1
|
Vieitas-Gaspar N, Soares-Cunha C, Rodrigues AJ. From valence encoding to motivated behavior: A focus on the nucleus accumbens circuitry. Neurosci Biobehav Rev 2025; 172:106125. [PMID: 40154653 DOI: 10.1016/j.neubiorev.2025.106125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
How do our brains determine whether something is good or bad? The brain's ability to evaluate stimuli as positive or negative - by attributing valence - is fundamental to survival and decision-making. Different brain regions have been associated with valence encoding, including the nucleus accumbens (NAc). The NAc is predominantly composed of GABAergic medium spiny neurons (MSNs), which segregate into two distinct populations based on their dopamine receptor expression: D1-receptor-expressing (D1-MSNs) and D2-receptor-expressing neurons (D2-MSNs). Classical models propose a binary functional role, where D1-MSNs exclusively mediated reward and positive valence, while D2-MSNs processed aversion and negative valence. However, we now recognize that NAc MSN subpopulations operate in a more complex manner than previously thought, often working cooperatively rather than antagonistically in valence-related behaviors. This review synthesizes our current knowledge of valence-encoding neurocircuitry, with emphasis on the NAc. We examine electrophysiological, calcium imaging, optogenetic, chemogenetic and pharmacological studies detailing the contribution of NAc medium spiny neurons for rewarding and aversive responses. Finally, we explore emerging technical innovations that promise to advance our understanding of how the mammalian brain encodes valence and translates it into behavior.
Collapse
Affiliation(s)
- Natacha Vieitas-Gaspar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
2
|
Cardozo Pinto DF, Pomrenze MB, Guo MY, Touponse GC, Chen APF, Bentzley BS, Eshel N, Malenka RC. Opponent control of reinforcement by striatal dopamine and serotonin. Nature 2025; 639:143-152. [PMID: 39586475 DOI: 10.1038/s41586-024-08412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
The neuromodulators dopamine (DA) and serotonin (5-hydroxytryptamine; 5HT) powerfully regulate associative learning1-8. Similarities in the activity and connectivity of these neuromodulatory systems have inspired competing models of how DA and 5HT interact to drive the formation of new associations9-14. However, these hypotheses have not been tested directly because it has not been possible to interrogate and manipulate multiple neuromodulatory systems in a single subject. Here we establish a mouse model that enables simultaneous genetic access to the brain's DA and 5HT neurons. Anterograde tracing revealed the nucleus accumbens (NAc) to be a putative hotspot for the integration of convergent DA and 5HT signals. Simultaneous recording of DA and 5HT axon activity, together with genetically encoded DA and 5HT sensor recordings, revealed that rewards increase DA signalling and decrease 5HT signalling in the NAc. Optogenetically dampening DA or 5HT reward responses individually produced modest behavioural deficits in an appetitive conditioning task, while blunting both signals together profoundly disrupted learning and reinforcement. Optogenetically reproducing DA and 5HT reward responses together was sufficient to drive the acquisition of new associations and supported reinforcement more potently than either manipulation did alone. Together, these results demonstrate that striatal DA and 5HT signals shape learning by exerting opponent control of reinforcement.
Collapse
Affiliation(s)
- Daniel F Cardozo Pinto
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew B Pomrenze
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Michaela Y Guo
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gavin C Touponse
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Allen P F Chen
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Neir Eshel
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Magnard R, Cheng Y, Zhou J, Province H, Thiriet N, Janak PH, Vandaele Y. Sequence termination cues drive habits via dopamine-mediated credit assignment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.16.618735. [PMID: 39463939 PMCID: PMC11507917 DOI: 10.1101/2024.10.16.618735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Mesolimbic dopamine (DA) neurons are central to sequence learning and habit formation. Yet, the mechanisms by which cue-induced DA neural activity drives goal-directed or habitual sequence execution remain unknown. We designed two novel tasks to investigate how sequence initiation and termination cues influence DA-driven behavioral strategies and learning. We found that sequence initiation and termination cues differentially affect reward expectation during action sequences, with only the termination cue contributing to greater outcome devaluation insensitivity, automaticity and behavioral chunking. Mesolimbic fiber photometry recording revealed that this habit-like behavior was associated with a rapid backpropagation in DA signals from the reward to the immediately preceding cue and with attenuated DA reward prediction error signals, which reflected greater behavioral inflexibility. Finally, in absence of external cues, brief optogenetic stimulation of VTA DA neurons at sequence termination was sufficient to drive automaticity and behavioral chunking. Our results highlight the critical role of cue-evoked DA signals at sequence termination in mediating credit assignment and driving the development of habitual action sequence execution.
Collapse
Affiliation(s)
- Robin Magnard
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| | - Yifeng Cheng
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| | - Joanna Zhou
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| | - Haley Province
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Patricia H. Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| | - Youna Vandaele
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| |
Collapse
|
4
|
Borruto AM, Calpe-López C, Spanagel R, Bernardi RE. Conditional deletion of the AMPA-GluA1 and NMDA-GluN1 receptor subunit genes in midbrain D1 neurons does not alter cocaine reward in mice. Neuropharmacology 2024; 258:110081. [PMID: 39002853 DOI: 10.1016/j.neuropharm.2024.110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Synaptic plasticity in the mesolimbic dopamine (DA) system contributes to the neural adaptations underlying addictive behaviors and relapse. However, the specific behavioral relevance of glutamatergic excitatory drive onto dopamine D1 receptor (D1R)-expressing neurons in mediating the reinforcing effect of cocaine remains unclear. Here, we investigated how midbrain AMPAR and NMDAR function modulate cocaine reward-related behavior using mutant mouse lines lacking the glutamate receptor genes Gria1 or Grin1 in D1R-expressing neurons (GluA1D1CreERT2 or GluN1D1CreERT2, respectively). We found that conditional genetic deletion of either GluA1 or GluN1 within this neuronal sub-population did not impact the ability of acute cocaine injection to increase intracranial self-stimulation (ICSS) ratio or reduced brain reward threshold compared to littermate controls. Additionally, our data demonstrate that deletion of GluA1 and GluN1 receptor subunits within D1R-expressing neurons did not affect cocaine reinforcement in an operant self-administration paradigm, as mutant mice showed comparable cocaine responses and intake to controls. Given the pivotal role of glutamate receptors in mediating relapse behavior, we further explored the impact of genetic deletion of AMPAR and NMDAR onto D1R-expressing neurons on cue-induced reinstatement following extinction. Surprisingly, deletion of AMPAR and NMDAR onto these neurons did not impair cue-induced reinstatement of cocaine-seeking behavior. These findings suggest that glutamatergic activity via NMDAR and AMPAR in D1R-expressing neurons may not exclusively mediate the reinforcing effects of cocaine and cue-induced reinstatement.
Collapse
MESH Headings
- Animals
- Cocaine/pharmacology
- Cocaine/administration & dosage
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Reward
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Mice
- Self Administration
- Male
- Mesencephalon/metabolism
- Mesencephalon/drug effects
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Neurons/metabolism
- Neurons/drug effects
- Mice, Knockout
- Dopamine Uptake Inhibitors/pharmacology
- Mice, Inbred C57BL
- Reinforcement, Psychology
- Nerve Tissue Proteins
Collapse
Affiliation(s)
- Anna Maria Borruto
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Claudia Calpe-López
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; German Center for Mental Health (DZPG), Partner Site Mannheim, Heidelberg, Ulm, Germany
| | - Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
5
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
6
|
Song R, Soler-Cedeño O, Xi ZX. Optical Intracranial Self-Stimulation (oICSS): A New Behavioral Model for Studying Drug Reward and Aversion in Rodents. Int J Mol Sci 2024; 25:3455. [PMID: 38542425 PMCID: PMC10970671 DOI: 10.3390/ijms25063455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/10/2024] [Accepted: 03/17/2024] [Indexed: 11/03/2024] Open
Abstract
Brain-stimulation reward, also known as intracranial self-stimulation (ICSS), is a commonly used procedure for studying brain reward function and drug reward. In electrical ICSS (eICSS), an electrode is surgically implanted into the medial forebrain bundle (MFB) in the lateral hypothalamus or the ventral tegmental area (VTA) in the midbrain. Operant lever responding leads to the delivery of electrical pulse stimulation. The alteration in the stimulation frequency-lever response curve is used to evaluate the impact of pharmacological agents on brain reward function. If a test drug induces a leftward or upward shift in the eICSS response curve, it implies a reward-enhancing or abuse-like effect. Conversely, if a drug causes a rightward or downward shift in the functional response curve, it suggests a reward-attenuating or aversive effect. A significant drawback of eICSS is the lack of cellular selectivity in understanding the neural substrates underlying this behavior. Excitingly, recent advancements in optical ICSS (oICSS) have facilitated the development of at least three cell type-specific oICSS models-dopamine-, glutamate-, and GABA-dependent oICSS. In these new models, a comparable stimulation frequency-lever response curve has been established and employed to study the substrate-specific mechanisms underlying brain reward function and a drug's rewarding versus aversive effects. In this review article, we summarize recent progress in this exciting research area. The findings in oICSS have not only increased our understanding of the neural mechanisms underlying drug reward and addiction but have also introduced a novel behavioral model in preclinical medication development for treating substance use disorders.
Collapse
Affiliation(s)
- Rui Song
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology (BIPT), 27th Taiping Road, Beijing 100850, China
| | - Omar Soler-Cedeño
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD 21224, USA;
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD 21224, USA;
| |
Collapse
|
7
|
Wolff AR, Saunders BT. Sensory Cues Potentiate VTA Dopamine Mediated Reinforcement. eNeuro 2024; 11:ENEURO.0421-23.2024. [PMID: 38238080 PMCID: PMC10875637 DOI: 10.1523/eneuro.0421-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
Sensory cues are critical for shaping decisions and invigorating actions during reward seeking. Dopamine neurons in the ventral tegmental area (VTA) are central in this process, supporting associative learning in Pavlovian and instrumental settings. Studies of intracranial self-stimulation (ICSS) behavior, which show that animals will work hard to receive stimulation of dopamine neurons, support the notion that dopamine transmits a reward or value signal to support learning. Recent studies have begun to question this, however, emphasizing dopamine's value-free functions, leaving its contribution to behavioral reinforcement somewhat muddled. Here, we investigated the role of sensory stimuli in dopamine-mediated reinforcement, using an optogenetic ICSS paradigm in tyrosine hydroxylase (TH)-Cre rats. We find that while VTA dopamine neuron activation in the absence of explicit external cues is sufficient to maintain robust self-stimulation, the presence of cues dramatically potentiates ICSS behavior. Our results support a framework where dopamine can have some base value as a reinforcer, but the impact of this signal is modulated heavily by the sensory learning context.
Collapse
Affiliation(s)
- Amy R Wolff
- Department of Neuroscience, University of Minnesota, Minneapolis 55455, Minnesota
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis 55455, Minnesota
| | - Benjamin T Saunders
- Department of Neuroscience, University of Minnesota, Minneapolis 55455, Minnesota
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis 55455, Minnesota
| |
Collapse
|
8
|
Xu X, Zheng S, Ren J, Li Z, Li J, Xu Z, Yuan F, Yang Q, Margetts AV, Pollock TA, Vilca SJ, Yang C, Chen G, Shen P, Li S, Xia J, Chen C, Zhou T, Zhu Y, Tuesta LM, Wang L, Kenny PJ, Liu XA, Chen Z. Hypothalamic CRF neurons facilitate brain reward function. Curr Biol 2024; 34:389-402.e5. [PMID: 38215742 PMCID: PMC10842365 DOI: 10.1016/j.cub.2023.12.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 11/14/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Aversive stimuli activate corticotropin-releasing factor (CRF)-expressing neurons in the paraventricular nucleus of hypothalamus (PVNCRF neurons) and other brain stress systems to facilitate avoidance behaviors. Appetitive stimuli also engage the brain stress systems, but their contributions to reward-related behaviors are less well understood. Here, we show that mice work vigorously to optically activate PVNCRF neurons in an operant chamber, indicating a reinforcing nature of these neurons. The reinforcing property of these neurons is not mediated by activation of the hypothalamic-pituitary-adrenal (HPA) axis. We found that PVNCRF neurons send direct projections to the ventral tegmental area (VTA), and selective activation of these projections induced robust self-stimulation behaviors, without activation of the HPA axis. Similar to the PVNCRF cell bodies, self-stimulation of PVNCRF-VTA projection was dramatically attenuated by systemic pretreatment of CRF receptor 1 or dopamine D1 receptor (D1R) antagonist and augmented by corticosterone synthesis inhibitor metyrapone, but not altered by dopamine D2 receptor (D2R) antagonist. Furthermore, we found that activation of PVNCRF-VTA projections increased c-Fos expression in the VTA dopamine neurons and rapidly triggered dopamine release in the nucleus accumbens (NAc), and microinfusion of D1R or D2R antagonist into the NAc decreased the self-stimulation of these projections. Together, our findings reveal an unappreciated role of PVNCRF neurons and their VTA projections in driving reward-related behaviors, independent of their core neuroendocrine functions. As activation of PVNCRF neurons is the final common path for many stress systems, our study suggests a novel mechanism underlying the positive reinforcing effect of stressful stimuli.
Collapse
Affiliation(s)
- Xinli Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Shuidiao Zheng
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou 510130, Guangdong, China
| | - Jiayan Ren
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Zixuan Li
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyan Li
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Zhibin Xu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Feng Yuan
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Qixing Yang
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Alexander V Margetts
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Tate A Pollock
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Samara J Vilca
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Canyu Yang
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Gaowei Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Peilei Shen
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jianxun Xia
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou 510970, Guangdong, China
| | - Chuyun Chen
- The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou 510130, Guangdong, China
| | - Tao Zhou
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luis M Tuesta
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Liping Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin-An Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Ye Q, Nunez J, Zhang X. Zona incerta dopamine neurons encode motivational vigor in food seeking. SCIENCE ADVANCES 2023; 9:eadi5326. [PMID: 37976360 PMCID: PMC10656063 DOI: 10.1126/sciadv.adi5326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Energy deprivation triggers food seeking to ensure homeostatic consumption, but the neural coding of motivational vigor in food seeking during physical hunger remains unknown. Here, we report that ablation of dopamine (DA) neurons in zona incerta (ZI) but not ventral tegmental area potently impaired food seeking after fasting. ZI DA neurons and their projections to paraventricular thalamus (PVT) were quickly activated for food approach but inhibited during food consumption. Chemogenetic manipulation of ZI DA neurons bidirectionally regulated feeding motivation to control meal frequency but not meal size for food intake. Activation of ZI DA neurons promoted, but silencing of these neurons blocked, contextual memory associate with food reward. In addition, selective activation of ZI DA projections to PVT promoted food seeking for food consumption and transited positive-valence signals. Together, these findings reveal that ZI DA neurons encode motivational vigor in food seeking for food consumption through their projections to PVT.
Collapse
|
10
|
Wolff AR, Saunders BT. Sensory cues potentiate VTA dopamine mediated reinforcement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562986. [PMID: 37904916 PMCID: PMC10614908 DOI: 10.1101/2023.10.18.562986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Sensory cues are critical for shaping decisions and invigorating actions during reward seeking. Dopamine neurons in the ventral tegmental area (VTA) are critical in this process, supporting associative learning in Pavlovian and instrumental settings. Studies of intracranial self stimulation (ICSS) behavior, which show that animals will work hard to receive stimulation of dopamine neurons, support the notion that dopamine transmits a reward or value signal to support learning. Recent studies have begun to question this, however, emphasizing dopamine's value-free functions, leaving its contribution to behavioral reinforcement somewhat muddled. Here, we investigated the role of sensory stimuli in dopamine-mediated reinforcement, using an optogenetic ICSS paradigm in tyrosine hydroxylase (TH)-cre rats. We find that while VTA dopamine neuron activation in the absence of any external cueing stimulus is sufficient to maintain robust self stimulation, the presence of cues dramatically potentiates ICSS behavior. Our results support a framework where dopamine can have some base value as a reinforcer, but the impact of this signal is modulated heavily by the sensory learning context.
Collapse
Affiliation(s)
- Amy R Wolff
- Department of Neuroscience, University of Minnesota
- Medical Discovery Team on Addiction, University of Minnesota
| | - Benjamin T Saunders
- Department of Neuroscience, University of Minnesota
- Medical Discovery Team on Addiction, University of Minnesota
| |
Collapse
|
11
|
Ye Q, Nunez J, Zhang X. Zona incerta dopamine neurons encode motivational vigor in food seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547060. [PMID: 37425830 PMCID: PMC10327402 DOI: 10.1101/2023.06.29.547060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Energy deprivation triggers food seeking to ensure homeostatic consumption, but the neural coding of motivational vigor in food seeking during physical hunger remains unknown. Here, we report that ablation of dopamine (DA) neurons in zona incerta (ZI) but not ventral tegmental area potently impaired food seeking after fasting. ZI DA neurons were quickly activated for food approach but inhibited during food consumption. Chemogenetic manipulation of ZI DA neurons bidirectionally regulated feeding motivation to control meal frequency but not meal size for food intake. In addition, activation of ZI DA neurons and their projections to paraventricular thalamus transited positive-valence signals to promote acquisition and expression of contextual food memory. Together, these findings reveal that ZI DA neurons encode motivational vigor in food seeking for homeostatic eating. One Sentence Summary Activation of ZI DA neurons vigorously drives and maintains food-seeking behaviors to ensure food consumption triggered by energy deprivation through inhibitory DA ZI-PVT transmissions that transit positive-valence signals associated with contextual food memory.
Collapse
|
12
|
Ishino S, Kamada T, Sarpong GA, Kitano J, Tsukasa R, Mukohira H, Sun F, Li Y, Kobayashi K, Naoki H, Oishi N, Ogawa M. Dopamine error signal to actively cope with lack of expected reward. SCIENCE ADVANCES 2023; 9:eade5420. [PMID: 36897945 PMCID: PMC10005178 DOI: 10.1126/sciadv.ade5420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/06/2023] [Indexed: 06/17/2023]
Abstract
To obtain more of a particular uncertain reward, animals must learn to actively overcome the lack of reward and adjust behavior to obtain it again. The neural mechanisms underlying such coping with reward omission remain unclear. Here, we developed a task in rats to monitor active behavioral switch toward the next reward after no reward. We found that some dopamine neurons in the ventral tegmental area exhibited increased responses to unexpected reward omission and decreased responses to unexpected reward, following the opposite responses of the well-known dopamine neurons that signal reward prediction error (RPE). The dopamine increase reflected in the nucleus accumbens correlated with behavioral adjustment to actively overcome unexpected no reward. We propose that these responses signal error to actively cope with lack of expected reward. The dopamine error signal thus cooperates with the RPE signal, enabling adaptive and robust pursuit of uncertain reward to ultimately obtain more reward.
Collapse
Affiliation(s)
- Seiya Ishino
- Medical Innovation Center/SK Project, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Taisuke Kamada
- Medical Innovation Center/SK Project, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Gideon A. Sarpong
- Medical Innovation Center/SK Project, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Julia Kitano
- Medical Innovation Center/SK Project, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Reo Tsukasa
- Medical Innovation Center/SK Project, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hisa Mukohira
- Medical Innovation Center/SK Project, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Fangmiao Sun
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Honda Naoki
- Laboratory of Data-driven Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Theoretical Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Laboratory of Theoretical Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
- Kansei-Brain Informatics Group, Center for Brain, Mind and Kansei Sciences Research (BMK Center), Hiroshima University, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Naoya Oishi
- Medical Innovation Center/SK Project, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masaaki Ogawa
- Medical Innovation Center/SK Project, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
13
|
Anderson EM, Tsvetkov E, Galante A, DeVries D, McCue LM, Wood D, Barry S, Berto S, Lavin A, Taniguchi M, Cowan CW. Epigenetic function during heroin self-administration controls future relapse-associated behavior in a cell type-specific manner. Proc Natl Acad Sci U S A 2023; 120:e2210953120. [PMID: 36745812 PMCID: PMC9963300 DOI: 10.1073/pnas.2210953120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
Opioid use produces enduring associations between drug reinforcement/euphoria and discreet or diffuse cues in the drug-taking environment. These powerful associations can trigger relapse in individuals recovering from opioid use disorder (OUD). Here, we sought to determine whether the epigenetic enzyme, histone deacetylase 5 (HDAC5), regulates relapse-associated behavior in an animal model of OUD. We examined the effects of nucleus accumbens (NAc) HDAC5 on both heroin- and sucrose-seeking behaviors using operant self-administration paradigms. We utilized cre-dependent viral-mediated approaches to investigate the cell-type-specific effects of HDAC5 on heroin-seeking behavior, gene expression, and medium spiny neuron (MSN) cell and synaptic physiology. We found that NAc HDAC5 functions during the acquisition phase of heroin self-administration to limit future relapse-associated behavior. Moreover, overexpressing HDAC5 in the NAc suppressed context-associated and reinstated heroin-seeking behaviors, but it did not alter sucrose seeking. We also found that HDAC5 functions within dopamine D1 receptor-expressing MSNs to suppress cue-induced heroin seeking, and within dopamine D2 receptor-expressing MSNs to suppress drug-primed heroin seeking. Assessing cell-type-specific transcriptomics, we found that HDAC5 reduced expression of multiple ion transport genes in both D1- and D2-MSNs. Consistent with this observation, HDAC5 also produced firing rate depression in both MSN classes. These findings revealed roles for HDAC5 during active heroin use in both D1- and D2-MSNs to limit distinct triggers of drug-seeking behavior. Together, our results suggest that HDAC5 might limit relapse vulnerability through regulation of ion channel gene expression and suppression of MSN firing rates during active heroin use.
Collapse
Affiliation(s)
- Ethan M. Anderson
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Allison Galante
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Derek DeVries
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Lauren M. McCue
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Daniel Wood
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Sarah Barry
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Antonieta Lavin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| | - Christopher W. Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC29425
| |
Collapse
|
14
|
Soares-Cunha C, Heinsbroek JA. Ventral pallidal regulation of motivated behaviors and reinforcement. Front Neural Circuits 2023; 17:1086053. [PMID: 36817646 PMCID: PMC9932340 DOI: 10.3389/fncir.2023.1086053] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
The interconnected nuclei of the ventral basal ganglia have long been identified as key regulators of motivated behavior, and dysfunction of this circuit is strongly implicated in mood and substance use disorders. The ventral pallidum (VP) is a central node of the ventral basal ganglia, and recent studies have revealed complex VP cellular heterogeneity and cell- and circuit-specific regulation of reward, aversion, motivation, and drug-seeking behaviors. Although the VP is canonically considered a relay and output structure for this circuit, emerging data indicate that the VP is a central hub in an extensive network for reward processing and the regulation of motivation that extends beyond classically defined basal ganglia borders. VP neurons respond temporally faster and show more advanced reward coding and prediction error processing than neurons in the upstream nucleus accumbens, and regulate the activity of the ventral mesencephalon dopamine system. This review will summarize recent findings in the literature and provide an update on the complex cellular heterogeneity and cell- and circuit-specific regulation of motivated behaviors and reinforcement by the VP with a specific focus on mood and substance use disorders. In addition, we will discuss mechanisms by which stress and drug exposure alter the functioning of the VP and produce susceptibility to neuropsychiatric disorders. Lastly, we will outline unanswered questions and identify future directions for studies necessary to further clarify the central role of VP neurons in the regulation of motivated behaviors. Significance: Research in the last decade has revealed a complex cell- and circuit-specific role for the VP in reward processing and the regulation of motivated behaviors. Novel insights obtained using cell- and circuit-specific interrogation strategies have led to a major shift in our understanding of this region. Here, we provide a comprehensive review of the VP in which we integrate novel findings with the existing literature and highlight the emerging role of the VP as a linchpin of the neural systems that regulate motivation, reward, and aversion. In addition, we discuss the dysfunction of the VP in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
15
|
Johnson CS, Mermelstein PG. The interaction of membrane estradiol receptors and metabotropic glutamate receptors in adaptive and maladaptive estradiol-mediated motivated behaviors in females. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:33-91. [PMID: 36868633 DOI: 10.1016/bs.irn.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Estrogen receptors were initially identified as intracellular, ligand-regulated transcription factors that result in genomic change upon ligand binding. However, rapid estrogen receptor signaling initiated outside of the nucleus was also known to occur via mechanisms that were less clear. Recent studies indicate that these traditional receptors, estrogen receptor α and estrogen receptor β, can also be trafficked to act at the surface membrane. Signaling cascades from these membrane-bound estrogen receptors (mERs) can rapidly alter cellular excitability and gene expression, particularly through the phosphorylation of CREB. A principal mechanism of neuronal mER action has been shown to occur through glutamate-independent transactivation of metabotropic glutamate receptors (mGlu), which elicits multiple signaling outcomes. The interaction of mERs with mGlu has been shown to be important in many diverse functions in females, including driving motivated behaviors. Experimental evidence suggests that a large part of estradiol-induced neuroplasticity and motivated behaviors, both adaptive and maladaptive, occurs through estradiol-dependent mER activation of mGlu. Herein we will review signaling through estrogen receptors, both "classical" nuclear receptors and membrane-bound receptors, as well as estradiol signaling through mGlu. We will focus on how the interactions of these receptors and their downstream signaling cascades are involved in driving motivated behaviors in females, discussing a representative adaptive motivated behavior (reproduction) and maladaptive motivated behavior (addiction).
Collapse
Affiliation(s)
- Caroline S Johnson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
16
|
Chen W. Neural circuits provide insights into reward and aversion. Front Neural Circuits 2022; 16:1002485. [PMID: 36389177 PMCID: PMC9650032 DOI: 10.3389/fncir.2022.1002485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023] Open
Abstract
Maladaptive changes in the neural circuits associated with reward and aversion result in some common symptoms, such as drug addiction, anxiety, and depression. Historically, the study of these circuits has been hampered by technical limitations. In recent years, however, much progress has been made in understanding the neural mechanisms of reward and aversion owing to the development of technologies such as cell type-specific electrophysiology, neuronal tracing, and behavioral manipulation based on optogenetics. The aim of this paper is to summarize the latest findings on the mechanisms of the neural circuits associated with reward and aversion in a review of previous studies with a focus on the ventral tegmental area (VTA), nucleus accumbens (NAc), and basal forebrain (BF). These findings may inform efforts to prevent and treat mental illnesses associated with dysfunctions of the brain's reward and aversion system.
Collapse
|
17
|
López-Gutiérrez MF, Mejía-Chávez S, Alcauter S, Portillo W. The neural circuits of monogamous behavior. Front Neural Circuits 2022; 16:978344. [PMID: 36247729 PMCID: PMC9559370 DOI: 10.3389/fncir.2022.978344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
The interest in studying the neural circuits related to mating behavior and mate choice in monogamous species lies in the parallels found between human social structure and sexual behavior and that of other mammals that exhibit social monogamy, potentially expanding our understanding of human neurobiology and its underlying mechanisms. Extensive research has suggested that social monogamy, as opposed to non-monogamy in mammals, is a consequence of the neural encoding of sociosensory information from the sexual partner with an increased reward value. Thus, the reinforced value of the mate outweighs the reward value of mating with any other potential sexual partners. This mechanism reinforces the social relationship of a breeding pair, commonly defined as a pair bond. In addition to accentuated prosocial behaviors toward the partner, other characteristic behaviors may appear, such as territorial and partner guarding, selective aggression toward unfamiliar conspecifics, and biparental care. Concomitantly, social buffering and distress upon partner separation are also observed. The following work intends to overview and compare known neural and functional circuits that are related to mating and sexual behavior in monogamous mammals. We will particularly discuss reports on Cricetid rodents of the Microtus and Peromyscus genus, and New World primates (NWP), such as the Callicebinae subfamily of the titi monkey and the marmoset (Callithrix spp.). In addition, we will mention the main factors that modulate the neural circuits related to social monogamy and how that modulation may reflect phenotypic differences, ultimately creating the widely observed diversity in social behavior.
Collapse
Affiliation(s)
| | | | | | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| |
Collapse
|
18
|
Grella SL, Fortin AH, Ruesch E, Bladon JH, Reynolds LF, Gross A, Shpokayte M, Cincotta C, Zaki Y, Ramirez S. Reactivating hippocampal-mediated memories during reconsolidation to disrupt fear. Nat Commun 2022; 13:4733. [PMID: 36096993 PMCID: PMC9468169 DOI: 10.1038/s41467-022-32246-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
Memories are stored in the brain as cellular ensembles activated during learning and reactivated during retrieval. Using the Tet-tag system in mice, we label dorsal dentate gyrus neurons activated by positive, neutral or negative experiences with channelrhodopsin-2. Following fear-conditioning, these cells are artificially reactivated during fear memory recall. Optical stimulation of a competing positive memory is sufficient to update the memory during reconsolidation, thereby reducing conditioned fear acutely and enduringly. Moreover, mice demonstrate operant responding for reactivation of a positive memory, confirming its rewarding properties. These results show that interference from a rewarding experience can counteract negative affective states. While memory-updating, induced by memory reactivation, involves a relatively small set of neurons, we also find that activating a large population of randomly labeled dorsal dentate gyrus neurons is effective in promoting reconsolidation. Importantly, memory-updating is specific to the fear memory. These findings implicate the dorsal dentate gyrus as a potential therapeutic node for modulating memories to suppress fear.
Collapse
Affiliation(s)
- Stephanie L Grella
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, 02215, USA
- Department of Psychology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Amanda H Fortin
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Evan Ruesch
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - John H Bladon
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, 02215, USA
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Leanna F Reynolds
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Abby Gross
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Monika Shpokayte
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Christine Cincotta
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Yosif Zaki
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Steve Ramirez
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
19
|
Pyurveev SS, Sizov VV, Lebedev AA, Bychkov ER, Mukhin VN, Droblenkov AV, Shabanov PD. Registration of Changes in the Level of Extracellular Dopamine in the Nucleus Accumbens by Fast-Scan Cyclic Voltammetry during Stimulation of the Zone of the Ventral Tegmentаl Area, Which Also Caused a Self-Stimulation. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Le N, Sayers S, Mata-Pacheco V, Wagner EJ. The PACAP Paradox: Dynamic and Surprisingly Pleiotropic Actions in the Central Regulation of Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:877647. [PMID: 35721722 PMCID: PMC9198406 DOI: 10.3389/fendo.2022.877647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP), a pleiotropic neuropeptide, is widely distributed throughout the body. The abundance of PACAP expression in the central and peripheral nervous systems, and years of accompanying experimental evidence, indicates that PACAP plays crucial roles in diverse biological processes ranging from autonomic regulation to neuroprotection. In addition, PACAP is also abundantly expressed in the hypothalamic areas like the ventromedial and arcuate nuclei (VMN and ARC, respectively), as well as other brain regions such as the nucleus accumbens (NAc), bed nucleus of stria terminalis (BNST), and ventral tegmental area (VTA) - suggesting that PACAP is capable of regulating energy homeostasis via both the homeostatic and hedonic energy balance circuitries. The evidence gathered over the years has increased our appreciation for its function in controlling energy balance. Therefore, this review aims to further probe how the pleiotropic actions of PACAP in regulating energy homeostasis is influenced by sex and dynamic changes in energy status. We start with a general overview of energy homeostasis, and then introduce the integral components of the homeostatic and hedonic energy balance circuitries. Next, we discuss sex differences inherent to the regulation of energy homeostasis via these two circuitries, as well as the activational effects of sex steroid hormones that bring about these intrinsic disparities between males and females. Finally, we explore the multifaceted role of PACAP in regulating homeostatic and hedonic feeding through its actions in regions like the NAc, BNST, and in particular the ARC, VMN and VTA that occur in sex- and energy status-dependent ways.
Collapse
Affiliation(s)
- Nikki Le
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Sarah Sayers
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Veronica Mata-Pacheco
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Edward J. Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
21
|
Swanson JL, Chin PS, Romero JM, Srivastava S, Ortiz-Guzman J, Hunt PJ, Arenkiel BR. Advancements in the Quest to Map, Monitor, and Manipulate Neural Circuitry. Front Neural Circuits 2022; 16:886302. [PMID: 35719420 PMCID: PMC9204427 DOI: 10.3389/fncir.2022.886302] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Neural circuits and the cells that comprise them represent the functional units of the brain. Circuits relay and process sensory information, maintain homeostasis, drive behaviors, and facilitate cognitive functions such as learning and memory. Creating a functionally-precise map of the mammalian brain requires anatomically tracing neural circuits, monitoring their activity patterns, and manipulating their activity to infer function. Advancements in cell-type-specific genetic tools allow interrogation of neural circuits with increased precision. This review provides a broad overview of recombination-based and activity-driven genetic targeting approaches, contemporary viral tracing strategies, electrophysiological recording methods, newly developed calcium, and voltage indicators, and neurotransmitter/neuropeptide biosensors currently being used to investigate circuit architecture and function. Finally, it discusses methods for acute or chronic manipulation of neural activity, including genetically-targeted cellular ablation, optogenetics, chemogenetics, and over-expression of ion channels. With this ever-evolving genetic toolbox, scientists are continuing to probe neural circuits with increasing resolution, elucidating the structure and function of the incredibly complex mammalian brain.
Collapse
Affiliation(s)
- Jessica L. Swanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Pey-Shyuan Chin
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Snigdha Srivastava
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Joshua Ortiz-Guzman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Patrick J. Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
22
|
Aceto G, Nardella L, Nanni S, Pecci V, Bertozzi A, Colussi C, D'Ascenzo M, Grassi C. Activation of histamine type 2 receptors enhances intrinsic excitability of medium spiny neurons in the nucleus accumbens. J Physiol 2022; 600:2225-2243. [PMID: 35343587 PMCID: PMC9325548 DOI: 10.1113/jp282962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/21/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract Histaminergic neurons are exclusively located in the hypothalamic tuberomammillary nucleus, from where they project to many brain areas including the nucleus accumbens (NAc), a brain area that integrates diverse monoaminergic inputs to coordinate motivated behaviours. While the NAc expresses various histamine receptor subtypes, the mechanisms by which histamine modulates NAc activity are still poorly understood. Using whole‐cell patch‐clamp recordings, we found that pharmacological activation of histamine 2 (H2) receptors elevates the excitability of NAc medium spiny neurons (MSNs), while activation of H1 receptors failed to significantly affect MSN excitability. The evoked firing of MSNs increased after seconds of local H2 agonist administration and remained elevated for minutes. H2 receptor (H2R) activation accelerated subthreshold depolarization in response to current injection, reduced the latency to fire, diminished action potential afterhyperpolarization and increased the action potential half‐width. The increased excitability was protein kinase A‐dependent and associated with decreased A‐type K+ currents. In addition, selective pharmacological inhibition of the Kv4.2 channel, the main molecular determinant of A‐type K+ currents in MSNs, mimicked and occluded the increased excitability induced by H2R activation. Our results indicate that histaminergic transmission in the NAc increases MSN intrinsic excitability through H2R‐dependent modulation of Kv4.2 channels. Activation of H2R will significantly alter spike firing in MSNs in vivo, and this effect could be an important mechanism by which these receptors mediate certain aspects of goal‐induced behaviours. Key points Histamine is synthesized and released by hypothalamic neurons of the tuberomammillary nucleus and serves as a general modulator for whole‐brain activity including the nucleus accumbens. Histamine receptors type 2 (HR2), which are expressed in the nucleus accumbens, couple to Gαs/off proteins which elevate cyclic adenosine monophosphate levels and activate protein kinase A. Whole‐cell patch‐clamp recordings revealed that H2R activation increased the evoked firing in medium spiny neurons of the nucleus accumbens via protein kinase A‐dependent mechanisms. HR2 activation accelerated subthreshold depolarization in response to current injection, reduced the latency to fire, diminished action potential medium after‐hyperpolarization and increased the action potential half‐width. HR2 activation also reduced A‐type potassium current. Selective pharmacological inhibition of the Kv4.2 channel mimicked and occluded the increased excitability induced by H2R activation.
Collapse
Affiliation(s)
- Giuseppe Aceto
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Roma, Italia.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Nardella
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simona Nanni
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Roma, Italia.,Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valeria Pecci
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessia Bertozzi
- Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", National Research Council, Rome, Italy
| | - Claudia Colussi
- Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", National Research Council, Rome, Italy
| | - Marcello D'Ascenzo
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Roma, Italia.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Grassi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Roma, Italia.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
23
|
Yee DM, Leng X, Shenhav A, Braver TS. Aversive motivation and cognitive control. Neurosci Biobehav Rev 2022; 133:104493. [PMID: 34910931 PMCID: PMC8792354 DOI: 10.1016/j.neubiorev.2021.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Aversive motivation plays a prominent role in driving individuals to exert cognitive control. However, the complexity of behavioral responses attributed to aversive incentives creates significant challenges for developing a clear understanding of the neural mechanisms of this motivation-control interaction. We review the animal learning, systems neuroscience, and computational literatures to highlight the importance of experimental paradigms that incorporate both motivational context manipulations and mixed motivational components (e.g., bundling of appetitive and aversive incentives). Specifically, we postulate that to understand aversive incentive effects on cognitive control allocation, a critical contextual factor is whether such incentives are associated with negative reinforcement or punishment. We further illustrate how the inclusion of mixed motivational components in experimental paradigms enables increased precision in the measurement of aversive influences on cognitive control. A sharpened experimental and theoretical focus regarding the manipulation and assessment of distinct motivational dimensions promises to advance understanding of the neural, monoaminergic, and computational mechanisms that underlie the interaction of motivation and cognitive control.
Collapse
Affiliation(s)
- Debbie M Yee
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA; Department of Psychological and Brain Sciences, Washington University in Saint Louis, USA.
| | - Xiamin Leng
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA
| | - Amitai Shenhav
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA
| | - Todd S Braver
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, USA
| |
Collapse
|
24
|
Adenosine Receptors in Neuropsychiatric Disorders: Fine Regulators of Neurotransmission and Potential Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23031219. [PMID: 35163142 PMCID: PMC8835915 DOI: 10.3390/ijms23031219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/16/2022] Open
Abstract
Adenosine exerts an important role in the modulation of central nervous system (CNS) activity. Through the interaction with four G-protein coupled receptor (GPCR) subtypes, adenosine subtly regulates neurotransmission, interfering with the dopaminergic, glutamatergic, noradrenergic, serotoninergic, and endocannabinoid systems. The inhibitory and facilitating actions of adenosine on neurotransmission are mainly mediated by A1 and A2A adenosine receptors (ARs), respectively. Given their role in the CNS, ARs are promising therapeutic targets for neuropsychiatric disorders where altered neurotransmission represents the most likely etiological hypothesis. Activating or blocking ARs with specific pharmacological agents could therefore restore the balance of altered neurotransmitter systems, providing the rationale for the potential treatment of these highly debilitating conditions. In this review, we summarize and discuss the most relevant studies concerning AR modulation in psychotic and mood disorders such as schizophrenia, bipolar disorders, depression, and anxiety, as well as neurodevelopment disorders such as autism spectrum disorder (ASD), fragile X syndrome (FXS), attention-deficit hyperactivity disorder (ADHD), and neuropsychiatric aspects of neurodegenerative disorders.
Collapse
|
25
|
GSK3β Activity in Reward Circuit Functioning and Addiction. NEUROSCI 2021. [DOI: 10.3390/neurosci2040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK3β), primarily described as a regulator of glycogen metabolism, is a molecular hub linking numerous signaling pathways and regulates many cellular processes like cytoskeletal rearrangement, cell migration, apoptosis, and proliferation. In neurons, the kinase is engaged in molecular events related to the strengthening and weakening of synapses, which is a subcellular manifestation of neuroplasticity. Dysregulation of GSK3β activity has been reported in many neuropsychiatric conditions, like schizophrenia, major depressive disorder, bipolar disorder, and Alzheimer’s disease. In this review, we describe the kinase action in reward circuit-related structures in health and disease. The effect of pharmaceuticals used in the treatment of addiction in the context of GSK3β activity is also discussed.
Collapse
|
26
|
Abstract
Addictive drugs are habit-forming. Addiction is a learned behavior; repeated exposure to addictive drugs can stamp in learning. Dopamine-depleted or dopamine-deleted animals have only unlearned reflexes; they lack learned seeking and learned avoidance. Burst-firing of dopamine neurons enables learning-long-term potentiation (LTP)-of search and avoidance responses. It sets the stage for learning that occurs between glutamatergic sensory inputs and GABAergic motor-related outputs of the striatum; this learning establishes the ability to search and avoid. Independent of burst-firing, the rate of single-spiking-or "pacemaker firing"-of dopaminergic neurons mediates motivational arousal. Motivational arousal increases during need states and its level determines the responsiveness of the animal to established predictive stimuli. Addictive drugs, while usually not serving as an external stimulus, have varying abilities to activate the dopamine system; the comparative abilities of different addictive drugs to facilitate LTP is something that might be studied in the future.
Collapse
Affiliation(s)
- Roy A Wise
- Intramural Research Program, National Institute on Drug Abuse, 250 Mason Lord Drive, Baltimore, MD, USA.
- Behavior Genetics Laboratory, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, USA.
| | - Chloe J Jordan
- Division of Alcohol, Drugs and Addiction, Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| |
Collapse
|
27
|
Poisson CL, Engel L, Saunders BT. Dopamine Circuit Mechanisms of Addiction-Like Behaviors. Front Neural Circuits 2021; 15:752420. [PMID: 34858143 PMCID: PMC8631198 DOI: 10.3389/fncir.2021.752420] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
Addiction is a complex disease that impacts millions of people around the world. Clinically, addiction is formalized as substance use disorder (SUD), with three primary symptom categories: exaggerated substance use, social or lifestyle impairment, and risky substance use. Considerable efforts have been made to model features of these criteria in non-human animal research subjects, for insight into the underlying neurobiological mechanisms. Here we review evidence from rodent models of SUD-inspired criteria, focusing on the role of the striatal dopamine system. We identify distinct mesostriatal and nigrostriatal dopamine circuit functions in behavioral outcomes that are relevant to addictions and SUDs. This work suggests that striatal dopamine is essential for not only positive symptom features of SUDs, such as elevated intake and craving, but also for impairments in decision making that underlie compulsive behavior, reduced sociality, and risk taking. Understanding the functional heterogeneity of the dopamine system and related networks can offer insight into this complex symptomatology and may lead to more targeted treatments.
Collapse
Affiliation(s)
- Carli L. Poisson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Liv Engel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
| | - Benjamin T. Saunders
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
28
|
Coimbra B, Domingues AV, Soares‐Cunha C, Correia R, Pinto L, Sousa N, Rodrigues AJ. Laterodorsal tegmentum-ventral tegmental area projections encode positive reinforcement signals. J Neurosci Res 2021; 99:3084-3100. [PMID: 34374447 PMCID: PMC9541203 DOI: 10.1002/jnr.24931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/31/2021] [Accepted: 07/12/2021] [Indexed: 01/05/2023]
Abstract
The laterodorsal tegmentum (LDT) is a brainstem nucleus classically involved in REM sleep and attention, and that has recently been associated with reward-related behaviors, as it controls the activity of ventral tegmental area (VTA) dopaminergic neurons, modulating dopamine release in the nucleus accumbens. To further understand the role of LDT-VTA inputs in reinforcement, we optogenetically manipulated these inputs during different behavioral paradigms in male rats. We found that in a two-choice instrumental task, optical activation of LDT-VTA projections shifts and amplifies preference to the laser-paired reward in comparison to an otherwise equal reward; the opposite was observed with inhibition experiments. In a progressive ratio task, LDT-VTA activation boosts motivation, that is, enhances the willingness to work to get the reward associated with LDT-VTA stimulation; and the reverse occurs when inhibiting these inputs. Animals abolished preference if the reward was omitted, suggesting that LDT-VTA stimulation adds/decreases value to the stimulation-paired reward. In addition, we show that LDT-VTA optical activation induces robust preference in the conditioned and real-time place preference tests, while optical inhibition induces aversion. The behavioral findings are supported by electrophysiological recordings and c-fos immunofluorescence correlates in downstream target regions. In LDT-VTA ChR2 animals, we observed an increase in the recruitment of lateral VTA dopamine neurons and D1 neurons from nucleus accumbens core and shell; whereas in LDT-VTA NpHR animals, D2 neurons appear to be preferentially recruited. Collectively, these data show that the LDT-VTA inputs encode positive reinforcement signals and are important for different dimensions of reward-related behaviors.
Collapse
Affiliation(s)
- Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Carina Soares‐Cunha
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Raquel Correia
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| |
Collapse
|
29
|
Iyer V, Venkiteswaran K, Savaliya S, Lieu CA, Handly E, Gilmour TP, Kunselman AR, Subramanian T. The cross-hemispheric nigrostriatal pathway prevents the expression of levodopa-induced dyskinesias. Neurobiol Dis 2021; 159:105491. [PMID: 34461264 PMCID: PMC8597404 DOI: 10.1016/j.nbd.2021.105491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative movement disorder that is routinely treated with levodopa. Unfortunately, long-term dopamine replacement therapy using levodopa leads to levodopa-induced dyskinesias (LID), a significant and disabling side-effect. Clinical findings indicate that LID typically only occurs following the progression of PD motor symptoms from the unilateral (Hoehn and Yahr (HY) Stage I) to the bilateral stage (HY Stage II). This suggests the presence of some compensatory interhemispheric mechanisms that delay the occurrence of LID. We therefore investigated the role of interhemispheric connections of the nigrostriatal pathway on LID expression in a rat model of PD. The striatum of one hemisphere of rats was first injected with a retrograde tracer to label the ipsi- and cross-hemispheric nigrostriatal pathways. Rats were then split into groups and unilaterally lesioned in the striatum or medial forebrain bundle of the tracer-injected hemisphere to induce varying levels of hemiparkinsonism. Finally, rats were treated with levodopa and tested for the expression of LID. Distinct subsets emerged from rats that underwent the same lesioning paradigm based on LID. Strikingly, non-dyskinetic rats had significant sparing of their cross-hemispheric nigrostriatal pathway projecting from the unlesioned hemisphere. In contrast, dyskinetic rats only had a small proportion of this cross-hemispheric nigrostriatal pathway survive lesioning. Crucially, both non-dyskinetic and dyskinetic rats had nearly identical levels of ipsi-hemispheric nigrostriatal pathway survival and parkinsonian motor deficits. Our data suggest that the survival of the cross-hemispheric nigrostriatal pathway plays a crucial role in preventing the expression of LID and represents a potentially novel target to halt the progression of this devastating side-effect of a common anti-PD therapeutic.
Collapse
Affiliation(s)
- Vishakh Iyer
- Department of Neurology and Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Kala Venkiteswaran
- Department of Neurology and Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Sandip Savaliya
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Christopher A Lieu
- Department of Neurology and Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Erin Handly
- Department of Neurology and Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Timothy P Gilmour
- Department of Electrical Engineering, John Brown University, Siloam Springs, AR, United States of America
| | - Allen R Kunselman
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Thyagarajan Subramanian
- Department of Neurology and Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, United States of America.
| |
Collapse
|
30
|
Gordon-Fennell A, Stuber GD. Illuminating subcortical GABAergic and glutamatergic circuits for reward and aversion. Neuropharmacology 2021; 198:108725. [PMID: 34375625 DOI: 10.1016/j.neuropharm.2021.108725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Reinforcement, reward, and aversion are fundamental processes for guiding appropriate behaviors. Longstanding theories have pointed to dopaminergic neurons of the ventral tegmental area (VTA) and the limbic systems' descending pathways as crucial systems for modulating these behaviors. The application of optogenetic techniques in neurotransmitter- and projection-specific circuits has supported and enhanced many preexisting theories but has also revealed many unexpected results. Here, we review the past decade of optogenetic experiments to study the neural circuitry of reinforcement and reward/aversion with a focus on the mesolimbic dopamine system and brain areas along the medial forebrain bundle (MFB). The cumulation of these studies to date has revealed generalizable findings across molecularly defined cell types in areas of the basal forebrain and anterior hypothalamus. Optogenetic stimulation of GABAergic neurons in these brain regions drives reward and can support positive reinforcement and optogenetic stimulation of glutamatergic neurons in these regions drives aversion. We also review studies of the activity dynamics of neurotransmitter defined populations in these areas which have revealed varied response patterns associated with motivated behaviors.
Collapse
Affiliation(s)
- Adam Gordon-Fennell
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA.
| |
Collapse
|
31
|
Christoffel DJ, Walsh JJ, Hoerbelt P, Heifets BD, Llorach P, Lopez RC, Ramakrishnan C, Deisseroth K, Malenka RC. Selective filtering of excitatory inputs to nucleus accumbens by dopamine and serotonin. Proc Natl Acad Sci U S A 2021; 118:e2106648118. [PMID: 34103400 PMCID: PMC8214692 DOI: 10.1073/pnas.2106648118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The detailed mechanisms by which dopamine (DA) and serotonin (5-HT) act in the nucleus accumbens (NAc) to influence motivated behaviors in distinct ways remain largely unknown. Here, we examined whether DA and 5-HT selectively modulate excitatory synaptic transmission in NAc medium spiny neurons in an input-specific manner. DA reduced excitatory postsynaptic currents (EPSCs) generated by paraventricular thalamus (PVT) inputs but not by ventral hippocampus (vHip), basolateral amygdala (BLA), or medial prefrontal cortex (mPFC) inputs. In contrast, 5-HT reduced EPSCs generated by inputs from all areas except the mPFC. Release of endogenous DA and 5-HT by methamphetamine (METH) and (±)3,4-methylenedioxymethamphetamine (MDMA), respectively, recapitulated these input-specific synaptic effects. Optogenetic inhibition of PVT inputs enhanced cocaine-conditioned place preference, whereas mPFC input inhibition reduced the enhancement of sociability elicited by MDMA. These findings suggest that the distinct, input-specific filtering of excitatory inputs in the NAc by DA and 5-HT contribute to their discrete behavioral effects.
Collapse
Affiliation(s)
- Daniel J Christoffel
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Jessica J Walsh
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Paul Hoerbelt
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Boris D Heifets
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Pierre Llorach
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Ricardo C Lopez
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | | | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305;
| |
Collapse
|
32
|
Han Y, Xia G, He Y, He Y, Farias M, Xu Y, Wu Q. A hindbrain dopaminergic neural circuit prevents weight gain by reinforcing food satiation. SCIENCE ADVANCES 2021; 7:eabf8719. [PMID: 34039606 DOI: 10.1126/sciadv.abf8719] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The neural circuitry mechanism that underlies dopaminergic (DA) control of innate feeding behavior is largely uncharacterized. Here, we identified a subpopulation of DA neurons situated in the caudal ventral tegmental area (cVTA) directly innervating DRD1-expressing neurons within the lateral parabrachial nucleus (LPBN). This neural circuit potently suppresses food intake via enhanced satiation response. Notably, this cohort of DAcVTA neurons is activated immediately before the cessation of each feeding bout. Acute inhibition of these DA neurons before bout termination substantially suppresses satiety and prolongs the consummatory feeding. Activation of postsynaptic DRD1LPBN neurons inhibits feeding, whereas genetic deletion of Drd1 within the LPBN causes robust increase in food intake and subsequent weight gain. Furthermore, the DRD1LPBN signaling manifests the central mechanism in methylphenidate-induced hypophagia. In conclusion, our study illuminates a hindbrain DAergic circuit that controls feeding through dynamic regulation in satiety response and meal structure.
Collapse
Affiliation(s)
- Yong Han
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Guobin Xia
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yanlin He
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yang He
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Monica Farias
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Qi Wu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
33
|
Torres DJ, Yorgason JT, Mitchell CC, Hagiwara A, Andres MA, Kurokawa S, Steffensen SC, Bellinger FP. Selenoprotein P Modulates Methamphetamine Enhancement of Vesicular Dopamine Release in Mouse Nucleus Accumbens Via Dopamine D2 Receptors. Front Neurosci 2021; 15:631825. [PMID: 33927588 PMCID: PMC8076559 DOI: 10.3389/fnins.2021.631825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/19/2021] [Indexed: 12/25/2022] Open
Abstract
Dopamine (DA) transmission plays a critical role in processing rewarding and pleasurable stimuli. Increased synaptic DA release in the nucleus accumbens (NAc) is a central component of the physiological effects of drugs of abuse. The essential trace element selenium mitigates methamphetamine-induced neurotoxicity. Selenium can also alter DA production and turnover. However, studies have not directly addressed the role of selenium in DA neurotransmission. Selenoprotein P (SELENOP1) requires selenium for synthesis and transports selenium to the brain, in addition to performing other functions. We investigated whether SELENOP1 directly impacts (1) DA signaling and (2) the dopaminergic response to methamphetamine. We used fast-scan cyclic voltammetry to investigate DA transmission and the response to methamphetamine in NAc slices from C57/BL6J SELENOP1 KO mice. Recordings from SELENOP1 KO mouse slices revealed reduced levels of evoked DA release and slower DA uptake rates. Methamphetamine caused a dramatic increase in vesicular DA release in SELENOP1 KO mice not observed in wild-type controls. This elevated response was attenuated by SELENOP1 application through a selenium-independent mechanism involving SELENOP1-apolipoprotein E receptor 2 (ApoER2) interaction to promote dopamine D2 receptor (D2R) function. In wild-type mice, increased vesicular DA release in response to methamphetamine was revealed by blocking D2R activation, indicating that the receptor suppresses the methamphetamine-induced vesicular increase. Our data provide evidence of a direct physiological role for SELENOP1 in the dopaminergic response to methamphetamine and suggest a signaling role for the protein in DA transmission.
Collapse
Affiliation(s)
- Daniel J Torres
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mânoa, Honolulu, HI, United States.,Pacific Biosciences Research Center, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Jordan T Yorgason
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Catherine C Mitchell
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Ayaka Hagiwara
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Marilou A Andres
- Pacific Biosciences Research Center, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | | | - Scott C Steffensen
- Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Frederick P Bellinger
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mânoa, Honolulu, HI, United States
| |
Collapse
|
34
|
Fry BR, Pence NT, McLocklin A, Johnson AW. Disruptions in effort-based decision-making following acute optogenetic stimulation of ventral tegmental area dopamine cells. Learn Mem 2021; 28:104-108. [PMID: 33723029 PMCID: PMC7970740 DOI: 10.1101/lm.053082.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/20/2021] [Indexed: 11/24/2022]
Abstract
The dopamine system has been implicated in decision-making particularly when associated with effortful behavior. We examined acute optogenetic stimulation of dopamine cells in the ventral tegmental area (VTA) as mice engaged in an effort-based decision-making task. Tyrosine hydroxylase-Cre mice were injected with Cre-dependent ChR2 or eYFP control virus in the VTA. While eYFP control mice showed effortful discounting, stimulation of dopamine cells in ChR2 mice disrupted effort-based decision-making by reducing choice toward the lever associated with a preferred outcome and greater effort. Surprisingly, disruptions in effortful discounting were observed in subsequent test sessions conducted in the absence of optogenetic stimulation, however during these sessions ChR2 mice displayed enhanced high choice responding across trial blocks. These findings suggest increases in VTA dopamine cell activity can disrupt effort-based decision-making in distinct ways dependent on the timing of optogenetic stimulation.
Collapse
Affiliation(s)
- Benjamin R Fry
- Department of Psychology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Nathan T Pence
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Andrew McLocklin
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Alexander W Johnson
- Department of Psychology, Michigan State University, East Lansing, Michigan 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
35
|
Gastelum C, Perez L, Hernandez J, Le N, Vahrson I, Sayers S, Wagner EJ. Adaptive Changes in the Central Control of Energy Homeostasis Occur in Response to Variations in Energy Status. Int J Mol Sci 2021; 22:2728. [PMID: 33800452 PMCID: PMC7962960 DOI: 10.3390/ijms22052728] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Energy homeostasis is regulated in coordinate fashion by the brain-gut axis, the homeostatic energy balance circuitry in the hypothalamus and the hedonic energy balance circuitry comprising the mesolimbcortical A10 dopamine pathway. Collectively, these systems convey and integrate information regarding nutrient status and the rewarding properties of ingested food, and formulate it into a behavioral response that attempts to balance fluctuations in consumption and food-seeking behavior. In this review we start with a functional overview of the homeostatic and hedonic energy balance circuitries; identifying the salient neural, hormonal and humoral components involved. We then delve into how the function of these circuits differs in males and females. Finally, we turn our attention to the ever-emerging roles of nociceptin/orphanin FQ (N/OFQ) and pituitary adenylate cyclase-activating polypeptide (PACAP)-two neuropeptides that have garnered increased recognition for their regulatory impact in energy homeostasis-to further probe how the imposed regulation of energy balance circuitry by these peptides is affected by sex and altered under positive (e.g., obesity) and negative (e.g., fasting) energy balance states. It is hoped that this work will impart a newfound appreciation for the intricate regulatory processes that govern energy homeostasis, as well as how recent insights into the N/OFQ and PACAP systems can be leveraged in the treatment of conditions ranging from obesity to anorexia.
Collapse
Affiliation(s)
- Cassandra Gastelum
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Lynnea Perez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Jennifer Hernandez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Nikki Le
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Isabella Vahrson
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Sarah Sayers
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Edward J. Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
36
|
Yoo H, Yang SH, Kim JY, Yang E, Park HS, Lee SJ, Rhyu IJ, Turecki G, Lee HW, Kim H. Down-regulation of habenular calcium-dependent secretion activator 2 induces despair-like behavior. Sci Rep 2021; 11:3700. [PMID: 33580180 PMCID: PMC7881199 DOI: 10.1038/s41598-021-83310-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/29/2021] [Indexed: 01/07/2023] Open
Abstract
Calcium-dependent secretion activator 2 (CAPS2) regulates the trafficking and exocytosis of neuropeptide-containing dense-core vesicles (DCVs). CAPS2 is prominently expressed in the medial habenula (MHb), which is related to depressive behavior; however, how MHb neurons cause depressive symptoms and the role of CAPS2 remains unclear. We hypothesized that dysfunction of MHb CAPS neurons might cause defects in neuropeptide secretion and the activity of monoaminergic centers, resulting in depressive-like behaviors. In this study, we examined (1) CAPS2 expression in the habenula of depression animal models and major depressive disorder patients and (2) the effects of down-regulation of MHb CAPS2 on the animal behaviors, synaptic transmission in the interpeduncular nucleus (IPN), and neuronal activity of monoamine centers. Habenular CAPS2 expression was decreased in the rat chronic restraint stress model, mouse learned helplessness model, and showed tendency to decrease in depression patients who died by suicide. Knockdown of CAPS2 in the mouse habenula evoked despair-like behavior and a reduction of the release of DCVs in the IPN. Neuronal activity of IPN and monoaminergic centers was also reduced. These results implicate MHb CAPS2 as playing a pivotal role in depressive behavior through the regulation of neuropeptide secretion of the MHb-IPN pathway and the activity of monoaminergic centers.
Collapse
Affiliation(s)
- Hyeijung Yoo
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
- Department of Biomedical Sciences, Brain Korea 21 FOUR, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Soo Hyun Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
- Department of Biomedical Sciences, Brain Korea 21 FOUR, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Jin Yong Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
- Department of Biomedical Sciences, Brain Korea 21 FOUR, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Hyung Sun Park
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Se Jeong Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
- Department of Biomedical Sciences, Brain Korea 21 FOUR, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Gustavo Turecki
- Department of Psychiatry, McGill University, Douglas, Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
| | - Hyun Woo Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea.
- Department of Biomedical Sciences, Brain Korea 21 FOUR, College of Medicine, Korea University, Seoul, 02841, Korea.
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea.
- Department of Biomedical Sciences, Brain Korea 21 FOUR, College of Medicine, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
37
|
Sneddon EA, Schuh KM, Frankel JW, Radke AK. The contribution of medium spiny neuron subtypes in the nucleus accumbens core to compulsive-like ethanol drinking. Neuropharmacology 2021; 187:108497. [PMID: 33582151 DOI: 10.1016/j.neuropharm.2021.108497] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
Compulsive alcohol use, or drinking that persists despite negative or aversive consequences, is a defining characteristic of alcohol use disorder. Here, chemogenetic technology (i.e. Designer Receptors Exclusively Activated by Designer Drugs; DREADDs) was used to inhibit or excite the NAc core or selectively inhibit D1-or D2 receptor-expressing neurons in the NAc core to understand the role of the NAc core and how these subpopulations of neurons may influence compulsive-like ethanol (EtOH) drinking using C57BL/6J, Drd1-cre, and Drd2-cre male and female mice. Compulsive-like EtOH drinking was modeled with a two-bottle choice, drinking in the dark paradigm. The major finding of this study was that mice decreased compulsive-like EtOH intake when the NAc core was inhibited and there was no change of EtOH + quinine intake when the NAc core was excited. Interestingly, inhibition of D1-or D2 receptor-expressing neurons did not alter compulsive-like EtOH intake. Control experiments showed that NAc core excitation and selective inhibition of D1-or D2-receptor-expressing neurons had no effect on baseline EtOH drinking, intake of water, or intake of quinine-adulterated water. CNO reduced amphetamine-induced locomotion in the D1-CRE+ (but not the D2CRE+) group in a control experiment. Finally, pharmacological antagonism of D1 and D2 receptors together, but not separately, reduced quinine-resistant EtOH drinking. These results suggest that the NAc core is a critical region involved in compulsive-like EtOH consumption, and that both D1-and D2 receptor-expressing medium spiny neurons participate in controlling this behavior.
Collapse
Affiliation(s)
- Elizabeth A Sneddon
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Kristen M Schuh
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - John W Frankel
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Anna K Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA.
| |
Collapse
|
38
|
López-Gutiérrez MF, Gracia-Tabuenca Z, Ortiz JJ, Camacho FJ, Young LJ, Paredes RG, Díaz NF, Portillo W, Alcauter S. Brain functional networks associated with social bonding in monogamous voles. eLife 2021; 10:e55081. [PMID: 33443015 PMCID: PMC7847304 DOI: 10.7554/elife.55081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/11/2021] [Indexed: 12/30/2022] Open
Abstract
Previous studies have related pair-bonding in Microtus ochrogaster, the prairie vole, with plastic changes in several brain regions. However, the interactions between these socially relevant regions have yet to be described. In this study, we used resting-state magnetic resonance imaging to explore bonding behaviors and functional connectivity of brain regions previously associated with pair-bonding. Thirty-two male and female prairie voles were scanned at baseline, 24 hr, and 2 weeks after the onset of cohabitation. By using network-based statistics, we identified that the functional connectivity of a corticostriatal network predicted the onset of affiliative behavior, while another predicted the amount of social interaction during a partner preference test. Furthermore, a network with significant changes in time was revealed, also showing associations with the level of partner preference. Overall, our findings revealed the association between network-level functional connectivity changes and social bonding.
Collapse
Affiliation(s)
| | - Zeus Gracia-Tabuenca
- Instituto de Neurobiología, Universidad Nacional Autónoma de MéxicoQuerétaroMexico
| | - Juan J Ortiz
- Instituto de Neurobiología, Universidad Nacional Autónoma de MéxicoQuerétaroMexico
| | - Francisco J Camacho
- Instituto de Neurobiología, Universidad Nacional Autónoma de MéxicoQuerétaroMexico
| | - Larry J Young
- Silvio O Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory UniversityAtlantaUnited States
| | - Raúl G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de MéxicoQuerétaroMexico
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de MéxicoQuerétaroMexico
| | - Néstor F Díaz
- Instituto Nacional de Perinatología Isidro Espinosa de los ReyesCiudad de MéxicoMexico
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de MéxicoQuerétaroMexico
| | - Sarael Alcauter
- Instituto de Neurobiología, Universidad Nacional Autónoma de MéxicoQuerétaroMexico
| |
Collapse
|
39
|
Lee SJ, Lodder B, Chen Y, Patriarchi T, Tian L, Sabatini BL. Cell-type-specific asynchronous modulation of PKA by dopamine in learning. Nature 2020; 590:451-456. [PMID: 33361810 PMCID: PMC7889726 DOI: 10.1038/s41586-020-03050-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 10/30/2020] [Indexed: 01/07/2023]
Abstract
Reinforcement learning models postulate that dopamine (DA) releasing neurons (DANs) encode information about action and action outcome and provide a teaching signal to striatal spiny projection neurons (SPNs) in the form of DA release1. DA is thought to guide learning via dynamic and differential modulation of protein kinase A (PKA) in each class of SPN2. However, the real-time relationship between DA and SPN PKA remains untested in behaving animals. Here, we monitor the activity of DANs, extracellular DA levels, and net PKA activity in SPNs in the nucleus accumbens in mice during learning. We find positive and negative modulation of DA that evolves across training and is both necessary and sufficient to explain concurrent fluctuations in SPN PKA activity. The modulations of PKA in SPNs that express type-1 and type-2 DA receptors are dichotomous such that they are selectively sensitive to increases and decreases in DA, respectively, which occur at different phases of learning. Thus, PKA-dependent pathways in each class of SPNs are asynchronously engaged by positive or negative DA signals during learning.
Collapse
Affiliation(s)
- Suk Joon Lee
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Bart Lodder
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Yao Chen
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Tommaso Patriarchi
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Morales I, Berridge KC. 'Liking' and 'wanting' in eating and food reward: Brain mechanisms and clinical implications. Physiol Behav 2020; 227:113152. [PMID: 32846152 PMCID: PMC7655589 DOI: 10.1016/j.physbeh.2020.113152] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 01/02/2023]
Abstract
It is becoming clearer how neurobiological mechanisms generate 'liking' and 'wanting' components of food reward. Mesocorticolimbic mechanisms that enhance 'liking' include brain hedonic hotspots, which are specialized subregions that are uniquely able to causally amplify the hedonic impact of palatable tastes. Hedonic hotspots are found in nucleus accumbens medial shell, ventral pallidum, orbitofrontal cortex, insula cortex, and brainstem. In turn, a much larger mesocorticolimbic circuitry generates 'wanting' or incentive motivation to obtain and consume food rewards. Hedonic and motivational circuitry interact together and with hypothalamic homeostatic circuitry, allowing relevant physiological hunger and satiety states to modulate 'liking' and 'wanting' for food rewards. In some conditions such as drug addiction, 'wanting' is known to dramatically detach from 'liking' for the same reward, and this may also occur in over-eating disorders. Via incentive sensitization, 'wanting' selectively becomes higher, especially when triggered by reward cues when encountered in vulnerable states of stress, etc. Emerging evidence suggests that some cases of obesity and binge eating disorders may reflect an incentive-sensitization brain signature of cue hyper-reactivity, causing excessive 'wanting' to eat. Future findings on the neurobiological bases of 'liking' and 'wanting' can continue to improve understanding of both normal food reward and causes of clinical eating disorders.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States.
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States
| |
Collapse
|
41
|
Eck SR, Bangasser DA. The effects of early life stress on motivated behaviors: A role for gonadal hormones. Neurosci Biobehav Rev 2020; 119:86-100. [PMID: 33022296 PMCID: PMC7744121 DOI: 10.1016/j.neubiorev.2020.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/22/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Motivated behaviors are controlled by the mesocorticolimbic dopamine (DA) system, consisting of projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) and prefrontal cortex (PFC), with input from structures including the medial preoptic area (mPOA). Sex differences are present in this circuit, and gonadal hormones (e.g., estradiol and testosterone) are important for regulating DA transmission. Early life stress (ELS) also regulates the mesocorticolimbic DA system. ELS modifies motivated behaviors and the underlying DA circuitry, increasing risk for disorders such as substance use disorder, major depression, and schizophrenia. ELS has been shown to change gonadal hormone signaling in both sexes. Thus, one way that ELS could impact mesocorticolimbic DA is by altering the efficacy of gonadal hormones. This review provides evidence for this idea by integrating the gonadal hormone, motivation, and ELS literature to argue that ELS alters gonadal hormone signaling to impact motivated behavior. We also discuss the importance of these effects in the context of understanding risk and treatments for psychiatric disorders in men and women.
Collapse
Affiliation(s)
- Samantha R Eck
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA.
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA
| |
Collapse
|
42
|
Lin WC, Delevich K, Wilbrecht L. A role for adaptive developmental plasticity in learning and decision making. Curr Opin Behav Sci 2020; 36:48-54. [DOI: 10.1016/j.cobeha.2020.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Abstract
Addiction is commonly identified with habitual nonmedical self-administration of drugs. It is usually defined by characteristics of intoxication or by characteristics of withdrawal symptoms. Such addictions can also be defined in terms of the brain mechanisms they activate; most addictive drugs cause elevations in extracellular levels of the neurotransmitter dopamine. Animals unable to synthesize or use dopamine lack the conditioned reflexes discussed by Pavlov or the appetitive behavior discussed by Craig; they have only unconditioned consummatory reflexes. Burst discharges (phasic firing) of dopamine-containing neurons are necessary to establish long-term memories associating predictive stimuli with rewards and punishers. Independent discharges of dopamine neurons (tonic or pacemaker firing) determine the motivation to respond to such cues. As a result of habitual intake of addictive drugs, dopamine receptors expressed in the brain are decreased, thereby reducing interest in activities not already stamped in by habitual rewards.
Collapse
Affiliation(s)
- Roy A Wise
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA; .,Behavioral Genetics Laboratory, McLean Hospital, Belmont, Massachusetts 02478, USA;
| | - Mykel A Robble
- Behavioral Genetics Laboratory, McLean Hospital, Belmont, Massachusetts 02478, USA;
| |
Collapse
|
44
|
Nakamura Y, Nakamura Y, Pelosi A, Djemai B, Debacker C, Hervé D, Girault JA, Tsurugizawa T. fMRI detects bilateral brain network activation following unilateral chemogenetic activation of direct striatal projection neurons. Neuroimage 2020; 220:117079. [DOI: 10.1016/j.neuroimage.2020.117079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/23/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
|
45
|
Shepard RD, Nugent FS. Early Life Stress- and Drug-Induced Histone Modifications Within the Ventral Tegmental Area. Front Cell Dev Biol 2020; 8:588476. [PMID: 33102491 PMCID: PMC7554626 DOI: 10.3389/fcell.2020.588476] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Psychiatric illnesses are a major public health concern due to their prevalence and heterogeneity of symptom presentation resulting from a lack of efficacious treatments. Although dysregulated dopamine (DA) signaling has been observed in a myriad of psychiatric conditions, different pathophysiological mechanisms have been implicated which impede the development of adequate treatments that work across all patient populations. The ventral tegmental area (VTA), a major source of DA neurons in the brain reward pathway, has been shown to have altered activity that contributes to reward dysregulation in mental illnesses and drug addiction. It has now become better appreciated that epigenetic mechanisms contribute to VTA DA dysfunction, such as through histone modifications, which dynamically regulate transcription rates of critical genes important in synaptic plasticity underlying learning and memory. Here, we provide a focused review on differential histone modifications within the VTA observed in both humans and animal models, as well as their relevance to disease-based phenotypes, specifically focusing on epigenetic dysregulation of histones in the VTA associated with early life stress (ELS) and drugs of abuse. Locus- and cell-type-specific targeting of individual histone modifications at specific genes within the VTA presents novel therapeutic targets which can result in greater efficacy and better long-term health outcomes in susceptible individuals that are at increased risk for substance use and psychiatric disorders.
Collapse
Affiliation(s)
- Ryan D Shepard
- Department of Pharmacology, Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Fereshteh S Nugent
- Department of Pharmacology, Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
46
|
Double dissociation between actions of dopamine D1 and D2 receptors of the ventral and dorsolateral striatum to produce reinstatement of cocaine seeking behavior. Neuropharmacology 2020; 172:108113. [PMID: 32335152 DOI: 10.1016/j.neuropharm.2020.108113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 11/22/2022]
Abstract
One of the hallmarks of addiction is the enduring vulnerability to relapse. Following repeated use, cocaine (COC) induces neuroadaptations within the dopamine (DA) system, arguably underlying several aspects of COC-seeking behavior. Peripheral stimulation of D2, but not D1, receptors induces relapse. However, where in the brain these effects occur is still matter of debate. The D1 and D2 receptors (D1R; D2R) are highly expressed in the nucleus accumbens (NAcc) and the dorsolateral striatum (DLS), but their specific involvement in the reinstatement of COC-seeking remains elusive. We assessed the reinstating effects of intracerebral infusions of agonists of D1R (SKF82958) or D2R (quinelorane) within the NAcc or DLS of rats after extinction of COC self-administration (COC SA). To assess whether we could block peripheral D2 agonist (quinelorane) induced reinstatement, we simultaneously infused either a D1R (SCH23390) or a D2R (raclopride) antagonist within the NAcc or DLS. When infused into the NAcc, but not into the DLS, SKF82958 induced reinstatement of COC-seeking; conversely, quinelorane had no effect when injected into the NAcc, but induced reinstatement when infused into the DLS while the D1R agonist has no effect. While administration of raclopride into the NAcc or DLS impedes the reinstating effect of a systemic quinelorane injection, the infusion of SCH23390 into the NAcc or DLS surprisingly, blocks the reinstatement induced by the peripheral D2R stimulation. Our results point to a double dissociation between D1R and D2R of the NAcc and DLS, highlighting their complex interactions within both structures, in the reinstatement of COC-seeking behavior.
Collapse
|
47
|
Rosa HZ, Segat HJ, Barcelos RCS, Roversi K, Rossato DR, de Brum GF, Burger ME. Involvement of the endogenous opioid system in the beneficial influence of physical exercise on amphetamine-induced addiction parameters. Pharmacol Biochem Behav 2020; 197:173000. [PMID: 32702398 DOI: 10.1016/j.pbb.2020.173000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/31/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Psychostimulant drugs addiction is a chronic public health problem and individuals remain susceptible to relapses increasing public expenses even after withdrawal and treatment. Our research group has focused on finding new therapies to be employed in drug addiction treatment, suggesting the physical exercise as a promising tool. This way, it is necessary to know the mechanisms involved in the beneficial influences of physical exercise observing the pathway that could be explored in drug addiction treatment. Male Wistar rats were conditioned with amphetamine (AMPH) following the conditioned place preference (CPP) protocol and subsequently submitted to swimming for 5 weeks (1 h per day, 5 days per week). Half of the animals were injected with Naloxone (0.3 mg/mL/kg body weight, i.p.) 5 min prior each physical exercise day. After AMPH-CPP re-exposure, our outcomes showed that physical exercise, in addition to minimizing the relapse behavior in the CPP, it increased D1R, D2R and DAT in the Ventral Tegmental Area (VTA), but not in the Nucleus accumbens (NAc). Interestingly, while naloxone inhibited the partial beneficial influence of the exercise on drug-relapse behavior, exercise-induced changes in the dopaminergic system were not observed in the group administered with naloxone as well. Based on these evidences, besides reinforcing the beneficial influence of the physical exercise on AMPH-induced drug addiction, we propose the involvement of endogenous opioid system activation, not as a single one, but as a possible mechanism of action resulting from the physical activity practice, thus characterizing an important therapeutic approach, which may contribute to drug withdrawal consequently preventing relapse.
Collapse
Affiliation(s)
- H Z Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - H J Segat
- Departamento de Patologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - R C S Barcelos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Kr Roversi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - D R Rossato
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - G F de Brum
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - M E Burger
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil; Departamento de Patologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil; Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil.
| |
Collapse
|
48
|
Accumbal Dopamine Release Tracks the Expectation of Dopamine Neuron-Mediated Reinforcement. Cell Rep 2020; 27:481-490.e3. [PMID: 30970251 DOI: 10.1016/j.celrep.2019.03.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/02/2018] [Accepted: 03/13/2019] [Indexed: 12/27/2022] Open
Abstract
Dopamine (DA) transmission in the nucleus accumbens (NAc) facilitates cue-reward associations and appetitive action. Reward-related accumbal DA release dynamics are traditionally ascribed to ventral tegmental area (VTA) DA neurons. Activation of VTA to NAc DA signaling is thought to reinforce action and transfer reward-related information to predictive cues, allowing cues to guide behavior and elicit dopaminergic activity. Here, we use optogenetics to control DA neuron activity and voltammetry to simultaneously record accumbal DA release in order to quantify how reinforcer-evoked dopaminergic activity shapes conditioned mesolimbic DA transmission. We find that cues predicting access to DA neuron self-stimulation elicit conditioned responding and NAc DA release. However, cue-evoked DA release does not reflect the cost or magnitude of DA neuron activation. Accordingly, conditioned accumbal DA release selectively tracks the expected availability of DA-neuron-mediated reinforcement. This work provides insight into how mesolimbic DA transmission drives and encodes appetitive action.
Collapse
|
49
|
Porcu A, Vaughan M, Nilsson A, Arimoto N, Lamia K, Welsh DK. Vulnerability to helpless behavior is regulated by the circadian clock component CRYPTOCHROME in the mouse nucleus accumbens. Proc Natl Acad Sci U S A 2020; 117:13771-13782. [PMID: 32487727 PMCID: PMC7306774 DOI: 10.1073/pnas.2000258117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nucleus accumbens (NAc), a central component of the midbrain dopamine reward circuit, exhibits disturbed circadian rhythms in the postmortem brains of depressed patients. We hypothesized that normal mood regulation requires proper circadian timing in the NAc, and that mood disorders are associated with dysfunctions of the NAc cellular circadian clock. In mice exhibiting stress-induced depression-like behavior (helplessness), we found altered circadian clock function and high nighttime expression of the core circadian clock component CRYPTOCHROME (CRY) in the NAc. In the NAc of helpless mice, we found that higher expression of CRY is associated with decreased activation of dopamine 1 receptor-expressing medium spiny neurons (D1R-MSNs). Furthermore, D1R-MSN-specific CRY-knockdown in the NAc reduced susceptibility to stress-induced helplessness and increased NAc neuronal activation at night. Finally, we show that CRY inhibits D1R-induced G protein activation, likely by interacting with the Gs protein. Altered circadian rhythms and CRY expression were also observed in human fibroblasts from major depressive disorder patients. Our data reveal a causal role for CRY in regulating the midbrain dopamine reward system, and provide a mechanistic link between the NAc circadian clock and vulnerability to depression.
Collapse
Affiliation(s)
- Alessandra Porcu
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161;
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92037
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92037
| | - Megan Vaughan
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037
| | - Anna Nilsson
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92037
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92037
| | - Natsuko Arimoto
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92037
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92037
| | - Katja Lamia
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037
| | - David K Welsh
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92037
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92037
| |
Collapse
|
50
|
Collins AL, Saunders BT. Heterogeneity in striatal dopamine circuits: Form and function in dynamic reward seeking. J Neurosci Res 2020; 98:1046-1069. [PMID: 32056298 PMCID: PMC7183907 DOI: 10.1002/jnr.24587] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 01/03/2023]
Abstract
The striatal dopamine system has long been studied in the context of reward learning, motivation, and movement. Given the prominent role dopamine plays in a variety of adaptive behavioral states, as well as diseases like addiction, it is essential to understand the full complexity of dopamine neurons and the striatal systems they target. A growing number of studies are uncovering details of the heterogeneity in dopamine neuron subpopulations. Here, we review that work to synthesize current understanding of dopamine system heterogeneity across three levels, anatomical organization, functions in behavior, and modes of action, wherein we focus on signaling profiles and local mechanisms for modulation of dopamine release. Together, these studies reveal new and emerging dimensions of the striatal dopamine system, informing its contribution to dynamic motivational and decision-making processes.
Collapse
Affiliation(s)
- Anne L. Collins
- University of Minnesota, Department of Neuroscience, Medical Discovery Team on Addiction, Minneapolis, MN 55455
| | - Benjamin T. Saunders
- University of Minnesota, Department of Neuroscience, Medical Discovery Team on Addiction, Minneapolis, MN 55455
| |
Collapse
|