1
|
Zhang J, Liu Y, Hu J, Leng G, Liu X, Cui Z, Wang W, Ma Y, Sha S. Cellulase Promotes Mycobacterial Biofilm Dispersal in Response to a Decrease in the Bacterial Metabolite Gamma-Aminobutyric Acid. Int J Mol Sci 2024; 25:1051. [PMID: 38256125 PMCID: PMC10816823 DOI: 10.3390/ijms25021051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Biofilm dispersal contributes to bacterial spread and disease transmission. However, its exact mechanism, especially that in the pathogen Mycobacterium tuberculosis, is unclear. In this study, the cellulase activity of the M. tuberculosis Rv0062 protein was characterized, and its effect on mycobacterial biofilm dispersal was analyzed by observation of the structure and components of Rv0062-treated biofilm in vitro. Meanwhile, the metabolite factors that induced cellulase-related biofilm dispersal were also explored with metabolome analysis and further validations. The results showed that Rv0062 protein had a cellulase activity with a similar optimum pH (6.0) and lower optimum temperature (30 °C) compared to the cellulases from other bacteria. It promoted mycobacterial biofilm dispersal by hydrolyzing cellulose, the main component of extracellular polymeric substrates of mycobacterial biofilm. A metabolome analysis revealed that 107 metabolites were significantly altered at different stages of M. smegmatis biofilm development. Among them, a decrease in gamma-aminobutyric acid (GABA) promoted cellulase-related biofilm dispersal, and this effect was realized with the down-regulation of the bacterial signal molecule c-di-GMP. All these findings suggested that cellulase promotes mycobacterial biofilm dispersal and that this process is closely associated with biofilm metabolite alterations.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Yingying Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Junxing Hu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Guangxian Leng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Xining Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Zailin Cui
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Wenzhen Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
- Department of Microbiology, Dalian Medical University, Dalian 116044, China
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| |
Collapse
|
2
|
Zhao D, Song YH, Li D, Zhang R, Xu JB, Shi K, Li JM, Leng X, Zong Y, Zeng FL, Gong QL, Du R. Mycobacterium tuberculosis Rv3435c regulates inflammatory cytokines and promotes the intracellular survival of recombinant Mycobacteria. Acta Trop 2023; 246:106974. [PMID: 37355194 DOI: 10.1016/j.actatropica.2023.106974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/14/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Mycobacterium tuberculosis is a pathogenic bacterium that is parasitic in macrophages and show high adaptation to the host's immune response. It can also trigger a complex immune response in the host. This relies on proteins encoded by a series of M. tuberculosis-encoded virulence genes. We found that the M. tuberculosis Rv3435c gene is highly conserved among pathogenic mycobacteria, and might be a virulence gene. To explore the gene function of Rv3435c, we used Mycobacterium smegmatis to construct a recombinant mycobacterium expressing Rv3435c heterologously. The results that Rv3435c is a cell wall-related protein that changes bacterial and colony morphology, inhibits the growth rate of recombinant mycobacteria, and enhances their resistance to various stresses. We also found that the fatty acid levels of the recombinant strain changed. Simultaneously, Rv3435c can inhibit the expression and secretion of inflammatory factors and host cell apoptosis, and enhance the survival of recombinant bacteria in macrophages. Experimental data indicated that Rv3435c might play an important role in Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Dan Zhao
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Ginseng and Antler Products Testing Center of the Ministry of Agricultural PRC, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Yu-Hao Song
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Dong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Rui Zhang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Jin-Biao Xu
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Kun Shi
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Jian-Ming Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Xue Leng
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Ying Zong
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Fan-Li Zeng
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China.
| | - Qing-Long Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China.
| | - Rui Du
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China.
| |
Collapse
|
3
|
Shi X, Li C, Cheng L, Ullah H, Sha S, Kang J, Ma X, Ma Y. Mycobacterium tuberculosis Rv1324 Protein Contributes to Mycobacterial Persistence and Causes Pathological Lung Injury in Mice by Inducing Ferroptosis. Microbiol Spectr 2023; 11:e0252622. [PMID: 36625672 PMCID: PMC9927160 DOI: 10.1128/spectrum.02526-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the pathogenic agent of tuberculosis (TB). Intracellular survival plays a central role in the pathogenesis of Mtb, a process that depends on an array of virulence factors for Mtb to colonize and proliferate within a host. Reactive nitrogen and oxygen species (RNS and ROS) are among the most effective antimycobacterial molecules generated by the host during infection. However, Mtb has evolved a number of proteins and enzymes to detoxify ROS and RNS. Secretory protein Rv1324, as a possible thioredoxin, might also have oxidoreductase activity against ROS and RNS during Mtb infection, and it is a potential virulence factor of Mtb. In this study, we investigated the biochemical properties of Mtb Rv1324 and its role in mycobacterial survival and virulence. The results showed that the Rv1324 protein had antioxidant activity and increased the survival of M. smegmatis that was exposed to ROS and RNS. In addition, Rv1324 enhanced the colonization ability of M. smegmatis in the lungs of mice. Further, mice infected with M. smegmatis harboring Rv1324 exhibited pathological injury and inflammation in the lung, which was mediated by ferroptosis. In summary, this study advances our understanding of the mechanisms of mycobacterial survival and pathogenesis, and it reveals a novel target for TB treatment. IMPORTANCE The intracellular survival of M. tuberculosis (Mtb) plays a crucial role in its pathogenesis, which depends on various Mtb oxidoreductases that are resistant to reactive oxygen and nitrogen species (ROS and RNS) that are generated by the host during Mtb infection. Secretory protein Rv1324 is a potential virulence factor of Mtb and is a possible thioredoxin that has oxidoreductase activity against ROS and RNS during Mtb infection. We investigated the biochemical properties of Mtb Rv1324 and its role in mycobacterial survival and virulence. It was confirmed that the Rv1324 protein had antioxidant activity and an increased mycobacterial resistance to ROS and RNS. In addition, Rv1324 enhanced mycobacterial persistence and induced pathological injury and inflammation in the lungs of mice by activating ferroptosis. This study advances our understanding of the mechanisms of mycobacterial survival and pathogenesis, and it reveals a novel target for TB treatment.
Collapse
Affiliation(s)
- Xiaoxia Shi
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
- Department of Experimental Teaching Center of Public Health, Dalian Medical University, Dalian, China
| | - Chunyu Li
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Lin Cheng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Hayan Ullah
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Jian Kang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Xiaochi Ma
- College of Integrative Medicine, Dalian Medical University, Dalian, China
- Pharmaceutical Research Center, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
- Department of Microbiology, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Li W, Deng W, Zhang N, Peng H, Xu Y. Mycobacterium tuberculosis Rv2387 Facilitates Mycobacterial Survival by Silencing TLR2/p38/JNK Signaling. Pathogens 2022; 11:pathogens11090981. [PMID: 36145413 PMCID: PMC9504853 DOI: 10.3390/pathogens11090981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can evade antimicrobial immunity and persist within macrophages by interfering with multiple host cellular functions through its virulence factors, causing latent tuberculosis. The Rv2387 protein has been identified as a putative effector that potentially participates in Mtb pathogenicity. To explore the role of the Rv2387 protein in host–mycobacteria interactions, we established recombinant M. smegmatis strains and RAW264.7 cell lines that stably express the Rv2387 protein. We found that this protein suppresses mycobacteria infection-induced macrophage apoptosis by inactivating caspase-3/-8, thus facilitating the intracellular survival of mycobacteria. In addition, Rv2387 inhibits the production of inflammatory cytokines in macrophages by specifically suppressing TLR2-dependent stimulation of p38 and JNK MAPK pathways. Moreover, we further determined that the Rv2387 protein conferred a growth advantage over recombinant M. smegmatis and suppressed the inflammatory response in a mouse infection model. Overall, these data suggested that Rv2387 facilitates mycobacteria to escape host immunity and might be an essential virulence factor in Mtb.
Collapse
Affiliation(s)
- Wu Li
- The Joint Center for Infection and Immunity, Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
- Correspondence: (W.L.); (Y.X.)
| | - Wanyan Deng
- The Joint Center for Infection and Immunity, Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nan Zhang
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
| | - Huijuan Peng
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
| | - Yi Xu
- The Joint Center for Infection and Immunity, Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (W.L.); (Y.X.)
| |
Collapse
|
5
|
Peng Y, Zhu X, Gao L, Wang J, Liu H, Zhu T, Zhu Y, Tang X, Hu C, Chen X, Chen H, Chen Y, Guo A. Mycobacterium tuberculosis Rv0309 Dampens the Inflammatory Response and Enhances Mycobacterial Survival. Front Immunol 2022; 13:829410. [PMID: 35281073 PMCID: PMC8907127 DOI: 10.3389/fimmu.2022.829410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
To reveal functions of novel Mycobacterium tuberculosis (M. tb) proteins responsible for modulating host innate immunity is essential to elucidation of mycobacterial pathogenesis. In this study, we aimed to identify the role of a putative protein Rv0309 encoded within RD8 of M. tb genome in inhibiting the host inflammatory response and the underlying mechanism, using in-vitro and in-vivo experiments. A recombinant M. smegmatis strain Ms_rv0309 expressing Rv0309 and a mutant Bacillus Calmette-Guérin (BCG)ΔRS01790 strain with deletion of BCG_RS01790, 100% homologue of Rv0309 in BCG, were constructed. Rv0309 was found to localize in the cell wall and be able to decrease cell wall permeability. Purified recombinant rRv0309 protein inhibited lipopolysaccharide-induced IL-6 release in RAW264.7 cells. BCG_RS01790 in BCG or Rv0309 in Ms_rv0309 strain greatly inhibited production of IL-6, IL-1β, and TNF-α in RAW264.7 cells. Similarly, BCGΔRS01790 strongly induced expression of these cytokines compared with wild-type BCG and complement strain, cBCGΔRS01790::RS01790. Further BCG_RS01790 or Rv0309 suppressed cytokine production through NF-κB p65/IκBα and MAPK ERK/JNK signaling. Importantly, BCG_RS01790 in BCG and Rv0309 in Ms_rv0309 strain enhanced mycobacterial survival in macrophages. Mice infected with BCGΔRS01790 exhibited high levels of IFN-γ, TNF-α and IL-1β, and large numbers of neutrophils and lymphocytes in the early stage, and minimal lung bacterial load and inflammatory damage in late stage of the experiment. In conclusion, the cell wall protein Rv0309 or BCG_RS01790 enhanced mycobacterial intracellular survival after infection likely through inhibition of the pro-inflammatory response and decrease of bacterial cell wall permeability, thereby contributing to mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Yongchong Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojie Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lin Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jieru Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Han Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yifan Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xin Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Huazhong Agriculture University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China.,International Research Center for Animal Disease, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Huazhong Agriculture University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China.,International Research Center for Animal Disease, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Fan X, Liu Z, Wan Z, Zou H, Ji M, Sun K, Gao R, Li Z, Li W. Prophage Gene Rv2650c Enhances Intracellular Survival of Mycobacterium smegmatis. Front Microbiol 2022; 12:819837. [PMID: 35111145 PMCID: PMC8801708 DOI: 10.3389/fmicb.2021.819837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022] Open
Abstract
Background Induced by the pathogen Mycobacterium tuberculosis, tuberculosis remains one of the most dangerous infectious diseases in the world. As a special virus, prophage is domesticated by its host and are major contributors to virulence factors for bacterial pathogenicity. The function of prophages and their genes in M. tuberculosis is still unknown. Methods Rv2650c is a prophage gene in M. tuberculosis genome. We constructed recombinant Mycobacterium smegmatis (M. smegmatis) to observe bacteria morphology and analyze the resistance to various adverse environments. Recombinant and control strains were used to infect macrophages, respectively. Furthermore, we performed ELISA experiments of infected macrophages. Results Rv2650c affected the spread of colonies of M. smegmatis and enhanced the resistance of M. smegmatis to macrophages and various stress agents such as acid, oxidative stress, and surfactant. ELISA experiments revealed that the Rv2650c can inhibit the expression of inflammatory factors TNF-α, IL-10, IL-1β, and IL-6. Conclusion This study demonstrates that the prophage gene Rv2650c can inhibit the spread of colonies and the expression of inflammatory factors and promote intracellular survival of M. smegmatis. These results build the foundation for the discovery of virulence factors of M. tuberculosis, and provide novel insights into the function of the prophage in Mycobacterium.
Collapse
Affiliation(s)
- Xiangyu Fan
- Country College of Biological Science and Technology, University of Jinan, Jinan, China
- *Correspondence: Xiangyu Fan,
| | - Zichen Liu
- Country College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Zhibin Wan
- School of Life Sciences, Neijiang Normal University, Neijiang, China
| | - Hanlu Zou
- School of Life Sciences, Neijiang Normal University, Neijiang, China
| | - Mengzhi Ji
- Country College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Kaili Sun
- Country College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Rongfeng Gao
- Country College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Zhongfang Li
- College of Food and Bioengineering, Hezhou University, Hezhou, China
- Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou University, Hezhou, China
- Zhongfang Li,
| | - Wu Li
- School of Life Sciences, Neijiang Normal University, Neijiang, China
- Wu Li,
| |
Collapse
|
7
|
Sha S, Shi Y, Tang Y, Jia L, Han X, Liu Y, Li X, Ma Y. Mycobacterium tuberculosis Rv1987 protein induces M2 polarization of macrophages through activating the PI3K/Akt1/mTOR signaling pathway. Immunol Cell Biol 2021; 99:570-585. [PMID: 33469941 DOI: 10.1111/imcb.12436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/29/2020] [Accepted: 01/18/2021] [Indexed: 01/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) can subvert host immune responses and survive in macrophages. Specific Mtb antigens play a critical role in this process. Rv1987, a secretory protein encoded by the gene rv1987 in the region of difference-2 (RD2) of the Mtb genome, is specifically expressed in pathogenic mycobacteria. Our previous work proved that Rv1987 induced a Th2 response in mice and enhanced mycobacterial survival in mouse lungs, but its effect on macrophages, the most important effector immune cell involved in killing Mtb, remains unclear. In this study, we used an M. smegmatis strain overexpressing Rv1987 protein to infect alveolar macrophages and the macrophage cell line RAW264.7 and analyzed the effect of Rv1987 protein on macrophage polarization. Rv1987 induced M2 polarization in macrophages both in vivo and in vitro. The bactericidal ability of these M2 polarized macrophages decreased remarkably, which resulted in the increased survival of bacteria in macrophages. Proteomics, RT-qPCR and western blotting results revealed that the PI3K/Akt1/mTOR signaling pathway was activated in Rv1987-induced M2 macrophages. Meanwhile, the SHIP molecule, a negative regulator of the PI3K/Akt1/mTOR signaling pathway, was significantly downregulated. These results suggest that Rv1987 plays an important role in modulating the host immune response and could be established as a potential drug target.
Collapse
Affiliation(s)
- Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Yang Shi
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Yawei Tang
- Department of Immunology, Dalian Medical University, Dalian, China
| | - Liqiu Jia
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Xiuyan Han
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Yuxin Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Xia Li
- Department of Immunology, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China.,Department of Microbiology, Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Togarsimalemath SK, Pushpamithran G, Schön T, Stendahl O, Blomgran R. Helminth Antigen Exposure Enhances Early Immune Control of Mycobacterium tuberculosis in Monocytes and Macrophages. J Innate Immun 2020; 13:148-163. [PMID: 33333522 DOI: 10.1159/000512279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Helminth and Mycobacterium tuberculosis (Mtb) coinfection is common and suggested to influence the risk of developing active tuberculosis (TB). It is known that helminths in contrast to TB induce a strong Th2 response in the host. However, the direct impact of helminth antigen exposure on host immunity against TB is largely unknown. Our aim was to explore the effects of helminth antigen exposure on the early immune control of Mtb in monocytes and macrophages. Ascaris lumbricoides (ASC) and Schistosoma mansoni (SM) protein antigens were used to study the immediate effect of helminth antigen exposure in monocytes, on monocyte-to-macrophage differentiation, or mature macrophages, in the control of virulent Mtb H37Rv. Pre-exposure of peripheral blood mononuclear cells reduced Mtb growth in monocytes, especially with SM, but no Th1/Th2 cytokines or activation markers indicated involvement of T cells. Monocytes exposed before maturing into macrophages reduced Mtb growth in macrophages (ASC), and pre-exposure of mature macrophages reduced (ASC) or kept Mtb growth at control levels (SM). This in vitro model shows how helminth infection directly affects the monocyte-macrophage axis at an early stage before cell-mediated immunity develops. During acute helminth coinfection or when helminth antigen concentration is elevated at the site of Mtb infection, these helminths provide an enhanced control and killing of Mtb owing to the direct stimulatory effect of helminth antigens on phagocytic cells.
Collapse
Affiliation(s)
- Shambhuprasad Kotresh Togarsimalemath
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Giggil Pushpamithran
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Thomas Schön
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.,Department of Infectious Diseases and Clinical Microbiology, Kalmar County Hospital, Kalmar, Sweden
| | - Olle Stendahl
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Robert Blomgran
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden,
| |
Collapse
|
9
|
Abdalla AE, Yan S, Zeng J, Deng W, Xie L, Xie J. Mycobacterium tuberculosis Rv0341 Promotes Mycobacterium Survival in In Vitro Hostile Environments and within Macrophages and Induces Cytokines Expression. Pathogens 2020; 9:pathogens9060454. [PMID: 32521796 PMCID: PMC7350357 DOI: 10.3390/pathogens9060454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium tuberculosis represents an ancient deadly human pathogen that can survive and multiply within macrophages. The effectors are key players for the successful pathogenesis of this bacterium. M. tuberculosis open reading frame (ORF) Rv0341, a pathogenic mycobacteria-specific gene, was found to be upregulated in macrophages isolated from human tuberculosis granuloma and inside the macrophages during in vitro infection by M. tuberculosis. To understand the exact role of this gene, we expressed the Rv0341 gene in M. smegmatis, which is a non-pathogenic Mycobacterium. We found that Rv0341 expression can alter colony morphology, reduce the sliding capability, and decrease the cell wall permeability of M. smegmatis. Furthermore, Rv0341 remarkably enhanced M. smegmatis survival within macrophages and under multiple in vitro stress conditions when compared with the control strain. Ms_Rv0341 significantly induced expression of TNF-α, IL-1β, and IL-10 compared with M. smegmatis harboring an empty vector. In summary, these data suggest that Rv0341 is one of the M. tuberculosis virulence determinants that can promote bacilli survival in harsh conditions and inside macrophages.
Collapse
Affiliation(s)
- Abualgasim Elgaili Abdalla
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Al Jouf 2014, Saudi Arabia
| | - Shuangquan Yan
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
| | - Jie Zeng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
| | - Wanyan Deng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
- Correspondence: ; Tel.: +86-135-9439-2126
| |
Collapse
|
10
|
Mycobacterium tuberculosis YrbE3A Promotes Host Innate Immune Response by Targeting NF-κB/JNK Signaling. Microorganisms 2020; 8:microorganisms8040584. [PMID: 32316659 PMCID: PMC7232258 DOI: 10.3390/microorganisms8040584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis is considered a successful pathogen with multiple strategies to undermine host immunity. The YrbE3A is encoded by Rv1964 within the RD15 region present in the genome of Mtb, but missing in M. bovis, M. bovis BCG (Pasteur) strain, and M. smegmatis (Ms). However, little is known about its function. In this study, the YrbE3A gene was cloned into pMV261 and expressed in Ms and BCG, while the strains with the vector served as the controls. The YrbE3A was expressed on the mycobacterial membrane, and the purified protein could stimulate RAW264.7 cells to produce IL-6. Furthermore, the effect of the recombinant strains on cytokine secretion by RAW264.7 was confirmed, which varied with the host strains. Ms_YrbE3A increased significantly higher levels of TNF-α and IL-6 than did Ms_vec, while BCG_YrbE3A enhanced higher TNF-α than BCG_vec. The pathways associated with NF-κB p65 and MAPK p38/JNK, other than Erk1/2, regulated this process. In addition, mice were infected with Ms_YrbE3A and Ms-vec and were kinetically examined. Compared to Ms-vec, Ms_YrbE3A induced more serious inflammatory damage, higher levels of TNF-α and IL-6, higher numbers of lymphocytes, neutrophils, and monocytes in a time-dependent way, but lower lung bacterial load in lung. These findings may contribute to a better understanding of Mtb pathogenesis.
Collapse
|
11
|
Wee WY, Dutta A, Jayaraj J, Choo SW. Comparative genome sequencing and analyses of Mycobacterium cosmeticum reveal potential for biodesulfization of gasoline. PLoS One 2019; 14:e0214663. [PMID: 30964891 PMCID: PMC6456199 DOI: 10.1371/journal.pone.0214663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/18/2019] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium cosmeticum is a nontuberculous Mycobacterium recovered from different water sources including household potable water and water collected at nail salon. Individual cases of this bacterium have been reported to be associated with gastrointestinal tract infections. Here we present the first whole-genome study and comparative analysis of two new clinically-derived Mycobacterium sp. UM_RHS (referred as UM_RHS after this) and Mycobacterium sp. UM_NYF (referred as UM_NYF after this) isolated from patients in Indonesia and Malaysia respectively to have a better understanding of the biological characteristic of these isolates. Both strains are likely Mycobacterium cosmeticum as supported by the evidence from molecular phylogenetic, comparative genomic and Average Nucleotide Identity (ANI) analyses. We found the presence of a considerably large number of putative virulence genes in the genomes of UM_RHS and UM_NYF. Interestingly, we also found a horizontally transferred genomic island carrying a putative dsz operon proposing that they may have potential to perform biodesulfization of dibenzothiophene (DBT) that may be effective in cost reduction and air pollution during fuel combustion. This comparative study may provide new insights into M. cosmeticum and serve as an important reference for future functional studies of this bacterial species.
Collapse
Affiliation(s)
- Wei Yee Wee
- Monash University Malaysia, School of Science, Bandar Sunway, Malaysia
| | - Avirup Dutta
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Human Genomics and Metagenomics in Metabolism, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Siew Woh Choo
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Suzhou, P. R. China
- Suzhou Genome Centre (SGC), Health Technologies University Research Centre (HT-URC), Xi’an Jiaotong-Liverpool University, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Suzhou, P. R. China
| |
Collapse
|
12
|
Long Q, Xiang X, Yin Q, Li S, Yang W, Sun H, Liu Q, Xie J, Deng W. PE_PGRS62 promotes the survival of Mycobacterium smegmatis within macrophages via disrupting ER stress-mediated apoptosis. J Cell Physiol 2019; 234:19774-19784. [PMID: 30937925 DOI: 10.1002/jcp.28577] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis, the leading causative agent of tuberculosis, remains one of the most deadly infectious pathogens. PE_PGRS proteins become a new focus as their species specificity in mycobacteria, especially in pathogenic mycobacteria. Despite intensive research, PE_PGRS proteins are still a mysterious aspect of mycobacterial pathogenesis with unknown mechanism. Herein, we focused on a PE_PGRS member from M. tuberculosis, PE_PGRS62, characterized by a surface-exposed protein function in disrupting phagolysosome maturation. Expression of PE_PGRS62 in Mycobacterium smegmatis, a nonpathogenic species naturally deficient in PE_PGRS genes, resulted in enhanced resistance to various in vitro stresses and cellular survival in macrophage. As a consequence, the cytokine profiles of macrophage were disturbed and cell apoptosis were inhibited via decreasing endoplasmic reticulum stress response.
Collapse
Affiliation(s)
- Quanxin Long
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaohong Xiang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Qingqin Yin
- Department of Respiratory Medicine, China National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Shuangjiang Li
- Department of Physical Examination Center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenmin Yang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, People's Republic of China
| | - Hang Sun
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, People's Republic of China
| | - Wanyan Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
13
|
Park HS, Back YW, Shin KW, Bae HS, Lee KI, Choi HG, Choi S, Lee HH, Choi CH, Park JK, Kim HJ. Mycobacterium tuberculosis Rv3463 induces mycobactericidal activity in macrophages by enhancing phagolysosomal fusion and exhibits therapeutic potential. Sci Rep 2019; 9:4246. [PMID: 30862819 PMCID: PMC6414722 DOI: 10.1038/s41598-019-38982-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
Macrophages are responsible for innate and adaptive immune response activation necessary for eliminating infections. Optimal activation of macrophages to phagocytize Mycobacterium tuberculosis is critical in anti-mycobacterial defense. Here, we identified a novel Rv3463 hypothetical protein that induces macrophage activation in Mtb culture filtrate. Recombinant Rv3463 activated mouse bone marrow-derived macrophages to induce the expression of surface molecules and secrete pro-inflammatory cytokines via the TLR2 and TLR4 pathways. Mitogen activated protein kinase, phospatidylinositol-4,5-bisphosphate 3-kinases, and the NF-κB signaling pathways are involved in Rv3463-mediated macrophage activation. Furthermore, Rv3463 induced bactericidal effects in Mtb-infected macrophages through phagosome maturation and phagolysosomal fusion enhanced by phospatidylinositol-4,5-bisphosphate 3-kinases and Ca2+ signaling pathways and exhibited therapeutic effects in a short-term Mtb-infection mouse model. Overexpression of Rv3463 in M. smegmatis caused rapid clearance of bacteria in macrophages and mice. Our study suggests that Rv3463 is a promising target for the development of post-exposure tuberculosis vaccines or adjunct immune-therapy.
Collapse
Affiliation(s)
- Hye-Soo Park
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yong Woo Back
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ki-Won Shin
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun Shik Bae
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kang-In Lee
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seunga Choi
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hwang-Ho Lee
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Chul Hee Choi
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeong-Kyu Park
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
14
|
Yao J, Du X, Chen S, Shao Y, Deng K, Jiang M, Liu J, Shen Z, Chen X, Feng G. Rv2346c enhances mycobacterial survival within macrophages by inhibiting TNF-α and IL-6 production via the p38/miRNA/NF-κB pathway. Emerg Microbes Infect 2018; 7:158. [PMID: 30232332 PMCID: PMC6145905 DOI: 10.1038/s41426-018-0162-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 11/21/2022]
Abstract
The intracellular survival of Mycobacterium tuberculosis (Mtb) has a central role in the pathogenesis of tuberculosis. Mtb Rv2346c is a member of 6-kDa early secreted antigenic target family of proteins, which are known to inhibit the host immune responses to promote bacillary persistence in macrophages. However, the mechanism through which Rv2346c participates in Mtb pathogenesis is unclear. In the present study, recombinant Rv2346c protein was synthesized and used to treat Bacillus Calmette–Guérin (BCG)-infected macrophages. The results showed that Rv2346c inhibited the proliferation of BCG-infected macrophages and enhanced the survival of BCG in macrophages. Tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 were upregulated during BCG infection but downregulated by Rv2346c. Additional experiments showed that nuclear transcription factor-κB (NF-κB) in BCG-infected macrophages induced the production of TNF-α and IL-6. In addition, miR-155 and miR-99b had a suppressive effect on NF-κB, and the expression of these miRNAs was promoted by p38. Furthermore, Rv2346c was shown to decrease the activation of NF-κB, whereas it enhanced the phosphorylation of p38 and the expression of miR-155 and miR-99b. The function of Rv2346c was also verified in Mtb-infected mice. The results showed that Rv2346c increased the observed bacterial load and lung injury and downregulated TNF-α and IL-6 in vivo. Overall, our results reveal that Rv2346c enhances mycobacterial survival in macrophages via inhibiting the production of TNF-α and IL-6 in a p38/miRNA/NF-κB pathway-dependent manner, suggesting that Rv2346c acts as a crucial virulence factor in Mtb infection and has potential use as a target for anti-tuberculosis therapy.
Collapse
Affiliation(s)
- Jing Yao
- Department of Respiratory Medicine, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Xingran Du
- Department of Infectious Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Sixia Chen
- Department of Respiratory Medicine, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Yan Shao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, China
| | - Kaili Deng
- Department of Respiratory Medicine, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Mingzi Jiang
- Department of Respiratory Medicine, the First People's Hospital of Kunshan, Kunshan, Jiangsu, 215300, China
| | - Jingning Liu
- Department of Respiratory Medicine, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Ziyan Shen
- Department of Respiratory Medicine, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Xiaolin Chen
- Department of Respiratory Medicine, Sir Run Run Hospital, Nanjing, Jiangsu, 211100, China
| | - Ganzhu Feng
- Department of Respiratory Medicine, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China.
| |
Collapse
|
15
|
Brown HA, Vinogradov E, Gilbert M, Holden HM. The Mycobacterium tuberculosis complex has a pathway for the biosynthesis of 4-formamido-4,6-dideoxy-d-glucose. Protein Sci 2018; 27:1491-1497. [PMID: 29761597 DOI: 10.1002/pro.3443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 11/08/2022]
Abstract
Recent studies have demonstrated that the O-antigens of some pathogenic bacteria such as Brucella abortus, Francisella tularensis, and Campylobacter jejuni contain quite unusual N-formylated sugars (3-formamido-3,6-dideoxy-d-glucose or 4-formamido-4,6-dideoxy-d-glucose). Typically, four enzymes are required for the formation of such sugars: a thymidylyltransferase, a 4,6-dehydratase, a pyridoxal 5'-phosphate or PLP-dependent aminotransferase, and an N-formyltransferase. To date, there have been no published reports of N-formylated sugars associated with Mycobacterium tuberculosis. A recent investigation from our laboratories, however, has demonstrated that one gene product from M. tuberculosis, Rv3404c, functions as a sugar N-formyltransferase. Given that M. tuberculosis produces l-rhamnose, both a thymidylyltransferase (Rv0334) and a 4,6-dehydratase (Rv3464) required for its formation have been identified. Thus, there is one remaining enzyme needed for the production of an N-formylated sugar in M. tuberculosis, namely a PLP-dependent aminotransferase. Here we demonstrate that the M. tuberculosis rv3402c gene encodes such an enzyme. Our data prove that M. tuberculosis contains all of the enzymatic activities required for the formation of dTDP-4-formamido-4,6-dideoxy-d-glucose. Indeed, the rv3402c gene product likely contributes to virulence or persistence during infection, though its temporal expression and location remain to be determined.
Collapse
Affiliation(s)
- Haley A Brown
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| | - Evgeny Vinogradov
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A OR6, Canada
| | - Michel Gilbert
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A OR6, Canada
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| |
Collapse
|
16
|
Rastogi R, Kumar A, Kaur J, Saini V, Kaur J, Bhatnagar A. Rv0646c, an esterase from M. tuberculosis, up-regulates the host immune response in THP-1 macrophages cells. Mol Cell Biochem 2018; 447:189-202. [DOI: 10.1007/s11010-018-3303-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022]
|
17
|
Zondervan NA, van Dam JCJ, Schaap PJ, Martins Dos Santos VAP, Suarez-Diez M. Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. Int J Mol Sci 2018; 19:E347. [PMID: 29364195 PMCID: PMC5855569 DOI: 10.3390/ijms19020347] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging. In order to develop novel intervention strategies, detailed understanding of the molecular mechanisms behind the success of this pathogen is required. Here, we review recent literature to provide a systems level overview of the molecular and cellular components involved in divalent metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis: immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview of these components and their regulation. Our analysis identified a single regulatory cascade for these three virulence strategies that respond to limited availability of divalent metals in the phagosome.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jesse C J van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
18
|
Sun C, Yang G, Yuan J, Peng X, Zhang C, Zhai X, Luo T, Bao L. Mycobacterium tuberculosis hypoxic response protein 1 (Hrp1) augments the pro-inflammatory response and enhances the survival of Mycobacterium smegmatis in murine macrophages. J Med Microbiol 2017; 66:1033-1044. [PMID: 28671529 DOI: 10.1099/jmm.0.000511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE The DosR/DosS two-component regulatory system of Mycobacterium tuberculosis regulates the expression of numerous genes under stress conditions and is important for the long-term survival of M. tuberculosis in the host. The rv2626c gene of M. tuberculosis is one of the most strongly induced transcripts of the dormancy regulon. This study focused on the immunological effects and possible function of Rv2626c in maintaining mycobacterial survival under various stress conditions. METHODOLOGY We heterologously expressed the Rv2626c protein in Mycobacterium smegmatis by constructing a recombinant strain Ms_rv2626c. The viability of Ms_rv2626c was evaluated both in vivo and ex vivo. Different stress conditions, including acidified sodium nitrite, malachite green, low pH, SDS and lysozyme, were used to evaluate the effect of Rv2626c on bacterial resistance. An in vitro assay using a macrophage infection model was utilized to investigate the potential effect of Rv2626c to alter the immune response of host cell and its associated pathways. The effect of Rv2626c on cell necrosis was also explored. RESULTS The expression of Rv2626c-enhanced M. smegmatis survival under hypoxia and nitric oxide stress in vitro, and this enhancement was maintained within macrophages and in mouse tissues. In addition, macrophages infected with M. smegmatis expressing Rv2626c showed significantly higher interleukin-1β (IL-1β), IL-6, tumour necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) expression, as well as a higher level of cell necrosis, compared with the control. CONCLUSION M. tuberculosis protein Rv2626c plays a significant role in stimulating macrophages to provoke a pro-inflammatory response and in mycobacterial survival during infection.
Collapse
Affiliation(s)
- Changfeng Sun
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Centre of Medical Sciences, Sichuan University, no. 17, 3rd Section, Ren Min Nan Road, Chengdu, Sichuan 610041, PR China
| | - Guoping Yang
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Centre of Medical Sciences, Sichuan University, no. 17, 3rd Section, Ren Min Nan Road, Chengdu, Sichuan 610041, PR China
| | - Jinning Yuan
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Centre of Medical Sciences, Sichuan University, no. 17, 3rd Section, Ren Min Nan Road, Chengdu, Sichuan 610041, PR China
| | - Xuan Peng
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Centre of Medical Sciences, Sichuan University, no. 17, 3rd Section, Ren Min Nan Road, Chengdu, Sichuan 610041, PR China
| | - Chunxi Zhang
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Centre of Medical Sciences, Sichuan University, no. 17, 3rd Section, Ren Min Nan Road, Chengdu, Sichuan 610041, PR China
| | - Xiaoqian Zhai
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Centre of Medical Sciences, Sichuan University, no. 17, 3rd Section, Ren Min Nan Road, Chengdu, Sichuan 610041, PR China
| | - Tao Luo
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Centre of Medical Sciences, Sichuan University, no. 17, 3rd Section, Ren Min Nan Road, Chengdu, Sichuan 610041, PR China
| | - Lang Bao
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Centre of Medical Sciences, Sichuan University, no. 17, 3rd Section, Ren Min Nan Road, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
19
|
Mycobacterium tuberculosis PE_PGRS41 Enhances the Intracellular Survival of M. smegmatis within Macrophages Via Blocking Innate Immunity and Inhibition of Host Defense. Sci Rep 2017; 7:46716. [PMID: 28440335 PMCID: PMC5404228 DOI: 10.1038/srep46716] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/23/2017] [Indexed: 01/17/2023] Open
Abstract
The success of Mycobacterium tuberculosis (M. tuberculosis) as a pathogen is largely contributes to its ability to manipulate the host immune responses. The genome of M. tuberculosis encodes multiple immune-modulatory proteins, including several members of the multi-genic PE_PPE family. Despite of intense research, the roles of PE_PGRS proteins in mycobacterial pathogenesis remain elusive. The function of M. tuberculosis PE_PGRS41, characterized by an extended and unique C-terminal domain, was studied. Expression of PE_PGRS41 in Mycobacterium smegmatis, a non-pathogenic species intrinsically deficient of PE_PGRS, severely impaired the resistance of the recombinant to multiple stresses via altering the cell wall integrity. Macrophages infected by M. smegmatis harboring PE_PGRS41 decreased the production of TNF-α, IL-1β and IL-6. In addition, PE_PGRS41 boosted the survival of M. smegmatis within macrophage accompanied with enhanced cytotoxic cell death through inhibiting the cell apoptosis and autophagy. Taken together, these results implicate that PE_PGRS41 is a virulence factor of M. tuberculosis and sufficient to confer pathogenic properties to M. smegmatis.
Collapse
|
20
|
Pandey S, Tripathi D, Khubaib M, Kumar A, Sheikh JA, Sumanlatha G, Ehtesham NZ, Hasnain SE. Mycobacterium tuberculosis Peptidyl-Prolyl Isomerases Are Immunogenic, Alter Cytokine Profile and Aid in Intracellular Survival. Front Cell Infect Microbiol 2017; 7:38. [PMID: 28261567 PMCID: PMC5310130 DOI: 10.3389/fcimb.2017.00038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/31/2017] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) has two peptidyl-prolyl isomerases (Ppiases) PpiA and PpiB, popularly known as cyclophilin A and cyclophilin B. The role of cyclophilins in processes such as signaling, cell surface recognition, chaperoning, and heat shock response has been well-documented. We present evidence that M. tb Ppiases modulate the host immune response. ELISA results revealed significant presence of antibodies to M. tb Ppiases in patient sera as compared to sera from healthy individuals. Treatment of THP-1 cells with increasing concentrations of rPpiA, induced secretion of pro-inflammatory cytokines TNF-α and IL-6. Alternatively, treatment with rPpiB inhibited secretion of TNF-α and induced secretion of IL-10. Furthermore, heterologous expression of M. tb PpiA and PpiB in Mycobacterium smegmatis increased bacterial survival in THP-1 cells as compared to those transformed with the vector control. Our results demonstrate that M. tb Ppiases are immunogenic proteins that can possibly modulate host immune response and enhance persistence of the pathogen within the host by subverting host cell generated stresses.
Collapse
Affiliation(s)
- Saurabh Pandey
- Inflammation Biology and Cell Signaling Laboratory, National Institute of PathologyNew Delhi, India; Department of Biology, Dr. Reddy's Institute of Life Sciences, University of HyderabadHyderabad, India
| | - Deeksha Tripathi
- Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of Technology New Delhi, India
| | - Mohd Khubaib
- Inflammation Biology and Cell Signaling Laboratory, National Institute of PathologyNew Delhi, India; Department of Biology, Dr. Reddy's Institute of Life Sciences, University of HyderabadHyderabad, India
| | - Ashutosh Kumar
- Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of Technology New Delhi, India
| | - Javaid A Sheikh
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology New Delhi, India
| | | | - Nasreen Z Ehtesham
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology New Delhi, India
| | - Seyed E Hasnain
- Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of TechnologyNew Delhi, India; Bhagwan Mahavir Medical Research CentreHyderabad, India; Jamia Hamdard, Institute of Molecular MedicineNew Delhi, India
| |
Collapse
|
21
|
Friedrich A, Pechstein J, Berens C, Lührmann A. Modulation of host cell apoptotic pathways by intracellular pathogens. Curr Opin Microbiol 2017; 35:88-99. [DOI: 10.1016/j.mib.2017.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/03/2016] [Accepted: 03/01/2017] [Indexed: 12/13/2022]
|
22
|
Sha S, Shi X, Deng G, Chen L, Xin Y, Ma Y. Mycobacterium tuberculosis Rv1987 induces Th2 immune responses and enhances Mycobacterium smegmatis survival in mice. Microbiol Res 2017; 197:74-80. [PMID: 28219528 DOI: 10.1016/j.micres.2017.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 01/13/2017] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis can interfere with host immune response and escape clearance through its specific antigens. M. tuberculosis Rv1987 encoded by region of difference (RD)-2 gene is a secretory protein with immunogenic potency. Here, we investigated the impact of Rv1987 on host cytokine responses and T cell polarization in mouse aerosol model. A recombinant M. smegmatis mc2155 strain that overexpressed Rv1987 protein (named MS1987) was constructed and used to infect C57BL/6 mice. The mc2155 harbored the empty vector (named MSVec) was as a control. The results showed that MS1987 challenged mice promoted Th2-biased cytokine responses with lower secretion of IFN-γ but higher production of IL-4 and Rv1987-specific IgG antibody compared to MSVec infected mice. Neutrophilic inflammation and high bacterial burden were observed in the lung tissues of MS1987 infected mice probably own to the failed Th1 cell immunity. Besides, subcutaneous injection of Rv1987 protein could mediate the Th1 cytokine responses caused by M. bovis BCG in mice. These results indicated that M. tuberculosis Rv1987 protein could modulate host immune response towards Th2 profile, which probably contributed to the immune evasion of bacteria from host elimination.
Collapse
Affiliation(s)
- Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W. Lushun South Road, Dalian 116044, China
| | - Xiaoxia Shi
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W. Lushun South Road, Dalian 116044, China
| | - Guoying Deng
- Department of Microbiology, Dalian Medical University, Dalian 116044, China
| | - Lina Chen
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Yi Xin
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W. Lushun South Road, Dalian 116044, China.
| |
Collapse
|
23
|
Velappan AB, Charan Raja MR, Datta D, Tsai YT, Halloum I, Wan B, Kremer L, Gramajo H, Franzblau SG, Kar Mahapatra S, Debnath J. Attenuation of Mycobacterium species through direct and macrophage mediated pathway by unsymmetrical diaryl urea. Eur J Med Chem 2016; 125:825-841. [PMID: 27750200 DOI: 10.1016/j.ejmech.2016.09.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/23/2016] [Accepted: 09/25/2016] [Indexed: 11/19/2022]
Abstract
Tuberculosis is a major threat for mankind and the emergence of resistance strain of Mycobacterium tuberculosis (Mtb) against first line antibiotics makes it lethal for human civilization. In this study, we have synthesized different diaryl urea derivatives targeting the inhibition of mycolic acid biosynthesis. Among the 39 synthesized molecules, compounds 46, 57, 58 and 86 showed MIC values ≤ 10 μg/ml against H37Rv and mc26030 strains. The best molecule with a methyl at ortho position of the first aromatic ring and prenyl group at the meta position of the second aromatic ring showed the MIC value of 5.2 μg/ml and 1 μg/ml against H37Rv and mc26030 respectively, with mammalian cytotoxicity of 163.4 μg/ml. The effective compounds showed selective inhibitory effect on mycolic acid (epoxy mycolate) biosynthesis in 14C-radiolabelled assay. At the same time these molecules also executed their potent immunomodulatory activity by up-regulation of IFN-γ and IL-12 and down-regulation of IL-10.
Collapse
Affiliation(s)
- Anand Babu Velappan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Tamilnadu 613401, India
| | - Mamilla R Charan Raja
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA University, Tamilnadu 613401, India
| | - Dhrubajyoti Datta
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Maharashtra 411008, India
| | - Yi Ting Tsai
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Iman Halloum
- Centre d'étude des Pathogènes pour la Biotechnologie et la Santé CNRS FRE3689, Université de Montpellier, 34293 Montpellier cedex 5, France
| | - Baojie Wan
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St. Chicago, IL 60612, USA
| | - Laurent Kremer
- Centre d'étude des Pathogènes pour la Biotechnologie et la Santé CNRS FRE3689, Université de Montpellier, 34293 Montpellier cedex 5, France; INSERM, CPBS, 34293 Montpellier Cedex 05, France
| | - Hugo Gramajo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St. Chicago, IL 60612, USA
| | - Santanu Kar Mahapatra
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA University, Tamilnadu 613401, India
| | - Joy Debnath
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Tamilnadu 613401, India.
| |
Collapse
|
24
|
Jurcic Smith KL, Lee S. Inhibition of apoptosis by Rv2456c through Nuclear factor-κB extends the survival of Mycobacterium tuberculosis. Int J Mycobacteriol 2016; 5:426-436. [PMID: 27931684 PMCID: PMC5975360 DOI: 10.1016/j.ijmyco.2016.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 02/03/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is an intracellular pathogen with several survival mechanisms aimed at subverting the host immune system. Apoptosis has been shown to be mycobactericidal, to activate CD8+ T cells, and to be modulated by mycobacterial proteins. Since few mycobacterial proteins have so far been directly implicated in the interactions between M. tuberculosis and host cell apoptosis, we screened M. tuberculosis H37Rv transposon mutants to identify mutants that fail to inhibit cell death (FID). One of these FID mutants, FID19, had a transposon insertion in Rv2456c and is important for survival in host cells. The lack of the protein resulted in enhanced caspase-3 mediated apoptosis, which is probably due to an inability to activate nuclear factor-κB. Additionally, FID19 infection enhanced polyfunctional CD8+ T cells and induced a higher frequency of interferon-γ secreting immune cells in a murine model. Taken together, our data suggest that Rv2456c is important for the survival of H37Rv by subduing the innate and ultimately adaptive immune responses of its host by preventing apoptosis of the infected cell. Better understanding of the host-mycobacterial interactions may be beneficial to develop novel drug targets and engineer more efficacious vaccine strains against tuberculosis.
Collapse
Affiliation(s)
- Kristen L Jurcic Smith
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Sunhee Lee
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
25
|
Zeng J, Deng W, Yang W, Luo H, Duan X, Xie L, Li P, Wang R, Fu T, Abdalla AE, Xie J. Mycobacterium tuberculosis Rv1152 is a Novel GntR Family Transcriptional Regulator Involved in Intrinsic Vancomycin Resistance and is a Potential Vancomycin Adjuvant Target. Sci Rep 2016; 6:28002. [PMID: 27349953 PMCID: PMC4923875 DOI: 10.1038/srep28002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 05/27/2016] [Indexed: 12/16/2022] Open
Abstract
Novel factors involved in Mycobacteria antibiotics resistance are crucial for better targets to combat the ever-increasing drug resistant strains. Mycobacterium tuberculosis Rv1152, a novel GntR family transcriptional regulator and a promising vancomycin adjuvant target, was firstly characterized in our study. Overexpression of Rv1152 in Mycobacterium smegmatis decreased bacterial susceptibility to vancomycin. Moreover, a deficiency in MSMEG_5174, an Rv1152 homolog made M. smegmatis more sensitive to vancomycin, which was reverted by complementing the MSMEG_5174 deficiency with Rv1152 of M. tuberculosis. Rv1152 negatively regulated four vancomycin responsive genes, namely genes encoding the ribosome binding protein Hsp, small unit of sulfate adenylyltransferase CysD, L-lysine-epsilon aminotransferase Lat, and protease HtpX. Taken together, Rv1152 controls the expression of genes required for the susceptibility to vancomycin. This is the first report that links the GntR family transcriptional factor with vancomycin susceptibility. Inhibitors of Rv1152 might be ideal vancomycin adjuvants for controlling multi-drug resistant Mycobacterial infections.
Collapse
Affiliation(s)
- Jie Zeng
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Wanyan Deng
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Wenmin Yang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Hongping Luo
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Xiangke Duan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Longxiang Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Ping Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Rui Wang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Tiwei Fu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Abualgasim Elgaili Abdalla
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.,Department of Clinical Microbiology, College of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Khartoum, Sudan
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
26
|
Li H, Li Q, Yu Z, Zhou M, Xie J. Mycobacterium tuberculosis PE13 (Rv1195) manipulates the host cell fate via p38-ERK-NF-κB axis and apoptosis. Apoptosis 2016; 21:795-808. [DOI: 10.1007/s10495-016-1249-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Jia H, Liu S, Wu J, Hou S, Xin T, Guo X, Yuan W, Gao X, Zhang G, Li M, Qu H, Zhu H. Recombinant TB9.8 of Mycobacterium bovis Triggers the Production of IL-12 p40 and IL-6 in RAW264.7 Macrophages via Activation of the p38, ERK, and NF-κB Signaling Pathways. Inflammation 2016; 38:1337-46. [PMID: 25577342 DOI: 10.1007/s10753-014-0105-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The TB9.8 of Mycobacterium bovis can induce strong antigen-specific T-cell responses in proliferation assays and IFN-γ assays. However, whether and how TB9.8 activates innate immune cells remain unclear. Therefore, recombinant protein TB9.8 (rTB9.8)-induced proinflammatory cytokine profile by RAW264.7 cells was investigated and the related signaling pathway was studied. Stimulation with rTB9.8 triggered RAW264.7 cells to produce IL-6 and IL-12 p40. In addition, rTB9.8 activated the mitogen-activated protein kinase (MAPK) cascade in RAW264.7 cells by inducing the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 kinase (p38) and also promoted nuclear translocation of phosphorylated p38 and ERK1/2. Furthermore, rTB9.8 activated nuclear factor κB (NF-κB) signaling pathway by inducing p65 translocation into the nucleus and the phosphorylation of IκBα in the cytosol. Blocking assays showed that specific inhibitors of ERK1/2, p38, and IκBα can significantly reduce the expression of IL-6 and IL-12 p40, which demonstrated that rTB9.8-mediated cytokine production is dependent on the activation of these kinases. Thus, this study demonstrates that rTB9.8 can activate RAW264.7 and trigger IL-6 and IL-12 p40 production via the ERK, p38, and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li W, Liu M, Xie J. Rv3369 Induces Cytokine Interleukin-1β Production and Enhances Mycobacterium smegmatis Intracellular Survival. J Interferon Cytokine Res 2015; 36:140-7. [PMID: 26588672 DOI: 10.1089/jir.2015.0090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The pathogenesis of tuberculosis, caused by Mycobacterium tuberculosis, is largely because of the pathogen's successful entry and survival within macrophages. We predicted that rv3369, a gene encoding a conserved protein, might play a role in the interactions with host cells. To test this, rv3369 gene was heterologously expressed in a nonpathogenic fast-growing Mycobacterium smegmatis strain. The recombinant strain survives better than the control within macrophages, accompanied by more host cell death and a marked higher secretion of interleukin-1β (IL-1β). Furthermore, pharmacological inhibition experiments showed that the NF-κB and ERK pathways were involved in the Rv3369-triggered IL-1β changes. These results provided evidence for the engagement of Rv3369 in the interaction between mycobacteria and host.
Collapse
Affiliation(s)
- Wu Li
- 1 Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing, China .,2 College of Life Sciences, Neijiang Normal University , Neijiang, China
| | - Minqiang Liu
- 1 Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing, China
| | - Jianping Xie
- 1 Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing, China
| |
Collapse
|
29
|
Kim BJ, Shim TS, Yi SY, Kim HC, Kim BR, Lee SY, Kook YH, Kim BJ. Mycobacterium massiliense Type II genotype leads to higher level of colony forming units and TNF-α secretion from human monocytes than Type I genotype. APMIS 2015; 123:895-902. [PMID: 26303945 DOI: 10.1111/apm.12436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/19/2015] [Indexed: 12/21/2022]
Abstract
Recently, we introduced a novel Mycobacterium massiliense Type II genotype from Korean patients, in which all isolates showed only a rough (R) colony morphotype. In this study, we sought to compare clinical factors and virulence potentials of two genotypes of M. massiliense, Type I and Type II. Patients infected with Type II tend to be younger at infection than those infected with Type I (56.7 vs 62.3, p = 0.051). Type II was more significantly related to R colony type than Type I (34.1% vs 94.1%, p < 0.001). The Type II strain showed significantly more colony forming units (CFUs) and higher levels of TNF-α secretion in infection of human monocytes than the Type I strain. The challenge of extracted glycopeptidolipid (GPL) into human monocytes indicated that the loss of GPL from the cell wall of the Type II genotype led to a higher level of TNF-α secretion in a toll-like receptor 2(TLR2)-dependent manner. Taken together, our data suggest that the M. massiliense Type II genotype shows higher virulence than Type I, which may be due to the induction of TNF-α via the loss of GPL from the Type II cell wall.
Collapse
Affiliation(s)
- Byoung-Jun Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul National University College of Medicine, Seoul, Korea
| | - Tae Sun Shim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Su-Yeon Yi
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul National University College of Medicine, Seoul, Korea
| | - Ho-Cheol Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bo-Ram Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul National University College of Medicine, Seoul, Korea
| | - So-Young Lee
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul National University College of Medicine, Seoul, Korea
| | - Yoon-Hoh Kook
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul National University College of Medicine, Seoul, Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Luo H, Zeng J, Huang Q, Liu M, Abdalla AE, Xie L, Wang H, Xie J. Mycobacterium tuberculosisRv1265 promotes mycobacterial intracellular survival and alters cytokine profile of the infected macrophage. J Biomol Struct Dyn 2015; 34:585-99. [DOI: 10.1080/07391102.2015.1046935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Fu YR, Gao KS, Ji R, Yi ZJ. Differential transcriptional response in macrophages infected with cell wall deficient versus normal Mycobacterium Tuberculosis. Int J Biol Sci 2015; 11:22-30. [PMID: 25552926 PMCID: PMC4278251 DOI: 10.7150/ijbs.10217] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/13/2014] [Indexed: 02/06/2023] Open
Abstract
Host-pathogen interactions determine the outcome following infection by mycobacterium tuberculosis (Mtb). Under adverse circumstances, normal Mtb can form cell-wall deficient (CWD) variants within macrophages, which have been considered an adaptive strategy for facilitating bacterial survival inside macrophages. However, the molecular mechanism by which infection of macrophages with different phenotypic Mtb elicits distinct responses of macrophages is not fully understood. To explore the molecular events triggered upon Mtb infection of macrophages, differential transcriptional responses of RAW264.7 cells infected with two forms of Mtb, CWD-Mtb and normal Mtb, were studied by microarray analysis. Some of the differentially regulated genes were confirmed by RT-qPCR in both RAW264.7 cells and primary macrophages. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was used to analyze functions of differentially expressed genes. Distinct gene expression patterns were observed between CWD-Mtb and normal Mtb group. Mapt was up-regulated, while NOS2 and IL-11 were down-regulated in CWD-Mtb infected RAW264.7 cells and primary macrophages compared with normal Mtb infected ones. Many deregulated genes were found to be related to macrophages activation, immune response, phagosome maturation, autophagy and lipid metabolism. KEGG analysis showed that the differentially expressed genes were mainly involved in MAPK signaling pathway, nitrogen metabolism, cytokine-cytokine receptor interaction and focal adhesion. Taken together, the present study showed that differential macrophage responses were induced by intracellular CWD-Mtb an normal Mtb infection, which suggested that interactions between macrophages and different phenotypic Mtb are very complex. The results provide evidence for further understanding of pathogenesis of CWD-Mtb and may help in improving strategies to eliminate intracellular CWD-Mtb.
Collapse
Affiliation(s)
- Yu-Rong Fu
- 1. Department of Laboratory Medicine of Affiliated Hospital of Weifang Medical University, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong and Medical Priority Speciality of Clinical Laboratory in Shandong Province, Weifang Medical University, Weifang 261031, China; ; 2. Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China
| | - Kun-Shan Gao
- 1. Department of Laboratory Medicine of Affiliated Hospital of Weifang Medical University, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong and Medical Priority Speciality of Clinical Laboratory in Shandong Province, Weifang Medical University, Weifang 261031, China
| | - Rui Ji
- 2. Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China
| | - Zheng-Jun Yi
- 1. Department of Laboratory Medicine of Affiliated Hospital of Weifang Medical University, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong and Medical Priority Speciality of Clinical Laboratory in Shandong Province, Weifang Medical University, Weifang 261031, China
| |
Collapse
|