1
|
Melnik BC, Weiskirchen R, Stremmel W, John SM, Schmitz G. Risk of Fat Mass- and Obesity-Associated Gene-Dependent Obesogenic Programming by Formula Feeding Compared to Breastfeeding. Nutrients 2024; 16:2451. [PMID: 39125332 PMCID: PMC11314333 DOI: 10.3390/nu16152451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
It is the purpose of this review to compare differences in postnatal epigenetic programming at the level of DNA and RNA methylation and later obesity risk between infants receiving artificial formula feeding (FF) in contrast to natural breastfeeding (BF). FF bears the risk of aberrant epigenetic programming at the level of DNA methylation and enhances the expression of the RNA demethylase fat mass- and obesity-associated gene (FTO), pointing to further deviations in the RNA methylome. Based on a literature search through Web of Science, Google Scholar, and PubMed databases concerning the dietary and epigenetic factors influencing FTO gene and FTO protein expression and FTO activity, FTO's impact on postnatal adipogenic programming was investigated. Accumulated translational evidence underscores that total protein intake as well as tryptophan, kynurenine, branched-chain amino acids, milk exosomal miRNAs, NADP, and NADPH are crucial regulators modifying FTO gene expression and FTO activity. Increased FTO-mTORC1-S6K1 signaling may epigenetically suppress the WNT/β-catenin pathway, enhancing adipocyte precursor cell proliferation and adipogenesis. Formula-induced FTO-dependent alterations of the N6-methyladenosine (m6A) RNA methylome may represent novel unfavorable molecular events in the postnatal development of adipogenesis and obesity, necessitating further investigations. BF provides physiological epigenetic DNA and RNA regulation, a compelling reason to rely on BF.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Wolfgang Stremmel
- Praxis for Internal Medicine, Beethovenstrasse 2, D-76530 Baden-Baden, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany;
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
2
|
Abstract
While epigenetic modifications of DNA and histones play main roles in gene transcription regulation, recently discovered post-transcriptional RNA modifications, known as epitranscriptomic modifications, have been found to have a profound impact on gene expression by regulating RNA stability, localization and decoding efficiency. Importantly, genetic variations or environmental perturbations of epitranscriptome modifiers (that is, writers, erasers and readers) are associated with obesity and metabolic diseases, such as type 2 diabetes. The epitranscriptome is closely coupled to epigenetic signalling, adding complexity to our understanding of gene expression in both health and disease. Moreover, the epitranscriptome in the parental generation can affect organismal phenotypes in the next generation. In this Review, we discuss the relationship between epitranscriptomic modifications and metabolic diseases, their relationship with the epigenome and possible therapeutic strategies.
Collapse
Affiliation(s)
- Yoshihiro Matsumura
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Juro Sakai
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Rösner L, Reichert D, Rau K, Muthmann N, Rentmeister A. Sequence-specific targeting of RNA. Methods 2022; 205:73-82. [PMID: 35764247 DOI: 10.1016/j.ymeth.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Post-transcriptional modifications play an important role in several processes, including translation, splicing, and RNA degradation in eukaryotic cells. To investigate the function of specific modifications it is of high interest to develop tools for sequence-specific RNA-targeting. This work focuses on two abundant modifications of eukaryotic mRNA, namely methylation of the guanine-N7 position of the 5'-cap and internal N6-methyladenosine (m6A). We describe the sequence-specific targeting of model RNA transcripts via RNA-binding proteins, such as nuclease-deficient RNA-targeting Cas9 (RCas9) and the Pumilio homology domain (PumHD) fused to two different effector enzymes, the dioxygenase FTO and the guanine-N7 methyltransferase Ecm1. With this tool, we were able to install and remove the methylation at the respective positions with high specificity.
Collapse
Affiliation(s)
- Lukas Rösner
- University of Münster, Department of Chemistry, Institute of Biochemistry, Corrensstraße 36, 48149 Münster, Germany
| | - Dennis Reichert
- University of Münster, Department of Chemistry, Institute of Biochemistry, Corrensstraße 36, 48149 Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Kristina Rau
- University of Münster, Department of Chemistry, Institute of Biochemistry, Corrensstraße 36, 48149 Münster, Germany
| | - Nils Muthmann
- University of Münster, Department of Chemistry, Institute of Biochemistry, Corrensstraße 36, 48149 Münster, Germany
| | - Andrea Rentmeister
- University of Münster, Department of Chemistry, Institute of Biochemistry, Corrensstraße 36, 48149 Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149 Münster, Germany
| |
Collapse
|
4
|
The m 6A RNA Modification Quantity and mRNA Expression Level of RNA Methylation-Related Genes in Head and Neck Squamous Cell Carcinoma Cell Lines and Patients. Biomolecules 2021; 11:biom11060908. [PMID: 34207099 PMCID: PMC8235215 DOI: 10.3390/biom11060908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
RNA methylation at the nitrogen sixth of adenosine (m6A, N6-methyladenosine) is the most abundant RNA modification which plays a crucial role in all RNA metabolic aspects. Recently, m6A modification has been assigned to mediate the biological processes of cancer cells, but their significance in HNSCC development is still poorly described. Thus, the main aim of this study was to globally quantify m6A modification by the mass spectrometry approach and determine the mRNA expression level of selected m6A RNA methyltransferase (METTL3), demethylase (FTO), and m6A readers (YTHDF2, YTHDC2) in 45 HNSCC patients and 4 cell lines (FaDu, Detroit 562, A-253 and SCC-15) using qPCR. In the results, we have not observed differences in the global amount of m6A modification and the mRNA level of the selected genes between the cancerous and paired-matched histopathologically unchanged tissues from 45 HNSCC patients. However, we have found a positive correlation between selected RNA methylation machinery genes expression and m6A abundance on total RNA and characterized the transcript level of those genes in the HNSCC cell lines. Moreover, the lack of global m6A differences between cancerous and histopathologically unchanged tissues suggests that m6A alterations in specific RNA sites may specifically influence HNSCC tumorigenesis.
Collapse
|
5
|
Kucher AN. The FTO Gene and Diseases: The Role of Genetic Polymorphism, Epigenetic Modifications, and Environmental Factors. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420090136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Karthiya R, Khandelia P. m6A RNA Methylation: Ramifications for Gene Expression and Human Health. Mol Biotechnol 2020; 62:467-484. [PMID: 32840728 DOI: 10.1007/s12033-020-00269-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular transcriptomes are frequently adorned by a variety of chemical modification marks, which in turn have a profound influence on its functioning. Of these modifications, the one which has invited a lot of attention in the recent years is m6A RNA methylation, leading to the development of RNA epigenetics or epitranscriptomics as a frontier research area. m6A RNA methylation is one of the most abundant reversible internal modification seen in cellular RNAs. Studies in the last few years have not only shed light on the molecular machinery involved in m6A RNA methylation but also on the impact of this modification in regulating gene expression and hence biological processes. In this review, we will emphasize the biological impact of this modification in normal organismal development and diseases.
Collapse
Affiliation(s)
- R Karthiya
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
7
|
An intronic FTO variant rs16952570 confers protection against thiopurine-induced myelotoxicities in multiethnic Asian IBD patients. THE PHARMACOGENOMICS JOURNAL 2019; 20:505-515. [PMID: 31813937 DOI: 10.1038/s41397-019-0126-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 11/08/2022]
Abstract
Thiopurines are used in the treatment of inflammatory bowel disease (IBD) but remain clinically challenging to manage due to wide interpatient variability in clinical outcomes and adverse events. Apart from genetic variants in thiopurine S-methyltransferase (TPMT) and nudix hydrolase 15 (NUDT15) genes, polymorphisms in FTO alpha-ketoglutarate dependent dioxygenase (FTO) were found predictive of thiopurine-induced leukopenia, albeit with conflicting results. To clarify the role of FTO variants in a multiethnic Asian IBD cohort, we recruited 149 patients on thiopurine-based therapy and genotyped two FTO variants p.Ala134Thr (rs79206939) and rs16952570 T > C using Sanger sequencing. FTO p.Ala134Thr (rs79206939) was non-polymorphic and absent whereas intronic rs16952570 T > C was equally prevalent in Chinese (22%) and Indians (18%) and higher in Malays (28%). Higher nadir white blood cell (WBC) and absolute neutrophil count (ANC) levels were observed in patients harboring FTO rs16952570 CC genotypes compared with TT carriers at 4, 8, and 12 weeks after start of thiopurine therapy (P < 0.05). A similar trend was observed in patients carrying the previously well-characterized NUDT15 rs116855232 wild-type CC genotypes. Further in silico analysis suggests that FTO variants linked to rs16952570, particularly rs74018601, may play a regulatory role in altering the FTO expression. The findings from this study indicate a novel protective association with the FTO variant rs16952570 CC genotype and hematological parameters.
Collapse
|
8
|
Rau K, Rösner L, Rentmeister A. Sequence-specific m 6A demethylation in RNA by FTO fused to RCas9. RNA (NEW YORK, N.Y.) 2019; 25:1311-1323. [PMID: 31263003 PMCID: PMC6800472 DOI: 10.1261/rna.070706.119] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/18/2019] [Indexed: 05/21/2023]
Abstract
N6-methyladenosine (m6A) is the most common internal modification in eukaryotic mRNA and associated with numerous cellular processes in health and disease. Up- and down-regulation of its "writer" or "eraser" proteins alter the global m6A level; however, modifying distinct m6A sites has remained elusive. We genetically fused the dioxygenase FTO responsible for m6A demethylation to RCas9 as an RNA-targeting module. The resulting RCas9-FTO retained demethylation activity and bound to RNA in a sequence-specific manner depending on the sgRNA and PAMmer. Using SCARLET analysis, we quantified the m6A level at a specific site and analyzed the effect of the PAM-to-m6A distance on activity. Sequence-specific demethylation by RCas9-FTO was tested on different RNA combinations and showed up to 15-fold sequence preference for target RNA compared to off-target RNA. Taken together, RCas9-FTO represents a new tool for sequence-specific demethylation of m6A in RNA that can be readily adapted to any given RNA sequence and opens the door to studying the function of distinct m6A sites.
Collapse
Affiliation(s)
- Kristina Rau
- Institute of Biochemistry, Department of Chemistry, University of Münster, 48149 Münster, Germany
| | - Lukas Rösner
- Institute of Biochemistry, Department of Chemistry, University of Münster, 48149 Münster, Germany
| | - Andrea Rentmeister
- Institute of Biochemistry, Department of Chemistry, University of Münster, 48149 Münster, Germany
| |
Collapse
|
9
|
Pilžys T, Marcinkowski M, Kukwa W, Garbicz D, Dylewska M, Ferenc K, Mieczkowski A, Kukwa A, Migacz E, Wołosz D, Mielecki D, Klungland A, Piwowarski J, Poznański J, Grzesiuk E. ALKBH overexpression in head and neck cancer: potential target for novel anticancer therapy. Sci Rep 2019; 9:13249. [PMID: 31519943 PMCID: PMC6744417 DOI: 10.1038/s41598-019-49550-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/27/2019] [Indexed: 01/12/2023] Open
Abstract
The nine identified human homologues of E. coli AlkB 2-oxoglutarate (2OG) and Fe(II)-dependent dioxygenase, ALKBH1-8 and FTO, display different substrate specificities and diverse biological functions. Here we discovered the combined overexpression of members of the ALKBH family in head and neck squamous cell carcinomas (HNSCC). We found direct correlation of ALKBH3 and FTO expression with primary HNSCC tumor size. We observed unidentified thus far cytoplasmic localization of ALKBH2 and 5 in HNSCC, suggesting abnormal role(s) of ALKBH proteins in cancer. Further, high expression of ALKBHs was observed not only in HNSCC, but also in several cancerous cell lines and silencing ALKBH expression in HeLa cancer cells resulted in dramatically decreased survival. Considering the discovered impact of high expression of ALKBH proteins on HNSCC development, we screened for ALKBH blockers among newly synthetized anthraquinone derivatives and demonstrated their potential to support standard anticancer therapy.
Collapse
Affiliation(s)
- Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Kukwa
- Department of Otolaryngology, Medical University of Warsaw, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Dylewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Ferenc
- Veterinary Research Centre and Center for Biomedical Research, Department of Large Animal Diseases with the Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Kukwa
- Department of Otolaryngology, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Migacz
- Department of Otolaryngology, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Wołosz
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Jan Piwowarski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
10
|
Taneera J, Prasad RB, Dhaiban S, Mohammed AK, Haataja L, Arvan P, Hamad M, Groop L, Wollheim CB. Silencing of the FTO gene inhibits insulin secretion: An in vitro study using GRINCH cells. Mol Cell Endocrinol 2018; 472:10-17. [PMID: 29890211 PMCID: PMC6559235 DOI: 10.1016/j.mce.2018.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/14/2018] [Accepted: 06/07/2018] [Indexed: 01/01/2023]
Abstract
Expression of fat mass and obesity-associated gene (FTO) and ADP-ribosylation factor-like 15 (ARL15) in human islets is inversely correlated with HbA1c. However, their impact on insulin secretion is still ambiguous. Here in, we investigated the role of FTO and ARL15 using GRINCH (Glucose-Responsive Insulin-secreting C-peptide-modified Human proinsulin) clonal rat β-cells. GRINCH cells have inserted GFP into the human C-peptide insulin gene. Hence, secreted CpepGFP served to monitor insulin secretion. mRNA silencing of FTO in GRINCH cells showed a significant reduction in glucose but not depolarization-stimulated insulin secretion, whereas ARL15 silencing had no effect. A significant down-regulation of insulin mRNA was observed in FTO knockdown cells. Type-2 Diabetic islets revealed a reduced expression of FTO mRNA. In conclusion, our data suggest that fluorescent CpepGFP released from GRINCH cells may serve as a convenient marker for insulin secretion. Silencing of FTO expression, but not ARL15, inhibits insulin secretion by affecting metabolic signaling.
Collapse
Affiliation(s)
- Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; Lund University Diabetes Center, Malmoe, Lund University, Sweden.
| | - Rashmi B Prasad
- Lund University Diabetes Center, Malmoe, Lund University, Sweden
| | - Sarah Dhaiban
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdul Khader Mohammed
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Leena Haataja
- Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, USA
| | - Peter Arvan
- Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, USA
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Leif Groop
- Lund University Diabetes Center, Malmoe, Lund University, Sweden; Finnish Institute for Molecular Medicine (FIMM), Helsinki University, Finland
| | - Claes B Wollheim
- Lund University Diabetes Center, Malmoe, Lund University, Sweden; Department of Cell Physiology and Metabolism, University Medical Center. Geneva, Switzerland
| |
Collapse
|
11
|
Howard SR, Guasti L, Poliandri A, David A, Cabrera CP, Barnes MR, Wehkalampi K, O’Rahilly S, Aiken CE, Coll AP, Ma M, Rimmington D, Yeo GSH, Dunkel L. Contributions of Function-Altering Variants in Genes Implicated in Pubertal Timing and Body Mass for Self-Limited Delayed Puberty. J Clin Endocrinol Metab 2018; 103:649-659. [PMID: 29161441 PMCID: PMC5800831 DOI: 10.1210/jc.2017-02147] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Self-limited delayed puberty (DP) is often associated with a delay in physical maturation, but although highly heritable the causal genetic factors remain elusive. Genome-wide association studies of the timing of puberty have identified multiple loci for age at menarche in females and voice break in males, particularly in pathways controlling energy balance. OBJECTIVE/MAIN OUTCOME MEASURES We sought to assess the contribution of rare variants in such genes to the phenotype of familial DP. DESIGN/PATIENTS We performed whole-exome sequencing in 67 pedigrees (125 individuals with DP and 35 unaffected controls) from our unique cohort of familial self-limited DP. Using a whole-exome sequencing filtering pipeline one candidate gene [fat mass and obesity-associated gene (FTO)] was identified. In silico, in vitro, and mouse model studies were performed to investigate the pathogenicity of FTO variants and timing of puberty in FTO+/- mice. RESULTS We identified potentially pathogenic, rare variants in genes in linkage disequilibrium with genome-wide association studies of age at menarche loci in 283 genes. Of these, five genes were implicated in the control of body mass. After filtering for segregation with trait, one candidate, FTO, was retained. Two FTO variants, found in 14 affected individuals from three families, were also associated with leanness in these patients with DP. One variant (p.Leu44Val) demonstrated altered demethylation activity of the mutant protein in vitro. Fto+/- mice displayed a significantly delayed timing of pubertal onset (P < 0.05). CONCLUSIONS Mutations in genes implicated in body mass and timing of puberty in the general population may contribute to the pathogenesis of self-limited DP.
Collapse
Affiliation(s)
- Sasha R. Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Ariel Poliandri
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Alessia David
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Claudia P. Cabrera
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Michael R. Barnes
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Karoliina Wehkalampi
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, FIN-00029 HUS Helsinki, Finland
| | - Stephen O’Rahilly
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Catherine E. Aiken
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge CB2 0SW, United Kingdom
- National Institute for Health Research, Cambridge Comprehensive Biomedical Research Centre, Cambridge CB2 0SW, United Kingdom
| | - Anthony P. Coll
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Marcella Ma
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Debra Rimmington
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Giles S. H. Yeo
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
12
|
do Nascimento GA, Leite N, Furtado-Alle L, Teixeira MD, de Souza RLR, Milano GE, da Silva LR, Pizzi J, Lopes WA, Lopes MDFA, Titski ACK, Tureck LV. FTO rs9939609 Does Not Interact with Physical Exercise but Influences Basal Insulin Metabolism in Brazilian Overweight and Obese Adolescents. J Obes 2018; 2018:3134026. [PMID: 29854435 PMCID: PMC5944237 DOI: 10.1155/2018/3134026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/23/2018] [Accepted: 04/08/2018] [Indexed: 01/12/2023] Open
Abstract
PURPOSE The rs9939609 SNP (T > A) in FTO gene is associated with obesity and type 2 diabetes. The present study aimed at verifying whether this SNP influenced biochemical outcomes of children and adolescents who are overweight/obese submitted to a program of physical exercise and also if there was influence on basal levels of these biochemical variables. METHODS The sample was composed by 432 children and adolescents grouped in three ways (obese, overweight, and normal weight); of these, 135 children and adoloescents who are obese and overweight were submitted to a physical exercise program for 12 weeks. All were genotyped by TaqMan SNP genotyping assay. RESULTS The children and adolescents who are overweight/obese and carriers of AA genotype had higher levels of insulin (p=0.03) and HOMA (p=0.007) and lower levels of glucose (p=0.003), but the SNP did not modulate the response to physical exercise. CONCLUSIONS In our study, the rs9939609 AA genotype was associated with parameters related to insulin metabolism but did not interact with physical exercise.
Collapse
Affiliation(s)
- Gabrielle Araujo do Nascimento
- Department of Genetics, Centro Politécnico, Setor de Ciências Biológicas, Federal University of Paraná, Francisco H. dos Santos, 210 Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| | - Neiva Leite
- Department of Physical Education, Federal University of Paraná, Coração de Maria, 92 Jardim Botânico, 80215-370 Curitiba, PR, Brazil
| | - Lupe Furtado-Alle
- Department of Genetics, Centro Politécnico, Setor de Ciências Biológicas, Federal University of Paraná, Francisco H. dos Santos, 210 Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| | - Mayza Dalcin Teixeira
- Department of Genetics, Centro Politécnico, Setor de Ciências Biológicas, Federal University of Paraná, Francisco H. dos Santos, 210 Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| | - Ricardo Lehtonen Rodrigues de Souza
- Department of Genetics, Centro Politécnico, Setor de Ciências Biológicas, Federal University of Paraná, Francisco H. dos Santos, 210 Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| | - Gerusa Eisfeld Milano
- Department of Physical Education, Federal University of Paraná, Coração de Maria, 92 Jardim Botânico, 80215-370 Curitiba, PR, Brazil
| | - Larissa Rosa da Silva
- Department of Physical Education, Federal University of Paraná, Coração de Maria, 92 Jardim Botânico, 80215-370 Curitiba, PR, Brazil
| | - Juliana Pizzi
- Department of Physical Education, Federal University of Paraná, Coração de Maria, 92 Jardim Botânico, 80215-370 Curitiba, PR, Brazil
| | - Wendell Arthur Lopes
- Department of Physical Education, State University of Maringa, Av. Colombo 5790, 87020-900 Maringa, PR, Brazil
| | - Maria de Fátima Aguiar Lopes
- Department of Physical Education, Federal University of Paraná, Coração de Maria, 92 Jardim Botânico, 80215-370 Curitiba, PR, Brazil
| | - Ana Cláudia Kapp Titski
- Department of Physical Education, Federal University of Paraná, Coração de Maria, 92 Jardim Botânico, 80215-370 Curitiba, PR, Brazil
| | - Luciane Viater Tureck
- Department of Genetics, Centro Politécnico, Setor de Ciências Biológicas, Federal University of Paraná, Francisco H. dos Santos, 210 Jardim das Américas, 81531-970 Curitiba, PR, Brazil
- Academic Department of Education, Federal University of Technology–Paraná, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR, Brazil
| |
Collapse
|
13
|
FTO rs9939609 A allele influences anthropometric outcome in response to dietary intervention, but not in response to physical exercise program. Eur J Nutr 2017; 58:325-334. [PMID: 29238857 DOI: 10.1007/s00394-017-1596-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/10/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE The fat mass and obesity-associated (FTO) gene is involved in energy homeostasis. The A allele of the rs9939609 (SNP; T>A) is associated with obesity and higher food intake, while its effect in energy expenditure remains unclear. The aim of this study is to examine whether FTO rs9939609 is associated with the anthropometric outcomes of a physical exercise program and a dietary intervention. METHODS We studied two independent samples. The first was composed by children and adolescents in which overweight and obese individuals were submitted to a physical exercise program (n = 136) and normal weight participants served as a control group (n = 172). The second sample was composed by obese women submitted to a hypocaloric dietary intervention (n = 126). RESULTS Physical exercise and dietary intervention were effective, independently of genotype. We found no association of FTO rs9939609 with obesity in children and adolescents (p = 0.67). The rs9939609 affected the response to dietary intervention in obese women: A allele carriers reduced 2.7 cm less of abdominal circumference (AC) than homozygous TT (p = 0.04), while no effect was observed in response to physical exercise in overweight and obese children and adolescents. CONCLUSIONS The A allele is associated with a worse outcome in response to the hypocaloric dietary intervention regarding abdominal circumference reduction; the same allele did not show interaction with any anthropometric outcomes in response to the exercise program applied.
Collapse
|
14
|
Kim HS, Cheon JH, Jung ES, Park J, Aum S, Park SJ, Eun S, Lee J, Rüther U, Yeo GSH, Ma M, Park KS, Naito T, Kakuta Y, Lee JH, Kim WH, Lee MG. A coding variant in FTO confers susceptibility to thiopurine-induced leukopenia in East Asian patients with IBD. Gut 2017; 66:1926-1935. [PMID: 27558924 DOI: 10.1136/gutjnl-2016-311921] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/21/2016] [Accepted: 07/26/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Myelosuppression is a life-threatening complication of thiopurine therapy, and the incidence of thiopurine-induced myelosuppression is higher in East Asians than in Europeans. We investigated genetic factors associated with thiopurine-induced leukopenia in patients with IBD. DESIGN A genome-wide association study (GWAS) was conducted in thiopurine-treated patients with IBD, followed by high-throughput sequencing of genes identified as significant in the GWAS or those involved in thiopurine metabolism (n=331). Significant loci associated with thiopurine-induced leukopenia were validated in two additional replication cohorts (n=437 and n=330). Functional consequences of FTO (fat mass and obesity-associated) variant were examined both in vitro and in vivo. RESULTS The GWAS identified two loci associated with thiopurine-induced leukopenia (rs16957920, FTO intron; rs2834826, RUNX1 intergenic). High-throughput targeted sequencing indicated that an FTO coding variant (rs79206939, p.A134T) linked to rs16957920 is associated with thiopurine-induced leukopenia. This result was further validated in two replication cohorts (combined p=1.3×10-8, OR=4.3). The frequency of FTO p.A134T is 5.1% in Koreans but less than 0.1% in Western populations. The p.A134T variation reduced FTO activity by 65% in the nucleotide demethylase assay. In vivo experiments revealed that Fto-/- and Fto+/- mice were more susceptible to thiopurine-induced myelosuppression than wild-type mice. CONCLUSIONS The results suggest that the hypomorphic FTO p.A134T variant is associated with thiopurine-induced leukopenia. These results shed light on the novel physiological role of FTO and provide a potential pharmacogenetic biomarker for thiopurine therapy.
Collapse
Affiliation(s)
- Han Sang Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hee Cheon
- Brain Korea 21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.,Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Suk Jung
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea.,Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Joonhee Park
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Sowon Aum
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Jung Park
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Sungho Eun
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Inchon, Korea
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany
| | - Giles S H Yeo
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Marcella Ma
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Takeo Naito
- Division of Gastroenterology, Tohoku University Hospital, Miyagi, Japan
| | - Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Hospital, Miyagi, Japan
| | - Ji Hyun Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Won Ho Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Tai H, Wang X, Zhou J, Han X, Fang T, Gong H, Huang N, Chen H, Qin J, Yang M, Wei X, Yang L, Xiao H. Protein kinase Cβ activates fat mass and obesity-associated protein by influencing its ubiquitin/proteasome degradation. FASEB J 2017. [PMID: 28626026 DOI: 10.1096/fj.201601159rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein kinase Cβ (PKCβ) is a serine-threonine kinase associated with obesity and diabetic complications; its activation contributes to weight gain, and deletion of its gene results in resistance to genetic- and diet-induced obesity. Fat mass and obesity-associated (FTO) protein is a recently identified RNA demethylase, and its overexpression in mice leads to increased body weight as well as fat mass. Although sharing some features in anabolism regulation, PKCβ and FTO have not been investigated together; therefore, their relationship has not been established. We report that PKCβ positively regulates FTO on the posttranslation level, evidenced by the facts that PKCβ activation contributes to high-glucose-induced FTO up-regulation, and overexpression of PKCβ suppresses ubiquitin-proteasome degradation of FTO, whereas PKCβ inactivation acts in the opposite manner. It was also found that PKCβ can phosphorylate FTO on threonine, and this phosphorylation requires both catalytic and regulatory domains of PKCβ. Moreover, PKCβ inhibition can suppress 3T3-L1 cell differentiation in normal and FTO-overexpressing cells but not in FTO-silenced or -inhibited cells. We propose that PKCβ acts to suppress the degradation of FTO protein and reveals the associated role of PKCβ and FTO in adipogenesis, suggesting a new pathway that affects the development of obesity and metabolic diseases.-Tai, H., Wang, X., Zhou, J., Han, X., Fang, T., Gong, H., Huang, N., Chen, H., Qin, J., Yang, M., Wei, X., Yang, L., Xiao, H. Protein kinase Cβ activates fat mass and obesity-associated protein by influencing its ubiquitin/proteasome degradation.
Collapse
Affiliation(s)
- Haoran Tai
- Laboratory for Aging Research, Center of Gerontology and Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Xiaobo Wang
- Laboratory for Aging Research, Center of Gerontology and Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Jiao Zhou
- Laboratory for Aging Research, Center of Gerontology and Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Xiaojuan Han
- Laboratory for Aging Research, Center of Gerontology and Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Tingting Fang
- Laboratory for Aging Research, Center of Gerontology and Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Hui Gong
- Laboratory for Aging Research, Center of Gerontology and Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Ning Huang
- Laboratory for Aging Research, Center of Gerontology and Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Honghan Chen
- Laboratory for Aging Research, Center of Gerontology and Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Jianqiong Qin
- Laboratory for Aging Research, Center of Gerontology and Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Ming Yang
- Laboratory for Aging Research, Center of Gerontology and Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory for Aging Research, Center of Gerontology and Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Li Yang
- Laboratory for Aging Research, Center of Gerontology and Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- Laboratory for Aging Research, Center of Gerontology and Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Yang Q, Xiao T, Guo J, Su Z. Complex Relationship between Obesity and the Fat Mass and Obesity Locus. Int J Biol Sci 2017; 13:615-629. [PMID: 28539834 PMCID: PMC5441178 DOI: 10.7150/ijbs.17051] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
In the 21st century, obesity has become a serious problem because of increasing obese patients and numerous metabolic complications. The primary reasons for this situation are environmental and genetic factors. In 2007, FTO (fat mass and obesity associated) was the first gene identified through a genome-wide association study (GWAS) associated with obesity in humans. Subsequently, a cluster of single nucleotide polymorphisms (SNPs) in the first intron of the FTO gene was discovered to be associated with BMI and body composition. Various studies have explored the mechanistic basis behind this association. Thus, emerging evidence showed that FTO plays a key role regulating adipose tissue development and functions in body size and composition. Recent prevalent research topic concentrated in the three neighboring genes of FTO: RPGRIP1L, IRX3 and IRX5, as having a functional link between obesity-associated common variants within FTO and the observed human phenotypes. The purpose of this review is to present a comprehensive picture of the impact of FTO on obesity susceptibility and to illuminate these new studies of FTO function in adipose tissue.
Collapse
Affiliation(s)
- Qingyun Yang
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tiancun Xiao
- Inorganic Chemistry Laboratory, Oxford University, South Parks Road, OX1 3QR, United Kingdom.,Guangzhou Boxabio Technology Ltd, Guangzhou Science City, P R China
| | - Jiao Guo
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhengquan Su
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
17
|
Abstract
AbstractBody mass and fat intake are multifactorial traits that have genetic and environmental components. The gene with the greatest effect on body mass is FTO (fat mass and obesity-associated), but several studies have shown that the effect of FTO (and of other genes) on body mass can be modified by the intake of nutrients. The so-called gene–environment interactions may also be important for the effectiveness of weight-loss strategies. Food choices, and thus fat intake, depend to some extent on individual preferences. The most important biological component of food preference is taste, and the role of fat sensitivity in fat intake has recently been pointed out. Relatively few studies have analysed the genetic components of fat intake or fatty acid sensitivity in terms of their relation to obesity. It has been proposed that decreased oral fatty acid sensitivity leads to increased fat intake and thus increased body mass. One of the genes that affect fatty acid sensitivity is CD36 (cluster of differentiation 36). However, little is known so far about the genetic component of fat sensing. We performed a literature review to identify the state of knowledge regarding the genetics of fat intake and its relation to body-mass determination, and to identify the priorities for further investigations.
Collapse
|
18
|
Melnik BC, Schmitz G. Milk's Role as an Epigenetic Regulator in Health and Disease. Diseases 2017; 5:diseases5010012. [PMID: 28933365 PMCID: PMC5456335 DOI: 10.3390/diseases5010012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
It is the intention of this review to characterize milk's role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic "doping system" of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs) that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow's milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow's milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, Faculty of Human Sciences, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|
19
|
Liu C, Yang W, Pei D, Cheng C, Smith C, Landier W, Hageman L, Chen Y, Yang JJ, Crews KR, Kornegay N, Karol SE, Wong FL, Jeha S, Sandlund JT, Ribeiro RC, Rubnitz JE, Metzger ML, Pui CH, Evans WE, Bhatia S, Relling MV. Genomewide Approach Validates Thiopurine Methyltransferase Activity Is a Monogenic Pharmacogenomic Trait. Clin Pharmacol Ther 2016; 101:373-381. [PMID: 27564568 DOI: 10.1002/cpt.463] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/26/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022]
Abstract
We performed a genomewide association study (GWAS) of primary erythrocyte thiopurine S-methyltransferase (TPMT) activity in children with leukemia (n = 1,026). Adjusting for age and ancestry, TPMT was the only gene that reached genomewide significance (top hit rs1142345 or 719A>G; P = 8.6 × 10-61 ). Additional genetic variants (in addition to the three single-nucleotide polymorphisms [SNPs], rs1800462, rs1800460, and rs1142345, defining TPMT clinical genotype) did not significantly improve classification accuracy for TPMT phenotype. Clinical mercaptopurine tolerability in 839 patients was related to TPMT clinical genotype (P = 2.4 × 10-11 ). Using 177 lymphoblastoid cell lines (LCLs), there were 251 SNPs ranked higher than the top TPMT SNP (rs1142345; P = 6.8 × 10-5 ), revealing a limitation of LCLs for pharmacogenomic discovery. In a GWAS, TPMT activity in patients behaves as a monogenic trait, further bolstering the utility of TPMT genetic testing in the clinic.
Collapse
Affiliation(s)
- C Liu
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - W Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - D Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - C Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - C Smith
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - W Landier
- School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - L Hageman
- School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Y Chen
- School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - J J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - K R Crews
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - N Kornegay
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - S E Karol
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - F L Wong
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - S Jeha
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - J T Sandlund
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - R C Ribeiro
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - J E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - M L Metzger
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - C-H Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - W E Evans
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - S Bhatia
- School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - M V Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
20
|
Volta F, Gerdes JM. The role of primary cilia in obesity and diabetes. Ann N Y Acad Sci 2016; 1391:71-84. [DOI: 10.1111/nyas.13216] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/19/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Francesco Volta
- Institute for Diabetes and Regeneration Research; Helmholtz Zentrum München; Garching Germany
| | - Jantje M. Gerdes
- Institute for Diabetes and Regeneration Research; Helmholtz Zentrum München; Garching Germany
- German Center for Diabetes Research; DZD; Munich Germany
| |
Collapse
|
21
|
Mouse Maternal High-Fat Intake Dynamically Programmed mRNA m⁶A Modifications in Adipose and Skeletal Muscle Tissues in Offspring. Int J Mol Sci 2016; 17:ijms17081336. [PMID: 27548155 PMCID: PMC5000733 DOI: 10.3390/ijms17081336] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/06/2016] [Accepted: 08/09/2016] [Indexed: 11/24/2022] Open
Abstract
Epigenetic mechanisms have an important role in the pre- and peri-conceptional programming by maternal nutrition. Yet, whether or not RNA m6A methylation—an old epigenetic marker receiving increased attention recently—is involved remains an unknown question. In this study, mouse high-fat feeding prior to conception was shown to induce overweight and glucose intolerant dams, which then continued to be exposed to a high-fat diet during gestation and lactation. The dams on a standard diet throughout the whole experiment were used as a control. Results showed that maternal high-fat intake impaired postnatal growth in male offspring, indicated by decreased body weight and Lee’s index at 3, 8 and 15 weeks old, but the percentages of visceral fat and tibialis anterior relative to the whole body weights were significantly increased at eight weeks of age. The maternal high-fat exposure significantly increased mRNA N6-methyladenosine (m6A) levels in visceral fat at three weeks old, combined with downregulated Fat mass and obesity-associated gene (FTO) and upregulated Methyltransferase like 3 (METTL3) transcription, and these changes were reversed at eight weeks of age. In the tibialis anterior muscle, the maternal high-fat diet significantly enhanced m6A modifications at three weeks, and lowered m6A levels at 15 weeks of age. Accordingly, FTO transcription was significantly inhibited at three weeks and stimulated at 15 weeks of age, and METTL3 transcripts were significantly improved at three weeks. Interestingly, both FTO and METTL3 transcription was significantly elevated at eight weeks of age, and yet the m6A modifications remained unchanged. Our study showed that maternal high-fat intake could affect mRNA m6A modifications and its related genes in offspring in a tissue-specific and development-dependent way, and provided an interesting indication of the working of the m6A system during the transmission from maternal nutrition to subsequent generations.
Collapse
|
22
|
Zhang M, Zhang Y, Ma J, Guo F, Cao Q, Zhang Y, Zhou B, Chai J, Zhao W, Zhao R. The Demethylase Activity of FTO (Fat Mass and Obesity Associated Protein) Is Required for Preadipocyte Differentiation. PLoS One 2015. [PMID: 26218273 PMCID: PMC4517749 DOI: 10.1371/journal.pone.0133788] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
FTO (fat mass and obesity associated gene) was genetically identified to be associated with body mass index (BMI), presumably through functional regulation of energy homeostasis. However, the cellular and molecular mechanisms by which FTO functions remain largely unknown. Using 3T3-L1 preadipocyte as a model to study the role of FTO in adipogenesis, we demonstrated that FTO is functionally required for 3T3-L1 differentiation. FTO knock-down with siRNA inhibited preadipocyte differentiation, whereas ectopic over-expression of FTO enhanced the process. The demethylase activity of FTO is required for differentiation. Level of N6-methyladenosine (m6A) is decreased in cells over-expressing FTO. In contrast, overexpression of R96Q, a FTO missense mutant lack of demethylase activity, had no effect on cellular m6A level and impeded differentiation. Treatment with Rosiglitazone, a PPARγ agonist, could overcome the differentiation inhibition imposed by R96Q mutant, suggesting the effect of FTO is mediated through PPARγ.
Collapse
Affiliation(s)
- Meizi Zhang
- Space Biology Research and Technology Center, China Academy of Space Technology, Beijing Engineering Research Center of Space Biology, Beijing, 100190, China
| | - Ying Zhang
- Space Biology Research and Technology Center, China Academy of Space Technology, Beijing Engineering Research Center of Space Biology, Beijing, 100190, China
| | - Jun Ma
- Space Biology Research and Technology Center, China Academy of Space Technology, Beijing Engineering Research Center of Space Biology, Beijing, 100190, China
| | - Feima Guo
- Space Biology Research and Technology Center, China Academy of Space Technology, Beijing Engineering Research Center of Space Biology, Beijing, 100190, China
| | - Qian Cao
- Space Biology Research and Technology Center, China Academy of Space Technology, Beijing Engineering Research Center of Space Biology, Beijing, 100190, China
| | - Yu Zhang
- Space Biology Research and Technology Center, China Academy of Space Technology, Beijing Engineering Research Center of Space Biology, Beijing, 100190, China
| | - Bin Zhou
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jijie Chai
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenqing Zhao
- Space Biology Research and Technology Center, China Academy of Space Technology, Beijing Engineering Research Center of Space Biology, Beijing, 100190, China
| | - Renbin Zhao
- Space Biology Research and Technology Center, China Academy of Space Technology, Beijing Engineering Research Center of Space Biology, Beijing, 100190, China
- * E-mail:
| |
Collapse
|
23
|
Fan HQ, He W, Xu KF, Wang ZX, Xu XY, Chen H. FTO Inhibits Insulin Secretion and Promotes NF-κB Activation through Positively Regulating ROS Production in Pancreatic β cells. PLoS One 2015; 10:e0127705. [PMID: 26018652 PMCID: PMC4446323 DOI: 10.1371/journal.pone.0127705] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/17/2015] [Indexed: 11/25/2022] Open
Abstract
FTO (Fat mass and obesity-associated) is associated with increased risk of obesity and type 2 diabetes incurrence. Pancreas islet β cells dysfunction and insulin resistance are major causes of type 2 diabetes. However, whether FTO plays an important functional role in pancreatic β cells as well as the related molecular mechanism is still unclear. In the present study, the tissue expression profile of FTO was firstly determined using quantitative PCR and western blot. FTO is widely expressed in various tissues and presented with relative high expression in pancreas tissue, especially in endocrine pancreas. FTO overexpression in MIN6 cells achieved by lentivirus delivery significantly inhibits insulin secretion in the presence of glucose stimulus as well as KCl. FTO silence has no effect on insulin secretion of MIN6 cells. However, FTO overexpression doesn’t affect the transcription of insulin gene. Furthermore, reactive oxygen species (ROS) production and NF-κB activation are significantly promoted by FTO overexpression. Inhibition of intracellular ROS production by N-acetyl-L-cysteine (NAC) can alleviate NF-κB activation and restore the insulin secretion mediated by FTO overexpression. A whole transcript-microarray is employed to analyze the differential gene expression mediated by FTO overexpression. The genes which are modulated by FTO are involved in many important biological pathways such as G-protein coupled receptor signaling and NF-κB signaling. Therefore, our study indicates that FTO may contribute to pancreas islet β cells dysfunction and the inhibition of FTO activity is a potential target for the treatment of diabetes.
Collapse
Affiliation(s)
- Hong-Qi Fan
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail:
| | - Wei He
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kuan-Feng Xu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhi-Xiao Wang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin-Yu Xu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Heng Chen
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
24
|
McMurray F, Demetriades M, Aik W, Merkestein M, Kramer H, Andrew DS, Scudamore CL, Hough TA, Wells S, Ashcroft FM, McDonough MA, Schofield CJ, Cox RD. Pharmacological inhibition of FTO. PLoS One 2015; 10:e0121829. [PMID: 25830347 PMCID: PMC4382163 DOI: 10.1371/journal.pone.0121829] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/04/2015] [Indexed: 11/24/2022] Open
Abstract
In 2007, a genome wide association study identified a SNP in intron one of the gene encoding human FTO that was associated with increased body mass index. Homozygous risk allele carriers are on average three kg heavier than those homozygous for the protective allele. FTO is a DNA/RNA demethylase, however, how this function affects body weight, if at all, is unknown. Here we aimed to pharmacologically inhibit FTO to examine the effect of its demethylase function in vitro and in vivo as a first step in evaluating the therapeutic potential of FTO. We showed that IOX3, a known inhibitor of the HIF prolyl hydroxylases, decreased protein expression of FTO (in C2C12 cells) and reduced maximal respiration rate in vitro. However, FTO protein levels were not significantly altered by treatment of mice with IOX3 at 60 mg/kg every two days. This treatment did not affect body weight, or RER, but did significantly reduce bone mineral density and content and alter adipose tissue distribution. Future compounds designed to selectively inhibit FTO’s demethylase activity could be therapeutically useful for the treatment of obesity.
Collapse
Affiliation(s)
- Fiona McMurray
- MRC Harwell, Harwell Oxford Campus, Oxfordshire, Oxford, OX11 0RD, United Kingdom
- * E-mail:
| | - Marina Demetriades
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - WeiShen Aik
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Myrte Merkestein
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Holger Kramer
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Daniel S. Andrew
- MRC Harwell, Harwell Oxford Campus, Oxfordshire, Oxford, OX11 0RD, United Kingdom
| | - Cheryl L. Scudamore
- MRC Harwell, Harwell Oxford Campus, Oxfordshire, Oxford, OX11 0RD, United Kingdom
| | - Tertius A. Hough
- MRC Harwell, Harwell Oxford Campus, Oxfordshire, Oxford, OX11 0RD, United Kingdom
| | - Sara Wells
- MRC Harwell, Harwell Oxford Campus, Oxfordshire, Oxford, OX11 0RD, United Kingdom
| | - Frances M. Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Michael A. McDonough
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Christopher J. Schofield
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Roger D. Cox
- MRC Harwell, Harwell Oxford Campus, Oxfordshire, Oxford, OX11 0RD, United Kingdom
| |
Collapse
|
25
|
Abstract
A cluster of single nucleotide polymorphisms (SNPs) in the first intron of the fat mass and obesity related (FTO) gene were the first common variants discovered to be associated with body mass index and body fatness. This review summarises what has been later discovered about the biology of FTO drawing together information from both human and animal studies. Subsequent work showed that the 'at risk' alleles of these SNPs are associated with greater food intake and increased hunger/lowered satiety, but are not associated with altered resting energy expenditure or low physical activity in humans. FTO is an FE (II) and 2-oxoglutarate dependent DNA/RNA methylase. Contrasting the impact of the SNPs on energy balance in humans, knocking out or reducing activity of the Fto gene in the mouse resulted in lowered adiposity, elevated energy expenditure with no impact on food intake (but the impact on expenditure is disputed). In contrast, overexpression of the gene in mice led to elevated food intake and adiposity, with no impact on expenditure. In rodents, the Fto gene is widely expressed in the brain including hypothalamic nuclei linked to food intake regulation. Since its activity is 2-oxoglutarate dependent it could potentially act as a sensor of citrate acid cycle flux, but this function has been dismissed, and instead it has been suggested to be much more likely to act as an amino acid sensor, linking circulating AAs to the mammalian target of rapamycin complex 1. This may be fundamental to its role in development but the link to obesity is less clear. It has been recently suggested that although the obesity related SNPs reside in the first intron of FTO, they may not only impact FTO but mediate their obesity effects via nearby genes (notably RPGRIP1L and IRX3).
Collapse
Affiliation(s)
- John R Speakman
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 Beichen xilu, Chaoyang, Beijing, China.
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Ave, Aberdeen, Scotland, AB24 2TZ, UK.
| |
Collapse
|