1
|
Poggi G, Klaus F, Pryce CR. Pathophysiology in cortico-amygdala circuits and excessive aversion processing: the role of oligodendrocytes and myelination. Brain Commun 2024; 6:fcae140. [PMID: 38712320 PMCID: PMC11073757 DOI: 10.1093/braincomms/fcae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/27/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Stress-related psychiatric illnesses, such as major depressive disorder, anxiety and post-traumatic stress disorder, present with alterations in emotional processing, including excessive processing of negative/aversive stimuli and events. The bidirectional human/primate brain circuit comprising anterior cingulate cortex and amygdala is of fundamental importance in processing emotional stimuli, and in rodents the medial prefrontal cortex-amygdala circuit is to some extent analogous in structure and function. Here, we assess the comparative evidence for: (i) Anterior cingulate/medial prefrontal cortex<->amygdala bidirectional neural circuits as major contributors to aversive stimulus processing; (ii) Structural and functional changes in anterior cingulate cortex<->amygdala circuit associated with excessive aversion processing in stress-related neuropsychiatric disorders, and in medial prefrontal cortex<->amygdala circuit in rodent models of chronic stress-induced increased aversion reactivity; and (iii) Altered status of oligodendrocytes and their oligodendrocyte lineage cells and myelination in anterior cingulate/medial prefrontal cortex<->amygdala circuits in stress-related neuropsychiatric disorders and stress models. The comparative evidence from humans and rodents is that their respective anterior cingulate/medial prefrontal cortex<->amygdala circuits are integral to adaptive aversion processing. However, at the sub-regional level, the anterior cingulate/medial prefrontal cortex structure-function analogy is incomplete, and differences as well as similarities need to be taken into account. Structure-function imaging studies demonstrate that these neural circuits are altered in both human stress-related neuropsychiatric disorders and rodent models of stress-induced increased aversion processing. In both cases, the changes include altered white matter integrity, albeit the current evidence indicates that this is decreased in humans and increased in rodent models. At the cellular-molecular level, in both humans and rodents, the current evidence is that stress disorders do present with changes in oligodendrocyte lineage, oligodendrocytes and/or myelin in these neural circuits, but these changes are often discordant between and even within species. Nonetheless, by integrating the current comparative evidence, this review provides a timely insight into this field and should function to inform future studies-human, monkey and rodent-to ascertain whether or not the oligodendrocyte lineage and myelination are causally involved in the pathophysiology of stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Giulia Poggi
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, CH-8008 Zurich, Switzerland
| | - Federica Klaus
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA 92093, USA
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, CH-8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
2
|
Wang X, Huang L, Guo W, Tang L, Wu A, Wu P, Zhao X, Lin Q, Yu L. Cerebral Microstructural and Microvascular Changes in Non-Neuropsychiatric Systemic Lupus Erythematosus: A Study Using Diffusion Kurtosis Imaging and 3D Pseudo-Continuous Arterial Spin Labeling. J Inflamm Res 2023; 16:5465-5475. [PMID: 38026250 PMCID: PMC10676653 DOI: 10.2147/jir.s429521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose The purpose of this study was to observe cerebral microstructure and microcirculation features, as well as changes in white matter (WM) and gray matter (GM) among patients with non-neuropsychiatric systemic lupus erythematosus (non-NPSLE). Methods We compared 36 female patients with non-NPSLE and 20 age- and gender-matched healthy controls (HCs) who underwent 3.0T MRI imaging with diffusion kurtosis imaging (DKI) and 3D pseudo-continuous Arterial Spin Labeling (pCASL). Mean kurtosis (MK), mean kurtosis tensor (MKT), and cerebral blood flow (CBF) values were obtained from 25 brain regions, including WM and GM. We analyzed the correlation between imaging indicators and clinical data. Results When compared with HCs, patients with non-NPSLE had reduced MK and MKT values in regional WM, deep GM, and the left frontal lobe cortical GM, and increased CBF in the right parietal lobe WM and right semioval center (SOC). The MK and MKT values were weakly correlated with CBF in some regions, including WM and GM. Complement 3 (C3) and Complement 4 (C4) showed a weak positive correlation with MK and MKT in some regions, including WM and deep GM, while platelet (PLT) was positively correlated with MKT in the left frontal lobe WM; dsDNA antibody was correlated negatively with MK in the right occipital lobe WM; and erythrocyte sedimentation rate (ESR) was correlated negatively with CBF in the left SOC. Conclusion Our findings revealed the presence of brain microstructural and microvascular abnormalities in non-NPSLE patients, indicating microstructural damage in the cortical GM, which was less commonly reported. We found DKI and pCASL useful in detecting early brain lesions, and MK was a more sensitive and beneficial indicator.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| | - Lingling Huang
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| | - Wenbin Guo
- Department of Pathology, Pingtan Comprehensive Experimental Area Hospital, Fuzhou, Fujian, 350400, People’s Republic of China
| | - Langlang Tang
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| | - Aiyu Wu
- Department of Rheumatology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| | - Peng Wu
- Philips Healthcare, Shanghai, 200000, People’s Republic of China
| | - Xiance Zhao
- Philips Healthcare, Shanghai, 200000, People’s Republic of China
| | - Qi Lin
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| | - Lian Yu
- Department of Rheumatology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, 364000, People’s Republic of China
| |
Collapse
|
3
|
Hoogenboom WS, Rubin TG, Ambadipudi K, Cui MH, Ye K, Foster H, Elkouby E, Liu J, Branch CA, Lipton ML. Evolving brain and behaviour changes in rats following repetitive subconcussive head impacts. Brain Commun 2023; 5:fcad316. [PMID: 38046094 PMCID: PMC10691880 DOI: 10.1093/braincomms/fcad316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/26/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023] Open
Abstract
There is growing concern that repetitive subconcussive head impacts, independent of concussion, alter brain structure and function, and may disproportionately affect the developing brain. Animal studies of repetitive subconcussive head impacts are needed to begin to characterize the pathological basis and mechanisms underlying imaging and functional effects of repetitive subconcussive head impacts seen in humans. Since repetitive subconcussive head impacts have been largely unexplored in animals, we aimed to characterize the evolution of imaging, behavioural and pathological effects of repetitive subconcussive head impacts in awake adolescent rodents. Awake male and female Sprague Dawley rats (postnatal Day 35) received 140 closed-head impacts over the course of a week. Impacted and sham-impacted animals were restrained in a plastic cone, and unrestrained control animals were included to account for effects of restraint and normal development. Animals (n = 43) underwent repeated diffusion tensor imaging prior to and over 1 month following the final impact. A separate cohort (n = 53) was assessed behaviourally for fine motor control, emotional-affective behaviour and memory at acute and chronic time points. Histological and immunohistochemical analyses, which were exploratory in nature due to smaller sample sizes, were completed at 1 month following the final impact. All animals tolerated the protocol with no overt changes in behaviour or stigmata of traumatic brain injury, such as alteration of consciousness, intracranial haemorrhage or skull fracture. We detected longitudinal, sex-dependent diffusion tensor imaging changes (fractional anisotropy and axial diffusivity decline) in corpus callosum and external capsule of repetitive subconcussive head impact animals, which diverged from both sham and control. Compared to sham animals, repetitive subconcussive head impact animals exhibited acute but transient mild motor deficits. Repetitive subconcussive head impact animals also exhibited chronic anxiety and spatial memory impairment that differed from the control animals, but these effects were not different from those seen in the sham condition. We observed trends in the data for thinning of the corpus callosum as well as regions with elevated Iba-1 in the corpus callosum and cerebral white matter among repetitive subconcussive head impact animals. While replication with larger study samples is needed, our findings suggest that subconcussive head impacts cause microstructural tissue changes in the developing rat brain, which are detectable with diffusion tensor imaging, with suggestion of correlates in tissue pathology and behaviour. The results point to potential mechanisms underpinning consequences of subconcussive head impacts that have been described in humans. The congruence of our imaging findings with human subconcussive head impacts suggests that neuroimaging could serve as a translational bridge to advance study of injury mechanisms and development of interventions.
Collapse
Affiliation(s)
- Wouter S Hoogenboom
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Clinical Investigation, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Todd G Rubin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NewYork, NY 10029, USA
| | - Kamalakar Ambadipudi
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Min-Hui Cui
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Kenny Ye
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Henry Foster
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
| | - Esther Elkouby
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
| | - Jinyuan Liu
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
| | - Craig A Branch
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Michael L Lipton
- Department of Radiology, Columbia University Irving Medical Center, NewYork, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, NewYork, NY 10032, USA
| |
Collapse
|
4
|
Qi X, He Y, Wang Q, Ren S, Yao H, Cao W, Guan L. Diffusion tensor and kurtosis imaging reveal microstructural changes in the trigeminal nerves of patients with trigeminal neuralgia. Eur Radiol 2023; 33:8046-8054. [PMID: 37256350 DOI: 10.1007/s00330-023-09762-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/19/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
OBJECTIVES To evaluate the use of diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) for detection of microstructural changes in the trigeminal nerves of trigeminal neuralgia (TN) patients. METHODS Forty TN patients and 40 healthy controls were examined using 3 T magnetic resonance imaging (MRI) to evaluate DTI and DKI parameters in trigeminal nerves. One-way ANOVA was used to test the differences in age, sex, and DTI and DKI parameters between the TN-affected sides, TN-unaffected sides, and controls. For parameters with inter-group differences, pairwise comparisons were performed. Then, the difference ratios (DRs) of the parameters with statistical differences were calculated and used for the receiver operating characteristic (ROC) analysis to assess their diagnostic performance. In addition, for the DTI and DKI parameter values with differences, we used pure DTI and DKI values to perform the ROC analysis. RESULTS Compared to the unaffected sides and controls, the FA, MK, and Kr of the affected sides of TN patients were significantly reduced, while ADC was significantly increased (p < 0.05). The diagnostic efficiency of the FA DRs (AUC: 0.974; cutoff value: 0.038; sensitivity: 100%; specificity: 95.0%) was the highest among all DTI and DKI parameters. The DRs of FA and MK more efficiently diagnosed TN than pure FA and MK values. CONCLUSIONS DTI and DKI allowed detection of microstructural changes in TN-affected trigeminal nerves. FA DR was the best independent predictor of microstructural changes in TN. CLINICAL RELEVANCE STATEMENT Both DTI and DKI can be used for noninvasive quantitative evaluation of the changes in the microstructure of the cisternal segment of the cranial nerves in clinical practice. KEY POINTS • Diffusion tensor imaging (DTI) can be used to evaluate the in vivo integrity of white matter and nerve fiber pathway. • Diffusion kurtosis imaging (DKI) has been shown to be considerable sensitive to microstructural changes. • DTI combined with DKI can comprehensively evaluate the status of the TN-affected trigeminal nerve.
Collapse
Affiliation(s)
- Xixun Qi
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yunyun He
- Department of Radiology, Jingzhou Central Hospital, Jingzhou, 434020, China
| | - Qiushi Wang
- Department of Pain, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Sixie Ren
- Department of Radiology, Chengdu Second People's Hospital, Chengdu, 610000, China
| | - Haibo Yao
- Medical Records Office, Chengdu Women'S and Children'S Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wanyu Cao
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Liming Guan
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
5
|
Dong L, Liang HB, Du J, Wang Y, Zhou Q, Xin Z, Hu Y, Liu YS, Zhao R, Qiao Y, Zhou C, Liu JR, Du X. Microstructural Differences of the Cerebellum-Thalamus-Basal Ganglia-Limbic Cortex in Patients with Somatic Symptom Disorders: a Diffusion Kurtosis Imaging Study. CEREBELLUM (LONDON, ENGLAND) 2023; 22:840-851. [PMID: 35986875 DOI: 10.1007/s12311-022-01461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Somatic symp tom disorders (SSDs) are a group of psychiatric disorders characterized by persistent disproportionate concern and obsessive behaviors regarding physical conditions. Currently, SSDs lack effective treatments and their pathophysiology is unclear. In this paper, we aimed to examine microstructural abnormalities in the brains of patients with SSD using diffusion kurtosis imaging (DKI) and to investigate the correlation between these abnormalities and clinical indicators. Diffusion kurtosis images were acquired from 30 patients with SSD and 30 healthy controls (HCs). Whole-brain maps of multiple diffusion measures, including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD), mean kurtosis (MK), radial kurtosis (RK), and axial kurtosis (AK), were calculated. To analyze differences between the two groups, nonparametric permutation testing with 10,000 randomized permutations and threshold-free cluster enhancement was used with family-wise error-corrected p values < 0.05 as the threshold for statistical significance. Then, the correlations between significant changes in these diffusion measures and clinical factors were examined. Compared to HCs, patients with SSD had significantly higher FA, MK, and RK and significantly lower MD and RD in the cerebellum, thalamus, basal ganglia, and limbic cortex. The FA in the left caudate and the pontine crossing tract were negatively correlated with disease duration; the MD and the RD in the genu of the corpus callosum were positively correlated with disease duration. Our findings highlight the role of the cerebellum-thalamus-basal ganglia-limbic cortex pathway, especially the cerebellum, in SSDs and enhance our understanding of the pathogenesis of SSDs.
Collapse
Affiliation(s)
- Liao Dong
- Department of Psychology, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Huai-Bin Liang
- Department of Neurology &Jiuyuan Municipal Stroke Center, Shanghai 9Th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jiaxin Du
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Yingying Wang
- Department of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Qichen Zhou
- Department of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Ziyue Xin
- Department of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Yue Hu
- Department of Neurology &Jiuyuan Municipal Stroke Center, Shanghai 9Th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi-Sheng Liu
- Department of Neurology &Jiuyuan Municipal Stroke Center, Shanghai 9Th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rong Zhao
- Department of Neurology &Jiuyuan Municipal Stroke Center, Shanghai 9Th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuan Qiao
- Department of Neurology &Jiuyuan Municipal Stroke Center, Shanghai 9Th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chenglin Zhou
- Department of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Jian-Ren Liu
- Department of Neurology &Jiuyuan Municipal Stroke Center, Shanghai 9Th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Xiaoxia Du
- Department of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
6
|
Morava A, Tari B, Ahn J, Shirzad M, Heath M, Prapavessis H. Acute stress imparts a transient benefit to task-switching that is not modulated following a single bout of exercise. Front Psychol 2023; 14:1157644. [PMID: 37533726 PMCID: PMC10391836 DOI: 10.3389/fpsyg.2023.1157644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Cognitive flexibility represents a core component of executive function that promotes the ability to efficiently alternate-or "switch"-between different tasks. Literature suggests that acute stress negatively impacts cognitive flexibility, whereas a single bout of aerobic exercise supports a postexercise improvement in cognitive flexibility. Here, we examined whether a single bout of aerobic exercise attenuates a stress-induced decrement in task-switching. Materials and Methods Forty participants (age range = 19-30) completed the Trier Social Stress Test (TSST) and were randomized into separate Exercise or Rest groups entailing 20-min sessions of heavy intensity exercise (80% of heart rate maximum via cycle ergometer) or rest, respectively. Stress induction was confirmed via state anxiety and heart rate. Task-switching was assessed prior to the TSST (i.e., pre-TSST), following the TSST (i.e., post-TSST), and following Exercise and Rest interventions (i.e., post-intervention) via pro- (i.e., saccade to veridical target location) and antisaccades (i.e., saccade mirror-symmetrical to target location) arranged in an AABB task-switching paradigm. The underlying principle of the AABB paradigm suggests that when prosaccades are preceded by antisaccades (i.e., task-switch trials), the reaction times are longer compared to their task-repeat counterparts (i.e., unidirectional prosaccade switch-cost). Results As expected, the pre-TSST assessment yielded a prosaccade switch cost. Notably, post-TSST physiological measures indicated a reliable stress response and at this assessment a null prosaccade switch-cost was observed. In turn, post-intervention assessments revealed a switch-cost independent of Exercise and Rest groups. Conclusion Accordingly, the immediate effects of acute stress supported improved task-switching in young adults; however, these benefits were not modulated by a single bout of aerobic exercise.
Collapse
Affiliation(s)
- Anisa Morava
- Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Benjamin Tari
- Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, London, ON, Canada
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Joshua Ahn
- Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Mustafa Shirzad
- Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Matthew Heath
- Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, London, ON, Canada
- Canadian Centre for Activity and Aging, University of Western Ontario, London, ON, Canada
- Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| | - Harry Prapavessis
- Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
7
|
Obenaus A, Kinney-Lang E, Jullienne A, Haddad E, Wendel KM, Shereen AD, Solodkin A, Dunn JF, Baram TZ. Seeking the Amygdala: Novel Use of Diffusion Tensor Imaging to Delineate the Basolateral Amygdala. Biomedicines 2023; 11:biomedicines11020535. [PMID: 36831071 PMCID: PMC9953214 DOI: 10.3390/biomedicines11020535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
The amygdaloid complex, including the basolateral nucleus (BLA), contributes crucially to emotional and cognitive brain functions, and is a major target of research in both humans and rodents. However, delineating structural amygdala plasticity in both normal and disease-related contexts using neuroimaging has been hampered by the difficulty of unequivocally identifying the boundaries of the BLA. This challenge is a result of the poor contrast between BLA and the surrounding gray matter, including other amygdala nuclei. Here, we describe a novel diffusion tensor imaging (DTI) approach to enhance contrast, enabling the optimal identification of BLA in the rodent brain from magnetic resonance (MR) images. We employed this methodology together with a slice-shifting approach to accurately measure BLA volumes. We then validated the results by direct comparison to both histological and cellular-identity (parvalbumin)-based conventional techniques for defining BLA in the same brains used for MRI. We also confirmed BLA connectivity targets using DTI-based tractography. The novel approach enables the accurate and reliable delineation of BLA. Because this nucleus is involved in and changed by developmental, degenerative and adaptive processes, the instruments provided here should be highly useful to a broad range of neuroimaging studies. Finally, the principles used here are readily applicable to numerous brain regions and across species.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
- Department of Anatomy/Neurobiology, University of California, Irvine, CA 92697, USA
- Correspondence:
| | - Eli Kinney-Lang
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Amandine Jullienne
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Elizabeth Haddad
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Kara M. Wendel
- Department of Anatomy/Neurobiology, University of California, Irvine, CA 92697, USA
| | - A. Duke Shereen
- Department of Anatomy/Neurobiology, University of California, Irvine, CA 92697, USA
| | - Ana Solodkin
- Department of Anatomy/Neurobiology, University of California, Irvine, CA 92697, USA
- Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Jeffrey F. Dunn
- Department of Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada
| | - Tallie Z. Baram
- Department of Pediatrics, University of California, Irvine, CA 92697, USA
- Department of Anatomy/Neurobiology, University of California, Irvine, CA 92697, USA
- Department of Neurology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Endocannabinoid 2-Arachidonoylglycerol Levels in the Anterior Cingulate Cortex, Caudate Putamen, Nucleus Accumbens, and Piriform Cortex Were Upregulated by Chronic Restraint Stress. Cells 2023; 12:cells12030393. [PMID: 36766735 PMCID: PMC9913316 DOI: 10.3390/cells12030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Endocannabinoid 2-arachidonoylglycerol (2-AG) has been implicated in habituation to stress, and its augmentation reduces stress-induced anxiety-like behavior. Chronic restraint stress (CRS) changes the 2-AG levels in some gross brain areas, such as the forebrain. However, the detailed spatial distribution of 2-AG and its changes by CRS in stress processing-related anatomical structures such as the anterior cingulate cortex (ACC), caudate putamen (CP), nucleus accumbens (NAc), and piriform cortex (PIR) are still unclear. In this study, mice were restrained for 30 min in a 50 mL-centrifuge tube for eight consecutive days, followed by imaging of the coronal brain sections of control and stressed mice using desorption electrospray ionization mass spectrometry imaging (DESI-MSI). The results showed that from the forebrain to the cerebellum, 2-AG levels were highest in the hypothalamus and lowest in the hippocampal region. 2-AG levels were significantly (p < 0.05) upregulated and 2-AG precursors levels were significantly (p < 0.05) downregulated in the ACC, CP, NAc, and PIR of stressed mice compared with control mice. This study provided direct evidence of 2-AG expression and changes, suggesting that 2-AG levels are increased in the ACC CP, NAc, and PIR when individuals are under chronic stress.
Collapse
|
9
|
Aberrant cortico-striatal white matter connectivity and associated subregional microstructure of the striatum in obsessive-compulsive disorder. Mol Psychiatry 2022; 27:3460-3467. [PMID: 35618882 DOI: 10.1038/s41380-022-01588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
The striatum and its cortical circuits play central roles in the pathophysiology of obsessive-compulsive disorder (OCD). The striatum is subdivided by cortical connections and functions; however, the anatomical aberrations in different cortico-striatal connections and coexisting microstructural anomalies in striatal subregions of OCD patients are poorly understood. Thus, we aimed to elucidate the aberrations in cortico-striatal white matter (WM) connectivity and the associated subregional microstructure of the striatum in patients with OCD. From diffusion tensor/kurtosis imaging of 107 unmedicated OCD patients and 110 matched healthy controls (HCs), we calculated the cortico-striatal WM connectivity and segmented the striatum using probabilistic tractography. For the segmented striatal subregions, we measured average diffusion kurtosis values, which represent microstructural complexity. Connectivity and mean kurtosis values in each cortical target and associated striatal subregions were compared between groups. We identified significantly reduced orbitofrontal WM connectivity with its associated striatal subregion in patients with OCD compared to that in HCs. However, OCD patients exhibited significantly increased caudal-motor and parietal connectivity with the associated striatal subregions. The mean kurtosis values of the striatal subregions connected to the caudal-motor and parietal cortex were significantly decreased in OCD patients. Our results highlighted contrasting patterns of striatal WM connections with the orbitofrontal and caudal-motor/parietal cortices, thus supporting the cortico-striatal circuitry imbalance model of OCD. We suggest that aberrations in WM connections and the microstructure of their downstream regions in the caudal-motor-/parietal-striatal circuits may underlie OCD pathophysiology and further provide potential neuromodulation targets for the treatment of OCD.
Collapse
|
10
|
Chronic mild stress paradigm as a rat model of depression: facts, artifacts, and future perspectives. Psychopharmacology (Berl) 2022; 239:663-693. [PMID: 35072761 PMCID: PMC8785013 DOI: 10.1007/s00213-021-05982-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE The chronic mild stress (CMS) paradigm was first described almost 40 years ago and has become a widely used model in the search for antidepressant drugs for major depression disorder (MDD). It has resulted in the publication of almost 1700 studies in rats alone. Under the original CMS procedure, the expression of an anhedonic response, a key symptom of depression, was seen as an essential feature of both the model and a depressive state. The prolonged exposure of rodents to unpredictable/uncontrollable mild stressors leads to a reduction in the intake of palatable liquids, behavioral despair, locomotor inhibition, anxiety-like changes, and vegetative (somatic) abnormalities. Many of the CMS studies do not report these patterns of behaviors, and they often fail to include consistent molecular, neuroanatomical, and physiological phenotypes of CMS-exposed animals. OBJECTIVES To critically review the CMS studies in rats so that conceptual and methodological flaws can be avoided in future studies. RESULTS Analysis of the literature supports the validity of the CMS model and its impact on the field. However, further improvements could be achieved by (i) the stratification of animals into 'resilient' and 'susceptible' cohorts within the CMS animals, (ii) the use of more refined protocols in the sucrose test to mitigate physiological and physical artifacts, and (iii) the systematic evaluation of the non-specific effects of CMS and implementation of appropriate adjustments within the behavioral tests. CONCLUSIONS We propose methodological revisions and the use of more advanced behavioral tests to refine the rat CMS paradigm, which offers a valuable tool for developing new antidepressant medications.
Collapse
|
11
|
Analysis of Antidepressant-like Effects and Action Mechanisms of GSB-106, a Small Molecule, Affecting the TrkB Signaling. Int J Mol Sci 2021; 22:ijms222413381. [PMID: 34948177 PMCID: PMC8704497 DOI: 10.3390/ijms222413381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
Induction of BDNF-TrkB signaling is associated with the action mechanisms of conventional and fast-acting antidepressants. GSB-106, developed as a small dimeric dipeptide mimetic of BDNF, was previously shown to produce antidepressant-like effects in the mouse Porsolt test, tail suspension test, Nomura water wheel test, in the chronic social defeat stress model and in the inflammation-induced model of depression. In the present study, we evaluated the effect of chronic per os administration of GSB-106 to Balb/c mice under unpredictable chronic mild stress (UCMS). It was observed for the first time that long term GSB-106 treatment (1 mg/kg, 26 days) during ongoing UCMS procedure ameliorated the depressive-like behaviors in mice as indicated by the Porsolt test. In addition, chronic per os administration of GSB-106 resulted in an increase in BDNF levels, which were found to be decreased in the prefrontal cortex and hippocampus of mice after UCMS. Furthermore, prolonged GSB-106 treatment was accompanied by an increase in the content of pTrkB706/707 in the prefrontal cortex and by a pronounced increase in the level of pTrkB816 in both studied brain structures of mice subjected to UCMS procedure. In summary, the present data show that chronic GSB-106 treatment produces an antidepressant-like effect in the unpredictable chronic mild stress model, which is likely to be associated with the regulation of the BDNF-TrkB signaling.
Collapse
|
12
|
Christiaen E, Goossens MG, Descamps B, Delbeke J, Wadman W, Vonck K, Boon P, Raedt R, Vanhove C. White Matter Integrity in a Rat Model of Epileptogenesis: Structural Connectomics and Fixel-Based Analysis. Brain Connect 2021; 12:320-333. [PMID: 34155915 DOI: 10.1089/brain.2021.0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Electrophysiological and neuroimaging studies have demonstrated that large-scale brain networks are affected during the development of epilepsy. These networks can be investigated by using diffusion magnetic resonance imaging (dMRI). The most commonly used model to analyze dMRI is diffusion tensor imaging (DTI). However, DTI metrics are not specific to microstructure or pathology and the DTI model does not take into account crossing fibers, which may lead to erroneous results. To overcome these limitations, a more advanced model based on multi-shell multi-tissue constrained spherical deconvolution was used in this study to perform tractography with more precise fiber orientation estimates and to assess changes in intra-axonal volume by using fixel-based analysis. Methods: dMRI images were acquired before and at several time points after induction of status epilepticus in the intraperitoneal kainic acid (IPKA) rat model of temporal lobe epilepsy. Tractography was performed, and fixel metrics were calculated in several white matter tracts. The tractogram was analyzed by using the graph theory. Results: Global degree, global and local efficiency were decreased in IPKA animals compared with controls during epileptogenesis. Nodal degree was decreased in the limbic system and default-mode network, mainly during early epileptogenesis. Further, fiber density (FD) and fiber-density-and-cross-section (FDC) were decreased in several white matter tracts. Discussion: These results indicate a decrease in overall structural connectivity, integration, and segregation and decreased structural connectivity in the limbic system and default-mode network. Decreased FD and FDC point to a decrease in intra-axonal volume fraction during epileptogenesis, which may be related to neuronal degeneration and gliosis. Impact statement To the best of our knowledge, this is the first longitudinal multi-shell diffusion magnetic resonance imaging study that combines whole-brain tractography and fixel-based analysis to investigate changes in structural brain connectivity and white matter integrity during epileptogenesis in a rat model of temporal lobe epilepsy. Our findings present better insights into how the topology of the structural brain network changes during epileptogenesis and how these changes are related to white matter integrity. This could improve the understanding of the basic mechanisms of epilepsy and aid the rational development of imaging biomarkers and epilepsy therapies.
Collapse
Affiliation(s)
- Emma Christiaen
- MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | | | - Benedicte Descamps
- MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Jean Delbeke
- 4Brain, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Wytse Wadman
- 4Brain, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Kristl Vonck
- 4Brain, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Paul Boon
- 4Brain, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Robrecht Raedt
- 4Brain, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Chen VCH, Kao CJ, Tsai YH, McIntyre RS, Weng JC. Mapping Brain Microstructure and Network Alterations in Depressive Patients with Suicide Attempts Using Generalized Q-Sampling MRI. J Pers Med 2021; 11:jpm11030174. [PMID: 33802354 PMCID: PMC7998726 DOI: 10.3390/jpm11030174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/28/2022] Open
Abstract
Depressive disorder is one of the leading causes of disability worldwide, with a high prevalence and chronic course. Depressive disorder carries an increased risk of suicide. Alterations in brain structure and networks may play an important role in suicidality among depressed patients. Diffusion magnetic resonance imaging (MRI) is a noninvasive method to map white-matter fiber orientations and provide quantitative parameters. This study investigated the neurological structural differences and network alterations in depressed patients with suicide attempts by using generalized q-sampling imaging (GQI). Our study recruited 155 participants and assigned them into three groups: 44 depressed patients with a history of suicide attempts (SA), 56 depressed patients without a history of suicide attempts (D) and 55 healthy controls (HC). We used the GQI to analyze the generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA) values in voxel-based statistical analysis, topological parameters in graph theoretical analysis and subnetwork connectivity in network-based statistical analysis. GFA indicates the measurement of neural anisotropy and represents white-matter integrity; NQA indicates the amount of anisotropic spins that diffuse along fiber orientations and represents white-matter compactness. In the voxel-based statistical analysis, we found lower GFA and NQA values in the SA group than in the D and HC groups and lower GFA and NQA values in the D group than in the HC group. In the graph theoretical analysis, the SA group demonstrated higher local segregation and lower global integration among the three groups. In the network-based statistical analysis, the SA group showed stronger subnetwork connections in the frontal and parietal lobes, and the D group showed stronger subnetwork connections in the parietal lobe than the HC group. Alternations were found in the structural differences and network measurements in healthy controls and depressed patients with and without a history of suicide attempt.
Collapse
Affiliation(s)
- Vincent Chin-Hung Chen
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (V.C.-H.C.); (Y.-H.T.)
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Chun-Ju Kao
- Department of Medical Imaging and Radiological Sciences, Bachelor Program in Artificial Intelligence, Chang Gung University, No. 259, Wenhua 1st Rd., Taoyuan 33302, Taiwan;
| | - Yuan-Hsiung Tsai
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (V.C.-H.C.); (Y.-H.T.)
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Roger S. McIntyre
- Mood Disorder Psychopharmacology Unit, University Health Network, Department of Psychiatry, University of Toronto, Toronto, ON M5S, Canada;
- Institute of Medical Science, University of Toronto, Toronto, ON M5S, Canada
- Departments of Psychiatry and Pharmacology, University of Toronto, Toronto, ON M5S, Canada
| | - Jun-Cheng Weng
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Department of Medical Imaging and Radiological Sciences, Bachelor Program in Artificial Intelligence, Chang Gung University, No. 259, Wenhua 1st Rd., Taoyuan 33302, Taiwan;
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-2118800 (ext. 5394)
| |
Collapse
|
14
|
Czéh B, Simon M. Benefits of animal models to understand the pathophysiology of depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110049. [PMID: 32735913 DOI: 10.1016/j.pnpbp.2020.110049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Major depressive disorder (MDD) is a potentially life-threatening mental disorder imposing severe social and economic burden worldwide. Despite the existence of effective antidepressant treatment strategies the exact pathophysiology of the disease is still unknown. Large number of animal models of MDD have been developed over the years, but all of them suffer from significant shortcomings. Despite their limitations these models have been extensively used in academic research and drug development. The aim of this review is to highlight the benefits of animal models of MDD. We focus here on recent experimental data where animal models were used to examine current theories of this complex disease. We argue, that despite their evident imperfections, these models provide invaluable help to understand cellular and molecular mechanisms contributing to the development of MDD. Furthermore, animal models are utilized in research to find clinically useful biomarkers. We discuss recent neuroimaging and microRNA studies since these investigations yielded promising candidates for biomarkers. Finally, we briefly summarize recent progresses in drug development, i.e. the FDA approval of two novel antidepressant drugs: S-ketamine and brexanolone (allopregnanolone). Deeper understanding of the exact molecular and cellular mechanisms of action responsible for the antidepressant efficacy of these rapid acting drugs could aid us to design further compounds with similar effectiveness, but less side effects. Animal studies are likely to provide valuable help in this endeavor.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary.
| | - Maria Simon
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Hungary
| |
Collapse
|
15
|
Li YY, Ni XK, You YF, Qing YH, Wang PR, Yao JS, Ren KM, Zhang L, Liu ZW, Song TJ, Wang J, Zang YF, Shen YD, Chen W. Common and Specific Alterations of Amygdala Subregions in Major Depressive Disorder With and Without Anxiety: A Combined Structural and Resting-State Functional MRI Study. Front Hum Neurosci 2021; 15:634113. [PMID: 33658914 PMCID: PMC7917186 DOI: 10.3389/fnhum.2021.634113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/22/2021] [Indexed: 12/25/2022] Open
Abstract
Anxious major depressive disorder is a common subtype of major depressive disorder; however, its unique neural mechanism is not well-understood currently. Using multimodal MRI data, this study examined common and specific alterations of amygdala subregions between patients with and without anxiety. No alterations were observed in the gray matter volume or intra-region functional integration in either patient group. Compared with the controls, both patient groups showed decreased functional connectivity between the left superficial amygdala and the left putamen, and between the right superficial amygdala and the bilateral anterior cingulate cortex and medial orbitofrontal cortex, while only patients with anxiety exhibited decreased activity in the bilateral laterobasal and superficial amygdala. Moreover, the decreased activity correlated negatively with the Hamilton depression scale scores in the patients with anxiety. These findings provided insights into the pathophysiologic processes of anxious major depressive disorder and may help to develop new and effective treatment programs.
Collapse
Affiliation(s)
- Yao Yao Li
- Department of Psychiatry, Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Xiao Kang Ni
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Feng You
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Hua Qing
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pei Rong Wang
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Jia Shu Yao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Ming Ren
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Zhang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Wei Liu
- Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tie Jun Song
- Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinhui Wang
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yu-Feng Zang
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yue di Shen
- Department of Diagnostics, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
16
|
McKenna F, Miles L, Donaldson J, Castellanos FX, Lazar M. Diffusion kurtosis imaging of gray matter in young adults with autism spectrum disorder. Sci Rep 2020; 10:21465. [PMID: 33293640 PMCID: PMC7722927 DOI: 10.1038/s41598-020-78486-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/29/2020] [Indexed: 01/20/2023] Open
Abstract
Prior ex vivo histological postmortem studies of autism spectrum disorder (ASD) have shown gray matter microstructural abnormalities, however, in vivo examination of gray matter microstructure in ASD has remained scarce due to the relative lack of non-invasive methods to assess it. The aim of this work was to evaluate the feasibility of employing diffusional kurtosis imaging (DKI) to describe gray matter abnormalities in ASD in vivo. DKI data were examined for 16 male participants with a diagnosis of ASD and IQ>80 and 17 age- and IQ-matched male typically developing (TD) young adults 18-25 years old. Mean (MK), axial (AK), radial (RK) kurtosis and mean diffusivity (MD) metrics were calculated for lobar and sub-lobar regions of interest. Significantly decreased MK, RK, and MD were found in ASD compared to TD participants in the frontal and temporal lobes and several sub-lobar regions previously associated with ASD pathology. In ASD participants, decreased kurtosis in gray matter ROIs correlated with increased repetitive and restricted behaviors and poor social interaction symptoms. Decreased kurtosis in ASD may reflect a pathology associated with a less restrictive microstructural environment such as decreased neuronal density and size, atypically sized cortical columns, or limited dendritic arborizations.
Collapse
Affiliation(s)
- Faye McKenna
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, USA.
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA.
| | - Laura Miles
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, USA
| | - Jeffrey Donaldson
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, USA
| | - F Xavier Castellanos
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Mariana Lazar
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
17
|
Naeyaert M, Aelterman J, Van Audekerke J, Golkov V, Cremers D, Pižurica A, Sijbers J, Verhoye M. Accelerating in vivo fast spin echo high angular resolution diffusion imaging with an isotropic resolution in mice through compressed sensing. Magn Reson Med 2020; 85:1397-1413. [PMID: 33009866 DOI: 10.1002/mrm.28520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 11/11/2022]
Abstract
PURPOSE Echo planar imaging (EPI) is commonly used to acquire the many volumes needed for high angular resolution diffusion Imaging (HARDI), posing a higher risk for artifacts, such as distortion and deformation. An alternative to EPI is fast spin echo (FSE) imaging, which has fewer artifacts but is inherently slower. The aim is to accelerate FSE such that a HARDI data set can be acquired in a time comparable to EPI using compressed sensing. METHODS Compressed sensing was applied in either q-space or simultaneously in k-space and q-space, by undersampling the k-space in the phase-encoding direction or retrospectively eliminating diffusion directions for different degrees of undersampling. To test the replicability of the acquisition and reconstruction, brain data were acquired from six mice, and a numerical phantom experiment was performed. All HARDI data were analyzed individually using constrained spherical deconvolution, and the apparent fiber density and complexity metric were evaluated, together with whole-brain tractography. RESULTS The apparent fiber density and complexity metric showed relatively minor differences when only q-space undersampling was used, but deteriorate when k-space undersampling was applied. Likewise, the tract density weighted image showed good results when only q-space undersampling was applied using 15 directions or more, but information was lost when fewer volumes or k-space undersampling were used. CONCLUSION It was found that acquiring 15 to 20 diffusion directions with a full k-space and reconstructed using compressed sensing could suffice for a replicable measurement of quantitative measures in mice, where areas near the sinuses and ear cavities are untainted by signal loss.
Collapse
Affiliation(s)
| | - Jan Aelterman
- Imec-IPI, Department of Telecommunications and Information Processing, Ghent University, Ghent, Belgium
| | | | - Vladimir Golkov
- Department of Computer Science, Technical University of Munich, Garching, Germany
| | - Daniel Cremers
- Department of Computer Science, Technical University of Munich, Garching, Germany
| | - Aleksandra Pižurica
- Imec-IPI, Department of Telecommunications and Information Processing, Ghent University, Ghent, Belgium
| | - Jan Sijbers
- Imec-Vision Lab, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
18
|
Impaired neuronal and astroglial metabolic activity in chronic unpredictable mild stress model of depression: Reversal of behavioral and metabolic deficit with lanicemine. Neurochem Int 2020; 137:104750. [DOI: 10.1016/j.neuint.2020.104750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/05/2020] [Accepted: 04/24/2020] [Indexed: 01/20/2023]
|
19
|
Nagy SA, Vranesics A, Varga Z, Csabai D, Bruszt N, Bali ZK, Perlaki G, Hernádi I, Berente Z, Miseta A, Dóczi T, Czéh B. Stress-Induced Microstructural Alterations Correlate With the Cognitive Performance of Rats: A Longitudinal in vivo Diffusion Tensor Imaging Study. Front Neurosci 2020; 14:474. [PMID: 32581670 PMCID: PMC7283577 DOI: 10.3389/fnins.2020.00474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Stress-induced cellular changes in limbic brain structures contribute to the development of various psychopathologies. In vivo detection of these microstructural changes may help us to develop objective biomarkers for psychiatric disorders. Diffusion tensor imaging (DTI) is an advanced neuroimaging technique that enables the non-invasive examination of white matter integrity and provides insights into the microstructure of pathways connecting brain areas. Objective: Our aim was to examine the temporal dynamics of stress-induced structural changes with repeated in vivo DTI scans and correlate them with behavioral alterations. Methods: Out of 32 young adult male rats, 16 were exposed to daily immobilization stress for 3 weeks. Four DTI measurements were done: one before the stress exposure (baseline), two scans during the stress (acute and chronic phases), and a last one 2 weeks after the end of the stress protocol (recovery). We used a 4.7T small-animal MRI system and examined 18 gray and white matter structures calculating the following parameters: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). T2-weighted images were used for volumetry. Cognitive performance and anxiety levels of the animals were assessed in the Morris water maze, novel object recognition, open field, and elevated plus maze tests. Results: Reduced FA and increased MD and RD values were found in the corpus callosum and external capsule of stressed rats. Stress increased RD in the anterior commissure and reduced MD and RD in the amygdala. We observed time-dependent changes in several DTI parameters as the rats matured, but we found no evidence of stress-induced volumetric alterations in the brains. Stressed rats displayed cognitive impairments and we found numerous correlations between the cognitive performance of the animals and between various DTI metrics of the inferior colliculus, corpus callosum, anterior commissure, and amygdala. Conclusions: Our data provide further support to the translational value of DTI studies and suggest that chronic stress exposure results in similar white matter microstructural alterations that have been documented in stress-related psychiatric disorders. These DTI findings imply microstructural abnormalities in the brain, which may underlie the cognitive deficits that are often present in stress-related mental disorders.
Collapse
Affiliation(s)
- Szilvia Anett Nagy
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,MTA-PTE, Clinical Neuroscience MR Research Group, Pécs, Hungary.,Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary.,Pécs Diagnostic Centre, Pécs, Hungary.,Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Anett Vranesics
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Research Group for Experimental Diagnostic Imaging, Medical School, University of Pécs, Pécs, Hungary.,Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Zsófia Varga
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Dávid Csabai
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Nóra Bruszt
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Department of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Zsolt Kristóf Bali
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Grastyán Translational Research Centre, University of Pécs, Pécs, Hungary
| | - Gábor Perlaki
- MTA-PTE, Clinical Neuroscience MR Research Group, Pécs, Hungary.,Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary.,Pécs Diagnostic Centre, Pécs, Hungary
| | - István Hernádi
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Department of Physiology, Medical School, University of Pécs, Pécs, Hungary.,Grastyán Translational Research Centre, University of Pécs, Pécs, Hungary.,Department of Experimental Zoology and Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Zoltán Berente
- Research Group for Experimental Diagnostic Imaging, Medical School, University of Pécs, Pécs, Hungary.,Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Dóczi
- MTA-PTE, Clinical Neuroscience MR Research Group, Pécs, Hungary.,Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary.,Pécs Diagnostic Centre, Pécs, Hungary
| | - Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
20
|
Khan AR, Geiger L, Wiborg O, Czéh B. Stress-Induced Morphological, Cellular and Molecular Changes in the Brain-Lessons Learned from the Chronic Mild Stress Model of Depression. Cells 2020; 9:cells9041026. [PMID: 32326205 PMCID: PMC7226496 DOI: 10.3390/cells9041026] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder (MDD) is a severe illness imposing an increasing social and economic burden worldwide. Numerous rodent models have been developed to investigate the pathophysiology of MDD. One of the best characterized and most widely used models is the chronic mild stress (CMS) model which was developed more than 30 years ago by Paul Willner. More than 2000 published studies used this model, mainly to assess novel compounds with potential antidepressant efficacy. Most of these studies examined the behavioral consequences of stress and concomitant drug intervention. Much fewer studies focused on the CMS-induced neurobiological changes. However, the stress-induced cellular and molecular changes are important as they may serve as potential translational biomarkers and increase our understanding of the pathophysiology of MDD. Here, we summarize current knowledge on the structural and molecular alterations in the brain that have been described using the CMS model. We discuss the latest neuroimaging and postmortem histopathological data as well as molecular changes including recent findings on microRNA levels. Different chronic stress paradigms occasionally deliver dissimilar findings, but the available experimental data provide convincing evidence that the CMS model has a high translational value. Future studies examining the neurobiological changes in the CMS model in combination with clinically effective antidepressant drug intervention will likely deliver further valuable information on the pathophysiology of MDD.
Collapse
Affiliation(s)
- Ahmad Raza Khan
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute (SGPGI) Campus, Lucknow-226017, U.P, India;
| | - Lili Geiger
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
| | - Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
21
|
Cui L, Wang F, Yin Z, Chang M, Song Y, Wei Y, Lv J, Zhang Y, Tang Y, Gong X, Xu K. Effects of the LHPP gene polymorphism on the functional and structural changes of gray matter in major depressive disorder. Quant Imaging Med Surg 2020; 10:257-268. [PMID: 31956547 DOI: 10.21037/qims.2019.12.01] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background A single-nucleotide polymorphism (SNP) of the LHPP gene (rs35936514) has been reported to be associated with major depressive disorder (MDD) in genome-wide association studies. However, the systems-level neural effects of rs35936514 that mediate the association are unknown. We hypothesized that variations in rs35936514 would be associated with structural and functional changes in gray matter (GM) at rest in MDD patients. Methods A total of 50 MDD patients and 113 healthy controls (HCs) were studied. Functional connectivity (FC) was analyzed by defining the bilateral hippocampus as the seed region. Voxel-based morphometry (VBM) was performed to assess the patterns of GM volume. The subjects were further divided into two groups: a CC homozygous group (CC; 24 MDD and 56 HC) and a risk T-allele carrier group (CT/TT genotypes; 26 MDD and 57 HC). A 2×2 analysis of variance (ANOVA: diagnosis × genotype) was used to determine the interaction effects and main effect (P<0.05). Results Significant diagnosis × genotype interaction effects on brain morphology and FC were noted. Compared to other subgroups, the MDD patients with the T allele showed an increased hippocampal FC in the bilateral calcarine cortex and cuneus and a decreased hippocampal FC in the right dorsolateral prefrontal cortex (DLPFC), bilateral anterior cingulate cortex (ACC), and medial prefrontal cortex (MPFC), in addition to reduced GM volume in the right DLPFC, bilateral temporal cortex, and posterior cingulate cortex (PCC). Conclusions LHPP gene polymorphisms may affect functional and structural changes in the GM at rest and may play an important role in the pathophysiological mechanisms of MDD.
Collapse
Affiliation(s)
- Lingling Cui
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,Brain Function Research Sections, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Zhiyang Yin
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,Brain Function Research Sections, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Miao Chang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,Brain Function Research Sections, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yanzhuo Song
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,Brain Function Research Sections, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yange Wei
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,Brain Function Research Sections, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jing Lv
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,Brain Function Research Sections, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yifan Zhang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,Brain Function Research Sections, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,Brain Function Research Sections, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.,Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ke Xu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
22
|
Chuhutin A, Hansen B, Wlodarczyk A, Owens T, Shemesh N, Jespersen SN. Diffusion Kurtosis Imaging maps neural damage in the EAE model of multiple sclerosis. Neuroimage 2019; 208:116406. [PMID: 31830588 PMCID: PMC9358435 DOI: 10.1016/j.neuroimage.2019.116406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 01/22/2023] Open
Abstract
Diffusion kurtosis imaging (DKI) is an imaging modality that yields novel
disease biomarkers and in combination with nervous tissue modeling, provides
access to microstructural parameters. Recently, DKI and subsequent estimation of
microstructural model parameters has been used for assessment of tissue changes
in neurodegenerative diseases and associated animal models. In this study, mouse
spinal cords from the experimental autoimmune encephalomyelitis (EAE) model of
multiple sclerosis (MS) were investigated for the first time using DKI in
combination with biophysical modeling to study the relationship between
microstructural metrics and degree of animal dysfunction. Thirteen spinal cords
were extracted from animals with varied grades of disability and scanned in a
high-field MRI scanner along with five control specimen. Diffusion weighted data
were acquired together with high resolution T2*
images. Diffusion data were fit to estimate diffusion and kurtosis tensors and
white matter modeling parameters, which were all used for subsequent statistical
analysis using a linear mixed effects model. T2*
images were used to delineate focal demyelination/inflammation. Our results
reveal a strong relationship between disability and measured microstructural
parameters in normal appearing white matter and gray matter. Relationships
between disability and mean of the kurtosis tensor, radial kurtosis, radial
diffusivity were similar to what has been found in other hypomyelinating MS
models, and in patients. However, the changes in biophysical modeling parameters
and in particular in extra-axonal axial diffusivity were clearly different from
previous studies employing other animal models of MS. In conclusion, our data
suggest that DKI and microstructural modeling can provide a unique contrast
capable of detecting EAE-specific changes correlating with clinical
disability.
Collapse
Affiliation(s)
| | | | - Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute for Molecular Medicine,University of South Denmark, Odense, Denmark
| | - Trevor Owens
- Department of Neurobiology Research, Institute for Molecular Medicine,University of South Denmark, Odense, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Sune Nørhøj Jespersen
- CFIN, Aarhus University, Aarhus, Denmark; Department of Physics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Sargolzaei S, Cai Y, Walker MJ, Hovda DA, Harris NG, Giza CC. Craniectomy Effects on Resting State Functional Connectivity and Cognitive Performance in Immature Rats. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:5414-5417. [PMID: 30441561 DOI: 10.1109/embc.2018.8513500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Experimental models have been proven to be valuable tools to understand downstream cellular mechanisms of Traumatic Brain Injury (TBI). The models allow for reduction of confounding variables and tighter control of varying parameters. It has been recently reported that craniectomy induces pro-inflammatory responses, which therefore needs to be properly addressed given the fact that craniectomy is often considered a control procedure for experimental TBI models. The current study aims to determine whether a craniectomy induces alterations in Resting State Network (RSN) in a developmental rodent model. Functional Magnetic Resonance Imaging (fMRI) data-driven RSN show clusters of peak differences (left caudate putamen, somatosensory cortex, amygdala and piriform cortex) between craniectomy and control group, four days post-craniectomy. In addition, the Novel Object Recognition (NOR) task revealed impaired working memory in the craniectomy group. This evidence supports craniectomy-induced neurological changes which need to be carefully addressed, considering the frequent use of craniectomy as a control procedure for experimental models of TBI.
Collapse
|
24
|
Khan AR, Hansen B, Danladi J, Chuhutin A, Wiborg O, Nyengaard JR, Jespersen SN. Neurite atrophy in dorsal hippocampus of rat indicates incomplete recovery of chronic mild stress induced depression. NMR IN BIOMEDICINE 2019; 32:e4057. [PMID: 30707463 DOI: 10.1002/nbm.4057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Ahmad Raza Khan
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Jibrin Danladi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University Hospital Risskov, Denmark
| | - Andrey Chuhutin
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Ove Wiborg
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Jens R Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Sune Nørhøj Jespersen
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
25
|
Cho KIK, Kwak YB, Hwang WJ, Lee J, Kim M, Lee TY, Kwon JS. Microstructural Changes in Higher-Order Nuclei of the Thalamus in Patients With First-Episode Psychosis. Biol Psychiatry 2019; 85:70-78. [PMID: 29961564 DOI: 10.1016/j.biopsych.2018.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Disruption in the thalamus, such as volume, shape, and cortical connectivity, is regarded as an important pathophysiological mechanism in schizophrenia. However, there is little evidence of nuclei-specific structural alterations in the thalamus during early-stage psychosis, mainly because of the methodological limitations of conventional structural imaging in identifying the thalamic nuclei. METHODS A total of 37 patients with first-episode psychosis and 36 matched healthy control subjects underwent diffusion tensor imaging, diffusion kurtosis imaging, and T1-weighted magnetic resonance imaging. Connectivity-based segmentation of the thalamus was performed using diffusion tensor imaging, and averages of the diffusion kurtosis values, which represent microstructural complexity, were estimated using diffusion kurtosis imaging and were compared in each thalamic nucleus between the groups. RESULTS The mean kurtosis values in the thalamic regions with strong connections to the orbitofrontal cortex (F1,70 = 8.40, p < .01) and the lateral temporal cortex (F1,70 = 8.46, p < .01) were significantly reduced in patients with first-episode psychosis compared with those of the healthy control subjects. The mean kurtosis values in the thalamic region with strong connection to the orbitofrontal cortex showed a significant correlation with spatial working memory accuracy in patients with first-episode psychosis (r = .36, p < .05), whereas no significant correlation between these variables was observed in the healthy control subjects. CONCLUSIONS The observed pattern of reduced microstructural complexity in the nuclei not only highlights the involvement of the thalamus but also emphasizes the role of the higher-order nuclei in the pathophysiology beginning in the early stage of schizophrenia.
Collapse
Affiliation(s)
- Kang Ik K Cho
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yoo Bin Kwak
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junhee Lee
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Minah Kim
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Tae Young Lee
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea; Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Liu X, Yuan J, Guang Y, Wang X, Feng Z. Longitudinal in vivo Diffusion Tensor Imaging Detects Differential Microstructural Alterations in the Hippocampus of Chronic Social Defeat Stress-Susceptible and Resilient Mice. Front Neurosci 2018; 12:613. [PMID: 30210285 PMCID: PMC6123364 DOI: 10.3389/fnins.2018.00613] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Microstructural alterations in the hippocampus may underlie stress-related disorders and stress susceptibility. However, whether these alterations are pre-existing stress vulnerability biomarkers or accumulative results of chronic stress remain unclear. Moreover, examining the whole hippocampus as one unit and ignoring the possibility of a lateralized effect of stress may mask some stress effects and contribute to the heterogeneity of previous findings. Methods: After C57BL/6 mice were exposed to a 10-day chronic social defeat stress (CSDS) paradigm, different stress phenotypes, i.e., susceptible (n = 10) and resilient (n = 7) mice, were discriminated by the behavior of the mice in a social interaction test. With in vivo diffusion tensor imaging (DTI) scans that were conducted both before and after the stress paradigm, we evaluated diffusion properties in the left and right, dorsal (dHi) and ventral hippocampus (vHi) of experimental mice. Results: A significantly lower fractional anisotropy (FA) was found in the right vHi of the susceptible mice prior to the CSDS paradigm than that found in the resilient mice, suggesting that pre-existing microstructural abnormalities may result in stress susceptibility. However, no significant group differences were found in the post-stress FA values of any of the hippocampal regions of interest (ROIs). In addition, mean diffusivity (MD) and radial diffusivity (RD) values were found to be significantly greater only in the right dHi of the resilient group compared to those of the susceptible mice. Furthermore, a significant longitudinal decrease was only observed in the right dHi RD value of the susceptible mice. Moreover, the social interaction (SI) ratio was positively related to post-stress left MD, right dHi MD, and right dHi RD values and the longitudinal right dHi MD percent change. Meanwhile, a negative relationship was detected between the SI ratio and bilateral mean of the post-stress left relative to right vHi FA value, highlighting the important role of right hippocampus in stress-resilience phenotype. Conclusion: Our findings demonstrated different longitudinal microstructural alterations in the bilateral dHi and vHi between stress-susceptible and resilient subgroups and indicated a right-sided lateralized stress effect, which may be useful in the diagnosis and prevention of stress-related disorders as well as their intervention.
Collapse
Affiliation(s)
- Xiao Liu
- School of Psychology, Army Medical University, Chongqing, China
| | - Jizhen Yuan
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yu Guang
- School of Psychology, Army Medical University, Chongqing, China
| | - Xiaoxia Wang
- School of Psychology, Army Medical University, Chongqing, China
| | - Zhengzhi Feng
- School of Psychology, Army Medical University, Chongqing, China
| |
Collapse
|
27
|
Martis LS, Brision C, Holmes MC, Wiborg O. Resilient and depressive-like rats show distinct cognitive impairments in the touchscreen paired-associates learning (PAL) task. Neurobiol Learn Mem 2018; 155:287-296. [PMID: 30138691 DOI: 10.1016/j.nlm.2018.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/06/2018] [Accepted: 08/18/2018] [Indexed: 01/17/2023]
Abstract
Depression-associated cognitive impairments persist after remission from affective symptoms of major depressive disorder (MDD), decreasing quality of life and increasing risk of relapse in patients. Conventional antidepressants are ineffective in restoring cognitive functions. Therefore, novel antidepressants with improved efficacy for ameliorating cognitive symptoms are required. For tailoring such antidepressants, translational animal models are in demand. The chronic mild stress (CMS) model is a well-validated preclinical model of depression and known for eliciting the MDD core symptom "anhedonia" in stress-susceptible rats. Thus, cognitive performance was assessed in rats susceptible (depressive-like) or resilient to CMS and in unchallenged controls. The rodent analogue of the human touchscreen Paired-Associates Learning (PAL) task was used for cognitive assessment. Both stress groups exhibited a lack of response inhibition compared to controls while only the depressive-like group was impaired in task acquisition. The results indicate that cognitive deficits specifically associate with the anhedonic-like state rather than being a general consequence of stress exposure. Hence, we propose that the application of a translational touchscreen task on the etiologically valid CMS model, displaying depression-associated cognitive impairments, provides a novel platform for pro-cognitive and clinically pertinent antidepressant drug screening.
Collapse
Affiliation(s)
- Lena-Sophie Martis
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Scotland, United Kingdom
| | - Claudia Brision
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Megan C Holmes
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Scotland, United Kingdom; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Scotland, United Kingdom
| | - Ove Wiborg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; Department of Health Science and Technology, Aalborg University, Denmark.
| |
Collapse
|
28
|
Kamiya K, Okada N, Sawada K, Watanabe Y, Irie R, Hanaoka S, Suzuki Y, Koike S, Mori H, Kunimatsu A, Hori M, Aoki S, Kasai K, Abe O. Diffusional kurtosis imaging and white matter microstructure modeling in a clinical study of major depressive disorder. NMR IN BIOMEDICINE 2018; 31:e3938. [PMID: 29846988 PMCID: PMC6032871 DOI: 10.1002/nbm.3938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 03/13/2018] [Accepted: 04/05/2018] [Indexed: 05/13/2023]
Abstract
Major depressive disorder (MDD) is a globally prevalent psychiatric disorder that results from disruption of multiple neural circuits involved in emotional regulation. Although previous studies using diffusion tensor imaging (DTI) found smaller values of fractional anisotropy (FA) in the white matter, predominantly in the frontal lobe, of patients with MDD, studies using diffusion kurtosis imaging (DKI) are scarce. Here, we used DKI whole-brain analysis with tract-based spatial statistics (TBSS) to investigate the brain microstructural abnormalities in MDD. Twenty-six patients with MDD and 42 age- and sex-matched control subjects were enrolled. To investigate the microstructural pathology underlying the observations in DKI, a compartment model analysis was conducted focusing on the corpus callosum. In TBSS, the patients with MDD showed significantly smaller values of FA in the genu and frontal portion of the body of the corpus callosum. The patients also had smaller values of mean kurtosis (MK) and radial kurtosis (RK), but MK and RK abnormalities were distributed more widely compared with FA, predominantly in the frontal lobe but also in the parietal, occipital, and temporal lobes. Within the callosum, the regions with smaller MK and RK were located more posteriorly than the region with smaller FA. Model analysis suggested significantly smaller values of intra-neurite signal fraction in the body of the callosum and greater fiber dispersion in the genu, which were compatible with the existing literature of white matter pathology in MDD. Our results show that DKI is capable of demonstrating microstructural alterations in the brains of patients with MDD that cannot be fully depicted by conventional DTI. Though the issues of model validation and parameter estimation still remain, it is suggested that diffusion MRI combined with a biophysical model is a promising approach for investigation of the pathophysiology of MDD.
Collapse
Affiliation(s)
- Kouhei Kamiya
- Department of RadiologyThe University of TokyoTokyoJapan
- Department of RadiologyJuntendo University School of MedicineTokyoJapan
| | - Naohiro Okada
- Department of NeuropsychiatryThe University of TokyoTokyoJapan
| | - Kingo Sawada
- Department of NeuropsychiatryThe University of TokyoTokyoJapan
| | | | - Ryusuke Irie
- Department of RadiologyThe University of TokyoTokyoJapan
- Department of RadiologyJuntendo University School of MedicineTokyoJapan
| | | | - Yuichi Suzuki
- Department of RadiologyThe University of Tokyo HospitalTokyoJapan
| | - Shinsuke Koike
- Department of NeuropsychiatryThe University of TokyoTokyoJapan
| | - Harushi Mori
- Department of RadiologyThe University of TokyoTokyoJapan
| | - Akira Kunimatsu
- Department of RadiologyIMSUT (The Institute of Medical Science, The University of Tokyo) HospitalTokyoJapan
| | - Masaaki Hori
- Department of RadiologyJuntendo University School of MedicineTokyoJapan
| | - Shigeki Aoki
- Department of RadiologyJuntendo University School of MedicineTokyoJapan
| | - Kiyoto Kasai
- Department of NeuropsychiatryThe University of TokyoTokyoJapan
| | - Osamu Abe
- Department of RadiologyThe University of TokyoTokyoJapan
| |
Collapse
|
29
|
Khan AR, Hansen B, Wiborg O, Kroenke CD, Jespersen SN. Diffusion MRI and MR spectroscopy reveal microstructural and metabolic brain alterations in chronic mild stress exposed rats: A CMS recovery study. Neuroimage 2018; 167:342-353. [PMID: 29196269 PMCID: PMC5845761 DOI: 10.1016/j.neuroimage.2017.11.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/21/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022] Open
Abstract
Chronic mild stress (CMS) induced depression elicits several debilitating symptoms and causes a significant economic burden on society. High variability in the symptomatology of depression poses substantial impediment to accurate diagnosis and therapy outcome. CMS exposure induces significant metabolic and microstructural alterations in the hippocampus (HP), prefrontal cortex (PFC), caudate-putamen (CP) and amygdala (AM), however, recovery from these maladaptive changes are limited and this may provide negative effects on the therapeutic treatment and management of depression. The present study utilized anhedonic rats from the unpredictable CMS model of depression to study metabolic recovery in the ventral hippocampus (vHP) and microstructural recovery in the HP, AM, CP, and PFC. The study employed 1H MR spectroscopy (1H MRS) and in-vivo diffusion MRI (d-MRI) at the age of week 18 (week 1 post CMS exposure) week 20 (week 3 post CMS) and week 25 (week 8 post CMS exposure) in the anhedonic group, and at the age of week 18 and week 22 in the control group. The d-MRI data have provided an array of diffusion tensor metrics (FA, MD, AD, and RD), and fast kurtosis metrics (MKT, WL and WT). CMS exposure induced a significant metabolic alteration in vHP, and significant microstructural alterations were observed in the HP, AM, and PFC in comparison to the age match control and within the anhedonic group. A significantly high level of N-acetylaspartate (NAA) was observed in vHP at the age of week 18 in comparison to age match control and week 20 and week 25 of the anhedonic group. HP and AM showed significant microstructural alterations up to the age of week 22 in the anhedonic group. PFC showed significant microstructural alterations only at the age of week 18, however, most of the metrics showed significantly higher value at the age of week 20 in the anhedonic group. The significantly increased NAA concentration may indicate impaired catabolism due to astrogliosis or oxidative stress. The significantly increased WL in the AM and HP may indicate hypertrophy of AM and reduced volume of HP. Such metabolic and microstructural alterations could be useful in disease diagnosis and follow-up treatment intervention in depression and similar disorders.
Collapse
Affiliation(s)
- Ahmad Raza Khan
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Ove Wiborg
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Christopher D Kroenke
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Sune Nørhøj Jespersen
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
30
|
Khan AR, Kroenke CD, Wiborg O, Chuhutin A, Nyengaard JR, Hansen B, Jespersen SN. Differential microstructural alterations in rat cerebral cortex in a model of chronic mild stress depression. PLoS One 2018; 13:e0192329. [PMID: 29432490 PMCID: PMC5809082 DOI: 10.1371/journal.pone.0192329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 01/22/2018] [Indexed: 01/17/2023] Open
Abstract
Chronic mild stress leads to depression in many cases and is linked to several debilitating diseases including mental disorders. Recently, neuronal tracing techniques, stereology, and immunohistochemistry have revealed persistent and significant microstructural alterations in the hippocampus, hypothalamus, prefrontal cortex, and amygdala, which form an interconnected system known as the stress circuit. Most studies have focused only on this circuit, however, some studies indicate that manipulation of sensory and motor systems may impact genesis and therapy of mood disorders and therefore these areas should not be neglected in the study of brain microstructure alterations in response to stress and depression. For this reason, we explore the microstructural alterations in different cortical regions in a chronic mild stress model of depression. The study employs ex-vivo diffusion MRI (d-MRI) to assess cortical microstructure in stressed (anhedonic and resilient) and control animals. MRI is followed by immunohistochemistry to substantiate the d-MRI findings. We find significantly lower extracellular diffusivity in auditory cortex (AC) of stress groups and a significantly higher fractional anisotropy in the resilient group. Neurite density was not found to be significantly higher in any cortical ROIs in the stress group compared to control, although axonal density is higher in the stress groups. We also report significant thinning of motor cortex (MC) in both stress groups. This is in agreement with recent clinical and preclinical studies on depression and similar disorders where significant microstructural and metabolic alterations were found in AC and MC. Our findings provide further evidence that the AC and MC are sensitive towards stress exposure and may extend our understanding of the microstructural effects of stress beyond the stress circuit of the brain. Progress in this field may provide new avenues of research to help in diagnosis and treatment intervention for depression and related disorders.
Collapse
Affiliation(s)
- Ahmad Raza Khan
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Christopher D. Kroenke
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ove Wiborg
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Andrey Chuhutin
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Jens R. Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Sune Nørhøj Jespersen
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
31
|
Koo BB, Michalovicz LT, Calderazzo S, Kelly KA, Sullivan K, Killiany RJ, O’Callaghan JP. Corticosterone potentiates DFP-induced neuroinflammation and affects high-order diffusion imaging in a rat model of Gulf War Illness. Brain Behav Immun 2018; 67:42-46. [PMID: 28782715 PMCID: PMC6380894 DOI: 10.1016/j.bbi.2017.08.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 11/30/2022] Open
Abstract
Veterans of the 1991 Gulf War were potentially exposed to a variety of toxic chemicals, including sarin nerve agent and pesticides, which have been suspected to be involved in the development of Gulf War Illness (GWI). Several of these exposures cause a neuroinflammatory response in mice, which may serve as a basis for the sickness behavior-like symptoms seen in veterans with GWI. Furthermore, conditions mimicking the physiological stress experienced during the war can exacerbate this effect. While neuroinflammation has been observed post-exposure using animal models, it remains a challenge to evaluate neuroinflammation and its associated cellular and molecular changes in vivo in veterans with GWI. Here, we evaluated neuroimmune-associated alterations in intact brains, applying our existing GWI mouse model to rats, by exposing them to 4days of corticosterone (CORT; 200mg/L in the drinking water), to mimic high physiological stress, followed by a single injection of the sarin nerve agent surrogate, diisopropyl fluorophosphate (DFP; 1.5mg/kg, i.p.). Then, we evaluated the neuroinflammatory responses using qPCR of cytokine mRNA and also examined brain structure with a novel high-order diffusion MRI. We found a CORT-enhancement of DFP-induced neuroinflammation, extending our mouse GWI model to the rat. High order diffusion MRI revealed different patterns among the different treatment groups. Particularly, while the CORT+DFP rats had more restricted spatial patterns in the hippocampus and the hypothalamus, the highest and most wide-spread differences were shown in DFP-treated rats compared to the controls in the thalamus, the amygdala, the piriform cortex and the ventral tegmental area. The association of these diffusion changes with neuroinflammatory cytokine expression indicates the potential for GW-relevant exposures to result in connectivity changes in the brain. By transferring this high order diffusion MRI into in vivo imaging in veterans with GWI, we can achieve further insights on the trajectories of the neuroimmune response over time and its impacts on behavior and potential neurological damage.
Collapse
Affiliation(s)
- Bang-Bon Koo
- School of Medicine, Boston University, Boston, MA, USA.
| | - Lindsay T. Michalovicz
- Health Effects Laboratory Division, Center for Disease Control and Prevention – National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Kimberly A. Kelly
- Health Effects Laboratory Division, Center for Disease Control and Prevention – National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | | | - James P. O’Callaghan
- Health Effects Laboratory Division, Center for Disease Control and Prevention – National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
32
|
Chuhutin A, Hansen B, Jespersen SN. Precision and accuracy of diffusion kurtosis estimation and the influence of b-value selection. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3777. [PMID: 28841758 PMCID: PMC5715207 DOI: 10.1002/nbm.3777] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/14/2017] [Accepted: 07/03/2017] [Indexed: 05/22/2023]
Abstract
Diffusion kurtosis imaging (DKI) is an extension of diffusion tensor imaging that accounts for leading non-Gaussian diffusion effects. In DKI studies, a wide range of different gradient strengths (b-values) is used, which is known to affect the estimated diffusivity and kurtosis parameters. Hence there is a need to assess the accuracy and precision of the estimated parameters as a function of b-value. This work examines the error in the estimation of mean of the kurtosis tensor (MKT) with respect to the ground truth, using simulations based on a biophysical model for both gray (GM) and white (WM) matter. Model parameters are derived from densely sampled experimental data acquired in ex vivo rat brain and in vivo human brain. Additionally, the variability of MKT is studied using the experimental data. Prevalent fitting protocols are implemented and investigated. The results show strong dependence on the maximum b-value of both net relative error and standard deviation of error for all of the employed fitting protocols. The choice of b-values with minimum MKT estimation error and standard deviation of error was found to depend on the protocol type and the tissue. Protocols that utilize two terms of the cumulant expansion (DKI) were found to achieve minimum error in GM at b-values less than 1 ms/μm2 , whereas maximal b-values of about 2.5 ms/μm2 were found to be optimal in WM. Protocols including additional higher order terms of the cumulant expansion were found to provide higher accuracy for the more commonly used b-value regime in GM, but were associated with higher error in WM. Averaged over multiple voxels, a net average error of around 15% for both WM and GM was observed for the optimal b-value choice. These results suggest caution when using DKI generated metrics for microstructural modeling and when comparing results obtained using different fitting techniques and b-values.
Collapse
Affiliation(s)
- Andrey Chuhutin
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sune Nørhøj Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
33
|
The study of the intervertebral disc microstructure in matured rats with diffusion kurtosis imaging. Magn Reson Imaging 2017. [PMID: 28634047 DOI: 10.1016/j.mri.2017.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES The aim of this study was to use DKI to detect the microstructural change of the discs in matured normal rats. METHODS Total 24 normal SD rats (12 males/12 females) underwent DWI/DKI and T2 sequences with a 3T MRI scanner to get the values of ADC, FA, MD, Da, Dr, MK, Ka and Kr. The discs were categorized using a five-grade degeneration grading system in the T2-images. The height of the discs and the parameters in DWI/DKI were measured to compare between the different grades and sexes. The histological images and the images of fiber tracking were also done in the discs. RESULTS There were 30 Grade 1 and 18 Grade 2 in the discs. Compared with Grade 1, decreased ADC, increased FA and MK values were observed in Grade 2 (P<0.05). By the ROC analysis of grades of the discs, there was low diagnostic accuracy in ADC value, while FA and MK showed higher accuracy. In Grade 1, there were lower ADC value, lower Dr, higher MK, Ka and Kr in male's group than them in female's group. There were no differences in the parameters except the ADC value in the two sexes in Grade 2. The different microstructure of the normal discs in the male and female rats had been proved by the histological images and the images of fiber tracking. CONCLUSION DKI is a noninvasive and sustainable means to test the changes of intervertebral discs. The discs in Grade 2 were also found in the normal matured SD rat tails. The assessment of the grade of the discs in T2-images should be done before the experimental management. There was microstructural difference in the nucleus pulposus in the discs in Grade 1 and 2. FA and MK showed higher diagnostic accuracy. The laboratory rats should be the same sex because the microstructure of the normal discs weren't the same.
Collapse
|
34
|
McIntosh AL, Gormley S, Tozzi L, Frodl T, Harkin A. Recent Advances in Translational Magnetic Resonance Imaging in Animal Models of Stress and Depression. Front Cell Neurosci 2017; 11:150. [PMID: 28596724 PMCID: PMC5442179 DOI: 10.3389/fncel.2017.00150] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/09/2017] [Indexed: 12/28/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a valuable translational tool that can be used to investigate alterations in brain structure and function in both patients and animal models of disease. Regional changes in brain structure, functional connectivity, and metabolite concentrations have been reported in depressed patients, giving insight into the networks and brain regions involved, however preclinical models are less well characterized. The development of more effective treatments depends upon animal models that best translate to the human condition and animal models may be exploited to assess the molecular and cellular alterations that accompany neuroimaging changes. Recent advances in preclinical imaging have facilitated significant developments within the field, particularly relating to high resolution structural imaging and resting-state functional imaging which are emerging techniques in clinical research. This review aims to bring together the current literature on preclinical neuroimaging in animal models of stress and depression, highlighting promising avenues of research toward understanding the pathological basis of this hugely prevalent disorder.
Collapse
Affiliation(s)
| | - Shane Gormley
- Institute of Neuroscience, Trinity College DublinDublin, Ireland
| | - Leonardo Tozzi
- Institute of Neuroscience, Trinity College DublinDublin, Ireland
| | - Thomas Frodl
- Institute of Neuroscience, Trinity College DublinDublin, Ireland.,Universitätsklinikum A.ö.R, Universitätsklinik für Psychiatrie und Psychotherapie, Medizinische Fakultät, Otto von Guericke UniversitätMagdeburg, Germany
| | - Andrew Harkin
- Institute of Neuroscience, Trinity College DublinDublin, Ireland.,School of Pharmacy and Pharmaceutical sciences, Trinity College DublinDublin, Ireland
| |
Collapse
|
35
|
Garza-Villarreal EA, Chakravarty MM, Hansen B, Eskildsen SF, Devenyi GA, Castillo-Padilla D, Balducci T, Reyes-Zamorano E, Jespersen SN, Perez-Palacios P, Patel R, Gonzalez-Olvera JJ. The effect of crack cocaine addiction and age on the microstructure and morphology of the human striatum and thalamus using shape analysis and fast diffusion kurtosis imaging. Transl Psychiatry 2017; 7:e1122. [PMID: 28485734 PMCID: PMC5534960 DOI: 10.1038/tp.2017.92] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/18/2023] Open
Abstract
The striatum and thalamus are subcortical structures intimately involved in addiction. The morphology and microstructure of these have been studied in murine models of cocaine addiction (CA), showing an effect of drug use, but also chronological age in morphology. Human studies using non-invasive magnetic resonance imaging (MRI) have shown inconsistencies in volume changes, and have also shown an age effect. In this exploratory study, we used MRI-based volumetric and novel shape analysis, as well as a novel fast diffusion kurtosis imaging sequence to study the morphology and microstructure of striatum and thalamus in crack CA compared to matched healthy controls (HCs), while investigating the effect of age and years of cocaine consumption. We did not find significant differences in volume and mean kurtosis (MKT) between groups. However, we found significant contraction of nucleus accumbens in CA compared to HCs. We also found significant age-related changes in volume and MKT of CA in striatum and thalamus that are different to those seen in normal aging. Interestingly, we found different effects and contributions of age and years of consumption in volume, displacement and MKT changes, suggesting that each measure provides different but complementing information about morphological brain changes, and that not all changes are related to the toxicity or the addiction to the drug. Our findings suggest that the use of finer methods and sequences provides complementing information about morphological and microstructural changes in CA, and that brain alterations in CA are related cocaine use and age differently.
Collapse
Affiliation(s)
- E A Garza-Villarreal
- CONACYT, Instituto Nacional de Psiquiatría ‘Ramon de la Fuente Muñiz’, Mexico City, Mexico,Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría ‘Ramón de la Fuente Muñiz’, Mexico City, Mexico,Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark,Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría ‘Ramón de la Fuente Muñiz’, Calzada Mexico-Xochimilco 101, Col. San Lorenzo Huipulco, Delegación Tlalpan, Mexico City C.P. 14370, Mexico. E-mail:
| | - MM Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada,Department of Psychiatry, McGill University, Montreal, QC, Canada,Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - B Hansen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - S F Eskildsen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - G A Devenyi
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - D Castillo-Padilla
- CONACYT, Instituto Nacional de Psiquiatría ‘Ramon de la Fuente Muñiz’, Mexico City, Mexico,Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría ‘Ramón de la Fuente Muñiz’, Mexico City, Mexico
| | - T Balducci
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría ‘Ramón de la Fuente Muñiz’, Mexico City, Mexico
| | - E Reyes-Zamorano
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría ‘Ramón de la Fuente Muñiz’, Mexico City, Mexico,School of Psychology, Universidad Anáhuac México Sur, Mexico City, Mexico
| | - S N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark,Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - P Perez-Palacios
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría ‘Ramón de la Fuente Muñiz’, Mexico City, Mexico
| | - R Patel
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada,Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - J J Gonzalez-Olvera
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría ‘Ramón de la Fuente Muñiz’, Mexico City, Mexico
| |
Collapse
|
36
|
Non-Gaussian Diffusion Imaging Shows Brain Myelin and Axonal Changes in Obstructive Sleep Apnea. J Comput Assist Tomogr 2017; 41:181-189. [PMID: 27801694 DOI: 10.1097/rct.0000000000000537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Obstructive sleep apnea (OSA) is accompanied by brain changes in areas that regulate autonomic, cognitive, and mood functions, which were initially examined by Gaussian-based diffusion tensor imaging measures, but can be better assessed with non-Gaussian measures. We aimed to evaluate axonal and myelin changes in OSA using axial (AK) and radial kurtosis (RK) measures. MATERIALS AND METHODS We acquired diffusion kurtosis imaging data from 22 OSA and 26 controls; AK and RK maps were calculated, normalized, smoothed, and compared between groups using analysis of covariance. RESULTS Increased AK, indicating axonal changes, emerged in the insula, hippocampus, amygdala, dorsolateral pons, and cerebellar peduncles and showed more axonal injury over previously identified damage. Higher RK, showing myelin changes, appeared in the hippocampus, amygdala, temporal and frontal lobes, insula, midline pons, and cerebellar peduncles and showed more widespread myelin damage over previously identified injury. CONCLUSIONS Axial kurtosis and RK measures showed widespread changes over Gaussian-based techniques, suggesting a more sensitive nature of kurtoses to injury.
Collapse
|
37
|
Willner P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol Stress 2017; 6:78-93. [PMID: 28229111 PMCID: PMC5314424 DOI: 10.1016/j.ynstr.2016.08.002] [Citation(s) in RCA: 585] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/19/2016] [Accepted: 08/20/2016] [Indexed: 12/31/2022] Open
Abstract
Now 30 years old, the chronic mild stress (CMS) model of depression has been used in >1300 published studies, with a year-on-year increase rising to >200 papers in 2015. Data from a survey of users show that while a variety of names are in use (chronic mild/unpredictable/varied stress), these describe essentially the same procedure. This paper provides an update on the validity and reliability of the CMS model, and reviews recent data on the neurobiological basis of CMS effects and the mechanisms of antidepressant action: the volume of this research may be unique in providing a comprehensive account of antidepressant action within a single model. Also discussed is the use of CMS in drug discovery, with particular reference to hippocampal and extra-hippocampal targets. The high translational potential of the CMS model means that the neurobiological mechanisms described may be of particular relevance to human depression and mechanisms of clinical antidepressant action.
Collapse
|
38
|
Goldfarb EV, Froböse MI, Cools R, Phelps EA. Stress and Cognitive Flexibility: Cortisol Increases Are Associated with Enhanced Updating but Impaired Switching. J Cogn Neurosci 2017; 29:14-24. [DOI: 10.1162/jocn_a_01029] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Acute stress has frequently been shown to impair cognitive flexibility. Most studies have examined the effect of stress on cognitive flexibility by measuring how stress changes performance in paradigms that require participants to switch between different task demands. These processes typically implicate pFC function, a region known to be impaired by stress. However, cognitive flexibility is a multifaceted construct. Another dimension of flexibility, updating to incorporate relevant information, involves the dorsal striatum. Function in this region has been shown to be enhanced by stress. Using a within-subject design, we tested whether updating flexibility in a DMS task would be enhanced by an acute stress manipulation (cold pressor task). Participants' cortisol response to stress positively correlated with a relative increase in accuracy on updating flexibility (compared with trials with no working memory interference). In contrast, in line with earlier studies, cortisol responses correlated with worse performance when switching between trials with different task demands. These results demonstrate that stress-related increases in cortisol are associated with both increases and decreases in cognitive flexibility, depending on task demands.
Collapse
Affiliation(s)
| | | | - Roshan Cools
- 2Radboud University Nijmegen
- 3Radboud University Nijmegen Medical Centre
| | | |
Collapse
|
39
|
Magalhães R, Bourgin J, Boumezbeur F, Marques P, Bottlaender M, Poupon C, Djemaï B, Duchesnay E, Mériaux S, Sousa N, Jay TM, Cachia A. White matter changes in microstructure associated with a maladaptive response to stress in rats. Transl Psychiatry 2017; 7:e1009. [PMID: 28117841 PMCID: PMC5545740 DOI: 10.1038/tp.2016.283] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/29/2022] Open
Abstract
In today's society, every individual is subjected to stressful stimuli with different intensities and duration. This exposure can be a key trigger in several mental illnesses greatly affecting one's quality of life. Yet not all subjects respond equally to the same stimulus and some are able to better adapt to them delaying the onset of its negative consequences. The neural specificities of this adaptation can be essential to understand the true dynamics of stress as well as to design new approaches to reduce its consequences. In the current work, we employed ex vivo high field diffusion magnetic resonance imaging (MRI) to uncover the differences in white matter properties in the entire brain between Fisher 344 (F344) and Sprague-Dawley (SD) rats, known to present different responses to stress, and to examine the effects of a 2-week repeated inescapable stress paradigm. We applied a tract-based spatial statistics (TBSS) analysis approach to a total of 25 animals. After exposure to stress, SD rats were found to have lower values of corticosterone when compared with F344 rats. Overall, stress was found to lead to an overall increase in fractional anisotropy (FA), on top of a reduction in mean and radial diffusivity (MD and RD) in several white matter bundles of the brain. No effect of strain on the white matter diffusion properties was observed. The strain-by-stress interaction revealed an effect on SD rats in MD, RD and axial diffusivity (AD), with lower diffusion metric levels on stressed animals. These effects were localized on the left side of the brain on the external capsule, corpus callosum, deep cerebral white matter, anterior commissure, endopiriform nucleus, dorsal hippocampus and amygdala fibers. The results possibly reveal an adaptation of the SD strain to the stressful stimuli through synaptic and structural plasticity processes, possibly reflecting learning processes.
Collapse
Affiliation(s)
- R Magalhães
- Physiopathologie des Maladies Psychiatriques, UMR_S 894 Inserm, Centre de Psychiatrie et Neurosciences, Paris, France,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal,ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Bourgin
- Physiopathologie des Maladies Psychiatriques, UMR_S 894 Inserm, Centre de Psychiatrie et Neurosciences, Paris, France,Université Paris Descartes, Sorbonne Paris Cité, Paris, France,Faculté de Médecine Paris Descartes, Service Hospitalo Universitaire, Centre Hospitalier Sainte-Anne, Paris, France
| | | | - P Marques
- Physiopathologie des Maladies Psychiatriques, UMR_S 894 Inserm, Centre de Psychiatrie et Neurosciences, Paris, France,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal,ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - C Poupon
- Neurospin, I2BM, CEA, Gif/Yvette, France
| | - B Djemaï
- Neurospin, I2BM, CEA, Gif/Yvette, France
| | | | - S Mériaux
- Neurospin, I2BM, CEA, Gif/Yvette, France
| | - N Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal,ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - T M Jay
- Physiopathologie des Maladies Psychiatriques, UMR_S 894 Inserm, Centre de Psychiatrie et Neurosciences, Paris, France,Université Paris Descartes, Sorbonne Paris Cité, Paris, France,Faculté de Médecine Paris Descartes, Service Hospitalo Universitaire, Centre Hospitalier Sainte-Anne, Paris, France
| | - A Cachia
- Physiopathologie des Maladies Psychiatriques, UMR_S 894 Inserm, Centre de Psychiatrie et Neurosciences, Paris, France,Université Paris Descartes, Sorbonne Paris Cité, Paris, France,Laboratoire de Psychologie du développement et de l’Education de l’Enfant, CNRS UMR 8240, Paris, France,Institut Universitaire de France, Paris, France,Centre de Psychiatrie et Neurosciences, INSERM UMR_S 894, 2 ter rue d’Alésia, Paris 75014, France. E-mail:
| |
Collapse
|
40
|
Bartlett DM, Cruickshank TM, Hannan AJ, Eastwood PR, Lazar AS, Ziman MR. Neuroendocrine and neurotrophic signaling in Huntington’s disease: Implications for pathogenic mechanisms and treatment strategies. Neurosci Biobehav Rev 2016; 71:444-454. [DOI: 10.1016/j.neubiorev.2016.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/29/2016] [Accepted: 09/12/2016] [Indexed: 11/25/2022]
|
41
|
Relationship between the LHPP Gene Polymorphism and Resting-State Brain Activity in Major Depressive Disorder. Neural Plast 2016; 2016:9162590. [PMID: 27843651 PMCID: PMC5097818 DOI: 10.1155/2016/9162590] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/22/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
A single-nucleotide polymorphism at the LHPP gene (rs35936514) has been reported in genome-wide association studies to be associated with major depressive disorder (MDD). However, the neural system effects of rs35936514 that mediate the association are unknown. The present work explores whether the LHPP rs35936514 polymorphism moderates brain regional activity in MDD. A total of 160 subjects were studied: a CC group homozygous for the C allele (23 individuals with MDD and 57 controls) and a T-carrier group carrying the high risk T allele (CT/TT genotypes; 22 MDD and 58 controls). All participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. Brain activity was assessed using the amplitudes of low-frequency fluctuations (ALFF). MDD patients showed a significant increased ALFF in the left middle temporal gyrus and occipital cortex. The T-carrier group showed increased ALFF in the left superior temporal gyrus. Significant diagnosis × genotype interaction was noted in the bilateral lingual gyri, bilateral dorsal lateral prefrontal cortex (dlPFC), and left medial prefrontal cortex (mPFC) (P < 0.05, corrected). Results demonstrated that MDD patients with LHPP rs35936514 CT/TT genotype may influence the regional brain activity. These findings implicate the effects of the rs35936514 variation on the neural system in MDD.
Collapse
|
42
|
Chen Y, Zhao X, Sha M, Liu Y, Ma J, Ni H, Qi H, Ming D. Anisotropic Sampling Shape of White Matter Microstructure Cannot Cheat Diffusional Kurtosis. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS 2016. [DOI: 10.20965/jaciii.2016.p0554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diffusion kurtosis imaging is a newly developed diffusion magnetic resonance imaging technique, which is becoming increasingly valuable in clinical practice. Although low-resolution sampling is commonly used to compensate the unsteadiness of kurtosis estimation, the influence of the sampling shape has not been investigated. In this study, by using two different acquisition protocols, isotropic and anisotropic sampling voxels were acquired and their influence on various white matter structures was observed. Fiber tracking, T-tests, and correlation analysis were used to quantify the difference between the anisotropic and isotropic sampling. A significant difference (p<0.01) was found in the fractional anisotropic level but not in kurtosis. The results presented here can provide a basis for higher resolution as well as higher quality kurtosis mapping, which may be of great significance in clinical examinations.
Collapse
|
43
|
Biophysical modeling of high field diffusion MRI demonstrates micro-structural aberration in chronic mild stress rat brain. Neuroimage 2016; 142:421-430. [PMID: 27389790 DOI: 10.1016/j.neuroimage.2016.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/06/2016] [Accepted: 07/02/2016] [Indexed: 11/23/2022] Open
Abstract
Depression is one of the leading causes of disability worldwide. Immense heterogeneity in symptoms of depression causes difficulty in diagnosis, and to date, there are no established biomarkers or imaging methods to examine depression. Unpredictable chronic mild stress (CMS) induced anhedonia is considered to be a realistic model of depression in studies of animal subjects. Stereological and neuronal tracing techniques have demonstrated persistent remodeling of microstructure in hippocampus, prefrontal cortex and amygdala of CMS brains. Recent developments in diffusion MRI (d-MRI) analyses, such as neurite density and diffusion kurtosis imaging (DKI), are able to capture microstructural changes and are considered to be robust tools in preclinical and clinical imaging. The present study utilized d-MRI analyzed with a neurite density model and the DKI framework to investigate microstructure in the hippocampus, prefrontal cortex, caudate putamen and amygdala regions of CMS rat brains by comparison to brains from normal controls. To validate findings of CMS induced microstructural alteration, histology was performed to determine neurite, nuclear and astrocyte density. d-MRI based neurite density and tensor-based mean kurtosis (MKT) were significantly higher, while mean diffusivity (MD), extracellular diffusivity (Deff) and intra-neurite diffusivity(DL) were significantly lower in the amygdala of CMS rat brains. Deff was also significantly lower in the hippocampus and caudate putamen in stressed groups. Histological neurite density corroborated the d-MRI findings in the amygdala and reductions in nuclear and astrocyte density further buttressed the d-MRI results. The present study demonstrated that the d-MRI based neurite density and MKT can reveal specific microstructural changes in CMS rat brains and these parameters might have value in clinical diagnosis of depression and for evaluation of treatment efficacy.
Collapse
|
44
|
Anacker C, Scholz J, O’Donnell KJ, Allemang-Grand R, Diorio J, Bagot RC, Nestler EJ, Hen R, Lerch JP, Meaney MJ. Neuroanatomic Differences Associated With Stress Susceptibility and Resilience. Biol Psychiatry 2016; 79:840-849. [PMID: 26422005 PMCID: PMC5885767 DOI: 10.1016/j.biopsych.2015.08.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND We examined the neurobiological mechanisms underlying stress susceptibility using structural magnetic resonance imaging and diffusion tensor imaging to determine neuroanatomic differences between stress-susceptible and resilient mice. We also examined synchronized anatomic differences between brain regions to gain insight into the plasticity of neural networks underlying stress susceptibility. METHODS C57BL/6 mice underwent 10 days of social defeat stress and were subsequently tested for social avoidance. For magnetic resonance imaging, brains of stressed (susceptible, n = 11; resilient, n = 8) and control (n = 12) mice were imaged ex vivo at 56 µm resolution using a T2-weighted sequence. We tested for behavior-structure correlations by regressing social avoidance z-scores against local brain volume. For diffusion tensor imaging, brains were scanned with a diffusion-weighted fast spin echo sequence at 78 μm isotropic voxels. Structural covariance was assessed by correlating local volume between brain regions. RESULTS Social avoidance correlated negatively with local volume of the cingulate cortex, nucleus accumbens, thalamus, raphe nuclei, and bed nucleus of the stria terminals. Social avoidance correlated positively with volume of the ventral tegmental area (VTA), habenula, periaqueductal gray, cerebellum, hypothalamus, and hippocampal CA3. Fractional anisotropy was increased in the hypothalamus and hippocampal CA3. We observed synchronized anatomic differences between the VTA and cingulate cortex, hippocampus and VTA, hippocampus and cingulate cortex, and hippocampus and hypothalamus. These correlations revealed different structural covariance between brain regions in susceptible and resilient mice. CONCLUSIONS Stress-integrative brain regions shape the neural architecture underlying individual differences in susceptibility and resilience to chronic stress.
Collapse
|
45
|
Hansen B, Jespersen SN. Kurtosis fractional anisotropy, its contrast and estimation by proxy. Sci Rep 2016; 6:23999. [PMID: 27041679 PMCID: PMC4819179 DOI: 10.1038/srep23999] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/15/2016] [Indexed: 01/17/2023] Open
Abstract
The diffusion kurtosis observed with diffusion magnetic resonance imaging (dMRI) may vary with direction. This directional variation is summarized in the scalar kurtosis fractional anisotropy (KFA). Recent studies suggest that kurtosis anisotropy offers microstructural contrast not contained in other commonly used dMRI markers. We compare KFA to other dMRI contrasts in fixed rat brain and in human brain. We then investigate the observed contrast differences using data obtained in a physical phantom and simulations based on data from the phantom, rat spinal cord, and human brain. Lastly, we assess a strategy for rapid estimation of a computationally modest KFA proxy by evaluating its correlation to true KFA for varying number of sampling directions and signal-to-noise ratio (SNR) levels. We also map this proxy’s b-value dependency. We find that KFA supplements the contrast of other dMRI metrics – particularly fractional anisotropy (FA) which vanishes in near orthogonal fiber arrangements where KFA does not. Simulations and phantom data support this interpretation. KFA therefore supplements FA and could be useful for evaluation of complex tissue arrangements. The KFA proxy is strongly correlated to true KFA when sampling is performed along at least nine directions and SNR is high.
Collapse
Affiliation(s)
- Brian Hansen
- Center of Functionally Integrative Neuroscience (CFIN), Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Sune Nørhøj Jespersen
- Center of Functionally Integrative Neuroscience (CFIN), Clinical Institute, Aarhus University, Aarhus, Denmark.,Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
46
|
The Neurochemical and Microstructural Changes in the Brain of Systemic Lupus Erythematosus Patients: A Multimodal MRI Study. Sci Rep 2016; 6:19026. [PMID: 26758023 PMCID: PMC4725825 DOI: 10.1038/srep19026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/17/2015] [Indexed: 12/24/2022] Open
Abstract
The diagnosis and pathology of neuropsychiatric systemic lupus erythematosus (NPSLE) remains challenging. Herein, we used multimodal imaging to assess anatomical and functional changes in brains of SLE patients instead of a single MRI approach generally used in previous studies. Twenty-two NPSLE patients, 21 non-NPSLE patients and 20 healthy controls (HCs) underwent 3.0 T MRI with multivoxel magnetic resonance spectroscopy, T1-weighted volumetric images for voxel based morphometry (VBM) and diffusional kurtosis imaging (DKI) scans. While there were findings in other basal ganglia regions, the most consistent findings were observed in the posterior cingulate gyrus (PCG). The reduction of multiple metabolite concentration was observed in the PCG in the two patient groups, and the NPSLE patients were more prominent. The two patient groups displayed lower diffusional kurtosis (MK) values in the bilateral PCG compared with HCs (p < 0.01) as assessed by DKI. Grey matter reduction in the PCG was observed in the NPSLE group using VBM. Positive correlations among cognitive function scores and imaging metrics in bilateral PCG were detected. Multimodal imaging is useful for evaluating SLE subjects and potentially determining disease pathology. Impairments of cognitive function in SLE patients may be interpreted by metabolic and microstructural changes in the PCG.
Collapse
|
47
|
Hansen B, Lund TE, Sangill R, Stubbe E, Finsterbusch J, Jespersen SN. Experimental considerations for fast kurtosis imaging. Magn Reson Med 2015; 76:1455-1468. [PMID: 26608731 DOI: 10.1002/mrm.26055] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/18/2022]
Abstract
PURPOSE The clinical use of kurtosis imaging is impeded by long acquisitions and postprocessing. Recently, estimation of mean kurtosis tensor W¯ and mean diffusivity ( D¯) was made possible from 13 distinct diffusion weighted MRI acquisitions (the 1-3-9 protocol) with simple postprocessing. Here, we analyze the effects of noise and nonideal diffusion encoding, and propose a new correction strategy. We also present a 1-9-9 protocol with increased robustness to experimental imperfections and minimal additional scan time. This refinement does not affect computation time and also provides a fast estimate of fractional anisotropy (FA). THEORY AND METHODS 1-3-9/1-9-9 data are acquired in rat and human brains, and estimates of D¯, FA, W¯ from human brains are compared with traditional estimates from an extensive diffusion kurtosis imaging data set. Simulations are used to evaluate the influence of noise and diffusion encodings deviating from the scheme, and the performance of the correction strategy. Optimal b-values are determined from simulations and data. RESULTS Accuracy and precision in D¯ and W¯ are comparable to nonlinear least squares estimation, and is improved with the 1-9-9 protocol. The compensation strategy vastly improves parameter estimation in nonideal data. CONCLUSION The framework offers a robust and compact method for estimating several diffusion metrics. The protocol is easily implemented. Magn Reson Med 76:1455-1468, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Brian Hansen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Torben E Lund
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Ryan Sangill
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Ebbe Stubbe
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Jürgen Finsterbusch
- Institut für Systemische Neurowissenschaften, Universitätsklinikum Hamburg-Eppendorf, Germany
| | - Sune Nørhøj Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Clinical Institute, Aarhus University, Aarhus, Denmark. .,Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
48
|
Guglielmetti C, Veraart J, Roelant E, Mai Z, Daans J, Van Audekerke J, Naeyaert M, Vanhoutte G, Delgado Y Palacios R, Praet J, Fieremans E, Ponsaerts P, Sijbers J, Van der Linden A, Verhoye M. Diffusion kurtosis imaging probes cortical alterations and white matter pathology following cuprizone induced demyelination and spontaneous remyelination. Neuroimage 2015; 125:363-377. [PMID: 26525654 DOI: 10.1016/j.neuroimage.2015.10.052] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
Although MRI is the gold standard for the diagnosis and monitoring of multiple sclerosis (MS), current conventional MRI techniques often fail to detect cortical alterations and provide little information about gliosis, axonal damage and myelin status of lesioned areas. Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) provide sensitive and complementary measures of the neural tissue microstructure. Additionally, specific white matter tract integrity (WMTI) metrics modelling the diffusion in white matter were recently derived. In the current study we used the well-characterized cuprizone mouse model of central nervous system demyelination to assess the temporal evolution of diffusion tensor (DT), diffusion kurtosis tensor (DK) and WMTI-derived metrics following acute inflammatory demyelination and spontaneous remyelination. While DT-derived metrics were unable to detect cuprizone induced cortical alterations, the mean kurtosis (MK) and radial kurtosis (RK) were found decreased under cuprizone administration, as compared to age-matched controls, in both the motor and somatosensory cortices. The MK remained decreased in the motor cortices at the end of the recovery period, reflecting long lasting impairment of myelination. In white matter, DT, DK and WMTI-derived metrics enabled the detection of cuprizone induced changes differentially according to the stage and the severity of the lesion. More specifically, the MK, the RK and the axonal water fraction (AWF) were the most sensitive for the detection of cuprizone induced changes in the genu of the corpus callosum, a region less affected by cuprizone administration. Additionally, microgliosis was associated with an increase of MK and RK during the acute inflammatory demyelination phase. In regions undergoing severe demyelination, namely the body and splenium of the corpus callosum, DT-derived metrics, notably the mean diffusion (MD) and radial diffusion (RD), were among the best discriminators between cuprizone and control groups, hence highlighting their ability to detect both acute and long lasting changes. Interestingly, WMTI-derived metrics showed the aptitude to distinguish between the different stages of the disease. Both the intra-axonal diffusivity (Da) and the AWF were found to be decreased in the cuprizone treated group, Da specifically decreased during the acute inflammatory demyelinating phase whereas the AWF decrease was associated to the spontaneous remyelination and the recovery period. Altogether our results demonstrate that DKI is sensitive to alterations of cortical areas and provides, along with WMTI metrics, information that is complementary to DT-derived metrics for the characterization of demyelination in both white and grey matter and subsequent inflammatory processes associated with a demyelinating event.
Collapse
Affiliation(s)
- C Guglielmetti
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | - J Veraart
- iMinds - Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium; Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - E Roelant
- StatUa Center for Statistics, University of Antwerp, Antwerp, Belgium
| | - Z Mai
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | - J Daans
- Experimental Cell Transplantation Group, Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | | | - M Naeyaert
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | - G Vanhoutte
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | | | - J Praet
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | - E Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - P Ponsaerts
- Experimental Cell Transplantation Group, Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - J Sijbers
- iMinds - Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | | | - M Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
49
|
Relationship between the catechol-O-methyl transferase Val108/158Met genotype and brain volume in treatment-naive major depressive disorder: Voxel-based morphometry analysis. Psychiatry Res 2015; 233:481-7. [PMID: 26253436 DOI: 10.1016/j.pscychresns.2015.07.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 05/24/2015] [Accepted: 07/30/2015] [Indexed: 02/04/2023]
Abstract
Catechol-O-methyltransferase (COMT) is a methylation enzyme engaged in the degradation of dopamine and noradrenaline by catalyzing the transfer of a methyl group from S-adenosylmethionine. An association was found between the Valine (Val) 108/158Methionine (Met) COMT polymorphism (rs4680) and major depressive disorder (MDD). The authors prospectively investigated the relationship between the Val108/158Met COMT genotype and voxel-based morphometry (VBM) findings for patients with first-episode and treatment-naïve MDD and healthy subjects (HS). Participants comprised 30 MDD patients and 48 age- and sex-matched HS who were divided according to the COMT genotype. Effects of diagnosis, COMT genotype, and the genotype-diagnosis interaction in relation to brain morphology in the Val/Met and Val/Val individuals were evaluated using a VBM analysis of high-resolution magnetic resonance imaging findings. Among the Val/Met individuals, the volume of the bilateral caudate was significantly smaller for MDD patients than for HS. In the Val/Val individuals, the caudate volume was comparable between MDD patients and HS. Significant genotype-diagnosis interaction effects on brain morphology were noted in the right caudate.
Collapse
|
50
|
Bourgin J, Cachia A, Boumezbeur F, Djemaï B, Bottlaender M, Duchesnay E, Mériaux S, Jay TM. Hyper-responsivity to stress in rats is associated with a large increase in amygdala volume. A 7T MRI study. Eur Neuropsychopharmacol 2015; 25:828-35. [PMID: 25823695 DOI: 10.1016/j.euroneuro.2015.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 02/11/2015] [Accepted: 02/25/2015] [Indexed: 12/25/2022]
Abstract
Stress is known to precipitate psychiatric disorders in vulnerable people. Individual differences in the stress responsivity can dramatically affect the onset of these illnesses. Animal models of repeated stress represent valuable tools to identify region-specific volumetric changes in the brain. Here, using high resolution 7T MRI, we found that amygdala is the most significant parameter for distinction between F344 and SD rats known to have differential response to stress. A significant substantial increase (45%) was found in the amygdala volume of rats that do not habituate to the repeated stress procedure (F344 rats) compared to SD rats. This strain-specific effect of stress was evidenced by a significant strain-by-stress interaction. There were no significant strain differences in the volumes of hippocampi and prefrontal cortices though stress produces significant reductions of smaller amplitude in the medial prefrontal cortex (mPFC) (9% and 12%) and dorsal hippocampus (5% and 6%) in both strains. Our data further demonstrate the feasibility and relevance of high isotropic resolution structural ex vivo 7T MRI in the study of the brain effects of stress in small animals. Neuroimaging is a valuable tool to follow up brain volumetric reorganization during the stress response and could also be easily used to test pharmacological interventions to prevent the deleterious effects of stress.
Collapse
Affiliation(s)
- J Bourgin
- Laboratoire de Physiopathologie des Maladies Psychiatriques, UMR_S 894 Inserm, Centre de Psychiatrie et Neurosciences, 75014 Paris, France; Centre hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - A Cachia
- Laboratoire de Physiopathologie des Maladies Psychiatriques, UMR_S 894 Inserm, Centre de Psychiatrie et Neurosciences, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; CNRS UMR 8240, Laboratoire de Psychologie du développement et de l׳Education de l׳Enfant, Paris, France
| | - F Boumezbeur
- UNIRS, NeuroSpin, DSV/Institut d׳imagerie Biomédicale, CEA, Gif-sur-Yvette, France
| | - B Djemaï
- UNIACT, NeuroSpin, DSV/Institut d׳imagerie Biomédicale, CEA, Gif-sur-Yvette, France
| | - M Bottlaender
- UNIACT, NeuroSpin, DSV/Institut d׳imagerie Biomédicale, CEA, Gif-sur-Yvette, France
| | - E Duchesnay
- UNATI, NeuroSpin, DSV/Institut d׳imagerie Biomédicale, CEA, Gif-sur-Yvette, France
| | - S Mériaux
- UNIRS, NeuroSpin, DSV/Institut d׳imagerie Biomédicale, CEA, Gif-sur-Yvette, France
| | - T M Jay
- Laboratoire de Physiopathologie des Maladies Psychiatriques, UMR_S 894 Inserm, Centre de Psychiatrie et Neurosciences, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|