunity 2018; 51:191-198. [PMID: 29869537 DOI: 10.1080/08916934.2018.1477133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hexiao Tang
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuquan Bai
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wulin Shen
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanhong Wei
- Department of Nephrology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Xu
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuefeng Zhou
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jinping Zhao
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
15
|
Mor DE, Tsika E, Mazzulli JR, Gould NS, Kim H, Daniels MJ, Doshi S, Gupta P, Grossman JL, Tan VX, Kalb RG, Caldwell KA, Caldwell GA, Wolfe JH, Ischiropoulos H. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration. Nat Neurosci 2017; 20:1560-1568. [PMID: 28920936 PMCID: PMC5893155 DOI: 10.1038/nn.4641] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/22/2017] [Indexed: 01/27/2023]
Abstract
Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.
Collapse
Affiliation(s)
- Danielle E. Mor
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elpida Tsika
- AC Immune SA, Ecole Polytechnique fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Joseph R. Mazzulli
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Neal S. Gould
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Hanna Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Malcolm J. Daniels
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shachee Doshi
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Preetika Gupta
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer L. Grossman
- State University of New York Downstate College of Medicine, Brooklyn, New York, USA
| | - Victor X. Tan
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert G. Kalb
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Kim A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Guy A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - John H. Wolfe
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harry Ischiropoulos
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Kliewe F, Scharf C, Rogge H, Darm K, Lindenmeyer MT, Amann K, Cohen CD, Endlich K, Endlich N. Studying the role of fascin-1 in mechanically stressed podocytes. Sci Rep 2017; 7:9916. [PMID: 28855604 PMCID: PMC5577297 DOI: 10.1038/s41598-017-10116-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/04/2017] [Indexed: 11/09/2022] Open
Abstract
Glomerular hypertension causes glomerulosclerosis via the loss of podocytes, which are challenged by increased mechanical load. We have demonstrated that podocytes are mechanosensitive. However, the response of podocytes to mechanical stretching remains incompletely understood. Here we demonstrate that the actin-bundling protein fascin-1 plays an important role in podocytes that are exposed to mechanical stress. Immunofluorescence staining revealed colocalization of fascin-1 and nephrin in mouse kidney sections. In cultured mouse podocytes fascin-1 was localized along actin fibers and filopodia in stretched and unstretched podocytes. The mRNA and protein levels of fascin-1 were not affected by mechanical stress. By Western blot and 2D-gelelectrophoresis we observed that phospho-fascin-1 was significantly downregulated after mechanical stretching. It is known that phosphorylation at serine 39 (S39) regulates the bundling activity of fascin-1, e.g. required for filopodia formation. Podocytes expressing wild type GFP-fascin-1 and non-phosphorylatable GFP-fascin-1-S39A showed marked filopodia formation, being absent in podocytes expressing phosphomimetic GFP-fascin-1-S39D. Finally, the immunofluorescence signal of phosphorylated fascin-1 was strongly reduced in glomeruli of patients with diabetic nephropathy compared to healthy controls. In summary, mechanical stress dephosphorylates fascin-1 in podocytes in vitro and in vivo thereby fascin-1 may play an important role in the adaptation of podocytes to mechanical forces.
Collapse
Affiliation(s)
- Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Christian Scharf
- Department of Ear, Nose and Throat Diseases, University Medicine Greifswald, Greifswald, Germany
| | - Henrik Rogge
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Katrin Darm
- Department of Ear, Nose and Throat Diseases, University Medicine Greifswald, Greifswald, Germany
| | - Maja T Lindenmeyer
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Kerstin Amann
- Department of Nephropathology, University Medicine Erlangen, Erlangen, Germany
| | - Clemens D Cohen
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
17
|
Colin E, Huynh Cong E, Mollet G, Guichet A, Gribouval O, Arrondel C, Boyer O, Daniel L, Gubler MC, Ekinci Z, Tsimaratos M, Chabrol B, Boddaert N, Verloes A, Chevrollier A, Gueguen N, Desquiret-Dumas V, Ferré M, Procaccio V, Richard L, Funalot B, Moncla A, Bonneau D, Antignac C. Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway-Mowat syndrome. Am J Hum Genet 2014; 95:637-48. [PMID: 25466283 DOI: 10.1016/j.ajhg.2014.10.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/24/2014] [Indexed: 01/08/2023] Open
Abstract
Galloway-Mowat syndrome is a rare autosomal-recessive condition characterized by nephrotic syndrome associated with microcephaly and neurological impairment. Through a combination of autozygosity mapping and whole-exome sequencing, we identified WDR73 as a gene in which mutations cause Galloway-Mowat syndrome in two unrelated families. WDR73 encodes a WD40-repeat-containing protein of unknown function. Here, we show that WDR73 was present in the brain and kidney and was located diffusely in the cytoplasm during interphase but relocalized to spindle poles and astral microtubules during mitosis. Fibroblasts from one affected child and WDR73-depleted podocytes displayed abnormal nuclear morphology, low cell viability, and alterations of the microtubule network. These data suggest that WDR73 plays a crucial role in the maintenance of cell architecture and cell survival. Altogether, WDR73 mutations cause Galloway-Mowat syndrome in a particular subset of individuals presenting with late-onset nephrotic syndrome, postnatal microcephaly, severe intellectual disability, and homogenous brain MRI features. WDR73 is another example of a gene involved in a disease affecting both the kidney glomerulus and the CNS.
Collapse
|
18
|
Glomerular development--shaping the multi-cellular filtration unit. Semin Cell Dev Biol 2014; 36:39-49. [PMID: 25153928 DOI: 10.1016/j.semcdb.2014.07.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 01/09/2023]
Abstract
The glomerulus represents a highly structured filtration unit, composed of glomerular endothelial cells, mesangial cells, podocytes and parietal epithelial cells. During glomerulogenesis an intricate network of signaling pathways involving transcription factors, secreted factors and cell-cell communication is required to guarantee accurate evolvement of a functional, complex 3-dimensional glomerular architecture. Here, we want to provide an overview on the critical steps and relevant signaling cascades of glomerular development.
Collapse
|