1
|
Oheix E, Daou TJ, Pieuchot L. Antimicrobial zeolites and metal-organic frameworks. MATERIALS HORIZONS 2024. [PMID: 39291597 DOI: 10.1039/d4mh00259h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The current surge in antibiotic resistance and the emergence of pandemics have created an urgent need for novel antimicrobial strategies. The controlled release of antimicrobial active principles remains the most viable strategy to date, and transition metal ions currently represent the main alternative to antibiotics. In this review, we explore the potential of two types of materials, zeolites and metal-organic frameworks (MOFs), for the controlled release of antimicrobial active principles, notably transition metal ions. These materials have unique crystalline microporous structures that act as reservoirs, enabling sustained bactericidal effects in various applications such as coatings, packaging, and medical devices. However, there are currently no convenient and standardised methods for evaluating their metal ion release and antimicrobial efficacy. This work discusses analytical techniques and the proposed mechanisms of action while highlighting recent advances in film, membrane, and coating technologies. By addressing the current limitations, microporous materials can revolutionise antimicrobial approaches, offering enhanced effectiveness and long-term sustainability.
Collapse
Affiliation(s)
- Emmanuel Oheix
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute Alsace (UHA), CNRS, UMR 7361, 3 bis rue Alfred Werner, F-68093 Mulhouse, France.
- Université de Strasbourg (UniStra), F-67000 Strasbourg, France
| | - T Jean Daou
- Aptar CSP Technologies, 9 rue du Sandholz, Niederbronn les Bains, France.
| | - Laurent Pieuchot
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute Alsace (UHA), CNRS, UMR 7361, 3 bis rue Alfred Werner, F-68093 Mulhouse, France.
- Université de Strasbourg (UniStra), F-67000 Strasbourg, France
| |
Collapse
|
2
|
Garry B, Samdavid Thanapaul RJR, Werner LM, Pavlovic R, Rios KE, Antonic V, Bobrov AG. Antibacterial Activity of Ag+ on ESKAPEE Pathogens In Vitro and in Blood. Mil Med 2024; 189:493-500. [PMID: 39160817 DOI: 10.1093/milmed/usae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Bloodstream infections are a significant threat to soldiers wounded in combat and contribute to preventable deaths. Novel and combination therapies that can be delivered on the battlefield or in lower roles of care are urgently needed to address the threat of bloodstream infection among military personnel. In this manuscript, we tested the antibacterial capability of silver ions (Ag+), with long-appreciated antibacterial properties, against ESKAPEE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species, and Escherichia coli) pathogens. MATERIALS AND METHODS We used the GENESYS (RAIN LLC) device to deliver Ag+ to Gram-positive and Gram-negative ESKAPEE organisms grown in broth, human blood, and serum. Following the Ag+ treatment, we quantified the antibacterial effects by quantifying colony-forming units. RESULTS We found that Ag+ was bactericidal against 5 Gram-negative organisms, K pneumoniae, A baumannii, P aeruginosa, E cloacae, and E coli, and bacteriostatic against 2 Gram-positive organisms, E faecium and S aureus. The whole blood and serum inhibited the bactericidal activity of Ag+ against a common agent of bloodstream infection, P aeruginosa. Finally, when Ag+ was added in conjunction with antibiotic in the presence of whole blood, there was no significant effect of Ag+ over antibiotic alone. CONCLUSIONS Our results confirmed that Ag+ has broad-spectrum antibacterial properties. However, the therapeutic value of Ag+ may not extend to the treatment of bloodstream infections because of the inhibition of Ag+ activity in blood and serum.
Collapse
Affiliation(s)
- Brittany Garry
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rex J R Samdavid Thanapaul
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- NRC Research Associateship Programs, National Academies of Sciences, Engineering, and Medicine, Washington, DC 20001, USA
| | - Lacie M Werner
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Radmila Pavlovic
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Kariana E Rios
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Vlado Antonic
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Alexander G Bobrov
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
3
|
Nonhoff M, Puetzler J, Hasselmann J, Fobker M, Niemann S, Gosheger G, Schulze M. The Influence of Different Sera on the Anti-Infective Properties of Silver Nitrate in Biopolymer Coatings. Polymers (Basel) 2024; 16:1862. [PMID: 39000716 PMCID: PMC11243789 DOI: 10.3390/polym16131862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
The widespread prevalence of periprosthetic joint infections (PJIs) poses significant challenges in orthopedic surgeries, with pathogens such as Staphylococcus epidermidis being particularly problematic due to their capability to form biofilms on implants. This study investigates the efficacy of an innovative silver nitrate-embedded poly-L-lactide biopolymer coating designed to prevent such infections. The methods involved applying varying concentrations of silver nitrate to in vitro setups and recording the resultant bacterial growth inhibition across different serum environments, including human serum and various animal sera. Results highlighted a consistent and significant inhibition of S. epidermidis growth at all tested concentrations in each type of serum without adverse interactions with serum proteins, which commonly compromise antimicrobial efficacy. This study concludes that the silver nitrate-embedded biopolymer coating exhibits potent antibacterial properties and has potential for use in clinical settings to reduce the incidence of PJIs. Furthermore, the findings underscore the importance of considering serum interactions in the design and testing of antimicrobial implants to ensure their effectiveness in actual use scenarios. These promising results pave the way for further research to validate and refine this technology for clinical application, focusing on optimizing silver ion release and assessing biocompatibility in vivo.
Collapse
Affiliation(s)
- Melanie Nonhoff
- Department of General Orthopedics and Tumor Orthopedics, Muenster University Hospital, 48149 Münster, Germany
| | - Jan Puetzler
- Department of General Orthopedics and Tumor Orthopedics, Muenster University Hospital, 48149 Münster, Germany
| | - Julian Hasselmann
- Department of General Orthopedics and Tumor Orthopedics, Muenster University Hospital, 48149 Münster, Germany
- Materials Engineering Laboratory, Department of Mechanical Engineering, University of Applied Sciences Muenster, 48565 Steinfurt, Germany
| | - Manfred Fobker
- Central Laboratory, Muenster University Hospital, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, Muenster University Hospital, 48149 Münster, Germany
| | - Georg Gosheger
- Department of General Orthopedics and Tumor Orthopedics, Muenster University Hospital, 48149 Münster, Germany
| | - Martin Schulze
- Department of General Orthopedics and Tumor Orthopedics, Muenster University Hospital, 48149 Münster, Germany
| |
Collapse
|
4
|
Schulze M, Nonhoff M, Hasselmann J, Fobker M, Niemann S, Theil C, Gosheger G, Puetzler J. Shock Wave-Activated Silver-Loaded Biopolymer Implant Coating Eliminates Staphylococcus epidermidis on the Surface and in the Surrounding of Implants. Pharmaceutics 2023; 15:2670. [PMID: 38140011 PMCID: PMC10747100 DOI: 10.3390/pharmaceutics15122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Bacterial biofilms on foreign surfaces are considered a primary cause of implant-related infections, which are challenging to treat. A new implant coating was developed, containing anti-infective silver within a biocompatible polymer carrier substance. In addition to its passive effect on the implant surface, highly concentrated anti-infective silver can be released as needed via the application of high-energy shock waves. This intervention could be applied transcutaneously in a clinical setting without the need for additional surgery. We investigated the inhibition of biofilm formation and the effectiveness of eradication after activation of the coating via shock waves in an in vitro biofilm model using Staphylococcus epidermidis RP62A. This was performed via scanning electron microscopy and quantitative microbiology. Additionally, we examined the cytotoxicity of the new coating on normal human fibroblasts and Saos-2 osteoblast-like cells, depending on the silver concentration. All studies were compared to uncoated titanium surfaces Ti6Al4V and a conventional electroplated silver coating. Cytotoxicity toward normal human fibroblasts and Saos-2 osteoblast-like cells increased with higher silver content but remained tolerable at 6%. Compared to uncoated Ti6Al4V and the electroplated silver coating, the new coating with a silver content of 4% and 6% exhibited a significant reduction in adherent bacteria by a factor of approximately 1000. This was also evident via microscopic examination of the surface morphology of the biofilms. Furthermore, following shock wave activation, no bacteria were detectable on either the implant or in the surrounding fluid after a 24 h period.
Collapse
Affiliation(s)
- Martin Schulze
- Department of General Orthopedics and Tumor Orthopedics, Muenster University Hospital, 48149 Münster, Germany
| | - Melanie Nonhoff
- Department of General Orthopedics and Tumor Orthopedics, Muenster University Hospital, 48149 Münster, Germany
| | - Julian Hasselmann
- Department of General Orthopedics and Tumor Orthopedics, Muenster University Hospital, 48149 Münster, Germany
- Materials Engineering Laboratory, Department of Mechanical Engineering, University of Applied Sciences Muenster, 48565 Steinfurt, Germany
| | - Manfred Fobker
- Central Laboratory, Muenster University Hospital, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, Muenster University Hospital, 48149 Münster, Germany
| | - Christoph Theil
- Department of General Orthopedics and Tumor Orthopedics, Muenster University Hospital, 48149 Münster, Germany
| | - Georg Gosheger
- Department of General Orthopedics and Tumor Orthopedics, Muenster University Hospital, 48149 Münster, Germany
| | - Jan Puetzler
- Department of General Orthopedics and Tumor Orthopedics, Muenster University Hospital, 48149 Münster, Germany
| |
Collapse
|
5
|
Puetzler J, Hasselmann J, Nonhoff M, Fobker M, Niemann S, Theil C, Gosheger G, Schulze M. On-Demand Release of Anti-Infective Silver from a Novel Implant Coating Using High-Energy Focused Shock Waves. Pharmaceutics 2023; 15:2179. [PMID: 37765150 PMCID: PMC10537269 DOI: 10.3390/pharmaceutics15092179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Implant-related infections are a significant concern in orthopedic surgery. A novel anti-infective implant coating made of bioresorbable polymer with silver nitrate was developed. A controlled release of silver ions into the vicinity of the prosthesis can be triggered on-demand by extracorporeal shock waves to effectively combat all clinically relevant microorganisms. Microscopy techniques were used to examine the effects of shock wave application on coated titanium discs. Cytotoxicity was measured using a fibroblast proliferation assay. The anti-infective effect was assessed by monitoring the growth curves of three bacterial strains and by conventional culture. Microscopic analysis confirmed surface disruption of the coatings, with a complete release of silver in the focus area after shock wave application. Spectrometry detected an increase in silver concentration in the surrounding of the discs that surpassed the minimum inhibitory concentration (MIC) for both S. epidermidis RP62A and E. coli ATCC 25922. The released silver demonstrated an anti-infective effect, significantly inhibiting bacterial growth, especially at 6% and 8% silver concentrations. Cytotoxicity testing showed decreasing fibroblast viability with increasing silver concentration in the coating, with 6% silver maintaining viability above 25%. Compared to a commonly used electroplated silver coating on the market, the new coating demonstrated superior antimicrobial efficacy and lower cytotoxicity.
Collapse
Affiliation(s)
- Jan Puetzler
- Department of General Orthopedics and Tumor Orthopedics, Muenster University Hospital, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Julian Hasselmann
- Department of General Orthopedics and Tumor Orthopedics, Muenster University Hospital, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
- Materials Engineering Laboratory, Department of Mechanical Engineering, University of Applied Sciences Muenster, 48565 Steinfurt, Germany
| | - Melanie Nonhoff
- Department of General Orthopedics and Tumor Orthopedics, Muenster University Hospital, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Manfred Fobker
- Central Laboratory, Muenster University Hospital, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, Muenster University Hospital, Domagkstraße 10, 48149 Muenster, Germany
| | - Christoph Theil
- Department of General Orthopedics and Tumor Orthopedics, Muenster University Hospital, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Georg Gosheger
- Department of General Orthopedics and Tumor Orthopedics, Muenster University Hospital, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Martin Schulze
- Department of General Orthopedics and Tumor Orthopedics, Muenster University Hospital, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| |
Collapse
|
6
|
Al-Momani H, Almasri M, Al Balawi D, Hamed S, Albiss BA, Aldabaibeh N, Ibrahim L, Albalawi H, Al Haj Mahmoud S, Khasawneh AI, Kilani M, Aldhafeeri M, Bani-Hani M, Wilcox M, Pearson J, Ward C. The efficacy of biosynthesized silver nanoparticles against Pseudomonas aeruginosa isolates from cystic fibrosis patients. Sci Rep 2023; 13:8876. [PMID: 37264060 DOI: 10.1038/s41598-023-35919-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
The high antibiotic resistance of Pseudomonas aeruginosa (PA) makes it critical to develop alternative antimicrobial agents that are effective and affordable. One of the many applications of silver nanoparticles (Ag NPs) is their use as an antimicrobial agent against bacteria resistant to common antibiotics. The key purpose of this research was to assess the antibacterial and antibiofilm effectiveness of biosynthesized Ag NPs against six biofilm-forming clinically isolated strains of PA and one reference strain (ATCC 27853). Ag NPs were biosynthesized using a seed extract of Peganum harmala as a reducing agent. Ag NPs were characterized by Ultraviolet-visible (UV-Vis) spectroscopy and scanning transmission electron microscopy (STEM). The effect of Ag NPs on biofilm formation and eradication was examined through micro-titer plate assays, and the minimal inhibitory (MIC) and minimum bactericidal (MBC) concentrations determined. In addition, real-time polymerase chain reactions (RT-PCR) were performed to examine the effects of Ag NPs on the expression of seven PA biofilm-encoding genes (LasR, LasI, LssB, rhIR, rhII, pqsA and pqsR). The biosynthesized Ag NPs were spherically-shaped with a mean diameter of 11 nm. The MIC for each PA strain was 15.6 µg/ml, while the MBC was 31.25 µg/ml. All PA strains exposed to Ag NPs at sub-inhibitory concentrations (0.22-7.5 µg/ml) showed significant inhibitory effects on growth and biofilm formation. Biomass and biofilm metabolism were reduced dependent on Ag NP concentration. The expression of the quorum-sensing genes of all strains were significantly reduced at an Ag NP concentration of 7.5 µg/ml. The results demonstrate the extensive in-vitro antibacterial and antibiofilm performance of Ag NPs and their potential in the treatment of PA infection. It is recommended that future studies examine the possible synergy between Ag NPs and antibiotics.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, Hashemite University Medical School, The Hashemite University, Zarqa, 13133, Jordan.
| | - Muna Almasri
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Dua'A Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Saja Hamed
- Department of Pharmaceutical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Borhan Aldeen Albiss
- Nanotechnology Institute, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Nour Aldabaibeh
- Supervisor of Microbiology Laboratory, Laboratory Medicine Department, Jordan University Hospital, Amman, Jordan
| | - Lugain Ibrahim
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Hadeel Albalawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Sameer Al Haj Mahmoud
- Department of Basic Medical Science, Faculty of Medicine, Al-Balqa' Applied University, AL-Salt, Jordan
| | - Ashraf I Khasawneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, Hashemite University Medical School, The Hashemite University, Zarqa, 13133, Jordan
| | - Muna Kilani
- Department of Pediatrics, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Muneef Aldhafeeri
- Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Muayyad Bani-Hani
- Department of Plant Production and Protection, Faculty of Agriculture, Jerash University, Jerash, Jordan
| | - Matthew Wilcox
- Institutes of Cellular Medicine and Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
- Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Jeffrey Pearson
- Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Christopher Ward
- Institutes of Cellular Medicine and Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
7
|
Rodríguez-Contreras A, Torres D, Piñera-Avellaneda D, Pérez-Palou L, Ortiz-Hernández M, Ginebra MP, Calero JA, Manero JM, Rupérez E. Dual-Action Effect of Gallium and Silver Providing Osseointegration and Antibacterial Properties to Calcium Titanate Coatings on Porous Titanium Implants. Int J Mol Sci 2023; 24:ijms24108762. [PMID: 37240108 DOI: 10.3390/ijms24108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Previously, functional coatings on 3D-printed titanium implants were developed to improve their biointegration by separately incorporating Ga and Ag on the biomaterial surface. Now, a thermochemical treatment modification is proposed to study the effect of their simultaneous incorporation. Different concentrations of AgNO3 and Ga(NO3)3 are evaluated, and the obtained surfaces are completely characterized. Ion release, cytotoxicity, and bioactivity studies complement the characterization. The provided antibacterial effect of the surfaces is analyzed, and cell response is assessed by the study of SaOS-2 cell adhesion, proliferation, and differentiation. The Ti surface doping is confirmed by the formation of Ga-containing Ca titanates and nanoparticles of metallic Ag within the titanate coating. The surfaces generated with all combinations of AgNO3 and Ga(NO3)3 concentrations show bioactivity. The bacterial assay confirms a strong bactericidal impact achieved by the effect of both Ga and Ag present on the surface, especially for Pseudomonas aeruginosa, one of the main pathogens involved in orthopedic implant failures. SaOS-2 cells adhere and proliferate on the Ga/Ag-doped Ti surfaces, and the presence of gallium favors cell differentiation. The dual effect of both metallic agents doping the titanium surface provides bioactivity while protecting the biomaterial from the most frequent pathogens in implantology.
Collapse
Affiliation(s)
- Alejandra Rodríguez-Contreras
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Eduard Maristany 16, 08019 Barcelona, Spain
| | - Diego Torres
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Eduard Maristany 16, 08019 Barcelona, Spain
- AMESPMTECH, Carrer de Laureà i Miró, 388, 08980 Sant Feliu de Llobregat, Spain
| | - David Piñera-Avellaneda
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Eduard Maristany 16, 08019 Barcelona, Spain
| | - Lluís Pérez-Palou
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Eduard Maristany 16, 08019 Barcelona, Spain
- AMESPMTECH, Carrer de Laureà i Miró, 388, 08980 Sant Feliu de Llobregat, Spain
| | - Mònica Ortiz-Hernández
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Eduard Maristany 16, 08019 Barcelona, Spain
| | - María Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Eduard Maristany 16, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - José Antonio Calero
- AMESPMTECH, Carrer de Laureà i Miró, 388, 08980 Sant Feliu de Llobregat, Spain
| | - José María Manero
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Eduard Maristany 16, 08019 Barcelona, Spain
| | - Elisa Rupérez
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria de Barcelona Est (EEBE), Eduard Maristany 16, 08019 Barcelona, Spain
| |
Collapse
|
8
|
Boivin L, Harvey PD. Virus Management Using Metal-Organic Framework-Based Technologies. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36892577 DOI: 10.1021/acsami.3c00922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The eradication and isolation of viruses are two concurrent approaches to protect ourselves from viral infections and diseases. The quite versatile porous materials called metal-organic frameworks (MOFs), have recently emerged as efficient nanosized tools to manage viruses, and several strategies to accomplish these tasks have been developed. This review describes these strategies employing nanoscale MOFs against SARS-CoV-2, HIV-1, tobacco mosaic virus, etc., which include the sequestration by host-guest penetration inside pores, mineralization, design of a physical barrier, controlled delivery of organic and inorganic antiviral drugs or bioinhibitors, photosensitization of singlet oxygen, and direct contact with inherently cytotoxic MOFs.
Collapse
Affiliation(s)
- Léo Boivin
- Département de Chimie, Université de Sherbrooke, Québec J1K 2R1, Canada
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
9
|
Li R, Lu J, Bao J, Xiong F, Chen T, Zhang W. In-situelectrochemical fabrication of Ag@AgCl NW-PET film with superior photocatalytic bactericidal activity. NANOTECHNOLOGY 2022; 34:075703. [PMID: 36379057 DOI: 10.1088/1361-6528/aca2b2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Constructing a composite photocatalyst with efficient charge-transfer pathways is contribute to improving charge separation, which has attracted wide attention owing to its availability in photocatalysis applications. In this work, three-dimensional (3D) silver@silver chloride (Ag@AgCl) network structures are fabricated for photocatalytic inactivation ofEscherichia coli(E. coli) by thein situelectrochemical introducing AgCl shell on the surface of Ag nanowire (NW) networks that are coated on a polyethylene terephthalate (PET) substrate. The obtained Ag@AgCl NW-PET films exhibit good photocatalytic bactericidal activity againstE. coliunder simulated Sunlight irradiation, mainly due to their efficient charge-transport channel constructed by the Ag NWs network. It is worth noting that the content of converted AgCl shell is positively correlated with their photocatalytic bactericidal efficiency. The experimental results also demonstrate that the synergistic contribution of Ag+sustained release, rough surfaces and energy band structure optimization in photocatalytic sterilization. Besides, the prepared Ag@AgCl NW-PET film can be recycled, and the photocatalytic sterilization efficiency can still keep above 99% after three cycles. This work might provide new and more diverse opportunities for the development of excellent charge-transport, recyclable photocatalysts for photocatalytic sterilization.
Collapse
Affiliation(s)
- Rui Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jingwen Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jiashuan Bao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Furong Xiong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Tongtong Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Wang Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
10
|
Vishnevetskii DV, Mekhtiev AR, Perevozova TV, Ivanova AI, Averkin DV, Khizhnyak SD, Pakhomov PM. L-Cysteine as a reducing/capping/gel-forming agent for the preparation of silver nanoparticle composites with anticancer properties. SOFT MATTER 2022; 18:3031-3040. [PMID: 35355035 DOI: 10.1039/d2sm00042c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present article reports the in situ preparation of silver nanoparticles (AgNPs) homogeneously distributed in the gel matrix formed using only L-cysteine (CYS) as a bio-reducing agent. The physicochemical methods of analysis confirmed the formation of a gel-network from aggregates consisting of spherical/elliptical cystine-stabilized AgNPs (core) and cysteine/Ag+ complexes (shell) regardless of the used silver salt - AgNO3, AgNO2 or AgOOCCH3. CYS/AgNO3 and CYS/AgOOCCH3 aqueous solution systems needed the addition of electrolytes (Cl- and SO42-) for the gelation process, but the gel-formation in CYS/AgNO2 occurred in one stage without any additional components. The AgNP sizes were about 1-5 nm in diameter for CYS/AgNO3, 5-10 nm for CYS/AgOOCCH3 and 20-40 nm for CYS/AgNO2 systems. The zeta-potential values varied from +60 mV for CYS/AgNO3 to +25 mV for the CYS/AgNO2 system. The MTT-test showed that the obtained composites suppressed the MCF-7 breast cancer cells and the CYS/AgNO3 system possessed the highest activity. Flow cytofluorimetry confirmed that the cell death occurred by apoptosis and this effect was the strongest for the CYS/AgNO3 system. All systems were non-toxic to fibroblast cells. The novel simplest "green chemistry" approach, combining the knowledge of organic, inorganic, physical and supramolecular chemistry could open possibilities for the creation of the newest soft gel materials used in various fields of our life.
Collapse
Affiliation(s)
- Dmitry V Vishnevetskii
- Department of Physical Chemistry and Applied Physics, Tver State University (TSU), Tver, 170100, Russia.
- Institute of Biomedical Chemistry (IBMC), Moscow, 119121, Russia.
| | - Arif R Mekhtiev
- Institute of Biomedical Chemistry (IBMC), Moscow, 119121, Russia.
| | - Tatyana V Perevozova
- Department of Physical Chemistry and Applied Physics, Tver State University (TSU), Tver, 170100, Russia.
| | - Alexandra I Ivanova
- Department of Physical Chemistry and Applied Physics, Tver State University (TSU), Tver, 170100, Russia.
| | - Dmitry V Averkin
- Department of Physical Chemistry and Applied Physics, Tver State University (TSU), Tver, 170100, Russia.
- Russian Metrological Institute of Technical Physics and Radio Engineering (FSUE VNIIFTRI), Moscow, 141570, Russia
| | - Svetlana D Khizhnyak
- Department of Physical Chemistry and Applied Physics, Tver State University (TSU), Tver, 170100, Russia.
| | - Pavel M Pakhomov
- Department of Physical Chemistry and Applied Physics, Tver State University (TSU), Tver, 170100, Russia.
| |
Collapse
|
11
|
Salisbury AM, Mullin M, Foulkes L, Chen R, Percival SL. Controlled-release iodine foam dressings demonstrate broad-spectrum biofilm management in several in vitro models. Int Wound J 2022; 19:1717-1728. [PMID: 35166016 DOI: 10.1111/iwj.13773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple in vitro models were utilised to evaluate the biofilm management capabilities of seven commercially-available wound dressings, varying in composition and antibacterial ingredients, to reduce common aerobic, anaerobic, and multispecies biofilms. The Center for Disease Control bioreactor was used to evaluate single species Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) 24 and 48 hours biofilms, as well as a multispecies biofilm consisting of these two organisms in addition to Enterococcus faecalis (E. faecalis). As wound biofilms often exist in hypoxic wound environments, a direct contact anaerobic model system was used to evaluate efficacy on Bacteroides fragilis (B. fragilis). Biofilm control was evaluated against P. aeruginosa in the drip flow bioreactor model, where a constant flow of proteinaceous media is used to create a more challenging and wound-like model. The results demonstrated that biofilm management capabilities varied amongst wound dressings. Two dressings, a controlled-release iodine foam dressing and a silver nanocrystalline dressing, showed potent >4 log reductions in recovered organisms compared with untreated controls in all biofilm models evaluated. The effectiveness of other dressings to manage bioburden varied between dressing, test organism, and model system. A silver foam dressing showed moderate biofilm control in some models. However, biofilm exposure to methylene blue and gentian violet-containing foam dressings showed negligible log reductions in all in vitro biofilm methods examined. The data outlined in this in vitro study support the use of the iodine foam dressing for wounds with infection and biofilm.
Collapse
Affiliation(s)
- Anne-Marie Salisbury
- Centre of Excellence for Biofilm Science (CEBS), 5D Health Protection Group Ltd., Liverpool, UK
| | - Marc Mullin
- Centre of Excellence for Biofilm Science (CEBS), 5D Health Protection Group Ltd., Liverpool, UK
| | - Lauren Foulkes
- Centre of Excellence for Biofilm Science (CEBS), 5D Health Protection Group Ltd., Liverpool, UK
| | - Rui Chen
- Centre of Excellence for Biofilm Science (CEBS), 5D Health Protection Group Ltd., Liverpool, UK
| | - Steven L Percival
- Centre of Excellence for Biofilm Science (CEBS), 5D Health Protection Group Ltd., Liverpool, UK
| |
Collapse
|
12
|
Wang Q, Zhang Y, Li Q, Chen L, Liu H, Ding M, Dong H, Mou Y. Therapeutic Applications of Antimicrobial Silver-Based Biomaterials in Dentistry. Int J Nanomedicine 2022; 17:443-462. [PMID: 35115777 PMCID: PMC8805846 DOI: 10.2147/ijn.s349238] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/13/2022] [Indexed: 12/16/2022] Open
Abstract
Microbial infection accounts for many dental diseases and treatment failure. Therefore, the antibacterial properties of dental biomaterials are of great importance to the long-term results of treatment. Silver-based biomaterials (AgBMs) have been widely researched as antimicrobial materials with high efficiency and relatively low toxicity. AgBMs have a broad spectrum of antimicrobial properties, including penetration of microbial cell membranes, damage to genetic material, contact killing, and dysfunction of bacterial proteins and enzymes. In particular, advances in nanotechnology have improved the application value of AgBMs. Hence, in many subspecialties of dentistry, AgBMs have been researched and employed, such as caries arresting or prevention, root canal sterilization, periodontal plaque inhibition, additives in dentures, coating of implants and anti-inflammatory material in oral and maxillofacial surgery. This paper aims to provide an overview of the application approaches of AgBMs in dentistry and present better guidance for oral antimicrobial therapy via the development of AgBMs.
Collapse
Affiliation(s)
- Qiyu Wang
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Yu Zhang
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Qiang Li
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Li Chen
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Hui Liu
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Meng Ding
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Heng Dong
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Yongbin Mou
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
13
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1635-1644. [DOI: 10.1093/jac/dkac094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/28/2022] [Indexed: 11/14/2022] Open
|
14
|
Masterson K, Meade E, Garvey M, Lynch M, Major I, Rowan NJ. Development of a low-temperature extrusion process for production of GRAS bioactive-polymer loaded compounds for targeting antimicrobial-resistant (AMR) bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149545. [PMID: 34399333 DOI: 10.1016/j.scitotenv.2021.149545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance (AMR) is recognised globally as one of the greatest threats to human and animal health; thus, discovery of alternative antibacterial agents to address AMR is a priority challenge. This study constitutes the first report of a low-melting temperature, polymer- extrusion process for the smart delivery of thermally-sensitive antimicrobial bioactives, including generally-regarded-as-safe (GRAS) bioactives derived from various sources. Bioactives were assessed before and after extrusion by determining their respective minimum inhibitory concentrations (MIC). WHO-priority AMR-bacterial isolates causing zoonotic infections were evaluated along with use of standard ATCC strains. Findings revealed that this copolymer method was capable of delivering thermally-sensitive bioactives with varying degrees of growth inhibition against the AMR-bacterial strains. The extrusion process was found to increase the effect of nisin against MRSA (4-fold increase) and L. monocytogenes (6.4-fold increase), silver nitrate (AgNO3) against E. coli (3.6-fold increase) and S. epidermidis (1.25-fold increase), and chitosan against S. aureus (1.25-fold). Findings show the potential applicability of this polymer extrusion process for developing future bioactive-loaded polymer compounds; thus, highlighting the potential of converging bio-based industry with novel materials for enabling 'One-Health' solutions.
Collapse
Affiliation(s)
- Kevin Masterson
- Bioscience Research Institute, Athlone Institute of Technology, Ireland.
| | - Elaine Meade
- Department of Life Science, Sligo Institute of Technology, Ash Lane, Sligo, Ireland
| | - Mary Garvey
- Department of Life Science, Sligo Institute of Technology, Ash Lane, Sligo, Ireland
| | - Mark Lynch
- Bioscience Research Institute, Athlone Institute of Technology, Ireland
| | - Ian Major
- Materials Research Institute, Athlone Institute of Technology, Ireland
| | - Neil J Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Ireland; Centre for Disinfection, Sterilization and Biosecurity, Athlone Institute of Technology, Ireland
| |
Collapse
|
15
|
Jann J, Drevelle O, Chen XG, Auclair-Gilbert M, Soucy G, Faucheux N, Fortier LC. Rapid antibacterial activity of anodized aluminum-based materials impregnated with quaternary ammonium compounds for high-touch surfaces to limit transmission of pathogenic bacteria. RSC Adv 2021; 11:38172-38188. [PMID: 35498065 PMCID: PMC9044312 DOI: 10.1039/d1ra07159a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Infections caused by multidrug-resistant bacteria are a major public health problem. Their transmission is strongly linked to cross contamination via inert surfaces, which can serve as reservoirs for pathogenic microorganisms. To address this problem, antibacterial materials applied to high-touch surfaces have been developed. However, reaching a rapid and lasting effectiveness under real life conditions of use remains challenging. In the present paper, hard-anodized aluminum (AA) materials impregnated with antibacterial agents (quaternary ammonium compounds (QACs) and/or nitrate silver (AgNO3)) were prepared and characterized. The thickness of the anodized layer was about 50 μm with pore diameter of 70 nm. AA with QACs and/or AgNO3 had a water contact angle varying between 45 and 70°. The antibacterial activity of the materials was determined under different experimental settings to better mimic their use, and included liquid, humid, and dry conditions. AA-QAC surfaces demonstrated excellent efficiency, killing >99.9% of bacteria in 5 min on a wide range of Gram-positive (Staphylococcus aureus, Clostridioides difficile, vancomycin-resistant Enterococcus faecium) and Gram-negative (streptomycin-resistant Salmonella typhimurium and encapsulated Klebsiella pneumoniae) pathogens. AA-QACs showed a faster antibacterial activity (from 0.25 to 5 min) compared with antibacterial copper used as a reference (from 15 min to more than 1 h). We show that to maintain their high performance, AA-QACs should be used in low humidity environments and should be cleaned with solutions composed of QACs. Altogether, AA-QAC materials constitute promising candidates to prevent the transmission of pathogenic bacteria on high-touch surfaces.
Collapse
Affiliation(s)
- Jessica Jann
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada .,Clinical Research Center of Centre Hospitalier Universitaire de Sherbrooke 12e Avenue N Sherbrooke Québec J1H 5N4 Canada.,Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke 3201 rue Jean Mignault Sherbrooke Québec J1E 4K8 Canada
| | - Olivier Drevelle
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada
| | - X Grant Chen
- Department of Applied Science, University of Quebec in Chicoutimi Saguenay Quebec G7H 2B1 Canada
| | | | - Gervais Soucy
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada
| | - Nathalie Faucheux
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada .,Clinical Research Center of Centre Hospitalier Universitaire de Sherbrooke 12e Avenue N Sherbrooke Québec J1H 5N4 Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke 3201 rue Jean Mignault Sherbrooke Québec J1E 4K8 Canada
| |
Collapse
|
16
|
Villapún VM, Balacco DL, Webber MA, Hall T, Lowther M, Addison O, Kuehne SA, Grover LM, Cox SC. Repeated exposure of nosocomial pathogens to silver does not select for silver resistance but does impact ciprofloxacin susceptibility. Acta Biomater 2021; 134:760-773. [PMID: 34329788 DOI: 10.1016/j.actbio.2021.07.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/25/2022]
Abstract
The rise of antimicrobial resistant bacteria coupled with a void in antibiotic development marks Antimicrobial Resistance as one of the biggest current threats to modern medicine. Antimicrobial metals are being developed and used as alternative anti-infectives, however, the existence of known resistance mechanisms and limited data regarding bacterial responses to long-term metal exposure are barriers to widespread implementation. In this study, a panel of reference and clinical strains of major nosocomial pathogens were subjected to serial dosage cycles of silver and ciprofloxacin. Populations exposed to silver initially showed no change in sensitivity, however, increasingly susceptibility was observed after the 25th cycle. A control experiment with ciprofloxacin revealed a selection for resistance over time, with silver treated bacteria showing faster adaptation. Morphological analysis revealed filamentation in Gram negative species suggesting membrane perturbation, while sequencing of isolated strains identified mutations in numerous genes. These included those encoding for efflux systems, chemosensory systems, stress responses, biofilm formation and respiratory chain processes, although no consistent locus was identified that correlated with silver sensitivity. These results suggest that de novo silver resistance is hard to select in a range of nosocomial pathogens, although silver exposure may detrimentally impact sensitivity to antibiotics in the long term. STATEMENT OF SIGNIFICANCE: The adaptability of microbial life continuously calls for the development of novel antibiotic molecules, however, the cost and risk associated with their discovery have led to a drying up in the pipeline, causing antimicrobial resistance (AMR) to be a major threat to healthcare. From all available strategies, antimicrobial metals and, more specifically, silver showcase large bactericidal spectrum and limited toxic effect which coupled with a large range of processes available for their delivery made these materials as a clear candidate to tackle AMR. Previous reports have shown the ability of this metal to enact a synergistic effect with other antimicrobial therapies, nevertheless, the discovery of Ag resistance mechanisms since the early 70s and limited knowledge on the long term influence of silver on AMR poses a threat to their applicability. The present study provides quantitative data on the influence of silver based therapies on AMR development for a panel of reference and clinical strains of major nosocomial pathogens, revealing that prolonged silver exposure may detrimentally impact sensitivity to antibiotics.
Collapse
Affiliation(s)
- Victor M Villapún
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| | - Dario L Balacco
- School of Dentistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ, United Kingdom; Norwich Medical School, University of East Anglia. Norwich Research Park, NR4 7TJ, United Kingdom
| | - Thomas Hall
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Morgan Lowther
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Owen Addison
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom
| | - Sarah A Kuehne
- School of Dentistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
17
|
Mann R, Holmes A, McNeilly O, Cavaliere R, Sotiriou GA, Rice SA, Gunawan C. Evolution of biofilm-forming pathogenic bacteria in the presence of nanoparticles and antibiotic: adaptation phenomena and cross-resistance. J Nanobiotechnology 2021; 19:291. [PMID: 34579731 PMCID: PMC8474960 DOI: 10.1186/s12951-021-01027-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022] Open
Abstract
Background Treatment of bacterial biofilms are difficult and in many cases, expensive. Bacterial biofilms are naturally more resilient to antimicrobial agents than their free-living planktonic counterparts, rendering the community growth harder to control. The present work described the risks of long-term use of an important alternative antimicrobial, silver nanoparticles (NAg), for the first time, on the dominant mode of bacterial growth. Results NAg could inhibit the formation as well as eradicating an already grown biofilm of Pseudomonas aeruginosa, a pathogen notorious for its resilience to antibiotics. The biofilm-forming bacterium however, evolved a reduced sensitivity to the nanoparticle. Evidence suggests that survival is linked to the development of persister cells within the population. A similar adaptation was also seen upon prolonged exposures to ionic silver (Ag+). The persister population resumed normal growth after subsequent passage in the absence of silver, highlighting the potential risks of recurrent infections with long-term NAg (and Ag+) treatments of biofilm growth. The present study further observed a potential silver/antibiotic cross-resistance, whereby NAg (as well as Ag+) could not eradicate an already growing gentamicin-resistant P. aeruginosa biofilm. The phenomena is thought to result from the hindered biofilm penetration of the silver species. In contrast, both silver formulations inhibited biofilm formation of the resistant strain, presenting a promising avenue for the control of biofilm-forming antibiotic-resistant bacteria. Conclusion The findings signify the importance to study the nanoparticle adaptation phenomena in the biofilm mode of bacterial growth, which are apparently unique to those already reported with the planktonic growth counterparts. This work sets the foundation for future studies in other globally significant bacterial pathogens when present as biofilms. Scientifically based strategies for management of pathogenic growth is necessary, particularly in this era of increasing antibiotic resistance. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01027-8.
Collapse
Affiliation(s)
- Riti Mann
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amy Holmes
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, Australia
| | - Oliver McNeilly
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Rosalia Cavaliere
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Georgios A Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Scott A Rice
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Cindy Gunawan
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia. .,School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
18
|
Tran HA, Tran PA. In Situ Coatings of Silver Nanoparticles for Biofilm Treatment in Implant-Retention Surgeries: Antimicrobial Activities in Monoculture and Coculture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41435-41444. [PMID: 34448395 DOI: 10.1021/acsami.1c08239] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Bacterial biofilms are indicated in most medical device-associated infections. Treating these biofilms is challenging yet critically important for applications such as in device-retention surgeries, which can have reinfection rates of up to 80%. This in vitro study centered around our new method of treating biofilm and preventing reinfection. Ionic silver (Ag, in the form of silver nitrate) combined with dopamine and a biofilm-lysing enzyme (α-amylase) were applied to model 4-day-old Staphylococcus aureus biofilms on titanium substrates to degrade the extracellular matrix of the biofilm and kill the biofilm bacteria. In this process, the oxidative self-polymerization of dopamine converted Ag ions into Ag nanoparticles that, together with the resultant self-adhering polydopamine (PDA), formed coatings that strongly bound to the treated substrates. Surprisingly, although these Ag/PDA coatings significantly reduced S. aureus growth in standard bacterial monoculture, they showed much lower antimicrobial activity in coculture of the bacteria and osteoblastic MC3T3-E1 cells in which the bacteria were also found attached to the osteoblasts. This S. aureus- osteoblast interaction was also linked to bacterial survival against gentamicin treatment observed in coculture. Our study thus provided clear evidence suggesting that bacteria's interactions with tissue cells surrounding implants may significantly contribute to their resistance to antimicrobial treatment.
Collapse
Affiliation(s)
- Hien A Tran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
- Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, QUT, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Phong A Tran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
- Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, QUT, 2 George Street, Brisbane, Queensland 4000, Australia
| |
Collapse
|
19
|
Pavlík V, Sobotka L, Pejchal J, Čepa M, Nešporová K, Arenbergerová M, Mrózková A, Velebný V. Silver distribution in chronic wounds and the healing dynamics of chronic wounds treated with dressings containing silver and octenidine. FASEB J 2021; 35:e21580. [PMID: 33908652 DOI: 10.1096/fj.202100065r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/08/2021] [Accepted: 03/25/2021] [Indexed: 12/22/2022]
Abstract
Although silver is an efficient antimicrobial and is a widely used antiseptic in wound healing, previous studies have reported the cytotoxic in vitro effects of silver dressings. Moreover, few studies have addressed the distribution of silver in chronic wounds. The study compares the healing of chronic wounds treated with a standard-of-care silver dressing (Ag-CMC) and a dressing containing antiseptic octenidine (OCT-HA). Biopsies were taken from two wound areas before the commencement of treatment (baseline), after 2 weeks and after 6 weeks (the end of the study). We analyzed the histopathologic wound-healing score, silver distribution, and expression of selected genes. The wound-healing score improved significantly in the wounded area treated with OCT-HA after 2 weeks compared to the baseline and the Ag-CMC. The Ag-CMC wound areas improved after 6 weeks compared to the baseline. Moreover, collagen maturation and decreases in the granulocyte and macrophage counts were faster in the OCT-HA parts. Treatment with OCT-HA resulted in less wound slough. The silver, visualized via autometallography, penetrated approximately 2 mm into the wound tissue and associated around capillaries and ECM fibers, and was detected in phagocytes. The metallothionein gene expression was elevated in the Ag-CMC wound parts. This exploratory study determined the penetration of silver into human chronic wounds and changes in the distribution thereof during treatment. We observed that silver directly affects the cells in the wound and elevates the metallothionein gene expression. Octenidine and hyaluronan dressings provide a suitable alternative to silver and carboxymethyl cellulose dressings without supplying silver to the wound.
Collapse
Affiliation(s)
- Vojtěch Pavlík
- Cell Physiology Research Group, Contipro a.s., Dolni Dobrouc, Czech Republic.,Department of Dermatovenereology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Luboš Sobotka
- Third Department of Medicine, Faculty Hospital and Medical Faculty - Charles University, Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, The University of Defense in Brno, Hradec Kralove, Czech Republic
| | - Martin Čepa
- Cell Physiology Research Group, Contipro a.s., Dolni Dobrouc, Czech Republic
| | - Kristina Nešporová
- Cell Physiology Research Group, Contipro a.s., Dolni Dobrouc, Czech Republic
| | - Monika Arenbergerová
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adéla Mrózková
- Department of Hygiene and Preventive Medicine, Medical Faculty, Charles University, Hradec Kralove, Czech Republic
| | - Vladimír Velebný
- Cell Physiology Research Group, Contipro a.s., Dolni Dobrouc, Czech Republic
| |
Collapse
|
20
|
Lutz J, Albrecht K, Groll J. Thioether‐Polymer Coating for Colloidal Stabilization of Silver Nanoparticles. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Johanna Lutz
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI) University of Würzburg Pleicherwall 2 97070 Würzburg Germany
| | - Krystyna Albrecht
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI) University of Würzburg Pleicherwall 2 97070 Würzburg Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI) University of Würzburg Pleicherwall 2 97070 Würzburg Germany
| |
Collapse
|
21
|
Awad ME, López-Galindo A, Medarević D, Milenković M, Ibrić S, El-Rahmany MM, Iborra CV. Enhanced antimicrobial activity and physicochemical stability of rapid pyro-fabricated silver-kaolinite nanocomposite. Int J Pharm 2021; 598:120372. [PMID: 33621641 DOI: 10.1016/j.ijpharm.2021.120372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 01/05/2023]
Abstract
The present research aims to enhance the antimicrobial activity of kaolinite surfaces by a one-step cost-effective and energy-efficient dry thermal reaction, producing an antibacterial and antifungal silver-kaolinite (Ag-Kao) nanocomposite agent. Pharmaceutical grade kaolin powder samples, with variable kaolinite structural order-disorder degree, were homogeneously mixed with silver nitrate in a proportion 1:4 AgNO3:kaolin (w/w) and sintered at 400 °C for 30 min. The composition, microstructure, microtexture and surface characteristics of the pyro-fabricated nanocomposites were characterized by XRD/XRF diffractometry, differential scanning calorimetry DSC, FT-IR spectroscopy, TEM/EDX, zeta potential (mV) measured within the 2-12 pH range, and BET method. Physicochemical stability was evaluated by silver dissociation testing under close-neutral and acidic conditions with Ag content assay using ICP-OES. The resulting Ag-Kao nanocomposites exhibited bulk silver contents ranging from 9.29% to 13.32% with high physicochemical stability in both neutral and acidic mediums (Ag dissociation rate <0.5% in 5 days). Ag nanocrystals exhibited particle sizes ranging from 5 to 30 nm, which were embedded and reinforced within the kaolinite matrix. The sizes of the Ag nanocrystals and their distribution patterns on the edges and faces of kaolinite platelets were controlled by the structural order-disorder degree. Highly ordered kaolinites (Hinckley Index, HI > 1) produced platelet edge-clustered silver nanocrystals due to the abundance of the dangling hydroxyls on platelet edges, while the highly disordered kaolinite (HI < 1) provided homogeneous platelet basal-doped silver nanocrystals due to the presence of some residual charges by exposed basal hydroxyl groups with interplatelet silver diffusivity. At pH 2, the magnitude of the positive surface charge was influenced by the silver nanocrystal size. Nanocomposites with the smallest silver nanocrystals (10-5 nm) exhibited the highest positive zeta potential (+15.2 mV to +17.0 mV), while those with larger silver nanocrystals (up to 30 nm) indicated lower positive zeta potential values (+9.5 mV to +3.6 mV). Under the same testing conditions using the Mueller-Hinton broth microdilution method, the raw kaolin samples did not show any significant antimicrobial activity, while all the pyro-fabricated Ag-Kao nanocomposite samples showed potent antibacterial and antifungal activity at low doses (MIC range 0.1-0.0125 mg/mL). Therefore, modulation of the effective electrostatic surface charge of the kaolinite platelets, via thermal doping of silver within their basal planes and edges, was found to be strongly dependent on the pH as well as the size and microtexture of the silver nanocrystals (mainly controlled by the order-disorder degree HI). The resulting modified nanostructure, with physicochemical stability and the efficient surface properties of the designed pyro-fabricated nanocomposite, led to an enhanced synergistic biophysical antimicrobial activity.
Collapse
Affiliation(s)
- Mahmoud E Awad
- Department of Geology, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Andalusian Institute of Earth Sciences (IACT-CSIC), University of Granada, Spain; Department of Pharmacy and Pharmaceutical Technology, University of Granada, Spain.
| | | | - Djordje Medarević
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Marina Milenković
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Svetlana Ibrić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Mahmoud M El-Rahmany
- Department of Geology, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - César Viseras Iborra
- Andalusian Institute of Earth Sciences (IACT-CSIC), University of Granada, Spain; Department of Pharmacy and Pharmaceutical Technology, University of Granada, Spain
| |
Collapse
|
22
|
Anticancer and antibacterial properties of trinuclear Cu(I), Ag(I) and Au(I) macrocyclic NHC/urea complexes. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121643] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Vishnevetskii DV, Mekhtiev AR, Perevozova TV, Averkin DV, Ivanova AI, Khizhnyak SD, Pakhomov PM. L-Cysteine/AgNO 2 low molecular weight gelators: self-assembly and suppression of MCF-7 breast cancer cells. SOFT MATTER 2020; 16:9669-9673. [PMID: 33084726 DOI: 10.1039/d0sm01431a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a new supramolecular hydrogel based on simple amino acids and silver salt compounds with low molecular weights. The in situ formation of silver nanoparticles during the self-assembly process endows the hydrogel with high cytotoxicity towards adenocarcinoma breast cells but no toxic effects towards embryonic fibroblasts.
Collapse
Affiliation(s)
- Dmitry V Vishnevetskii
- Department of Physical Chemistry and Applied Physics, Tver State University, Tver, 170100, Russia.
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhang L, Jiang H, Wang WX. Subcellular Imaging of Localization and Transformation of Silver Nanoparticles in the Oyster Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11434-11442. [PMID: 32786557 DOI: 10.1021/acs.est.0c03342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To accurately assess the behavior and toxicity of silver nanoparticles (AgNPs), it is essential to understand their subcellular distribution and biotransformation. We combined both nanoscale secondary ion mass spectrometry (NanoSIMS) and electron microscopy to investigate the subcellular localization of Ag and in situ chemical distribution in the oyster larvae Crassostrea angulata after exposure to isotopically enriched 109AgNPs. Oyster larvae directly ingested particulate Ag, and in vivo dissolution of AgNPs occurred. The results collectively showed that AgNPs were much less bioavailable than Ag+, and the intracellular Ag was mainly originated from the soluble Ag, especially those dissolved from the ingested AgNPs. AgNPs absorbed on the cell membranes continued to release Ag ions, forming inorganic Ag-S complexes extracellularly, while Ag-organosulfur complexes were predominantly formed intracellularly. The internalized Ag could bind to the sulfur-rich molecules (S-donors) in the cytosol and/or be sequestered in the lysosomes of velum, esophagus, and stomach cells, as well as in the digestive vacuoles of digestive cells, which could act as a detoxification pathway for the oyster larvae. Ag was also occasionally incorporated into the phosphate granules, rough endoplasmic reticulum, and mitochondria. Our work provided definite evidence for the partial sulfidation of AgNPs after interaction with oyster larvae and shed new light on the bioavailability and fate of nanoparticles in marine environment.
Collapse
Affiliation(s)
- Luqing Zhang
- Marine Environmental Laboratory, Shenzhen Research Institute, HKUST, Shenzhen 518057, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Haibo Jiang
- School of Molecular Sciences, University of Western Australia, Perth, Washington 6009, Australia
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hongkong, Kowloon, Hong Kong
| |
Collapse
|
25
|
Thangudu S, Kulkarni SS, Vankayala R, Chiang CS, Hwang KC. Photosensitized reactive chlorine species-mediated therapeutic destruction of drug-resistant bacteria using plasmonic core-shell Ag@AgCl nanocubes as an external nanomedicine. NANOSCALE 2020; 12:12970-12984. [PMID: 32525500 DOI: 10.1039/d0nr01300e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Due to the rapid growth of drug-resistant bacterial infections, there is an urgent need to develop innovative antimicrobial strategies to conquer the bacterial antibiotic resistance problems. Although a few nanomaterial-based antimicrobial strategies have been developed, the sensitized formation of cytotoxic reactive chlorine species (RCS), including chlorine gas and chlorine free radicals, by photo-activatable plasmonic nanoparticles for evading drug-resistant bacterial infections has not yet been reported. To address this challenge, herein, we report the synthesis of an unprecedented plasmonic core-shell Ag@AgCl nanocrystal through an in situ oxidation route for the photo-induced generation of highly cytotoxic RCS. We present the detailed in vitro and in vivo investigations of visible light activated Ag@AgCl nanostructure-mediated evasion of drug-resistant bacteria. In particular, the in vivo results demonstrate the complete reepithelialization of the methicillin-resistant Staphylococcus aureus (MRSA) infected wounds on skin upon phototherapeutic treatment mediated Ag@AgCl NCs. To the best of our knowledge, this is the first unique example of using Ag@AgCl NCs as an external nanomedicine for photo-induced generation of RCS to mediate effective killing of both Gram-positive and Gram-negative drug resistance bacteria and healing of the subcutaneous abscesses in an in vivo mouse model.
Collapse
Affiliation(s)
- Suresh Thangudu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
26
|
Lu J, Zhang S, Gao S, Wang P, Bond PL, Guo J. New insights of the bacterial response to exposure of differently sized silver nanomaterials. WATER RESEARCH 2020; 169:115205. [PMID: 31670086 DOI: 10.1016/j.watres.2019.115205] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The release of silver nanomaterials (AgNMs) from extensive use poses potential risks to human health and ecological environments. Although previous studies have reported the negative effects of AgNMs on various microorganisms, little is known about the response of bacteria under the exposure of AgNMs at the cellular level. Here, we report the multiple responses of Pseudomonas aeruginosa PAO1 (PAO1) under the exposure of two types of AgNMs, including spherical silver nanoparticles (AgNPs) and fibrous silver nanorods (AgNRs), by physiological experiments, microscopy, synchrotron-based X-ray Absorption Spectroscopy (XAS), flow cytometry and genome-wide RNA sequencing. Our results demonstrated that the exposure to both types of AgNMs could inhibit the growth of PAO1, accompanied by the overproduction of oxidative stress and inducing cell membrane damage. Transmission electron microscopy revealed the roughened cell membrane under both AgNMs treatment. In addition, both AgNMs repressed the expression of quorum sensing and metal efflux-related genes in PAO1, but stimulated denitrification, glycerol and amino acid metabolisms, SOS response and pyocin overproduction of PAO1. Compared to AgNRs, AgNPs exposure showed a much lower threshold concentration to trigger the inhibitory effect and induced greater transcriptional responses of PAO1. This study suggested that AgNMs could cause multiple effects on the proliferation, metabolism, virulence and pathogenesis of PAO1, which might further affect the corresponding environmental microbial communities. Overall, our findings offer insights into the interactions between AgNMs and bacteria at the molecular level.
Collapse
Affiliation(s)
- Ji Lu
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Shuai Zhang
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Shuhong Gao
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Peng Wang
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
27
|
Valentin E, Bottomley AL, Chilambi GS, Harry EJ, Amal R, Sotiriou GA, Rice SA, Gunawan C. Heritable nanosilver resistance in priority pathogen: a unique genetic adaptation and comparison with ionic silver and antibiotics. NANOSCALE 2020; 12:2384-2392. [PMID: 31930233 DOI: 10.1039/c9nr08424j] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The past decade has seen the incorporation of antimicrobial nanosilver (NAg) into medical devices, and, increasingly, in everyday 'antibacterial' products. With the continued rise of antibiotic resistant bacteria, there are concerns that these priority pathogens will also develop resistance to the extensively commercialized nanoparticle antimicrobials. Herein, this work reports the emergence of stable resistance traits to NAg in the WHO-listed priority pathogen Staphylococcus aureus, which has previously been suggested to have no, or very low, capacity for silver resistance. With no native presence of genetically encoded silver defence mechanisms, the work showed that the bacterium is dependent on mutation of physiologically essential genes, including those involved in nucleotide synthesis and oxidative stress defence. While some mutations were uniquely associated with resistance to NAg, the study also found common mutations that could be protective against both NAg and ionic silver. This is consistent with the observation of NAg/ionic silver cross-resistance. These mutations were detected following withdrawal of the silver exposure, denoting heritable characteristics that allow for spread of the resistance traits even with discontinued silver use. Heritable silver resistance in priority pathogen cautions that these nanoparticle antimicrobials should only be used as needed, to preserve their efficacy for treating infections.
Collapse
Affiliation(s)
| | - Amy L Bottomley
- Ithree institute, University of Technology Sydney, NSW 2007, Australia.
| | | | - Elizabeth J Harry
- Ithree institute, University of Technology Sydney, NSW 2007, Australia.
| | - Rose Amal
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Georgios A Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Scott A Rice
- Ithree institute, University of Technology Sydney, NSW 2007, Australia. and Singapore Centre for Environmental Life Sciences Engineering, Singapore and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Cindy Gunawan
- Ithree institute, University of Technology Sydney, NSW 2007, Australia. and School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
28
|
Turner RD, Wingham JR, Paterson TE, Shepherd J, Majewski C. Use of silver-based additives for the development of antibacterial functionality in Laser Sintered polyamide 12 parts. Sci Rep 2020; 10:892. [PMID: 31964969 PMCID: PMC6972821 DOI: 10.1038/s41598-020-57686-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/21/2019] [Indexed: 12/04/2022] Open
Abstract
Infectious diseases (exacerbated by antimicrobial resistance) cause death, loss of quality of life and economic burden globally. Materials with inherent antimicrobial properties offer the potential to reduce the spread of infection through transfer via surfaces or solutions, or to directly reduce microbial numbers in a host if used as implants. Additive Manufacturing (AM) techniques offer shorter supply chains, faster delivery, mass customisation and reduced unit costs, as well as highly complicated part geometries which are potentially harder to clean and sterilise. Here, we present a new approach to introducing antibacterial properties into AM, using Laser Sintering, by combining antimicrobial and base polymer powders prior to processing. We demonstrate that the mechanical properties of the resultant composite parts are similar to standard polymer parts and reveal the mode of the antibacterial activity. We show that antibacterial activity is modulated by the presence of obstructing compounds in different experimental media, which will inform appropriate use cases. We show that the material is not toxic to mammalian cells. This material could be quickly used for commercial products, and our approach could be adopted more generally to add new functionality to Laser Sintered parts.
Collapse
Affiliation(s)
- Robert D Turner
- Department of Mechanical Engineering, University of Sheffield, Royal Exchange Building, 64 Garden Street, Sheffield, S1 4BJ, UK.,School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, S10 2TA, UK
| | - James R Wingham
- Department of Mechanical Engineering, University of Sheffield, Royal Exchange Building, 64 Garden Street, Sheffield, S1 4BJ, UK
| | - Thomas E Paterson
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, S10 2TA, UK
| | - Joanna Shepherd
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, S10 2TA, UK.
| | - Candice Majewski
- Department of Mechanical Engineering, University of Sheffield, Royal Exchange Building, 64 Garden Street, Sheffield, S1 4BJ, UK.
| |
Collapse
|
29
|
Blanchette V, Belosinschi D, Lai TT, Cloutier L, Barnabé S. New Antibacterial Paper Made of Silver Phosphate Cellulose Fibers: A Preliminary Study on the Elimination of Staphylococcus aureus Involved in Diabetic Foot Ulceration. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1304016. [PMID: 31998775 PMCID: PMC6973200 DOI: 10.1155/2020/1304016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/25/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022]
Abstract
AIM To evaluate in vitro the antibacterial effect of a paper made of silver phosphate cellulose fibers (SPCF) on Staphylococcus aureus, the most common diabetic foot ulceration (DFU) pathogen when compared with other common commercial products. METHODS The antibacterial activity of SPCF samples was evaluated through time with cell counting on agar plates. SPCF samples were then compared with commercial wound care products currently in use in DFU treatments (Silvercel™, Acticoat 7, and Aquacel Ag ExtraTM) through time on agar plates (growth inhibition zones). RESULTS After 6 hours, there was no viable bacterial cell detected on either plate (p < 0.05). There was a net growth inhibition zone for SPCF samples but no significant difference between the two silver concentrations. Compared with common commercial products, SPCF paper provides results equal to Acticoat 7 (p < 0.05). There was a net growth inhibition zone for SPCF samples but no significant difference between the two silver concentrations. Compared with common commercial products, SPCF paper provides results equal to Acticoat 7 (p < 0.05). There was a net growth inhibition zone for SPCF samples but no significant difference between the two silver concentrations. Compared with common commercial products, SPCF paper provides results equal to Acticoat 7 (. CONCLUSIONS These results have shown the efficiency of SPCF paper to eliminate Staphylococcus aureus in these conditions. SPCF papers are effective when compared with other common commercial products and could have an industrial potential in wound care. Infected DFU could benefit from the antibacterial effectiveness of SPCF, but more relevant experimentations related to foot ulcers are needed.Staphylococcus aureus, the most common diabetic foot ulceration (DFU) pathogen when compared with other common commercial products.
Collapse
Affiliation(s)
- Virginie Blanchette
- Université du Québec à Trois-Rivières, Podiatric Medicine Program, 3351, Boul. des Forges, C.P.500, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Dan Belosinschi
- Innofibre, Cégep de Trois-Rivières, 3351 Boul. des Forges, Trois-Rivières, Québec G9A 5E6, Canada
| | - Thanh Tung Lai
- Université du Québec à Trois-Rivières, Lignocellulosic Material Research Center, 3351, Boul. des Forges, C.P.500, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Lyne Cloutier
- Université du Québec à Trois-Rivières, Nursing Department, 3351, Boul. des Forges, C.P.500, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Simon Barnabé
- Université du Québec à Trois-Rivières, Lignocellulosic Material Research Center, 3351, Boul. des Forges, C.P.500, Trois-Rivières, Québec G8Z 4M3, Canada
- Université du Québec à Trois-Rivières, Department of Biochemistry, Chemistry and Physics, 3351, Boul. des Forges, C.P.500, Trois-Rivières, Québec G8Z 4M3, Canada
| |
Collapse
|
30
|
Roman M, Rigo C, Castillo-Michel H, Urgast DS, Feldmann J, Munivrana I, Vindigni V, Mičetić I, Benetti F, Barbante C, Cairns WRL. Spatiotemporal distribution and speciation of silver nanoparticles in the healing wound. Analyst 2020; 145:6456-6469. [DOI: 10.1039/d0an00607f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First observation of AgNPs dynamics in the wounds of real patients through elemental imaging and speciation.
Collapse
Affiliation(s)
- Marco Roman
- Ca’ Foscari University of Venice
- Department of Environmental Sciences
- Informatics and Statistics (DAIS)
- 30172 Venice Mestre
- Italy
| | - Chiara Rigo
- Ca’ Foscari University of Venice
- Department of Environmental Sciences
- Informatics and Statistics (DAIS)
- 30172 Venice Mestre
- Italy
| | | | - Dagmar S. Urgast
- University of Aberdeen
- Trace Element Speciation Laboratory
- Aberdeen AB24 3UE
- UK
| | - Jörg Feldmann
- University of Aberdeen
- Trace Element Speciation Laboratory
- Aberdeen AB24 3UE
- UK
- University of Graz
| | - Ivan Munivrana
- University Hospital of Padua
- Burns Centre
- Division of Plastic Surgery
- 35128 Padua
- Italy
| | - Vincenzo Vindigni
- University Hospital of Padua
- Burns Centre
- Division of Plastic Surgery
- 35128 Padua
- Italy
| | - Ivan Mičetić
- University of Padua
- Department of Biomedical Sciences
- 35131 Padua
- Italy
| | - Federico Benetti
- EcamRicert Srl
- European Centre for the Sustainable Impact of Nanotechnology (ECSIN)
- Corso Stati Uniti 4
- 35127 Padua
- Italy
| | - Carlo Barbante
- Ca’ Foscari University of Venice
- Department of Environmental Sciences
- Informatics and Statistics (DAIS)
- 30172 Venice Mestre
- Italy
| | | |
Collapse
|
31
|
Zhang D, Wang H. Fluorescence Anisotropy Reduction of An Allosteric G-Rich Oligonucleotide for Specific Silver Ion and Cysteine Detection Based on the G-Ag +-G Base Pair. Anal Chem 2019; 91:14538-14544. [PMID: 31650829 DOI: 10.1021/acs.analchem.9b03556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Silver is a common heavy metal, and the detection of silver ion (Ag+) is of great importance because of its wide application and hazardous effect on the environment and human health. However, it is a great challenge to produce a large fluorescence anisotropy (FA) change for small molecules (e.g, Ag+). Herein, we describe a novel fluorescence anisotropy reduction approach for the sensitive and specific detection of Ag+. The feasibility of this method is demonstrated through screening a number of guanine-rich oligonucleotide probes. By selectively labeling the oligonucleotides with a single fluorophore tetramethylrhodamine (TMR), the reduction in FA response is associated with the conformation change from the unfolded to a hairpin-like folded structure by inducing formation of the intermolecular G-Ag+-G base pair, which diminishes the interaction between guanine and TMR by photoinduced electron transfer (PET). The change in FA allows the selective detection of Ag+ at a concentration as low as 0.5 nM with a dynamic range from 2.0 to 100 nM. The interference from the other 14 metal ions with a 100-fold even to a 1000-fold excess amount is negligible. This simple and cost-effective probe was further explored to determine cysteine (Cys) based on competing with a guanine-rich oligonucelotide for Ag+-binding.
Collapse
Affiliation(s)
- Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
32
|
Abstract
Biofilms are responsible for stimulating and maintaining wound inflammation, increasing infection risk and delaying wound closure. Appropriate biofilm management is required to fight against local and systemic infection and to restore balance to the wound environment. The most effective way to remove biofilms involves the use of mechanical techniques, with the wound dressing representing an important component of this strategy. Wound dressing fibres, such as polyacrylate fibres, have been shown to be effective in affecting biofilm architecture by disrupting the biofilm matrix. This helps enhance the efficacy of antimicrobials, such as silver. Focusing an antibiofilm strategy on active agents alone does not constitute a sustainable approach to biofilm management. Furthermore, adding too many active chemicals into a wound can be highly detrimental to the wound bed, and potentially may have both short- and long-term biological concerns. Particular attention on the characteristics and key features of wound dressings is discussed in this paper. The aim of the paper is to review the ideal characteristics of wound dressings, in conjunction with antimicrobials, that are considered a fundamental part of an antibiofilm strategy and growing requirement for enhanced wound healing.
Collapse
Affiliation(s)
- Steven L Percival
- 5D Health Protection Group Ltd, Liverpool Bio-innovation Hub, Liverpool, UK
| |
Collapse
|
33
|
Riau AK, Aung TT, Setiawan M, Yang L, Yam GHF, Beuerman RW, Venkatraman SS, Mehta JS. Surface Immobilization of Nano-Silver on Polymeric Medical Devices to Prevent Bacterial Biofilm Formation. Pathogens 2019; 8:E93. [PMID: 31261752 PMCID: PMC6789847 DOI: 10.3390/pathogens8030093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 01/22/2023] Open
Abstract
: Bacterial biofilm on medical devices is difficult to eradicate. Many have capitalized the anti-infective capability of silver ions (Ag+) by incorporating nano-silver (nAg) in a biodegradable coating, which is then laid on polymeric medical devices. However, such coating can be subjected to premature dissolution, particularly in harsh diseased tissue microenvironment, leading to rapid nAg clearance. It stands to reason that impregnating nAg directly onto the device, at the surface, is a more ideal solution. We tested this concept for a corneal prosthesis by immobilizing nAg and nano-hydroxyapatite (nHAp) on poly(methyl methacrylate), and tested its biocompatibility with human stromal cells and antimicrobial performance against biofilm-forming pathogens, Pseudomonas aeruginosa and Staphylococcus aureus. Three different dual-functionalized substrates-high Ag (referred to as 75:25 HAp:Ag); intermediate Ag (95:5 HAp:Ag); and low Ag (99:1 HAp:Ag) were studied. The 75:25 HAp:Ag was effective in inhibiting biofilm formation, but was cytotoxic. The 95:5 HAp:Ag showed the best selectivity among the three substrates; it prevented biofilm formation of both pathogens and had excellent biocompatibility. The coating was also effective in eliminating non-adherent bacteria in the culture media. However, a 28-day incubation in artificial tear fluid revealed a ~40% reduction in Ag+ release, compared to freshly-coated substrates. The reduction affected the inhibition of S. aureus growth, but not the P. aeruginosa. Our findings suggest that Ag+ released from surface-immobilized nAg diminishes over time and becomes less effective in suppressing biofilm formation of Gram-positive bacteria, such as S. aureus. This advocates the coating, more as a protection against perioperative and early postoperative infections, and less as a long-term preventive solution.
Collapse
Affiliation(s)
- Andri K Riau
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore 169856, Singapore.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Thet T Aung
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.
| | - Melina Setiawan
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore 169856, Singapore.
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gary H F Yam
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore 169856, Singapore.
- Ophthalmology and Visual Sciences ACP, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
| | - Roger W Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.
- Ophthalmology and Visual Sciences ACP, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
- SRP Neuroscience and Emerging Infectious Disease, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
| | - Subbu S Venkatraman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jodhbir S Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore 169856, Singapore.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
- Ophthalmology and Visual Sciences ACP, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
- Corneal and External Eye Disease Service, Singapore National Eye Centre, Singapore 168751, Singapore.
| |
Collapse
|
34
|
Bayramov D, Li Z, Patel E, Izadjoo M, Kim H, Neff J. A Novel Peptide-Based Antimicrobial Wound Treatment is Effective Against Biofilms of Multi-Drug Resistant Wound Pathogens. Mil Med 2019; 183:481-486. [PMID: 29635548 DOI: 10.1093/milmed/usx135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 11/14/2022] Open
Abstract
Wound infections are a common complication of combat-related injuries that significantly increase morbidity and mortality. Multi-drug resistant (MDR) organisms and their associated biofilms play a significant role in the pathogenicity and chronicity of wound infections. A critical barrier to progress in the treatment of traumatic wounds is the need for broad spectrum antimicrobials that are effective against biofilms and compatible with topical delivery. In this study, we present the in vitro efficacy of two de novo designed cationic, antimicrobial peptides and related topical formulations against single species and polymicrobial biofilms of MDR bacteria. Minimum biofilm eradication concentrations for peptides ranged from 0.7 μM for Staphylococcus aureus to 13.2 μM for Pseudomonas aeruginosa. Varying pH did not adversely impact peptide activity, however, in the presence of albumin, minimum biofilm eradication concentrations generally increased. When formulated into gels or dressings, both peptides eradicated mono- and polymicrobial biofilms of MDR pathogens. The biocompatibility index (BI) was found to be greater than one for both ASP-1 and ASP-2, with a slightly greater (more favorable) BI for ASP-2. The BIs for both peptides were greater than BIs previously reported for commonly used topical antimicrobial agents. The antimicrobial peptides and related formulations presented provide a promising platform for treatment of wound biofilms to improve outcomes for those injured in combat.
Collapse
Affiliation(s)
- Danir Bayramov
- Allvivo Vascular, Inc., 20914 Bake Parkway, Suite 100, Lake Forest, CA 92630
| | - Zhenghao Li
- Allvivo Vascular, Inc., 20914 Bake Parkway, Suite 100, Lake Forest, CA 92630
| | - Esha Patel
- Allvivo Vascular, Inc., 20914 Bake Parkway, Suite 100, Lake Forest, CA 92630
| | - Mina Izadjoo
- Trideum Biosciences, 4539 Metropolitan Court, Frederick, MD 21704
| | - Hosan Kim
- Trideum Biosciences, 4539 Metropolitan Court, Frederick, MD 21704
| | - Jennifer Neff
- Allvivo Vascular, Inc., 20914 Bake Parkway, Suite 100, Lake Forest, CA 92630
| |
Collapse
|
35
|
Biocide Exposure Induces Changes in Susceptibility, Pathogenicity, and Biofilm Formation in Uropathogenic Escherichia coli. Antimicrob Agents Chemother 2019; 63:AAC.01892-18. [PMID: 30642923 PMCID: PMC6395906 DOI: 10.1128/aac.01892-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/23/2018] [Indexed: 12/15/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is a frequent cause of catheter-associated urinary tract infection (CAUTI). Biocides have been incorporated into catheter coatings to inhibit bacterial colonization while, ideally, exhibiting low cytotoxicity and mitigating the selection of resistant bacterial populations. We compared the effects of long-term biocide exposure on susceptibility, biofilm formation, and relative pathogenicity in eight UPEC isolates. MICs, minimum bactericidal concentrations (MBCs), minimum biofilm eradication concentrations (MBECs), and antibiotic susceptibilities were determined before and after long-term exposure to triclosan, polyhexamethylene biguanide (PHMB), benzalkonium chloride (BAC), and silver nitrate. Biofilm formation was quantified using a crystal violet assay, and relative pathogenicity was assessed via a Galleria mellonella waxworm model. Cytotoxicity and the resulting biocompatibility index values were determined by use of an L929 murine fibroblast cell line. Biocide exposure resulted in multiple decreases in biocide susceptibility in planktonic and biofilm-associated UPEC. Triclosan exposure induced the largest frequency and magnitude of susceptibility decreases at the MIC, MBC, and MBEC, which correlated with an increase in biofilm biomass in all isolates. Induction of antibiotic cross-resistance occurred in 6/84 possible combinations of bacteria, biocide, and antibiotic. Relative pathogenicity significantly decreased after triclosan exposure (5/8 isolates), increased after silver nitrate exposure (2/8 isolates), and varied between isolates for PHMB and BAC. The biocompatibility index ranked the antiseptic potential as PHMB > triclosan > BAC > silver nitrate. Biocide exposure in UPEC may lead to reductions in biocide and antibiotic susceptibility, changes in biofilm formation, and alterations in relative pathogenicity. These data indicate the multiple consequences of biocide adaptation that should be considered when selecting an anti-infective catheter-coating agent.
Collapse
|
36
|
Karnik T, Dempsey SG, Jerram MJ, Nagarajan A, Rajam R, May BCH, Miller CH. Ionic silver functionalized ovine forestomach matrix - a non-cytotoxic antimicrobial biomaterial for tissue regeneration applications. Biomater Res 2019; 23:6. [PMID: 30834142 PMCID: PMC6387525 DOI: 10.1186/s40824-019-0155-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/06/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Antimicrobial technologies, including silver-containing medical devices, are increasingly utilized in clinical regimens to mitigate risks of microbial colonization. Silver-functionalized resorbable biomaterials for use in wound management and tissue regeneration applications have a narrow therapeutic index where antimicrobial effectiveness may be outweighed by adverse cytotoxicity. We examined the effects of ionic silver functionalization of an extracellular matrix (ECM) biomaterial derived from ovine forestomach (OFM-Ag) in terms of material properties, antimicrobial effectiveness and cytotoxicity profile. METHODS Material properties of OFM-Ag were assessed by via biochemical analysis, microscopy, atomic absorption spectroscopy (AAS) and differential scanning calorimetry. The silver release profile of OFM-Ag was profiled by AAS and antimicrobial effectiveness testing utilized to determine the minimum effective concentration of silver in OFM-Ag in addition to the antimicrobial spectrum and wear time. Biofilm prevention properties of OFM-Ag in comparison to silver containing collagen dressing materials was quantified via in vitro crystal violet assay using a polymicrobial model. Toxicity of ionic silver, OFM-Ag and silver containing collagen dressing materials was assessed toward mammalian fibroblasts using elution cytoxicity testing. RESULTS OFM-Ag retained the native ECM compositional and structural characteristic of non-silver functionalized ECM material while imparting broad spectrum antimicrobial effectiveness toward 11 clinically relevant microbial species including fungi and drug resistant strains, maintaining effectiveness over a wear time duration of 7-days. OFM-Ag demonstrated significant prevention of polymicrobial biofilm formation compared to non-antimicrobial and silver-containing collagen dressing materials. Where silver-containing collagen dressing materials exhibited cytotoxic effects toward mammalian fibroblasts, OFM-Ag was determined to be non-cytotoxic, silver elution studies indicated sustained retention of silver in OFM-Ag as a possible mechanism for the attenuated cytotoxicity. CONCLUSIONS This work demonstrates ECM biomaterials may be functionalized with silver to favourably shift the balance between detrimental cytotoxic potential and beneficial antimicrobial effects, while preserving the ECM structure and function of utility in tissue regeneration applications.
Collapse
Affiliation(s)
- Tanvi Karnik
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| | - Sandi G. Dempsey
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| | - Micheal J. Jerram
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| | - Arun Nagarajan
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| | - Ravindra Rajam
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| | - Barnaby C. H. May
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| | - Christopher H. Miller
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| |
Collapse
|
37
|
Antibacterial and immunogenic behavior of silver coatings on additively manufactured porous titanium. Acta Biomater 2018; 81:315-327. [PMID: 30268917 DOI: 10.1016/j.actbio.2018.09.051] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/30/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023]
Abstract
Implant-associated infections (IAI) are often recurrent, expensive to treat, and associated with high rates of morbidity, if not mortality. We biofunctionalized the surface of additively manufactured volume-porous titanium implants using electrophoretic deposition (EPD) as a way to eliminate the peri-operative bacterial load and prevent IAI. Chitosan-based (Ch) coatings were incorporated with different concentrations of silver (Ag) nanoparticles or vancomycin. A full-scale in vitro and in vivo study was then performed to evaluate the antibacterial, immunogenic, and osteogenic activity of the developed implants. In vitro, Ch + vancomycin or Ch + Ag coatings completely eliminated, or reduced the number of planktonic and adherent Staphylococcus aureus by up to 4 orders of magnitude, respectively. In an in vivo tibia intramedullary implant model, Ch + Ag coatings caused no adverse immune or bone response under aseptic conditions. Following Staphylococcus aureus inoculation, Ch + vancomycin coatings reduced the implant infection rate as compared to chitosan-only coatings. Ch + Ag implants did not demonstrate antibacterial effects in vivo and even aggravated infection-mediated bone remodeling including increased osteoclast formation and inflammation-induced new bone formation. As an explanation for the poor antibacterial activity of Ch + Ag implants, it was found that antibacterial Ag concentrations were cytotoxic for neutrophils, and that non-toxic Ag concentrations diminished their phagocytic activity. This study shows the potential of EPD coating to biofunctionalize porous titanium implants with different antibacterial agents. Using this method, Ag-based coatings seem inferior to antibiotic coatings, as their adverse effects on the normal immune response could cancel the direct antibacterial effects of Ag nanoparticles. STATEMENT OF SIGNIFICANCE: Implant-associated infections (IAI) are a clinical, societal, and economical burden. Surface biofunctionalization approaches can render complex metal implants with strong local antibacterial action. The antibacterial effects of inorganic materials such as silver nanoparticles (Ag NPs) are often highlighted under very confined conditions in vitro. As a novelty, this study also reports the antibacterial, immunogenic, and osteogenic activity of Ag NP-coated additively-manufactured titanium in vivo. Importantly, it was found that the developed coatings could impair the normal function of neutrophils, the most important phagocytic cells protecting us from IAI. Not surprisingly, the Ag NP-based coatings were outperformed by an antibiotic-based coating. This emphasizes the importance of also targeting implant immune-modulatory functions in future coating strategies against IAI.
Collapse
|
38
|
A facile synthesis of formazan dyes conjugated with plasmonic nanoparticles as photosensitizers in photodynamic therapy against leukemia cell line. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2302-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Mohandas A, Deepthi S, Biswas R, Jayakumar R. Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioact Mater 2018; 3:267-277. [PMID: 29744466 PMCID: PMC5935789 DOI: 10.1016/j.bioactmat.2017.11.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/20/2022] Open
Abstract
Chitosan based nanocomposite scaffolds have attracted wider applications in medicine, in the area of drug delivery, tissue engineering and wound healing. Chitosan matrix incorporated with nanometallic components has immense potential in the area of wound dressings due to its antimicrobial properties. This review focuses on the different combinations of Chitosan metal nanocomposites such as Chitosan/nAg, Chitosan/nAu, Chitosan/nCu, Chitosan/nZnO and Chitosan/nTiO2 towards enhancement of healing or infection control with special reference to the antimicrobial mechanism of action and toxicity.
Collapse
Affiliation(s)
| | | | | | - R. Jayakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India
| |
Collapse
|
40
|
Faiz MB, Amal R, Marquis CP, Harry EJ, Sotiriou GA, Rice SA, Gunawan C. Nanosilver and the microbiological activity of the particulate solids versus the leached soluble silver. Nanotoxicology 2018; 12:263-273. [DOI: 10.1080/17435390.2018.1434910] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Merisa B. Faiz
- School of Chemical Engineering, UNSW Australia, Sydney, Australia
| | - Rose Amal
- School of Chemical Engineering, UNSW Australia, Sydney, Australia
| | | | | | - Georgios A. Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Scott A. Rice
- The Singapore Centre for Environmental Life Sciences Engineering and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Cindy Gunawan
- School of Chemical Engineering, UNSW Australia, Sydney, Australia
- ithree Institute, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
41
|
Lam PL, Lee KKH, Wong RSM, Cheng GYM, Bian ZX, Chui CH, Gambari R. Recent advances on topical antimicrobials for skin and soft tissue infections and their safety concerns. Crit Rev Microbiol 2018; 44:40-78. [PMID: 28423970 DOI: 10.1080/1040841x.2017.1313811] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antimicrobial resistance of disease-related microorganisms is considered a worldwide prevalent and serious issue which increases the failure of treatment outcomes and leads to high mortality. Considering that the increased resistance to systemic antimicrobial therapy often needs of the use of more toxic agents, topical antimicrobial therapy emerges as an attractive route for the treatment of infectious diseases. The topical antimicrobial therapy is based on the absorption of high drug doses in a readily accessible skin surface, resulting in a reduction of microbial proliferation at infected skin sites. Topical antimicrobials retain the following features: (a) they are able to escape the enzymatic degradation and rapid clearance in the gastrointestinal tract or the first-pass metabolism during oral administration; (b) alleviate the physical discomfort related to intravenous injection; (c) reduce possible adverse effects and drug interactions of systemic administrations; (d) increase patient compliance and convenience; and (e) reduce the treatment costs. Novel antimicrobials for topical application have been widely exploited to control the emergence of drug-resistant microorganisms. This review provides a description of antimicrobial resistance, common microorganisms causing skin and soft tissue infections, topical delivery route of antimicrobials, safety concerns of topical antimicrobials, recent advances, challenges and future prospective in topical antimicrobial development.
Collapse
Affiliation(s)
- P L Lam
- a Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| | - K K H Lee
- b Department of Medicine and Therapeutics, School of Biomedical Sciences, MOE Key Laboratory for Regenerative Medicine , The Chinese University of Hong Kong , Hong Kong , P.R. China
| | - R S M Wong
- b Department of Medicine and Therapeutics, School of Biomedical Sciences, MOE Key Laboratory for Regenerative Medicine , The Chinese University of Hong Kong , Hong Kong , P.R. China
| | - G Y M Cheng
- c Faculty of Health Sciences , University of Macau , Macau , P.R. China
| | - Z X Bian
- d Clinical Division, School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , P.R. China
| | - C H Chui
- a Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences , The Hong Kong Polytechnic University , Hong Kong , P.R. China
- d Clinical Division, School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , P.R. China
| | - R Gambari
- e Department of Life Sciences and Biotechnology, Centre of Biotechnology , University of Ferrara , Ferrara , Italy
| |
Collapse
|
42
|
Schulz S, Maitz M, Hänsel S, Renner LD, Werner C. Analyzing the antiseptic capacity of silver-functionalized poly(ethylene glycol)–heparin hydrogels after human whole blood exposure. Biomater Sci 2018. [DOI: 10.1039/c7bm01140g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Advanced blood contacting biomaterials are designed to combine antiseptic and anticoagulant functionalities.
Collapse
Affiliation(s)
- Sandra Schulz
- Max Bergmann Center of Biomaterials
- Leibniz-Institut für Polymerforschung Dresden e.V
- Dresden
- Germany
| | - Manfred Maitz
- Max Bergmann Center of Biomaterials
- Leibniz-Institut für Polymerforschung Dresden e.V
- Dresden
- Germany
| | - Stefanie Hänsel
- Max Bergmann Center of Biomaterials
- Leibniz-Institut für Polymerforschung Dresden e.V
- Dresden
- Germany
| | - Lars D. Renner
- Max Bergmann Center of Biomaterials
- Leibniz-Institut für Polymerforschung Dresden e.V
- Dresden
- Germany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials
- Leibniz-Institut für Polymerforschung Dresden e.V
- Dresden
- Germany
- Center for Regenerative Therapies Dresden
| |
Collapse
|
43
|
Lv J, Zhao LJ, Qian RC, Long YT. Off-on fluorescence monitoring of intracellular Ag+ in single living cells using an Ag+-responsive probe. Methods Appl Fluoresc 2017; 5:044003. [DOI: 10.1088/2050-6120/aa80f6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Milenkovic J, Hrenovic J, Matijasevic D, Niksic M, Rajic N. Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20273-20281. [PMID: 28702914 DOI: 10.1007/s11356-017-9643-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Two types of zeolites-natural clinoptilolite (NZ) and synthetic zeolite A (A)-were enriched with approx. 0.25 mmol of Cu(II), Zn(II), or Ag(I) ions, and the obtained materials (M-Z) were tested against three different isolates of Escherichia coli. Two isolates were environmental isolates from waters in Serbia whereas the third one was DSM 498. Antibacterial activity was studied in different water media-nutrient-rich media (peptone water), water from Sava Lake, and commercially available spring water. The Ag-containing zeolites showed bactericidal activity in the nutrient-rich peptone water after 1 h of contact. Cu- and Zn-containing zeolites showed bactericidal activity in real water samples. Antibacterial activity of the M-Z decreases in all three examined water media in the following order: Ag-NZ ≈ Ag-A > Cu-NZ ≈ Cu-A > Zn-NZ >>> Zn-A, suggesting that mainly the metal type and not the zeolite type have a role in the antibacterial activity. Leaching experiments showed small amounts of the leached Cu(II) and Zn(II) ions, indicating that the antibacterial activity is not due to the metal ions but should be attributed to the M-Z itself. However, leached amounts of Ag(I) from Ag-NZ and Ag-A in peptone water indicate that the released Ag(I) could be mainly responsible for the bactericidal effect of the Ag(I)-containing zeolites. Since no loss of cellular material was found, the antibacterial activity is not attributed to cytoplasmic membrane damage.
Collapse
Affiliation(s)
- Jelena Milenkovic
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11000, Serbia.
| | - Jasna Hrenovic
- Faculty of Science, Division of Biology, University of Zagreb, 10000, Zagreb, Croatia
| | - Danka Matijasevic
- Faculty of Agriculture, University of Belgrade, Belgrade, 11000, Serbia
| | - Miomir Niksic
- Faculty of Agriculture, University of Belgrade, Belgrade, 11000, Serbia
| | - Nevenka Rajic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, 11000, Serbia
| |
Collapse
|
45
|
Hu X, Sun A, Kang W, Zhou Q. Strategies and knowledge gaps for improving nanomaterial biocompatibility. ENVIRONMENT INTERNATIONAL 2017; 102:177-189. [PMID: 28318601 DOI: 10.1016/j.envint.2017.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/26/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
With rapid development of nanotechnology and nanomaterials, nanosafety has attracted wide attention in all fields related to nanotechnology. As well known, a grand challenge in nanomaterial applications is their biocompatibility. It is urgent to explore effective strategies to control the unintentional effects. Although many novel methods for the synthesis of biocompatible and biodegradable nanomaterials are reported, the control strategy of nanotoxicity remains in its infancy. It is urgent to review the archived strategies for improving nanomaterial biocompatibility to clarify what we have done and where we should be. In this review, the achievements and challenges in nanomaterial structure/surface modifications and size/shape controls were analyzed. Moreover, the chemical and biological strategies to make nanomaterial more biocompatible and biodegradable were compared. Finally, the concerns that have not been studied well were prospected, involving unintended releases, life-cycle, occupational exposure and methodology.
Collapse
Affiliation(s)
- Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Anqi Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Weilu Kang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
46
|
Preparation of cotton fabric using sodium alginate-coated nanoparticles to protect against nosocomial pathogens. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.10.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
Moor KJ, Osuji CO, Kim JH. Dual-Functionality Fullerene and Silver Nanoparticle Antimicrobial Composites via Block Copolymer Templates. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33583-33591. [PMID: 27960391 DOI: 10.1021/acsami.6b10674] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present the facile prepartion of C70 and Ag nanoparticle (NP) loaded block copolymer (BCP) thin films, with C70 and Ag NPs working in tandem to provide virucidal and bactericidal activities, respectively. Polystyrene-block-poly-4-vinylpyridine (PS-P4VP) was used as a template, allowing C70 integration into PS domains and in situ formation of Ag NPs in P4VP domains, while providing control of the nanoscale spatial distribution of functionality as a function of BCP molecular weight (MW). C70 loaded PS-P4VP films were found to generate significant amounts of 1O2 under visible light illumination with no apparent dependence on BCP MW. An analogous C70 loaded PS homopolymer film produced notably less 1O2, highlighting a possible critical role of morphology on C70 photoactivity. The antimicrobial activity of Ag NP and C70 loaded composites against the model PR772 bacteriophage and Escherichia coli was assessed, finding synergistic inactivation afforded by the dual functionality. BCPs were demonstrated as versatile platforms for the preparation of multifunctional antimicrobial coatings toward combating diverse microbial communities.
Collapse
Affiliation(s)
- Kyle J Moor
- Department of Chemical & Environmental Engineering, School of Engineering & Applied Science, Yale University , 9 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Chinedum O Osuji
- Department of Chemical & Environmental Engineering, School of Engineering & Applied Science, Yale University , 9 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Jae-Hong Kim
- Department of Chemical & Environmental Engineering, School of Engineering & Applied Science, Yale University , 9 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| |
Collapse
|
48
|
Fitzgerald DJ, Renick PJ, Forrest EC, Tetens SP, Earnest DN, McMillan J, Kiedaisch BM, Shi L, Roche ED. Cadexomer iodine provides superior efficacy against bacterial wound biofilms in vitro and in vivo. Wound Repair Regen 2016; 25:13-24. [DOI: 10.1111/wrr.12497] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/14/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Daniel J. Fitzgerald
- Research & Development, Advanced Wound Development, Smith & Nephew; Heslington York United Kingdom
| | - Paul J. Renick
- Research & Development, Advanced Wound Development, Smith & Nephew; Fort Worth Texas
| | - Emma C. Forrest
- Research & Development, Advanced Wound Development, Smith & Nephew; Heslington York United Kingdom
| | - Shannon P. Tetens
- Research & Development, Advanced Wound Development, Smith & Nephew; Fort Worth Texas
| | - David N. Earnest
- Research & Development, Advanced Wound Development, Smith & Nephew; Fort Worth Texas
| | - Jillian McMillan
- Research & Development, Advanced Wound Development, Smith & Nephew; Heslington York United Kingdom
| | - Brett M. Kiedaisch
- Research & Development, Advanced Wound Development, Smith & Nephew; Fort Worth Texas
| | - Lei Shi
- Research & Development, Advanced Wound Development, Smith & Nephew; Fort Worth Texas
| | - Eric D. Roche
- Research & Development, Advanced Wound Development, Smith & Nephew; Fort Worth Texas
| |
Collapse
|
49
|
Shim I, Choi K, Hirano S. Oxidative stress and cytotoxic effects of silver ion in mouse lung macrophages J774.1 cells. J Appl Toxicol 2016; 37:471-478. [DOI: 10.1002/jat.3382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Ilseob Shim
- Department of Environmental Health Research; National Institute of Environmental Research; Republic of Korea
| | - Kyunghee Choi
- Department of Environmental Health Research; National Institute of Environmental Research; Republic of Korea
| | - Seishiro Hirano
- Center for Health and Environmental Risk Research; National Institute for Environmental Studies; Japan
| |
Collapse
|
50
|
Godoy-Gallardo M, Manzanares-Céspedes MC, Sevilla P, Nart J, Manzanares N, Manero JM, Gil FJ, Boyd SK, Rodríguez D. Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:538-45. [PMID: 27612745 DOI: 10.1016/j.msec.2016.07.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/14/2016] [Accepted: 07/08/2016] [Indexed: 11/25/2022]
Abstract
The aim of this study was to evaluate the in vivo effect of antibacterial modified dental implants in the first stages of peri-implantitis. Thirty dental implants were inserted in the mandibular premolar sites of 5 beagle dogs. Sites were randomly assigned to Ti (untreated implants, 10units), Ti_Ag (silver electrodeposition treatment, 10units), and Ti_TSP (silanization treatment, 10units). Coated implants were characterized by scanning electron microscopy, interferometry and X-ray photoelectron spectroscopy. Two months after implant insertion, experimental peri-implantitis was initiated by ligature placement. Ligatures were removed 2months later, and plaque formation was allowed for 2 additional months. Clinical and radiographic analyses were performed during the study. Implant-tissue samples were prepared for micro computed tomography, backscattered scanning electron microscopy, histomorphometric and histological analyses and ion release measurements. X-ray, SEM and histology images showed that vertical bone resorption in treated implants was lower than in the control group (P<0.05). This effect is likely due to the capacity of the treatments to reduce bacteria colonization on the implant surface. Histological analysis suggested an increase of peri-implant bone formation on silanized implants. However, the short post-ligature period was not enough to detect differences in clinical parameters among implant groups. Within the limits of this study, antibacterial surface treatments have a positive effect against bone resorption induced by peri-implantitis.
Collapse
Affiliation(s)
- Maria Godoy-Gallardo
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Pablo Sevilla
- Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), Barcelona, Spain
| | - José Nart
- Department of Periodontology, School of Dentistry, Universitat Internacional de Catalunya, Sant Cugat, Spain
| | - Norberto Manzanares
- Unidad de Anatomía y Embriología Humana, Faculty of Dentistry, University of Barcelona, Barcelona, Spain
| | - José M Manero
- Biomaterials, Biomechanics and Tissue Engineering Group, Dept. Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC-BarcelonaTECH), Barcelona, Spain; Centre for Research in NanoEngineering (CRNE), UPC-BarcelonaTECH, Barcelona, Spain
| | | | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Daniel Rodríguez
- Biomaterials, Biomechanics and Tissue Engineering Group, Dept. Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC-BarcelonaTECH), Barcelona, Spain; Centre for Research in NanoEngineering (CRNE), UPC-BarcelonaTECH, Barcelona, Spain.
| |
Collapse
|