1
|
Arasimowicz-Jelonek M, Jagodzik P, Płóciennik A, Sobieszczuk-Nowicka E, Mattoo A, Polcyn W, Floryszak-Wieczorek J. Dynamics of nitration during dark-induced leaf senescence in Arabidopsis reveals proteins modified by tryptophan nitration. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6853-6875. [PMID: 35981877 DOI: 10.1093/jxb/erac341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Nitric oxide (NO) is a critical molecule that links plant development with stress responses. Herein, new insights into the role of NO metabolism during leaf senescence in Arabidopsis are presented. A gradual decrease in NO emission accompanied dark-induced leaf senescence (DILS), and a transient wave of peroxynitrite (ONOO-) formation was detected by day 3 of DILS. The boosted ONOO- did not promote tryptophan (Trp) nitration, while the pool of 6-nitroTrp-containing proteins was depleted as senescence progressed. Immunoprecipitation combined with mass spectrometry was used to identify 63 and 4 characteristic 6-nitroTrp-containing proteins in control and individually darkened leaves, respectively. The potential in vivo targets of Trp nitration were mainly related to protein biosynthesis and carbohydrate metabolism. In contrast, nitration of tyrosine-containing proteins was intensified 2-fold on day 3 of DILS. Also, nitrative modification of RNA and DNA increased significantly on days 3 and 7 of DILS, respectively. Taken together, ONOO- can be considered a novel pro-senescence regulator that fine-tunes the redox environment for selective bio-target nitration. Thus, DILS-triggered nitrative changes at RNA and protein levels promote developmental shifts during the plant's lifespan and temporal adjustment in plant metabolism under suboptimal environmental conditions.
Collapse
Affiliation(s)
- Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University; Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Przemysław Jagodzik
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University; Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Artur Płóciennik
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University; Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University; Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Autar Mattoo
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, USA
| | - Władysław Polcyn
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University; Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | | |
Collapse
|
2
|
Yan S, Bhawal R, Yin Z, Thannhauser TW, Zhang S. Recent advances in proteomics and metabolomics in plants. MOLECULAR HORTICULTURE 2022; 2:17. [PMID: 37789425 PMCID: PMC10514990 DOI: 10.1186/s43897-022-00038-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/20/2022] [Indexed: 10/05/2023]
Abstract
Over the past decade, systems biology and plant-omics have increasingly become the main stream in plant biology research. New developments in mass spectrometry and bioinformatics tools, and methodological schema to integrate multi-omics data have leveraged recent advances in proteomics and metabolomics. These progresses are driving a rapid evolution in the field of plant research, greatly facilitating our understanding of the mechanistic aspects of plant metabolisms and the interactions of plants with their external environment. Here, we review the recent progresses in MS-based proteomics and metabolomics tools and workflows with a special focus on their applications to plant biology research using several case studies related to mechanistic understanding of stress response, gene/protein function characterization, metabolic and signaling pathways exploration, and natural product discovery. We also present a projection concerning future perspectives in MS-based proteomics and metabolomics development including their applications to and challenges for system biology. This review is intended to provide readers with an overview of how advanced MS technology, and integrated application of proteomics and metabolomics can be used to advance plant system biology research.
Collapse
Affiliation(s)
- Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 139 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 139 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Ji Y, Xu M, Liu Z, Yuan H, Lv T, Li H, Xu Y, Si Y, Wang A. NUCLEOCYTOPLASMIC shuttling of ETHYLENE RESPONSE FACTOR 5 mediated by nitric oxide suppresses ethylene biosynthesis in apple fruit. THE NEW PHYTOLOGIST 2022; 234:1714-1734. [PMID: 35254663 PMCID: PMC9313842 DOI: 10.1111/nph.18071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is known to modulate the action of several phytohormones. This includes the gaseous hormone ethylene, but the molecular mechanisms underlying the effect of NO on ethylene biosynthesis are unclear. Here, we observed a decrease in endogenous NO abundance during apple (Malus domestica) fruit development and exogenous treatment of apple fruit with a NO donor suppressed ethylene production, suggesting that NO is a ripening suppressor. Expression of the transcription factor MdERF5 was activated by NO donor treatment. NO induced the nucleocytoplasmic shuttling of MdERF5 by modulating its interaction with the protein phosphatase, MdPP2C57. MdPP2C57-induced dephosphorylation of MdERF5 at Ser260 is sufficient to promote nuclear export of MdERF5. As a consequence of this export, MdERF5 proteins in the cytoplasm interacted with and suppressed the activity of MdACO1, an enzyme that converts 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. The NO-activated MdERF5 was observed to increase in abundance in the nucleus and bind to the promoter of the ACC synthase gene MdACS1 and directly suppress its transcription. Together, these results suggest that NO-activated nucleocytoplasmic MdERF5 suppresses the action of ethylene biosynthetic genes, thereby suppressing ethylene biosynthesis and limiting fruit ripening.
Collapse
Affiliation(s)
- Yinglin Ji
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Mingyang Xu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Zhi Liu
- Liaoning Institute of PomologyXiongyue115009China
| | - Hui Yuan
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Tianxing Lv
- Liaoning Institute of PomologyXiongyue115009China
| | - Hongjian Li
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
- Liaoning Institute of PomologyXiongyue115009China
| | - Yaxiu Xu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Yajing Si
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| |
Collapse
|
4
|
Arefian M, Bhagya N, Prasad TSK. Phosphorylation-mediated signalling in flowering: prospects and retrospects of phosphoproteomics in crops. Biol Rev Camb Philos Soc 2021; 96:2164-2191. [PMID: 34047006 DOI: 10.1111/brv.12748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022]
Abstract
Protein phosphorylation is a major post-translational modification, regulating protein function, stability, and subcellular localization. To date, annotated phosphorylation data are available mainly for model organisms and humans, despite the economic importance of crop species and their large kinomes. Our understanding of the phospho-regulation of flowering in relation to the biology and interaction between the pollen and pistil is still significantly lagging, limiting our knowledge on kinase signalling and its potential applications to crop production. To address this gap, we bring together relevant literature that were previously disconnected to present an overview of the roles of phosphoproteomic signalling pathways in modulating molecular and cellular regulation within specific tissues at different morphological stages of flowering. This review is intended to stimulate research, with the potential to increase crop productivity by providing a platform for novel molecular tools.
Collapse
Affiliation(s)
- Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - N Bhagya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| |
Collapse
|
5
|
Smolikova G, Gorbach D, Lukasheva E, Mavropolo-Stolyarenko G, Bilova T, Soboleva A, Tsarev A, Romanovskaya E, Podolskaya E, Zhukov V, Tikhonovich I, Medvedev S, Hoehenwarter W, Frolov A. Bringing New Methods to the Seed Proteomics Platform: Challenges and Perspectives. Int J Mol Sci 2020; 21:E9162. [PMID: 33271881 PMCID: PMC7729594 DOI: 10.3390/ijms21239162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, crop plants have represented the basis of the daily human diet. Among them, cereals and legumes, accumulating oils, proteins, and carbohydrates in their seeds, distinctly dominate modern agriculture, thus play an essential role in food industry and fuel production. Therefore, seeds of crop plants are intensively studied by food chemists, biologists, biochemists, and nutritional physiologists. Accordingly, seed development and germination as well as age- and stress-related alterations in seed vigor, longevity, nutritional value, and safety can be addressed by a broad panel of analytical, biochemical, and physiological methods. Currently, functional genomics is one of the most powerful tools, giving direct access to characteristic metabolic changes accompanying plant development, senescence, and response to biotic or abiotic stress. Among individual post-genomic methodological platforms, proteomics represents one of the most effective ones, giving access to cellular metabolism at the level of proteins. During the recent decades, multiple methodological advances were introduced in different branches of life science, although only some of them were established in seed proteomics so far. Therefore, here we discuss main methodological approaches already employed in seed proteomics, as well as those still waiting for implementation in this field of plant research, with a special emphasis on sample preparation, data acquisition, processing, and post-processing. Thereby, the overall goal of this review is to bring new methodologies emerging in different areas of proteomics research (clinical, food, ecological, microbial, and plant proteomics) to the broad society of seed biologists.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Daria Gorbach
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Gregory Mavropolo-Stolyarenko
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Ekaterina Romanovskaya
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Ekaterina Podolskaya
- Institute of Analytical Instrumentation, Russian Academy of Science; 190103 St. Petersburg, Russia;
- Institute of Toxicology, Russian Federal Medical Agency; 192019 St. Petersburg, Russia
| | - Vladimir Zhukov
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
- Department of Genetics and Biotechnology, St. Petersburg State University; 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| |
Collapse
|
6
|
Comparative phosphoproteomic analysis of BR-defective mutant reveals a key role of GhSK13 in regulating cotton fiber development. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1905-1917. [PMID: 32632733 DOI: 10.1007/s11427-020-1728-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Brassinosteroid (BR), a steroid phytohormone, whose signaling transduction pathways include a series of phosphorylation and dephosphorylation events, and GSK3s are the main negative regulator kinases. BRs have been shown to play vital roles in cotton fiber elongation. However, the underlying mechanism is still elusive. In this study, fibers of a BR-defective mutant Pagoda 1 (pag1), and its corresponding wild-type (ZM24) were selected for a comparative global phosphoproteome analysis at critical developmental time points: fast-growing stage (10 days after pollination (DPA)) and secondary cell wall synthesis stage (20 DPA). Based on the substrate characteristics of GSK3, 900 potential substrates were identified. Their GO and KEGG annotation results suggest that BR functions in fiber development by regulating GhSKs (GSK3s of Gossypium hirsutum L.) involved microtubule cytoskeleton organization, and pathways of glucose, sucrose and lipid metabolism. Further experimental results revealed that among the GhSK members identified, GhSK13 not only plays a role in BR signaling pathway, but also functions in developing fiber by respectively interacting with an AP2-like ethylene-responsive factor GhAP2L, a nuclear transcription factor Gh_DNF_YB19, and a homeodomain zipper member GhHDZ5. Overall, our phosphoproteomic research advances the understanding of fiber development controlled by BR signal pathways especially through GhSKs, and also offers numbers of target proteins for improving cotton fiber quality.
Collapse
|
7
|
Zhu L, Zheng B, Song W, Tao C, Jin X, Li H. Comparative Proteomic Analysis of Molecular Differences between Leaves of Wild-Type Upland Cotton and Its Fuzzless- Lintless Mutant. Molecules 2019; 24:molecules24203769. [PMID: 31635060 PMCID: PMC6832260 DOI: 10.3390/molecules24203769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023] Open
Abstract
Fuzzless-lintless mutant (fl) ovules of upland cotton have been used to investigate cotton fiber development for decades. However, the molecular differences of green tissues between fl and wild-type (WT) cotton were barely reported. Here, we found that gossypol content, the most important secondary metabolite of cotton leaves, was higher in Gossypium hirsutum L. cv Xuzhou-142 (Xu142) WT than in fl. Then, we performed comparative proteomic analysis of the leaves from Xu142 WT and its fl. A total of 4506 proteins were identified, of which 103 and 164 appeared to be WT- and fl-specific, respectively. In the 4239 common-expressed proteins, 80 and 74 were preferentially accumulated in WT and fl, respectively. Pathway enrichment analysis and protein–protein interaction network analysis of both variety-specific and differential abundant proteins showed that secondary metabolism and chloroplast-related pathways were significantly enriched. Quantitative real-time PCR confirmed that the expression levels of 12 out of 16 selected genes from representative pathways were consistent with their protein accumulation patterns. Further analyses showed that the content of chlorophyll a in WT, but not chlorophyll b, was significantly increased compared to fl. This work provides the leaf proteome profiles of Xu142 and its fl mutant, indicating the necessity of further investigation of molecular differences between WT and fl leaves.
Collapse
Affiliation(s)
- Liping Zhu
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| | - Bowen Zheng
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| | - Wangyang Song
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| | - Chengcheng Tao
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| | - Xiang Jin
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
8
|
Cutolo E, Parvin N, Ruge H, Pirayesh N, Roustan V, Weckwerth W, Teige M, Grieco M, Larosa V, Vothknecht UC. The High Light Response in Arabidopsis Requires the Calcium Sensor Protein CAS, a Target of STN7- and STN8-Mediated Phosphorylation. FRONTIERS IN PLANT SCIENCE 2019; 10:974. [PMID: 31417591 PMCID: PMC6682602 DOI: 10.3389/fpls.2019.00974] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/11/2019] [Indexed: 05/18/2023]
Abstract
Reversible phosphorylation of thylakoid proteins contributes to photoacclimation responses in photosynthetic organisms, enabling the fine-tuning of light harvesting under changing light conditions and promoting the onset of photoprotective processes. However, the precise functional role of many of the described phosphorylation events on thylakoid proteins remains elusive. The calcium sensor receptor protein (CAS) has previously been indicated as one of the targets of the state transition kinase 8 (STN8). Here we show that in Arabidopsis thaliana, CAS is also phosphorylated by the state transition kinase 7 (STN7), as well as by another, so-far unknown, Ca2+-dependent kinase. Phosphoproteomics analysis and in vitro phosphorylation assays on CAS variants identified the phylogenetically conserved residues Thr-376, Ser-378, and Thr-380 as the major phosphorylation sites of the STN kinases. Spectroscopic analyses of chlorophyll fluorescence emission at 77K further showed that, while the cas mutant is not affected in state transition, it displays a persistent strong excitation of PSI under high light exposure, similar to the phenotype previously observed in other mutants defective in photoacclimation mechanisms. Together with the observation of a strong concomitant phosphorylation of light harvesting complex II (LHCII) and photosynthetic core proteins under high irradiance in the cas mutant this suggests a role for CAS in the STN7/STN8/TAP38 network of phosphorylation-mediated photoacclimation processes in Arabidopsis.
Collapse
Affiliation(s)
- Edoardo Cutolo
- Plant Cell Biology, Institut für Zelluläre und Molekulare Botanik, University of Bonn, Bonn, Germany
| | - Nargis Parvin
- Department of Plant Nutrition, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz, University of Bonn, Bonn, Germany
| | - Henning Ruge
- Department of Biology I, Ludwig Maximilian University of Munich, Munich, Germany
| | - Niloufar Pirayesh
- Plant Cell Biology, Institut für Zelluläre und Molekulare Botanik, University of Bonn, Bonn, Germany
| | - Valentin Roustan
- Department of Molecular Systems Biology, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Molecular Systems Biology, University of Vienna, Vienna, Austria
| | - Markus Teige
- Department of Molecular Systems Biology, University of Vienna, Vienna, Austria
| | - Michele Grieco
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Veronique Larosa
- Laboratory of Genetics and Physiology of Microalgae, InBios, University of Liège, Liège, Belgium
| | - Ute C. Vothknecht
- Plant Cell Biology, Institut für Zelluläre und Molekulare Botanik, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Nitric Oxide Enhancing Resistance to PEG-Induced Water Deficiency is Associated with the Primary Photosynthesis Reaction in Triticum aestivum L. Int J Mol Sci 2018; 19:ijms19092819. [PMID: 30231569 PMCID: PMC6164216 DOI: 10.3390/ijms19092819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/30/2022] Open
Abstract
Photosynthesis is affected by water-deficiency (WD) stress, and nitric oxide (NO) is a free radical that participates in the photosynthesis process. Previous studies have suggested that NO regulates excitation-energy distribution of photosynthesis under WD stress. Here, quantitative phosphoproteomic profiling was conducted using iTRAQ. Differentially phosphorylated protein species (DEPs) were identified in leaves of NO- or polyethylene glycol (PEG)-treated wheat seedlings (D), and in control seedlings. From 1396 unique phosphoproteins, 2257 unique phosphorylated peptides and 2416 phosphorylation sites were identified. Of these, 96 DEPs displayed significant changes (≥1.50-fold, p < 0.01). These DEPs are involved in photosynthesis, signal transduction, etc. Furthermore, phosphorylation of several DEPs was upregulated by both D and NO treatments, but downregulated only in NO treatment. These differences affected the chlorophyll A–B binding protein, chloroplast post-illumination chlorophyll-fluorescence-increase protein, and SNT7, implying that NO indirectly regulated the absorption and transport of light energy in photosynthesis in response to WD stress. The significant difference of chlorophyll (Chl) content, Chl a fluorescence-transient, photosynthesis index, and trapping and transport of light energy further indicated that exogenous NO under D stress enhanced the primary photosynthesis reaction compared to D treatment. A putative pathway is proposed to elucidate NO regulation of the primary reaction of photosynthesis under WD.
Collapse
|
10
|
Pan D, Wang L, Tan F, Lu S, Lv X, Zaynab M, Cheng CL, Abubakar YS, Chen S, Chen W. Phosphoproteomics unveils stable energy supply as key to flooding tolerance in Kandelia candel. J Proteomics 2018; 176:1-12. [DOI: 10.1016/j.jprot.2018.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/30/2017] [Accepted: 01/10/2018] [Indexed: 12/23/2022]
|
11
|
Santisree P, Bhatnagar-Mathur P, Sharma KK. Molecular insights into the functional role of nitric oxide (NO) as a signal for plant responses in chickpea. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:267-283. [PMID: 32291041 DOI: 10.1071/fp16324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/14/2017] [Indexed: 06/11/2023]
Abstract
The molecular mechanisms and targets of nitric oxide (NO) are not fully known in plants. Our study reports the first large-scale quantitative proteomic analysis of NO donor responsive proteins in chickpea. Dose response studies carried out using NO donors, sodium nitroprusside (SNP), diethylamine NONOate (DETA) and S-nitrosoglutathione (GSNO) in chickpea genotype ICCV1882, revealed a dose dependent positive impact on seed germination and seedling growth. SNP at 0.1mM concentration proved to be most appropriate following confirmation using four different chickpea genotypes. while SNP treatment enhanced the percentage of germination, chlorophyll and nitrogen contents in chickpea, addition of NO scavenger, cPTIO reverted its impact under abiotic stresses. Proteome profiling revealed 172 downregulated and 76 upregulated proteins, of which majority were involved in metabolic processes (118) by virtue of their catalytic (145) and binding (106) activity. A few crucial proteins such as S-adenosylmethionine synthase, dehydroascorbate reductase, pyruvate kinase fragment, 1-aminocyclopropane-1-carboxylic acid oxidase, 1-pyrroline-5-carboxylate synthetase were less abundant whereas Bowman-Birk type protease inhibitor, non-specific lipid transfer protein, chalcone synthase, ribulose-1-5-bisphosphate carboxylase oxygenase large subunit, PSII D2 protein were highly abundant in SNP treated samples. This study highlights the protein networks for a better understanding of possible NO induced regulatory mechanisms in plants.
Collapse
Affiliation(s)
- Parankusam Santisree
- International Crops Research Institute for the Semiarid Tropics (ICRISAT), Patancheru, Hyderabad-502324, Telangana, India
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semiarid Tropics (ICRISAT), Patancheru, Hyderabad-502324, Telangana, India
| | - Kiran K Sharma
- International Crops Research Institute for the Semiarid Tropics (ICRISAT), Patancheru, Hyderabad-502324, Telangana, India
| |
Collapse
|
12
|
Significant and unique changes in phosphorylation levels of four phosphoproteins in two apple rootstock genotypes under drought stress. Mol Genet Genomics 2017; 292:1307-1322. [PMID: 28710562 DOI: 10.1007/s00438-017-1348-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/03/2017] [Indexed: 01/09/2023]
Abstract
Drought stress is a major problem around the world and there is still little molecular mechanism about how fruit crops deal with moderate drought stress. Here, the physiological and phosphoproteomic responses of drought-sensitive genotype (M26) and drought-tolerant genotype (MBB) under moderate drought stress were investigated. Our results of the physiology analysis indicated that the MBB genotype could produce more osmosis-regulating substances. Furthermore, phosphoproteins from leaves of both genotypes under moderate drought stress were analyzed using the isobaric tags for relative and absolute quantification technology. A total of 595 unique phosphopeptides, 682 phosphorylated sites, and 446 phosphoproteins were quantitatively analyzed in the two genotypes. Five and thirty-five phosphoproteins with the phosphorylation levels significantly changed (PLSC) were identified in M26 and MBB, respectively. Among these, four PLSC phosphoproteins were common to both genotypes, perhaps indicating a partial overlap of the mechanisms to moderate drought stress. Gene ontology analyses revealed that the PLSC phosphoproteins represent a unique combination of metabolism, transcription, translation, and protein processing, suggesting that the response in apple to moderate drought stress encompasses a new and unique homeostasis of major cellular processes. The basic trend was an increase in protein and organic molecules abundance related to drought. These increases were higher in MBB than in M26. Our study is the first to address the phosphoproteome of apple rootstocks in response to moderate drought stress, and provide insights into the molecular regulation mechanisms of apple rootstock under moderate drought stress.
Collapse
|
13
|
Fattorini L, Veloccia A, Della Rovere F, D’Angeli S, Falasca G, Altamura MM. Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity. BMC PLANT BIOLOGY 2017; 17:121. [PMID: 28693423 PMCID: PMC5504571 DOI: 10.1186/s12870-017-1071-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/29/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Indole-3-acetic acid (IAA), and its precursor indole-3-butyric acid (IBA), control adventitious root (AR) formation in planta. Adventitious roots are also crucial for propagation via cuttings. However, IBA role(s) is/are still far to be elucidated. In Arabidopsis thaliana stem cuttings, 10 μM IBA is more AR-inductive than 10 μM IAA, and, in thin cell layers (TCLs), IBA induces ARs when combined with 0.1 μM kinetin (Kin). It is unknown whether arabidopsis TCLs produce ARs under IBA alone (10 μM) or IAA alone (10 μM), and whether they contain endogenous IAA/IBA at culture onset, possibly interfering with the exogenous IBA/IAA input. Moreover, it is unknown whether an IBA-to-IAA conversion is active in TCLs, and positively affects AR formation, possibly through the activity of the nitric oxide (NO) deriving from the conversion process. RESULTS Revealed undetectable levels of both auxins at culture onset, showing that arabidopsis TCLs were optimal for investigating AR-formation under the total control of exogenous auxins. The AR-response of TCLs from various ecotypes, transgenic lines and knockout mutants was analyzed under different treatments. It was shown that ARs are better induced by IBA than IAA and IBA + Kin. IBA induced IAA-efflux (PIN1) and IAA-influx (AUX1/LAX3) genes, IAA-influx carriers activities, and expression of ANTHRANILATE SYNTHASE -alpha1 (ASA1), a gene involved in IAA-biosynthesis. ASA1 and ANTHRANILATE SYNTHASE -beta1 (ASB1), the other subunit of the same enzyme, positively affected AR-formation in the presence of exogenous IBA, because the AR-response in the TCLs of their mutant wei2wei7 was highly reduced. The AR-response of IBA-treated TCLs from ech2ibr10 mutant, blocked into IBA-to-IAA-conversion, was also strongly reduced. Nitric oxide, an IAA downstream signal and a by-product of IBA-to-IAA conversion, was early detected in IAA- and IBA-treated TCLs, but at higher levels in the latter explants. CONCLUSIONS Altogether, results showed that IBA induced AR-formation by conversion into IAA involving NO activity, and by a positive action on IAA-transport and ASA1/ASB1-mediated IAA-biosynthesis. Results are important for applications aimed to overcome rooting recalcitrance in species of economic value, but mainly for helping to understand IBA involvement in the natural process of adventitious rooting.
Collapse
Affiliation(s)
- L. Fattorini
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Roma, Italy
| | - A. Veloccia
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Roma, Italy
| | - F. Della Rovere
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Roma, Italy
| | - S. D’Angeli
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Roma, Italy
| | - G. Falasca
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Roma, Italy
| | - M. M. Altamura
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
14
|
Physiological and quantitative phosphoproteome analyses of drought stress-induced mechanisms in Malus baccata (L.) Borkh. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Jia D, Wang B, Li X, Peng W, Zhou J, Tan H, Tang J, Huang Z, Tan W, Gan B, Yang Z, Zhao J. Proteomic Analysis Revealed the Fruiting-Body Protein Profile of Auricularia polytricha. Curr Microbiol 2017; 74:943-951. [DOI: 10.1007/s00284-017-1268-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
|
16
|
Zhang C, Sun W, Tan M, Dong M, Liu W, Gao T, Li L, Xu Z, Zhou R. The Eukaryote-Like Serine/Threonine Kinase STK Regulates the Growth and Metabolism of Zoonotic Streptococcus suis. Front Cell Infect Microbiol 2017; 7:66. [PMID: 28326294 PMCID: PMC5339665 DOI: 10.3389/fcimb.2017.00066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Like eukaryotes, bacteria express one or more serine/threonine kinases (STKs) that initiate diverse signaling networks. The STK from Streptococcus suis is encoded by a single-copy stk gene, which is crucial in stress response and virulence. To further understand the regulatory mechanism of STK in S. suis, a stk deletion strain (Δstk) and its complementary strain (CΔstk) were constructed to systematically decode STK characteristics by applying whole transcriptome RNA sequencing (RNA-Seq) and phosphoproteomic analysis. Numerous genes were differentially expressed in Δstk compared with the wild-type parental strain SC-19, including 320 up-regulated and 219 down-regulated genes. Particularly, 32 virulence-associated genes (VAGs) were significantly down-regulated in Δstk. Seven metabolic pathways relevant to bacterial central metabolism and translation are significantly repressed in Δstk. Phosphoproteomic analysis further identified 12 phosphoproteins that exhibit differential phosphorylation in Δstk. These proteins are associated with cell growth and division, glycolysis, and translation. Consistently, phenotypic assays confirmed that the Δstk strain displayed deficient growth and attenuated pathogenicity. Thus, STK is a central regulator that plays an important role in cell growth and division, as well as S. suis metabolism.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Wen Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Meifang Tan
- Veterinary Medicine Laboratory, Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences Nanchang, China
| | - Mengmeng Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Wanquan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Ting Gao
- Veterinary Medicine Laboratory, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Cooperative Innovation Center of Sustainable Pig ProductionWuhan, China
| | - Zhuofei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Cooperative Innovation Center of Sustainable Pig ProductionWuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Cooperative Innovation Center of Sustainable Pig ProductionWuhan, China
| |
Collapse
|
17
|
Tao C, Jin X, Zhu L, Li H. Two-Dimensional Gel Electrophoresis-Based Proteomic Analysis Reveals N-terminal Truncation of the Hsc70 Protein in Cotton Fibers In Vivo. Sci Rep 2016; 6:36961. [PMID: 27833127 PMCID: PMC5105075 DOI: 10.1038/srep36961] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/21/2016] [Indexed: 11/09/2022] Open
Abstract
On two-dimensional electrophoresis gels, six protein spots from cotton ovules and fibers were identified as heat shock cognate 70 kD protein (Hsc70). Three spots corresponded to an experimental molecular weight (MW) of 70 kD (spots 1, 2 and 3), and the remaining three spots corresponded to an experimental MW slightly greater than 45 kD (spots 4, 5 and 6). Protein spots 1, 2 and 3 were abundant on gels of 0-day (the day of anthesis) wild-type (WT) ovules, 0-day fuzzless-lintless mutant ovules and 10-day WT ovules but absent from gels of 10-day WT fibers. Three individual transcripts encoding these six protein spots were obtained by using rapid amplification of cDNA ends (RACE). Edman degradation and western blotting confirmed that the three 45 kD Hsc70 protein spots had the same N-terminal, which started from the T271 amino acid in the intact Hsc70 protein. Furthermore, quadrupole time-of-flight mass spectrometry analysis identified a methylation modification on the arginine at position 475 for protein spots 4 and 5. Our data demonstrate that site-specific in vivo N-terminal truncation of the Hsc70 protein was particularly prevalent in cotton fibers, indicating that post-translational regulation might play an important role in cotton fiber development.
Collapse
Affiliation(s)
- Chengcheng Tao
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, 832003, China.,Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xiang Jin
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, 832003, China.,Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Liping Zhu
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, 832003, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
18
|
Vu LD, Stes E, Van Bel M, Nelissen H, Maddelein D, Inzé D, Coppens F, Martens L, Gevaert K, De Smet I. Up-to-Date Workflow for Plant (Phospho)proteomics Identifies Differential Drought-Responsive Phosphorylation Events in Maize Leaves. J Proteome Res 2016; 15:4304-4317. [DOI: 10.1021/acs.jproteome.6b00348] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lam Dai Vu
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Elisabeth Stes
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Michiel Van Bel
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Davy Maddelein
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Dirk Inzé
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Frederik Coppens
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lennart Martens
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Kris Gevaert
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Ive De Smet
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
19
|
Qiu J, Hou Y, Tong X, Wang Y, Lin H, Liu Q, Zhang W, Li Z, Nallamilli BR, Zhang J. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.). PLANT MOLECULAR BIOLOGY 2016; 90:249-265. [PMID: 26613898 DOI: 10.1007/s11103-015-0410-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
Rice (Oryza sativa L.) seed serves as a major food source for over half of the global population. Though it has been long recognized that phosphorylation plays an essential role in rice seed development, the phosphorylation events and dynamics in this process remain largely unknown so far. Here, we report the first large scale identification of rice seed phosphoproteins and phosphosites by using a quantitative phosphoproteomic approach. Thorough proteomic studies in pistils and seeds at 3, 7 days after pollination resulted in the successful identification of 3885, 4313 and 4135 phosphopeptides respectively. A total of 2487 proteins were differentially phosphorylated among the three stages, including Kip related protein 1, Rice basic leucine zipper factor 1, Rice prolamin box binding factor and numerous other master regulators of rice seed development. Moreover, differentially phosphorylated proteins may be extensively involved in the biosynthesis and signaling pathways of phytohormones such as auxin, gibberellin, abscisic acid and brassinosteroid. Our results strongly indicated that protein phosphorylation is a key mechanism regulating cell proliferation and enlargement, phytohormone biosynthesis and signaling, grain filling and grain quality during rice seed development. Overall, the current study enhanced our understanding of the rice phosphoproteome and shed novel insight into the regulatory mechanism of rice seed development.
Collapse
Affiliation(s)
- Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Yuxuan Hou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Haiyan Lin
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Qing Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Wen Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Babi R Nallamilli
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China.
| |
Collapse
|
20
|
Jin X, Wang L, He L, Feng W, Wang X. Two-dimensional gel electrophoresis-based analysis provides global insights into the cotton ovule and fiber proteomes. SCIENCE CHINA-LIFE SCIENCES 2016; 59:154-63. [PMID: 26803300 DOI: 10.1007/s11427-016-4999-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 12/29/2022]
Abstract
Proteomic analysis of upland cotton was performed to profile the global detectable proteomes of ovules and fibers using two-dimensional electrophoresis (2DE). A total of 1,203 independent protein spots were collected from representative 2DE gels, which were digested with trypsin and identified by matrix-assisted laser desorption and ionization-time-offlight/ time-of-flight (MALDI-TOF/TOF) mass spectrometry. The mass spectrometry or tandem mass spectrometry (MS or MS/MS) data were then searched against a local database constructed from Gossypium hirsutum genome sequences, resulting in successful identification of 975 protein spots (411 for ovules and 564 for fibers). Functional annotation analysis of the 975 identified proteins revealed that ovule-specific proteins were mainly enriched in functions related to fatty acid elongation, sulfur amino acid metabolism and post-replication repair, while fiber-specific proteins were enriched in functions related to root hair elongation, galactose metabolism and D-xylose metabolic processes. Further annotation analysis of the most abundant protein spots showed that 28.96% of the total proteins in the ovule were mainly located in the Golgi apparatus, endoplasmic reticulum, mitochondrion and ribosome, whereas in fibers, 27.02% of the total proteins were located in the cytoskeleton, nuclear envelope and cell wall. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses of the ovule-specific protein spots P61, P93 and P198 and fiber-specific protein spots 230, 477 and 511 were performed to validate the proteomics data. Protein-protein interaction network analyses revealed very different network cluster patterns between ovules and fibers. This work provides the largest protein identification dataset of 2DE-detectable proteins in cotton ovules and fibers and indicates potentially important roles of tissue-specific proteins, thus providing insights into the cotton ovule and fiber proteomes on a global scale.
Collapse
Affiliation(s)
- Xiang Jin
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Limin Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,College of Horticulture and Landscape, Hainan University, Haikou, 570228, China
| | - Liping He
- College of Horticulture and Landscape, Hainan University, Haikou, 570228, China
| | - Weiqiang Feng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,College of Horticulture and Landscape, Hainan University, Haikou, 570228, China
| | - Xuchu Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. .,The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
21
|
Quantitative analysis of changes in the phosphoproteome of maize induced by the plant hormone salicylic acid. Sci Rep 2015; 5:18155. [PMID: 26659305 PMCID: PMC4676064 DOI: 10.1038/srep18155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/11/2015] [Indexed: 11/25/2022] Open
Abstract
Phytohormone salicylic acid (SA) plays an important role in regulating various physiological and biochemical processes. Our previous study identified several protein kinases responsive to SA, suggesting that phosphorylation events play an important role in the plant response to SA. In this study, we characterized the phosphoproteome of maize in response to SA using isotope tags for relative and absolute quantification (iTRAQ) technology and TiO2 enrichment method. Based on LC-MS/MS analysis, we found a total of 858 phosphoproteins among 1495 phosphopeptides. Among them, 291 phosphopeptides corresponding to 244 phosphoproteins were found to be significantly changed after SA treatment. The phosphoproteins identified are involved in a wide range of biological processes, which indicate that the response to SA encompasses a reformatting of major cellular processes. Furthermore, some of the phosphoproteins which were not previously known to be involved with SA were found to have significantly changed phosphorylation levels. Many of these changes are phosphorylation decreases, indicating that other currently unknown SA signaling pathways that result in decreased phosphorylation of downstream targets must be involved. Our study represents the first attempt at global phosphoproteome profiling in response to SA, and provides a better understanding of the molecular mechanisms regulated by SA.
Collapse
|
22
|
Santisree P, Bhatnagar-Mathur P, Sharma KK. NO to drought-multifunctional role of nitric oxide in plant drought: Do we have all the answers? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:44-55. [PMID: 26398790 DOI: 10.1016/j.plantsci.2015.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 05/25/2023]
Abstract
Nitric oxide (NO) is a versatile gaseous signaling molecule with increasing significance in plant research due to its association with various stress responses. Although, improved drought tolerance by NO is associated greatly with its ability to reduce stomatal opening and oxidative stress, it can immensely influence other physiological processes such as photosynthesis, proline accumulation and seed germination under water deficit. NO as a free radical can directly alter proteins, enzyme activities, gene transcription, and post-translational modifications that benefit functional recovery from drought. The present drought-mitigating strategies have focused on exogenous application of NO donors for exploring the associated physiological and molecular events, transgenic and mutant studies, but are inadequate. Considering the biphasic effects of NO, a cautious deployment is necessary along with a systematic approach for deciphering positively regulated responses to avoid any cytotoxic effects. Identification of NO target molecules and in-depth analysis of its effects under realistic field drought conditions should be an upmost priority. This detailed synthesis on the role of NO offers new insights on its functions, signaling, regulation, interactions and co-existence with different drought-related events providing future directions for exploiting this molecule towards improving drought tolerance in crop plants.
Collapse
Affiliation(s)
- Parankusam Santisree
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502324, Telangana, India.
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502324, Telangana, India
| | - Kiran K Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502324, Telangana, India
| |
Collapse
|
23
|
Yang Y, Liu W, Yan G, Luo Y, Zhao J, Yang X, Mei M, Wu X, Guo X. iTRAQ protein profile analysis of neuroblastoma (NA) cells infected with the rabies viruses rHep-Flury and Hep-dG. Front Microbiol 2015; 6:691. [PMID: 26217322 PMCID: PMC4493837 DOI: 10.3389/fmicb.2015.00691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/22/2015] [Indexed: 12/25/2022] Open
Abstract
The rabies virus (RABV) glycoprotein (G) is the principal contributor to the pathogenicity and protective immunity of RABV. In a previous work, we reported that recombinant rabies virus Hep-dG, which was generated by reverse genetics to carry two copies of the G-gene, showed lower virulence than the parental virus rHep-Flury in suckling mice with a better immune protection effect. To better understand the mechanisms underlying rabies virus attenuation and the role of glycoprotein G, isobaric tags for relative and absolute quantitation (iTRAQ) was performed to identify and quantify distinct proteins. 10 and 111 differentially expressed proteins were obtained in rHep-Flury and Hep-dG infection groups, respectively. Selected data were validated by western blot and qRT-PCR. Bioinformatics analysis of the distinct protein suggested that glycoprotein over-expression in the attenuated RABV strain can induce activation of the interferon signaling. Furthermore, it may promote the antiviral response, MHC-I mediated antigen-specific T cell immune response, apoptosis and autophagy in an IFN-dependent manner. These findings might not only improve the understanding of the dynamics of RABV and host interaction, but also help understand the mechanisms underlying innate and adaptive immunity during RABV infection.
Collapse
Affiliation(s)
- Youtian Yang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Wenjun Liu
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Guangrong Yan
- Institute of Life and Health Engineering and National Engineering and Research Center for Genetic Medicine, Jinan UniversityGuangzhou, China
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Jing Zhao
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Xianfeng Yang
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Mingzhu Mei
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Xiaowei Wu
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
24
|
Hou Y, Qiu J, Tong X, Wei X, Nallamilli BR, Wu W, Huang S, Zhang J. A comprehensive quantitative phosphoproteome analysis of rice in response to bacterial blight. BMC PLANT BIOLOGY 2015; 15:163. [PMID: 26112675 PMCID: PMC4482044 DOI: 10.1186/s12870-015-0541-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/05/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND Rice is a major crop worldwide. Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) has become one of the most devastating diseases for rice. It has been clear that phosphorylation plays essential roles in plant disease resistance. However, the role of phosphorylation is poorly understood in rice-Xoo system. Here, we report the first study on large scale enrichment of phosphopeptides and identification of phosphosites in rice before and 24 h after Xoo infection. RESULTS We have successfully identified 2367 and 2223 phosphosites on 1334 and 1297 representative proteins in 0 h and 24 h after Xoo infection, respectively. A total of 762 differentially phosphorylated proteins, including transcription factors, kinases, epi-genetic controlling factors and many well-known disease resistant proteins, are identified after Xoo infection suggesting that they may be functionally relevant to Xoo resistance. In particular, we found that phosphorylation/dephosphorylation might be a key switch turning on/off many epi-genetic controlling factors, including HDT701, in response to Xoo infection, suggesting that phosphorylation switch overriding the epi-genetic regulation may be a very universal model in the plant disease resistance pathway. CONCLUSIONS The phosphosites identified in this study would be a big complementation to our current knowledge in the phosphorylation status and sites of rice proteins. This research represents a substantial advance in understanding the rice phosphoproteome as well as the mechanism of rice bacterial blight resistance.
Collapse
Affiliation(s)
- Yuxuan Hou
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Jiehua Qiu
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Xiaohong Tong
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Xiangjin Wei
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Babi R Nallamilli
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, U.S.A..
| | - Weihuai Wu
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.
| | - Shiwen Huang
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Jian Zhang
- China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
25
|
Silva-Sanchez C, Li H, Chen S. Recent advances and challenges in plant phosphoproteomics. Proteomics 2015; 15:1127-41. [PMID: 25429768 DOI: 10.1002/pmic.201400410] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/29/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022]
Abstract
Plants are sessile organisms that need to respond to environmental changes quickly and efficiently. They can accomplish this by triggering specialized signaling pathways often mediated by protein phosphorylation and dephosphorylation. Phosphorylation is a fast response that can switch on or off a myriad of biological pathways and processes. Proteomics and MS are the main tools employed in the study of protein phosphorylation. Advances in the technologies allow simultaneous identification and quantification of thousands of phosphopeptides and proteins that are essential to understanding the sophisticated biological systems and regulations. In this review, we summarize the advances in phosphopeptide enrichment and quantitation, MS for phosphorylation site mapping and new data acquisition methods, databases and informatics, interpretation of biological insights and crosstalk with other PTMs, as well as future directions and challenges in the field of phosphoproteomics.
Collapse
Affiliation(s)
- Cecilia Silva-Sanchez
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
26
|
Li J, Silva-Sanchez C, Zhang T, Chen S, Li H. Phosphoproteomics technologies and applications in plant biology research. FRONTIERS IN PLANT SCIENCE 2015; 6:430. [PMID: 26136758 PMCID: PMC4468387 DOI: 10.3389/fpls.2015.00430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
Protein phosphorylation has long been recognized as an essential mechanism to regulate many important processes of plant life. However, studies on phosphorylation mediated signaling events in plants are challenged with low stoichiometry and dynamic nature of phosphorylated proteins. Significant advances in mass spectrometry based phosphoproteomics have taken place in recent decade, including phosphoprotein/phosphopeptide enrichment, detection and quantification, and phosphorylation site localization. This review describes a variety of separation and enrichment methods for phosphoproteins and phosphopeptides, the applications of technological innovations in plant phosphoproteomics, and highlights significant achievement of phosphoproteomics in the areas of plant signal transduction, growth and development.
Collapse
Affiliation(s)
- Jinna Li
- College of Life Sciences, Heilongjiang UniversityHarbin, China
| | - Cecilia Silva-Sanchez
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
| | - Tong Zhang
- Plant Molecular and Cellular Biology Program, Department of Biology, UF Genetics Institute, University of FloridaGainesville, FL, USA
| | - Sixue Chen
- College of Life Sciences, Heilongjiang UniversityHarbin, China
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, Department of Biology, UF Genetics Institute, University of FloridaGainesville, FL, USA
| | - Haiying Li
- College of Life Sciences, Heilongjiang UniversityHarbin, China
- *Correspondence: Haiying Li, College of Life Sciences, Heilongjiang University, 74 Xuefu Rd, Harbin 150080, China
| |
Collapse
|