1
|
Lecoultre M, Walker PR, El Helali A. Oncolytic virus and tumor-associated macrophage interactions in cancer immunotherapy. Clin Exp Med 2024; 24:202. [PMID: 39196415 PMCID: PMC11358230 DOI: 10.1007/s10238-024-01443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Oncolytic viruses (OV) are a promising strategy in cancer immunotherapy. Their capacity to promote anti-tumoral immunity locally raises hope that cancers unresponsive to current immunotherapy approaches could be tackled more efficiently. In this context, tumor-associated macrophages (TAM) must be considered because of their pivotal role in cancer immunity. Even though TAM tend to inhibit anti-tumoral responses, their ability to secrete pro-inflammatory cytokines and phagocytose cancer cells can be harnessed to promote therapeutic cancer immunity. OVs have the potential to promote TAM pro-inflammatory functions that favor anti-tumoral immunity. But in parallel, TAM pro-inflammatory functions induce OV clearance in the tumor, thereby limiting OV efficacy and highlighting that the interaction between OV and TAM is a double edge sword. Moreover, engineered OVs were recently developed to modulate specific TAM functions such as phagocytic activity. The potential of circulating monocytes to deliver OV into the tumor after intravenous administration is also emerging. In this review, we will present the interaction between OV and TAM, the potential of engineered OV to modulate specific TAM functions, and the promising role of circulating monocytes in OV delivery to the tumor.
Collapse
Affiliation(s)
- Marc Lecoultre
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, China
- Division of General Internal Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Paul R Walker
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Immunobiology of Brain Tumours Laboratory, Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland
| | - Aya El Helali
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, China.
| |
Collapse
|
2
|
Chattopadhyay S, Hazra R, Mallick A, Gayen S, Roy S. A review exploring the fusion of oncolytic viruses and cancer immunotherapy: An innovative strategy in the realm of cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189110. [PMID: 38754793 DOI: 10.1016/j.bbcan.2024.189110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Oncolytic viruses (OVs) are increasingly recognized as potent tools in cancer therapy, effectively targeting and eradicating oncogenic conditions while sparing healthy cells. They enhance antitumor immunity by triggering various immune responses throughout the cancer cycle. Genetically engineered OVs swiftly destroy cancerous tissues and activate the immune system by releasing soluble antigens like danger signals and interferons. Their ability to stimulate both innate and adaptive immunity makes them particularly attractive in cancer immunotherapy. Recent advancements involve combining OVs with other immune therapies, yielding promising results. Transgenic OVs, designed to enhance immunostimulation and specifically target cancer cells, further improve immune responses. This review highlights the intrinsic mechanisms of OVs and underscores their synergistic potential with other immunotherapies. It also proposes strategies for optimizing armed OVs to bolster immunity against tumors.
Collapse
Affiliation(s)
- Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Rudradeep Hazra
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India.
| |
Collapse
|
3
|
Zhang L, Pakmehr SA, Shahhosseini R, Hariri M, Fakhrioliaei A, Karkon Shayan F, Xiang W, Karkon Shayan S. Oncolytic viruses improve cancer immunotherapy by reprogramming solid tumor microenvironment. Med Oncol 2023; 41:8. [PMID: 38062315 DOI: 10.1007/s12032-023-02233-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/21/2023] [Indexed: 12/18/2023]
Abstract
Immunotherapies using immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T-cell therapy have achieved successful results against several types of human tumors, particularly hematological malignancies. However, their clinical results for the treatment of solid tumors remain poor and unsatisfactory. The immunosuppressive tumor microenvironment (TME) plays an important role by interfering with intratumoral T-cell infiltration, promoting effector T-cell exhaustion, upregulating inhibitory molecules, inducing hypoxia, and so on. Oncolytic viruses are an encouraging biocarrier that could be used in both natural and genetically engineered platforms to induce oncolysis in a targeted manner. Oncolytic virotherapy (OV) contributes to the reprogramming of the TME, thus synergizing the functional effects of current ICIs and CAR T-cell therapy to overcome resistant barriers in solid tumors. Here, we summarize the TME-related inhibitory factors affecting the therapeutic outcomes of ICIs and CAR T cells and discuss the potential of OV-based approaches to alleviate these barriers and improve future therapies for advanced solid tumors.
Collapse
Affiliation(s)
- Ling Zhang
- The Second People's Hospital of Lianyungang, Jiangsu, 222000, China
| | | | | | - Maryam Hariri
- Department of Pathobiology, Auburn University, Auburn, AL, 36832, USA
| | | | - Farid Karkon Shayan
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Wenxue Xiang
- The Second People's Hospital of Lianyungang, Jiangsu, 222000, China.
| | - Sepideh Karkon Shayan
- Student Research Committee, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
- Clinical Research Development Unit, Bohlool Hospital, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
4
|
Nassiri F, Patil V, Yefet LS, Singh O, Liu J, Dang RMA, Yamaguchi TN, Daras M, Cloughesy TF, Colman H, Kumthekar PU, Chen CC, Aiken R, Groves MD, Ong SS, Ramakrishna R, Vogelbaum MA, Khagi S, Kaley T, Melear JM, Peereboom DM, Rodriguez A, Yankelevich M, Nair SG, Puduvalli VK, Aldape K, Gao A, López-Janeiro Á, de Andrea CE, Alonso MM, Boutros P, Robbins J, Mason WP, Sonabend AM, Stupp R, Fueyo J, Gomez-Manzano C, Lang FF, Zadeh G. Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: a phase 1/2 trial. Nat Med 2023; 29:1370-1378. [PMID: 37188783 PMCID: PMC10287560 DOI: 10.1038/s41591-023-02347-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
Immune-mediated anti-tumoral responses, elicited by oncolytic viruses and augmented with checkpoint inhibition, may be an effective treatment approach for glioblastoma. Here in this multicenter phase 1/2 study we evaluated the combination of intratumoral delivery of oncolytic virus DNX-2401 followed by intravenous anti-PD-1 antibody pembrolizumab in recurrent glioblastoma, first in a dose-escalation and then in a dose-expansion phase, in 49 patients. The primary endpoints were overall safety and objective response rate. The primary safety endpoint was met, whereas the primary efficacy endpoint was not met. There were no dose-limiting toxicities, and full dose combined treatment was well tolerated. The objective response rate was 10.4% (90% confidence interval (CI) 4.2-20.7%), which was not statistically greater than the prespecified control rate of 5%. The secondary endpoint of overall survival at 12 months was 52.7% (95% CI 40.1-69.2%), which was statistically greater than the prespecified control rate of 20%. Median overall survival was 12.5 months (10.7-13.5 months). Objective responses led to longer survival (hazard ratio 0.20, 95% CI 0.05-0.87). A total of 56.2% (95% CI 41.1-70.5%) of patients had a clinical benefit defined as stable disease or better. Three patients completed treatment with durable responses and remain alive at 45, 48 and 60 months. Exploratory mutational, gene-expression and immunophenotypic analyses revealed that the balance between immune cell infiltration and expression of checkpoint inhibitors may potentially inform on response to treatment and mechanisms of resistance. Overall, the combination of intratumoral DNX-2401 followed by pembrolizumab was safe with notable survival benefit in select patients (ClinicalTrials.gov registration: NCT02798406).
Collapse
Affiliation(s)
- Farshad Nassiri
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Vikas Patil
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Leeor S Yefet
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Olivia Singh
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Jeff Liu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Rachel M A Dang
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Mariza Daras
- Division of Neuro-oncology, University of California San Francisco, San Francisco, CA, USA
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Howard Colman
- Huntsman Cancer Institute and Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Priya U Kumthekar
- Department of Neurology, Division of Neuro-Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MI, USA
| | - Robert Aiken
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | | | - Shirley S Ong
- Division of Neuro-Oncology, Department of Neurology, the Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Rohan Ramakrishna
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA
| | - Michael A Vogelbaum
- Department of Neuro-Oncology, Neuro-Oncology Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Simon Khagi
- Division of Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Kaley
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason M Melear
- Department of Internal Medicine, Baylor University Medical Center, Dallas, TX, USA
| | - David M Peereboom
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AK, USA
| | - Maxim Yankelevich
- Department of Pediatrics, University of Michigan, Ann Arbor Beaumont Children's Hospital, Royal Oak, MI, USA
| | - Suresh G Nair
- Lehigh Valley Topper Cancer Institute, Allentown, PA, USA
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Andrew Gao
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada
| | - Álvaro López-Janeiro
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), Pamplona, Spain
| | - Carlos E de Andrea
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), Pamplona, Spain
| | - Marta M Alonso
- Navarra Institute for Health Research (IdISNA), Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Program of Solid Tumors, Center for the Applied Medical Research (CIMA), Pamplona, Spain
| | - Paul Boutros
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Warren P Mason
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Roger Stupp
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gelareh Zadeh
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Huang Z, Guo H, Lin L, Li S, Yang Y, Han Y, Huang W, Yang J. Application of oncolytic virus in tumor therapy. J Med Virol 2023; 95:e28729. [PMID: 37185868 DOI: 10.1002/jmv.28729] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023]
Abstract
Oncolytic viruses (OVs) can selectively kill tumor cells without affecting normal cells, as well as activate the innate and adaptive immune systems in patients. Thus, they have been considered as a promising measure for safe and effective cancer treatment. Recently, a few genetically engineered OVs have been developed to further improve the effect of tumor elimination by expressing specific immune regulatory factors and thus enhance the body's antitumor immunity. In addition, the combined therapies of OVs and other immunotherapies have been applied in clinical. Although there are many studies on this hot topic, a comprehensive review is missing on illustrating the mechanisms of tumor clearance by OVs and how to modify engineered OVs to further enhance their antitumor effects. In this study, we provided a review on the mechanisms of immune regulatory factors in OVs. In addition, we reviewed the combined therapies of OVs with other therapies including radiotherapy and CAR-T or TCR-T cell therapy. The review is useful in further generalize the usage of OV in cancer treatment.
Collapse
Affiliation(s)
- Zhijian Huang
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Hongen Guo
- Department of Dermatology, Dermatology Hospital of Fuzhou, Fujian, Fuzhou, China
| | - Lin Lin
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Shixiong Li
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yong Yang
- Department of Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Weiwei Huang
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jialiang Yang
- Geneis Beijing Co., Ltd, Beijing, China
- Academician Workstation, Changsha Medical University, Changsha, China
| |
Collapse
|
6
|
Sperring CP, Argenziano MG, Savage WM, Teasley DE, Upadhyayula PS, Winans NJ, Canoll P, Bruce JN. Convection-enhanced delivery of immunomodulatory therapy for high-grade glioma. Neurooncol Adv 2023; 5:vdad044. [PMID: 37215957 PMCID: PMC10195574 DOI: 10.1093/noajnl/vdad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The prognosis for glioblastoma has remained poor despite multimodal standard of care treatment, including temozolomide, radiation, and surgical resection. Further, the addition of immunotherapies, while promising in a number of other solid tumors, has overwhelmingly failed in the treatment of gliomas, in part due to the immunosuppressive microenvironment and poor drug penetrance to the brain. Local delivery of immunomodulatory therapies circumvents some of these challenges and has led to long-term remission in select patients. Many of these approaches utilize convection-enhanced delivery (CED) for immunological drug delivery, allowing high doses to be delivered directly to the brain parenchyma, avoiding systemic toxicity. Here, we review the literature encompassing immunotherapies delivered via CED-from preclinical model systems to clinical trials-and explore how their unique combination elicits an antitumor response by the immune system, decreases toxicity, and improves survival among select high-grade glioma patients.
Collapse
Affiliation(s)
- Colin P Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - William M Savage
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Damian E Teasley
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Nathan J Winans
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
7
|
Transarterial viroembolization improves the therapeutic efficacy of immune-excluded liver cancer: Three birds with one stone. Pharmacol Res 2023; 187:106581. [PMID: 36436709 DOI: 10.1016/j.phrs.2022.106581] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the mechanism and efficacy of transarterial viroembolization (TAVE) with an oncolytic virus (OH2) for the treatment of liver cancer in rabbit VX2 tumor models. MATERIALS AND METHODS Subcutaneous tumor and liver cancer models were established to determine the optimal viral titer and administration modality of OH2. Different liver cancer models were established to evaluate the locoregional tumor response, synergistic and standby effects, survival benefit, and specific antitumor immune memory after TAVE treatment. The immune cell densities in tumor tissues were measured. RESULTS The optimal viral titer of OH2 was 1 × 107 CCID50. TAVE was the most effective modality with greater homogeneous OH2 distribution and therapeutic efficacy compared to other administration routes of transarterial virus infusion (TAVI), commonly adopted intratumor injection (TI), and intravenous injection (IV). Additionally, TAVE treatment significantly improved the locoregional tumor response, standby effect, and survival benefit compared to the TAVI, transarterial embolization (TAE), and control groups. TAVE modified the immune cell densities for immune-excluded liver cancer, partially destroyed vessel metastases, and established antitumor immune memory. The synergistic treatment efficacy of TAVE was superior to the simple addition of two independent monotherapies. CONCLUSION TAVE was the optimal and a safe modality for treating immune-excluded liver cancer, and its synergistic effect achieved a remarkable tumor response, standby effect, survival benefit, and antitumor immune memory, which providing an innovative therapeutic modality for clinical practice. DATA AVAILABILITY Data is available from the corresponding author upon requirement.
Collapse
|
8
|
Omole RK, Oluwatola O, Akere MT, Eniafe J, Agboluaje EO, Daramola OB, Ayantunji YJ, Omotade TI, Torimiro N, Ayilara MS, Adeyemi OI, Salinsile OS. Comprehensive assessment on the applications of oncolytic viruses for cancer immunotherapy. Front Pharmacol 2022; 13:1082797. [PMID: 36569326 PMCID: PMC9772532 DOI: 10.3389/fphar.2022.1082797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
The worldwide burden of cancers is increasing at a very high rate, including the aggressive and resistant forms of cancers. Certain levels of breakthrough have been achieved with the conventional treatment methods being used to treat different forms of cancers, but with some limitations. These limitations include hazardous side effects, destruction of non-tumor healthy cells that are rapidly dividing and developing, tumor resistance to anti-cancer drugs, damage to tissues and organs, and so on. However, oncolytic viruses have emerged as a worthwhile immunotherapeutic option for the treatment of different types of cancers. In this treatment approach, oncolytic viruses are being modeled to target cancer cells with optimum cytotoxicity and spare normal cells with optimal safety, without the oncolytic viruses themselves being killed by the host immune defense system. Oncolytic viral infection of the cancer cells are also being genetically manipulated (either by removal or addition of certain genes into the oncolytic virus genome) to make the tumor more visible and available for attack by the host immune cells. Hence, different variants of these viruses are being developed to optimize their antitumor effects. In this review, we examined how grave the burden of cancer is on a global level, particularly in sub-Saharan Africa, major conventional therapeutic approaches to the treatment of cancer and their individual drawbacks. We discussed the mechanisms of action employed by these oncolytic viruses and different viruses that have found their relevance in the fight against various forms of cancers. Some pre-clinical and clinical trials that involve oncolytic viruses in cancer management were reported. This review also examined the toxicity and safety concerns surrounding the adoption of oncolytic viro-immunotherapy for the treatment of cancers and the likely future directions for researchers and general audience who wants updated information.
Collapse
Affiliation(s)
- Richard Kolade Omole
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria,Microbiology Unit, Department of Applied Sciences, Osun State College of Technology, Esa-Oke, Nigeria,*Correspondence: Richard Kolade Omole,
| | - Oluwaseyi Oluwatola
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States,Department of Immunology, Moffit Cancer Center, Tampa, FL, United States
| | - Millicent Tambari Akere
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH, United States
| | - Joseph Eniafe
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | | | | | - Yemisi Juliet Ayantunji
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria,Advanced Space Technology Applications Laboratory, Cooperative Information Network, National Space Research and Development Agency, Ile-Ife, Nigeria
| | | | - Nkem Torimiro
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Oluwole Isaac Adeyemi
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | |
Collapse
|
9
|
Jafari M, Kadkhodazadeh M, Shapourabadi MB, Goradel NH, Shokrgozar MA, Arashkia A, Abdoli S, Sharifzadeh Z. Immunovirotherapy: The role of antibody based therapeutics combination with oncolytic viruses. Front Immunol 2022; 13:1012806. [PMID: 36311790 PMCID: PMC9608759 DOI: 10.3389/fimmu.2022.1012806] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the fact that the new drugs and targeted therapies have been approved for cancer therapy during the past 30 years, the majority of cancer types are still remain challenging to be treated. Due to the tumor heterogeneity, immune system evasion and the complex interaction between the tumor microenvironment and immune cells, the great majority of malignancies need multimodal therapy. Unfortunately, tumors frequently develop treatment resistance, so it is important to have a variety of therapeutic choices available for the treatment of neoplastic diseases. Immunotherapy has lately shown clinical responses in malignancies with unfavorable outcomes. Oncolytic virus (OV) immunotherapy is a cancer treatment strategy that employs naturally occurring or genetically-modified viruses that multiply preferentially within cancer cells. OVs have the ability to not only induce oncolysis but also activate cells of the immune system, which in turn activates innate and adaptive anticancer responses. Despite the fact that OVs were translated into clinical trials, with T-VECs receiving FDA approval for melanoma, their use in fighting cancer faced some challenges, including off-target side effects, immune system clearance, non-specific uptake, and intratumoral spread of OVs in solid tumors. Although various strategies have been used to overcome the challenges, these strategies have not provided promising outcomes in monotherapy with OVs. In this situation, it is increasingly common to use rational combinations of immunotherapies to improve patient benefit. With the development of other aspects of cancer immunotherapy strategies, combinational therapy has been proposed to improve the anti-tumor activities of OVs. In this regard, OVs were combined with other biotherapeutic platforms, including various forms of antibodies, nanobodies, chimeric antigen receptor (CAR) T cells, and dendritic cells, to reduce the side effects of OVs and enhance their efficacy. This article reviews the promising outcomes of OVs in cancer therapy, the challenges OVs face and solutions, and their combination with other biotherapeutic agents.
Collapse
Affiliation(s)
- Mahdie Jafari
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Arash Arashkia
- Department of Molecular Virology, Pasture Institute of Iran, Tehran, Iran
| | - Shahriyar Abdoli
- School of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
- *Correspondence: Zahra Sharifzadeh, ; Shahriyar Abdoli,
| | - Zahra Sharifzadeh
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
- *Correspondence: Zahra Sharifzadeh, ; Shahriyar Abdoli,
| |
Collapse
|
10
|
Swildens KX, Sillevis Smitt PAE, van den Bent MJ, French PJ, Geurts M. The Effect of Dexamethasone on the Microenvironment and Efficacy of Checkpoint Inhibitors in Glioblastoma: A Systematic Review. Neurooncol Adv 2022; 4:vdac087. [PMID: 35990704 PMCID: PMC9389427 DOI: 10.1093/noajnl/vdac087] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Checkpoint inhibitor immunotherapy has not proven clinically effective in glioblastoma. This lack of effectiveness may be partially attributable to the frequent administration of dexamethasone in glioblastoma patients. In this systematic review, we assess whether dexamethasone (1) affects the glioblastoma microenvironment and (2) interferes with checkpoint inhibitor immunotherapy efficacy in the treatment of glioblastoma. Methods PubMed and Embase were systematically searched for eligible articles published up to September 15, 2021. Both in vitro and in vivo preclinical studies, as well as clinical studies were selected. The following information was extracted from each study: tumor model, corticosteroid treatment, and effects on individual immune components or checkpoint inhibitor immunotherapy. Results Twenty-one preclinical studies in cellular glioma models (n = 10), animal glioma models (n = 6), and glioblastoma patient samples (n = 7), and 3 clinical studies were included. Preclinical studies show that dexamethasone decreases the presence of microglia and other macrophages as well as the number of T lymphocytes in both tumor tissue and periphery. Dexamethasone abrogates the antitumor effects of checkpoint inhibitors on T lymphocytes in preclinical studies. Although randomized studies directly addressing our research question are lacking, clinical studies suggest a negative association between corticosteroids and survival outcomes in glioblastoma patients receiving checkpoint inhibitors after adjustment for relevant prognostic factors. Conclusions Preclinical research shows that dexamethasone inhibits the antitumor immune response in glioma, thereby promoting a protumorigenic microenvironment. The efficacy of checkpoint inhibitor immunotherapy in glioblastoma patients may therefore be negatively affected by the use of dexamethasone. Future research could investigate the potential of edema-reducing alternatives to dexamethasone.
Collapse
Affiliation(s)
- Kyra X Swildens
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute , Rotterdam, The Netherlands
| | - Peter A E Sillevis Smitt
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute , Rotterdam, The Netherlands
| | - Martin J van den Bent
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute , Rotterdam, The Netherlands
| | - Pim J French
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute , Rotterdam, The Netherlands
| | - Marjolein Geurts
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute , Rotterdam, The Netherlands
| |
Collapse
|
11
|
Mealiea D, McCart JA. Cutting both ways: the innate immune response to oncolytic virotherapy. Cancer Gene Ther 2022; 29:629-646. [PMID: 34453122 DOI: 10.1038/s41417-021-00351-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/09/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses (OVs), above and beyond infecting and lysing malignant cells, interact with the immune system in complex ways that have important therapeutic significance. While investigation into these interactions is still in its early stages, important insights have been made over the past two decades that will help improve the clinical efficacy of OV-based management strategies in cancer care moving forward. The inherent immunosuppression that defines the tumor microenvironment can be modified by OV infection, and the subsequent recruitment and activation of innate immune cells, in particular, is central to this. Indeed, neutrophils, macrophages, natural killer cells, and dendritic cells, as well as other populations such as myeloid-derived suppressor cells, are key to the immune escape that allows tumors to survive, but their natural response to infection can be exploited by virotherapy. While stimulation of innate immune cells by OVs can initiate antitumor responses, related antiviral activity can limit virus spread and direct cytopathogenic effects. In this review, we highlight how each innate immune cell population influences this balance of antitumor and antiviral forces during virotherapy, some of the important molecular pathways that have been identified, and specific therapeutic targets that have emerged through this work. We discuss the importance of OV-based combination therapies in optimizing antiviral and antitumor innate immune responses stimulated by virotherapy toward tumor eradication, and how these processes vary depending on the tumor and OV in question. Rather than concentrating on a particular OV species in the review, we present the range of effects that have been documented across OV types to emphasize the context-specific nature of these interactions and how this is important in the design of future OV-based treatment approaches.
Collapse
Affiliation(s)
- David Mealiea
- Department of Surgery, University of Toronto, Toronto, ON, Canada. .,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| | - J Andrea McCart
- Department of Surgery, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
12
|
van Putten EH, Kleijn A, van Beusechem VW, Noske D, Lamers CH, de Goede AL, Idema S, Hoefnagel D, Kloezeman JJ, Fueyo J, Lang FF, Teunissen CE, Vernhout RM, Bakker C, Gerritsen W, Curiel DT, Vulto A, Lamfers ML, Dirven CM. Convection Enhanced Delivery of the Oncolytic Adenovirus Delta24-RGD in Patients with Recurrent GBM: A Phase I Clinical Trial Including Correlative Studies. Clin Cancer Res 2022; 28:1572-1585. [PMID: 35176144 PMCID: PMC9365362 DOI: 10.1158/1078-0432.ccr-21-3324] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/04/2021] [Accepted: 02/10/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Testing safety of Delta24-RGD (DNX-2401), an oncolytic adenovirus, locally delivered by convection enhanced delivery (CED) in tumor and surrounding brain of patients with recurrent glioblastoma. PATIENTS AND METHODS Dose-escalation phase I study with 3+3 cohorts, dosing 107 to 1 × 1011 viral particles (vp) in 20 patients. Besides clinical parameters, adverse events, and radiologic findings, blood, cerebrospinal fluid (CSF), brain interstitial fluid, and excreta were sampled over time and analyzed for presence of immune response, viral replication, distribution, and shedding. RESULTS Of 20 enrolled patients, 19 received the oncolytic adenovirus Delta24-RGD, which was found to be safe and feasible. Four patients demonstrated tumor response on MRI, one with complete regression and still alive after 8 years. Most serious adverse events were attributed to increased intracranial pressure caused by either an inflammatory reaction responding to steroid treatment or viral meningitis being transient and self-limiting. Often viral DNA concentrations in CSF increased over time, peaking after 2 to 4 weeks and remaining up to 3 months. Concomitantly Th1- and Th2-associated cytokine levels and numbers of CD3+ T and natural killer cells increased. Posttreatment tumor specimens revealed increased numbers of macrophages and CD4+ and CD8+ T cells. No evidence of viral shedding in excreta was observed. CONCLUSIONS CED of Delta24-RGD not only in the tumor but also in surrounding brain is safe, induces a local inflammatory reaction, and shows promising clinical responses.
Collapse
Affiliation(s)
- Erik H.P. van Putten
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands.,Corresponding Author: Erik H.P. van Putten, Neurosurgery, Erasmus MC, Rotterdam, 3000 CA, the Netherlands
| | - Anne Kleijn
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Victor W. van Beusechem
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - David Noske
- Department of Neurosurgery, Brain Tumor Center/Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Cor H.J. Lamers
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC-Cancer Institute, Rotterdam, the Netherlands
| | - Anna L. de Goede
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sander Idema
- Department of Neurosurgery, Brain Tumor Center/Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Daphna Hoefnagel
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jenneke J. Kloezeman
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frederick F. Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Vrije Universiteit Amsterdam, the Netherlands
| | - René M. Vernhout
- Clinical Trial Center, Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Cathy Bakker
- Team Biosafety, Division of Safety & Environment, Support Service, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Winald Gerritsen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David T. Curiel
- Division of Cancer Biology and Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Arnold Vulto
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martine L.M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Clemens M.F. Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
13
|
Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther 2022; 7:117. [PMID: 35387984 PMCID: PMC8987060 DOI: 10.1038/s41392-022-00951-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses (OVs) are emerging as potentially useful platforms in treatment methods for patients with tumors. They preferentially target and kill tumor cells, leaving healthy cells unharmed. In addition to direct oncolysis, the essential and attractive aspect of oncolytic virotherapy is based on the intrinsic induction of both innate and adaptive immune responses. To further augment this efficacious response, OVs have been genetically engineered to express immune regulators that enhance or restore antitumor immunity. Recently, combinations of OVs with other immunotherapies, such as immune checkpoint inhibitors (ICIs), chimeric antigen receptors (CARs), antigen-specific T-cell receptors (TCRs) and autologous tumor-infiltrating lymphocytes (TILs), have led to promising progress in cancer treatment. This review summarizes the intrinsic mechanisms of OVs, describes the optimization strategies for using armed OVs to enhance the effects of antitumor immunity and highlights rational combinations of OVs with other immunotherapies in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Yaomei Tian
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China.,College of Bioengineering, Sichuan University of Science & Engineering, No. 519, Huixing Road, 643000, Zigong, Sichuan, People's Republic of China
| | - Daoyuan Xie
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
14
|
Blitz SE, Kappel AD, Gessler FA, Klinger NV, Arnaout O, Lu Y, Peruzzi PP, Smith TR, Chiocca EA, Friedman GK, Bernstock JD. Tumor-Associated Macrophages/Microglia in Glioblastoma Oncolytic Virotherapy: A Double-Edged Sword. Int J Mol Sci 2022; 23:1808. [PMID: 35163730 PMCID: PMC8836356 DOI: 10.3390/ijms23031808] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy is a rapidly progressing field that uses oncolytic viruses (OVs) to selectively infect malignant cells and cause an antitumor response through direct oncolysis and stimulation of the immune system. Despite demonstrated pre-clinical efficacy of OVs in many cancer types and some favorable clinical results in glioblastoma (GBM) trials, durable increases in overall survival have remained elusive. Recent evidence has emerged that tumor-associated macrophage/microglia (TAM) involvement is likely an important factor contributing to OV treatment failure. It is prudent to note that the relationship between TAMs and OV therapy failures is complex. Canonically activated TAMs (i.e., M1) drive an antitumor response while also inhibiting OV replication and spread. Meanwhile, M2 activated TAMs facilitate an immunosuppressive microenvironment thereby indirectly promoting tumor growth. In this focused review, we discuss the complicated interplay between TAMs and OV therapies in GBM. We review past studies that aimed to maximize effectiveness through immune system modulation-both immunostimulatory and immunosuppressant-and suggest future directions to maximize OV efficacy.
Collapse
Affiliation(s)
- Sarah E. Blitz
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
| | - Ari D. Kappel
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Florian A. Gessler
- Department of Neurosurgery, University Medicine Rostock, 18057 Rostock, Germany;
| | - Neil V. Klinger
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Omar Arnaout
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yi Lu
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Pier Paolo Peruzzi
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Timothy R. Smith
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ennio A. Chiocca
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gregory K. Friedman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Joshua D. Bernstock
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
15
|
Koch MS, Zdioruk M, Nowicki MO, Griffith AM, Aguilar E, Aguilar LK, Guzik BW, Barone F, Tak PP, Tabatabai G, Lederer JA, Chiocca EA, Lawler S. Systemic high-dose dexamethasone treatment may modulate the efficacy of intratumoral viral oncolytic immunotherapy in glioblastoma models. J Immunother Cancer 2022; 10:jitc-2021-003368. [PMID: 35017150 PMCID: PMC8753448 DOI: 10.1136/jitc-2021-003368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 11/21/2022] Open
Abstract
Background Intratumoral viral oncolytic immunotherapy is a promising new approach for the treatment of a variety of solid cancers. CAN-2409 is a replication-deficient adenovirus that delivers herpes simplex virus thymidine kinase to cancer cells, resulting in local conversion of ganciclovir or valacyclovir into a toxic metabolite. This leads to highly immunogenic cell death, followed by a local immune response against a variety of cancer neoantigens and, next, a systemic immune response against the injected tumor and uninjected distant metastases. CAN-2409 treatment has shown promising results in clinical studies in glioblastoma (GBM). Patients with GBM are usually given the corticosteroid dexamethasone to manage edema. Previous work has suggested that concurrent dexamethasone therapy may have a negative effect in patients treated with immune checkpoint inhibitors in patients with GBM. However, the effects of dexamethasone on the efficacy of CAN-2409 treatment have not been explored. Methods In vitro experiments included cell viability and neurosphere T-cell killing assays. Effects of dexamethasone on CAN-2409 in vivo were examined using a syngeneic murine GBM model; survival was assessed according to Kaplan-Meier; analyses of tumor-infiltrating lymphocytes were performed with mass cytometry (CyTOF - cytometry by time-of-flight). Data were analyzed using a general linear model, with one-way analysis of variance followed by Dunnett’s multiple comparison test, Kruskal-Wallis test, Dunn’s multiple comparison test or statistical significance analysis of microarrays. Results In a mouse model of GBM, we found that high doses of dexamethasone combined with CAN-2409 led to significantly reduced median survival (29.0 days) compared with CAN-2409 treatment alone (39.5 days). CyTOF analyses of tumor-infiltrating immune cells demonstrated potent immune stimulation induced by CAN-2409 treatment. These effects were diminished when high-dose dexamethasone was used. Functional immune cell characterization suggested increased immune cell exhaustion and tumor promoting profiles after dexamethasone treatment. Conclusion Our data suggest that concurrent high-dose dexamethasone treatment may impair the efficacy of oncolytic viral immunotherapy of GBM, supporting the notion that dexamethasone use should be balanced between symptom control and impact on the therapeutic outcome.
Collapse
Affiliation(s)
- Marilin S Koch
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Mykola Zdioruk
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Michal O Nowicki
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Alec M Griffith
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | - Paul P Tak
- Candel Therapeutics, Needham, Massachusetts, USA
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - James A Lederer
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Sean Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA .,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Di Somma S, Napolitano F, Portella G, Malfitano AM. Cross Talk of Macrophages with Tumor Microenvironment Cells and Modulation of Macrophages in Cancer by Virotherapy. Biomedicines 2021; 9:biomedicines9101309. [PMID: 34680425 PMCID: PMC8533595 DOI: 10.3390/biomedicines9101309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular compartments constituting the tumor microenvironment including immune cells, fibroblasts, endothelial cells, and mesenchymal stromal/stem cells communicate with malignant cells to orchestrate a series of signals that contribute to the evolution of the tumor microenvironment. In this study, we will focus on the interplay in tumor microenvironment between macrophages and mesenchymal stem cells and macrophages and fibroblasts. In particular, cell–cell interaction and mediators secreted by these cells will be examined to explain pro/anti-tumor phenotypes induced in macrophages. Nonetheless, in the context of virotherapy, the response of macrophages as a consequence of treatment with oncolytic viruses will be analyzed regarding their polarization status and their pro/anti-tumor response.
Collapse
|
17
|
Hofman L, Lawler SE, Lamfers MLM. The Multifaceted Role of Macrophages in Oncolytic Virotherapy. Viruses 2021; 13:v13081570. [PMID: 34452439 PMCID: PMC8402704 DOI: 10.3390/v13081570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
One of the cancer hallmarks is immune evasion mediated by the tumour microenvironment (TME). Oncolytic virotherapy is a form of immunotherapy based on the application of oncolytic viruses (OVs) that selectively replicate in and induce the death of tumour cells. Virotherapy confers reciprocal interaction with the host’s immune system. The aim of this review is to explore the role of macrophage-mediated responses in oncolytic virotherapy efficacy. The approach was to study current scientific literature in this field in order to give a comprehensive overview of the interactions of OVs and macrophages and their effects on the TME. The innate immune system has a central influence on the TME; tumour-associated macrophages (TAMs) generally have immunosuppressive, tumour-supportive properties. In the context of oncolytic virotherapy, macrophages were initially thought to predominantly contribute to anti-viral responses, impeding viral spread. However, macrophages have now also been found to mediate transport of OV particles and, after TME infiltration, to be subjected to a phenotypic shift that renders them pro-inflammatory and tumour-suppressive. These TAMs can present tumour antigens leading to a systemic, durable, adaptive anti-tumour immune response. After phagocytosis, they can recirculate carrying tissue-derived proteins, which potentially enables the monitoring of OV replication in the TME. Their role in therapeutic efficacy is therefore multifaceted, but based on research applying relevant, immunocompetent tumour models, macrophages are considered to have a central function in anti-cancer activity. These novel insights hold important clinical implications. When optimised, oncolytic virotherapy, mediating multifactorial inhibition of cancer immune evasion, could contribute to improved patient survival.
Collapse
Affiliation(s)
- Laura Hofman
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
| | - Sean E. Lawler
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA;
| | - Martine L. M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
- Correspondence: ; Tel.: +31-010-703-5993
| |
Collapse
|
18
|
Upadhyayula PS, Higgins DM, Argenziano MG, Spinazzi EF, Wu CC, Canoll P, Bruce JN. The Sledgehammer in Precision Medicine: Dexamethasone and Immunotherapeutic Treatment of Glioma. Cancer Invest 2021; 40:554-566. [PMID: 34151678 DOI: 10.1080/07357907.2021.1944178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Understanding dexamethasone's effect on the immune microenvironment in glioma patients is of key importance. We performed a comprehensive literature review using the NCBI PubMed database for all articles meeting the following search criteria. ((dexamethasone[All Fields]) AND (glioma or glioblastoma)[Title/Abstract]) AND (immune or T cell or B cell or monocyte or neutrophil or macrophage). Forty-three manuscripts were deemed relevant to the topic at hand. Multiple clinical studies have linked dexamethasone use to decreased overall survival while preclinical studies in murine glioma models have demonstrated decreased tumor-infiltrating lymphocytes after dexamethasone administration.
Collapse
Affiliation(s)
- Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Dominique M Higgins
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Eleonora F Spinazzi
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Peter Canoll
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Manhattan, NY, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| |
Collapse
|
19
|
Phillips LM, Li S, Gumin J, Daou M, Ledbetter D, Yang J, Singh S, Parker Kerrigan BC, Hossain A, Yuan Y, Gomez-Manzano C, Fueyo J, Lang FF. An immune-competent, replication-permissive Syrian Hamster glioma model for evaluating Delta-24-RGD oncolytic adenovirus. Neuro Oncol 2021; 23:1911-1921. [PMID: 34059921 DOI: 10.1093/neuonc/noab128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Oncolytic adenoviruses are promising new treatments against solid tumors, particularly for glioblastoma (GBM), and preclinical models are required to evaluate the mechanisms of efficacy. However, due to the species selectivity of adenovirus, there is currently no single animal model that supports viral replication, tumor oncolysis, and a virus-mediated immune response. To address this gap, we took advantage of the Syrian hamster to develop the first intracranial glioma model that is both adenovirus replication-permissive and immunocompetent. METHODS We generated hamster glioma stem-like cells (hamGSCs) by transforming hamster neural stem cells with hTERT, simian virus 40 large T antigen, and h-RasV12. Using a guide-screw system, we generated an intracranial tumor model in the hamster. The efficacy of the oncolytic adenovirus Delta-24-RGD was assessed by survival studies, and tumor-infiltrating lymphocytes were evaluated by flow cytometry. RESULTS In vitro, hamster GSCs supported viral replication and were susceptible to Delta-24-RGD mediated cell death. In vivo, hamster GSCs consistently developed into highly proliferative tumors resembling high-grade glioma. Flow cytometric analysis of hamster gliomas revealed significantly increased T cell infiltration in Delta-24-RGD infected tumors, indicative of immune activation. Treating tumor-bearing hamsters with Delta-24-RGD led to significantly increased survival compared to hamsters treated with PBS. CONCLUSIONS This adenovirus-permissive, immunocompetent hamster glioma model overcomes the limitations of previous model systems and provides a novel platform in which to study the interactions between tumor cells, the host immune system, and oncolytic adenoviral therapy; understanding of which will be critical to implementing oncolytic adenovirus in the clinic.
Collapse
Affiliation(s)
- Lynette M Phillips
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shoudong Li
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marc Daou
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Daniel Ledbetter
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jing Yang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sanjay Singh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Brittany C Parker Kerrigan
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anwar Hossain
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Candelaria Gomez-Manzano
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Juan Fueyo
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
20
|
Zhang Y, Li Y, Chen K, Qian L, Wang P. Oncolytic virotherapy reverses the immunosuppressive tumor microenvironment and its potential in combination with immunotherapy. Cancer Cell Int 2021; 21:262. [PMID: 33985527 PMCID: PMC8120729 DOI: 10.1186/s12935-021-01972-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
It has been intensively reported that the immunosuppressive tumor microenvironment (TME) results in tumor resistance to immunotherapy, especially immune checkpoint blockade and chimeric T cell antigen therapy. As an emerging therapeutic agent, oncolytic viruses (OVs) can specifically kill malignant cells and modify immune and non-immune TME components through their intrinsic properties or genetically incorporated with TME regulators. Strategies of manipulating OVs against the immunosuppressive TME include serving as a cancer vaccine, expressing proinflammatory factors and immune checkpoint inhibitors, and regulating nonimmune stromal constituents. In this review, we summarized the mechanisms and applications of OVs against the immunosuppressive TME, and strategies of OVs in combination with immunotherapy. We also introduced future directions to achieve efficient clinical translation including optimization of preclinical models that simulate the human TME and achieving systemic delivery of OVs.
Collapse
Affiliation(s)
- Yalei Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ye Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
| | - Kun Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Qian
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
Role of Myeloid Cells in Oncolytic Reovirus-Based Cancer Therapy. Viruses 2021; 13:v13040654. [PMID: 33920168 PMCID: PMC8070345 DOI: 10.3390/v13040654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Oncolytic reovirus preferentially targets and kills cancer cells via the process of oncolysis, and additionally drives clinically favorable antitumor T cell responses that form protective immunological memory against cancer relapse. This two-prong attack by reovirus on cancers constitutes the foundation of its use as an anticancer oncolytic agent. Unfortunately, the efficacy of these reovirus-driven antitumor effects is influenced by the highly suppressive tumor microenvironment (TME). In particular, the myeloid cell populations (e.g., myeloid-derived suppressive cells and tumor-associated macrophages) of highly immunosuppressive capacities within the TME not only affect oncolysis but also actively impair the functioning of reovirus-driven antitumor T cell immunity. Thus, myeloid cells within the TME play a critical role during the virotherapy, which, if properly understood, can identify novel therapeutic combination strategies potentiating the therapeutic efficacy of reovirus-based cancer therapy.
Collapse
|
22
|
Srinivasan VM, Lang FF, Kan P. Intraarterial delivery of virotherapy for glioblastoma. Neurosurg Focus 2021; 50:E7. [PMID: 33524944 DOI: 10.3171/2020.11.focus20845] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/16/2020] [Indexed: 11/06/2022]
Abstract
Oncolytic viruses (OVs) have been used in the treatment of cancer, in a focused manner, since the 1990s. These OVs have become popular in the treatment of several cancers but are only now gaining interest in the treatment of glioblastoma (GBM) in recent clinical trials. In this review, the authors discuss the unique applications of intraarterial (IA) delivery of OVs, starting with concepts of OV, how they apply to IA delivery, and concluding with discussion of the current ongoing trials. Several OVs have been used in the treatment of GBM, including specifically several modified adenoviruses. IA delivery of OVs has been performed in the hepatic circulation and is now being studied in the cerebral circulation to help enhance delivery and specificity. There are some interesting synergies with immunotherapy and IA delivery of OVs. Some of the shortcomings are discussed, specifically the systemic response to OVs and feasibility of treatment. Future studies can be performed in the preclinical setting to identify the ideal candidates for translation into clinical trials, as well as the nuances of this novel delivery method.
Collapse
Affiliation(s)
- Visish M Srinivasan
- 1Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona
| | - Frederick F Lang
- 2Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | - Peter Kan
- 3Department of Neurosurgery, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
23
|
Ene CI, Fueyo J, Lang FF. Delta-24 adenoviral therapy for glioblastoma: evolution from the bench to bedside and future considerations. Neurosurg Focus 2021; 50:E6. [PMID: 33524949 DOI: 10.3171/2020.11.focus20853] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/16/2020] [Indexed: 11/06/2022]
Abstract
Delta-24-based oncolytic viruses are conditional replication adenoviruses developed to selectively infect and replicate in retinoblastoma 1 (Rb)-deficient cancer cells but not normal cell with intact Rb1 pathways. Over the years, there has been a significant evolution in the design of Delta-24 based on a better understanding of the underlying basis for infection, replication, and spread within cancer. One example is the development of Delta-24-RGD (DNX-2401), where the arginine-glycine-aspartate (RGD) domain enhances the infectivity of Delta-24 for cancer cells. DNX-2401 demonstrated objective biological and clinical responses during a phase I window of opportunity clinical trial for recurrent human glioblastoma. In long-term responders (> 3 years), there was evidence of immune infiltration (T cells and macrophages) into the tumor microenvironment with minimal toxicity. Although more in-depth analysis and phase III studies are pending, these results indicate that Delta-24-based adenovirus therapy may induce an antitumor response in glioblastoma, resulting in long-term antitumor immune response. In this review, the authors discuss the preclinical and clinical development of Delta-24 oncolytic adenoviral therapy for glioblastoma and describe structural improvements to Delta-24 that have enhanced its efficacy in vivo. They also highlight ongoing research that attempts to address the remaining obstacles limiting efficacy of Delta-24 adenovirus therapy for glioblastoma.
Collapse
Affiliation(s)
| | - Juan Fueyo
- Departments of1Neurosurgery and.,2Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
24
|
Zhang W, Zeng B, Hu X, Zou L, Liang J, Song Y, Liu B, Liu S. Oncolytic Herpes Simplex Virus Type 2 Can Effectively Inhibit Colorectal Cancer Liver Metastasis by Modulating the Immune Status in the Tumor Microenvironment and Inducing Specific Antitumor Immunity. Hum Gene Ther 2021; 32:203-215. [PMID: 33176492 DOI: 10.1089/hum.2020.239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although colorectal cancer is the leading cause of death in patients with liver metastases, there are no efficient treatments available. Oncolytic virus therapy, a new type of tumor therapy, has become a potential solution. With the goal of improving the treatment of advanced colorectal cancer, we applied oncolytic herpes simplex virus type 2 (oHSV2) in a mouse model of colorectal cancer with liver metastasis. Compared with the control, oHSV2 effectively inhibited the growth of subcutaneous primary tumors, significantly reduced the number and size of liver metastases, and prolonged the median survival time of the mice. In addition, neutrophils, natural killer (NK) cells, T cells, B cells, and cytokines in the tumor microenvironment and the body were all activated, and their frequencies increased significantly. Moreover, the proportion of immunosuppressive myeloid-derived suppressor cells decreased. oHSV2 treatment, which establishes an effective long-term antitumor immune response, is strongly resistant to rechallenge by the same tumor. Our data show that oHSV2 can effectively kill the primary tumor and attack distal and metastatic tumors by inducing immune responses, resulting in lasting antitumor efficacy and preventing tumor recurrence. It is believed that oHSV2 has good clinical application prospects.
Collapse
Affiliation(s)
- Wen Zhang
- Departments of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Beibei Zeng
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiao Hu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingjie Zou
- Departments of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Liang
- Departments of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Song
- Departments of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Binlei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Shangmei Liu
- Departments of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Immunologic aspects of viral therapy for glioblastoma and implications for interactions with immunotherapies. J Neurooncol 2021; 152:1-13. [PMID: 33389564 DOI: 10.1007/s11060-020-03684-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The treatment for glioblastoma (GBM) has remained unchanged for the past decade, with only minimal improvements in patient survival. As a result, novel treatments are needed to combat this devastating disease. Immunotherapies are treatments that stimulate the immune system to attack tumor cells and can be either local or systemically delivered. Viral treatments can lead to direct tumor cell death through their natural lifecycle or through the delivery of a suicide gene, with the potential to generate an anti-tumor immune response, making them interesting candidates for combinatorial treatment with immunotherapy. METHODS We review the current literature surrounding the interactions between oncolytic viruses and the immune system as well as the use of oncolytic viruses combined with immunotherapies for the treatment of GBM. RESULTS Viral therapies have exhibited preclinical efficacy as single-agents and are being investigated in that manner in clinical trials. Oncolytic viruses have significant interactions with the immune system, although this can also vary depending on the strain of virus. Combinatorial treatments using both oncolytic viruses and immunotherapies have demonstrated promising preclinical findings. CONCLUSIONS Studies combining viral and immunotherapeutic treatment modalities have provided exciting results thus far and hold great promise for patients with GBM. Additional studies assessing the clinical efficacy of these treatments as well as improved preclinical modeling systems, safety mechanisms, and the balance between treatment efficacy and immune-mediated viral clearance should be considered.
Collapse
|
26
|
Iorgulescu JB, Gokhale PC, Speranza MC, Eschle BK, Poitras MJ, Wilkens MK, Soroko KM, Chhoeu C, Knott A, Gao Y, Lim-Fat MJ, Baker GJ, Bonal DM, Nguyen QD, Grant GRL, Ligon KL, Sorger PK, Chiocca EA, Anderson AC, Kirschmeier PT, Sharpe AH, Freeman GJ, Reardon DA. Concurrent Dexamethasone Limits the Clinical Benefit of Immune Checkpoint Blockade in Glioblastoma. Clin Cancer Res 2020; 27:276-287. [PMID: 33239433 DOI: 10.1158/1078-0432.ccr-20-2291] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/24/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Dexamethasone, a uniquely potent corticosteroid, is frequently administered to patients with brain tumors to decrease tumor-associated edema, but limited data exist describing how dexamethasone affects the immune system systemically and intratumorally in patients with glioblastoma (GBM), particularly in the context of immunotherapy. EXPERIMENTAL DESIGN We evaluated the dose-dependent effects of dexamethasone when administered with programmed cell death 1 (PD-1) blockade and/or radiotherapy in immunocompetent C57BL/6 mice with syngeneic GL261 and CT-2A GBM tumors. Clinically, the effect of dexamethasone on survival was evaluated in 181 patients with isocitrate dehydrogenase (IDH) wild-type GBM treated with PD-(L)1 blockade, with adjustment for relevant prognostic factors. RESULTS Despite the inherent responsiveness of GL261 to immune checkpoint blockade, concurrent dexamethasone administration with anti-PD-1 therapy reduced survival in a dose-dependent manner. Concurrent dexamethasone also abrogated survival following anti-PD-1 therapy with or without radiotherapy in immune-resistant CT-2A models. Dexamethasone decreased T-lymphocyte numbers by increasing apoptosis, in addition to decreasing lymphocyte functional capacity. Myeloid and natural killer cell populations were also generally reduced by dexamethasone. Thus, dexamethasone appears to negatively affect both adaptive and innate immune responses. As a clinical correlate, a retrospective analysis of 181 consecutive patients with IDH wild-type GBM treated with PD-(L)1 blockade revealed poorer survival among those on baseline dexamethasone. Upon multivariable adjustment with relevant prognostic factors, baseline dexamethasone administration was the strongest predictor of poor survival [reference, no dexamethasone; <2 mg HR, 2.16; 95% confidence interval (CI), 1.30-3.68; P = 0.003 and ≥2 mg HR, 1.97; 95% CI, 1.23-3.16; P = 0.005]. CONCLUSIONS Our preclinical and clinical data indicate that concurrent dexamethasone therapy may be detrimental to immunotherapeutic approaches for patients with GBM.
Collapse
Affiliation(s)
- J Bryan Iorgulescu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Prafulla C Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Maria C Speranza
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Benjamin K Eschle
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael J Poitras
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Margaret K Wilkens
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kara M Soroko
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chhayheng Chhoeu
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Aine Knott
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yan Gao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mary Jane Lim-Fat
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gregory J Baker
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - Dennis M Bonal
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Quang-Dé Nguyen
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gareth R L Grant
- University of Glasgow Medical School, Glasgow, Scotland, United Kingdom
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Peter K Sorger
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ana C Anderson
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Immunology, Blavatnik Institute, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, Massachusetts
| | - Paul T Kirschmeier
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, Massachusetts
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David A Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
27
|
Kemp V, Lamfers MLM, van der Pluijm G, van den Hoogen BG, Hoeben RC. Developing oncolytic viruses for clinical use: A consortium approach. Cytokine Growth Factor Rev 2020; 56:133-140. [PMID: 32553482 DOI: 10.1016/j.cytogfr.2020.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
The use of oncolytic viruses forms an appealing approach for cancer treatment. On the one hand the viruses replicate in, and kill, tumor cells, leading to their intra-tumoral amplification. On the other hand the viral infection will activate virus-directed immune responses, and may trigger immune responses directed against tumor cells and tumor antigens. To date, a wide variety of oncolytic viruses is being developed for use in cancer treatment. While the development of oncolytic viruses has often been initiated by researchers in academia and other public institutions, a large majority of the final product development and the testing of these products in clinical trials is industry led. As a consequence relatively few pre-clinical and clinical studies evaluated different oncolytic viruses in competitive side-by-side preclinical or clinical studies. In this review we will summarize the steps and considerations essential in the development and characterization of oncolytic viruses, and describe our multidisciplinary academic consortium, which involves a dozen departments in three different Dutch universities, collaborating in the development of oncolytic viruses. This consortium has the ambition to develop a small series of oncolytic viruses and to evaluate these in various cancers.
Collapse
Affiliation(s)
- Vera Kemp
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC, Leiden, Netherlands
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Center, 2300 RC, Leiden, Netherlands
| | | | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC, Leiden, Netherlands.
| |
Collapse
|
28
|
Sugawara K, Iwai M, Yajima S, Tanaka M, Yanagihara K, Seto Y, Todo T. Efficacy of a Third-Generation Oncolytic Herpes Virus G47Δ in Advanced Stage Models of Human Gastric Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:205-215. [PMID: 32346610 PMCID: PMC7178322 DOI: 10.1016/j.omto.2020.03.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
Abstract
Advanced gastric cancer, especially scirrhous gastric cancer with peritoneal dissemination, remains refractory to conventional therapies. G47Δ, a third-generation oncolytic herpes simplex virus type 1, is an attractive novel therapeutic agent for solid cancer. In this study, we investigated the therapeutic potential of G47Δ for human gastric cancer. In vitro, G47Δ showed good cytopathic effects and replication capabilities in nine human gastric cancer cell lines tested. In vivo, intratumoral inoculations with G47Δ (2 × 105 or 1 × 106 plaque-forming units [PFU]) significantly inhibited the growth of subcutaneous tumors (MKN45, MKN74, and 44As3). To evaluate the efficacy of G47Δ for advanced-stage models of gastric cancer, we generated an orthotopic tumor model and peritoneal dissemination models of human scirrhous gastric cancer (MKN45-luc and 44As3Luc), which have features mimicking intractable scirrhous cancer patients. G47Δ (1 × 106 PFU) was constantly efficacious whether administered intratumorally or intraperitoneally in the clinically relevant models. Notably, G47Δ injected intraperitoneally readily distributed to, and selectively replicated in, disseminated tumors. Furthermore, flow cytometric analyses of tumor-infiltrating cells in subcutaneous tumors revealed that intratumoral G47Δ injections markedly decreased M2 macrophages while increasing M1 macrophages and natural killer (NK) cells. These findings indicate the usefulness of G47Δ for treating human gastric cancer, including scirrhous gastric cancer and the ones in advanced stages.
Collapse
Affiliation(s)
- Kotaro Sugawara
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Miwako Iwai
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Shoh Yajima
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Minoru Tanaka
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
29
|
Belcaid Z, Berrevoets C, Choi J, van Beelen E, Stavrakaki E, Pierson T, Kloezeman J, Routkevitch D, van der Kaaij M, van der Ploeg A, Mathios D, Sleijfer S, Dirven C, Lim M, Debets R, Lamfers MLM. Low-dose oncolytic adenovirus therapy overcomes tumor-induced immune suppression and sensitizes intracranial gliomas to anti-PD-1 therapy. Neurooncol Adv 2020; 2:vdaa011. [PMID: 32642679 PMCID: PMC7212906 DOI: 10.1093/noajnl/vdaa011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The tumor-selective human adenovirus Delta24-RGD is currently under investigation in phase II clinical trials for patients with recurrent glioblastoma (GBM). To improve treatments for patients with GBM, we explored the potential of combining Delta24-RGD with antibodies targeting immune checkpoints. METHODS C57BL/6 mice were intracranially injected with GL261 cells and treated with a low dose of Delta24-RGD virus. The expression dynamics of 10 co-signaling molecules known to affect immune activity was assessed in tumor-infiltrating immune cells by flow cytometry after viral injection. The antitumor activity was measured by tumor cell killing and IFNγ production in co-cultures. Efficacy of the combination viro-immunotherapy was tested in vitro and in the GL261 and CT2A orthotopic mouse GBM models. Patient-derived GBM cell cultures were treated with Delta24-RGD to assess changes in PD-L1 expression induced by virus infection. RESULTS Delta24-RGD therapy increased intratumoral CD8+ T cells expressing Inducible T-cell co-stimulator (ICOS) and PD-1. Functionality assays confirmed a significant positive correlation between tumor cell lysis and IFNγ production in ex vivo cultures (Spearman r = 0.9524; P < .01). Co-cultures significantly increased IFNγ production upon treatment with PD-1 blocking antibodies. In vivo, combination therapy with low-dose Delta24-RGD and anti-PD-1 antibodies significantly improved outcome compared to single-agent therapy in both syngeneic mouse glioma models and increased PD-1+ tumor-infiltrating CD8+ T cells. Delta24-RGD infection induced tumor-specific changes in PD-L1 expression in primary GBM cell cultures. CONCLUSIONS This study demonstrates the potential of using low-dose Delta24-RGD therapy to sensitize glioma for combination with anti-PD-1 antibody therapy.
Collapse
Affiliation(s)
- Zineb Belcaid
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, The Netherlands
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Cor Berrevoets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John Choi
- Department of Neurosurgery, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Edward van Beelen
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Eftychia Stavrakaki
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tessa Pierson
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jenneke Kloezeman
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Denis Routkevitch
- Department of Neurosurgery, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mariëlle van der Kaaij
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alicia van der Ploeg
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dimitrios Mathios
- Department of Neurosurgery, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stefan Sleijfer
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Clemens Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
30
|
Kiyokawa J, Wakimoto H. Preclinical And Clinical Development Of Oncolytic Adenovirus For The Treatment Of Malignant Glioma. Oncolytic Virother 2019; 8:27-37. [PMID: 31750274 PMCID: PMC6817710 DOI: 10.2147/ov.s196403] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/20/2019] [Indexed: 01/01/2023] Open
Abstract
Replication conditional oncolytic human adenovirus has long been considered a promising biological therapeutic to target high-grade gliomas (HGG), a group of essentially lethal primary brain cancer. The last decade has witnessed initiation and some completion of a number of Phase I and II clinical investigations of oncolytic adenovirus for HGG in the US and Europe. Results of these trials in patients are pivotal for not only federal approval but also filling an existing knowledge gap that primarily derives from the stark differences in permissivity to human adenovirus between humans and preclinical mouse models. DNX-2401 (Delta-24-RGD), the current mainstream oncolytic adenovirus with modifications in E1A and the fiber, has been shown to induce impressive objective response and long-term survival (>3 years) in a fraction of patients with recurrent HGG. Responders exhibited initial enlargement of the treated lesions for a few months post treatment, followed by shrinkage and near complete resolution. In accord with preclinical research, post-treatment specimens revealed virus-mediated alteration of the immune tumor microenvironment as evidenced by infiltration of CD8+ T cells and M1-polarized macrophages. These findings are encouraging and together with further information from ongoing studies have a potential to make oncolytic adenovirus a viable option for clinical management of HGG. This review deals with this timely topic; we will describe both preclinical and clinical development of oncolytic adenovirus therapy for HGG, summarize updated knowledge on clinical trials and discuss challenges that the field currently faces.
Collapse
Affiliation(s)
- Juri Kiyokawa
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
van den Bossche WBL, Kleijn A, Teunissen CE, Voerman JSA, Teodosio C, Noske DP, van Dongen JJM, Dirven CMF, Lamfers MLM. Oncolytic virotherapy in glioblastoma patients induces a tumor macrophage phenotypic shift leading to an altered glioblastoma microenvironment. Neuro Oncol 2019; 20:1494-1504. [PMID: 29796615 DOI: 10.1093/neuonc/noy082] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Immunosuppressive protumoral M2 macrophages are important in pathogenesis, progression, and therapy resistance in glioblastoma (GBM) and provide a target for therapy. Recently oncolytic virotherapy in murine models was shown to change these M2 macrophages toward the pro-inflammatory and antitumoral M1 phenotype. Here we study the effects of the oncolytic virotherapy Delta24-RGD in humans, using both in vitro models and patient material. Methods Human monocyte-derived macrophages were co-cultured with Delta24-RGD-infected primary glioma stem-like cells (GSCs) and were analyzed for their immunophenotype, cytokine expression, and secretion profiles. Cerebrospinal fluid (CSF) from 18 Delta24-RGD-treated patients was analyzed for inflammatory cytokine levels, and the effects of these CSF samples on macrophage phenotype in vitro were determined. In addition, tumor macrophages in resected material from a Delta24-RGD-treated GBM patient were compared with 5 control GBM patient samples by flow cytometry. Results Human monocyte-derived M2 macrophages co-cultured with Delta24-RGD-infected GSCs shifted toward an M1-immunophenotype, coinciding with pro-inflammatory gene expression and cytokine production. This phenotypic switch was induced by the concerted effects of a change in tumor-produced soluble factors and the presence of viral particles. CSF samples from Delta24-RGD-treated GBM patients revealed cytokine levels indicative of a pro-inflammatory microenvironment. Furthermore, tumoral macrophages in a Delta24-RGD-treated patient showed significantly greater M1 characteristics than in control GBM tissue. Conclusion Together these in vitro and patient studies demonstrate that local Delta24-RGD therapy may provide a therapeutic tool to promote a prolonged shift in the protumoral M2 macrophages toward M1 in human GBM, inducing a pro-inflammatory and potentially tumor-detrimental microenvironment.
Collapse
Affiliation(s)
- Wouter B L van den Bossche
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Anne Kleijn
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Charlotte E Teunissen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Clinical Chemistry, Neuroscience Campus Amsterdam, Amsterdam, Netherlands
| | - Jane S A Voerman
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Cristina Teodosio
- Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - David P Noske
- Department of Neurosurgery, VU University Medical Center, Amsterdam, Netherlands
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
32
|
González-Morales A, Lachén-Montes M, Fernández-Irigoyen J, Santamaría E. Monitoring the Cerebrospinal Fluid Cytokine Profile Using Membrane-Based Antibody Arrays. Methods Mol Biol 2019; 2044:233-246. [PMID: 31432416 DOI: 10.1007/978-1-4939-9706-0_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The brain is the most complex organ of the human body, and the study of the different diseases and injuries that affect it is far behind the ones that affect other organs. Some of these pathologies such as neurodegenerative diseases, physical injuries, and cancer present an important alteration in its inflammatory component, which affects their outcome in a positive or negative way. For this reason, it is important to characterize the joint expression of the cytokines and growth factors (GF) that are part of this inflammatory component. The cerebrospinal fluid (CSF) is in direct contact with the brain and spinal cord, being the best biofluid to study the cytokine and GF secretion patterns of these conditions. Currently, the proteomic workflows based on mass spectrometry (MS) are unable to easily detect these proteins in CSF. In this chapter, we describe a method based on cytokine membrane arrays to characterize, in a straightforward way, the secretion profile of different cytokines and GF at once in CSF.
Collapse
Affiliation(s)
- Andrea González-Morales
- Proteomics Unit, Clinical Neuroproteomics Laboratory, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Proteored-ISCIII, Pamplona, Spain
| | - Mercedes Lachén-Montes
- Proteomics Unit, Clinical Neuroproteomics Laboratory, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Proteored-ISCIII, Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Proteomics Unit, Clinical Neuroproteomics Laboratory, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Proteored-ISCIII, Pamplona, Spain
| | - Enrique Santamaría
- Proteomics Unit, Clinical Neuroproteomics Laboratory, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Proteored-ISCIII, Pamplona, Spain.
| |
Collapse
|
33
|
González-Morales A, Zabaleta A, García-Moure M, Alonso MM, Fernández-Irigoyen J, Santamaría E. Oncolytic adenovirus Delta-24-RGD induces a widespread glioma proteotype remodeling during autophagy. J Proteomics 2018; 194:168-178. [PMID: 30503830 DOI: 10.1016/j.jprot.2018.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/16/2018] [Accepted: 11/28/2018] [Indexed: 02/06/2023]
Abstract
Adenovirus Delta-24-RGD has shown a remarkable efficacy in a phase I clinical trial for glioblastoma. Delta-24-RGD induces autophagy in glioma cells, however, the molecular derangements associated with Delta-24-RGD infection remains poorly understood. Here, proteomics was applied to characterize the glioma metabolic disturbances soon after Delta-24-RGD internalization and late in infection. Minutes post-infection, a rapid survival reprogramming of glioma cells was evidenced by an early c-Jun activation and a time-dependent dephosphorylation of multiple survival kinases. At 48 h post-infection (hpi), a severe intracellular proteostasis impairment was characterized, detecting differentially expressed proteins related to mRNA splicing, cytoskeletal organization, oxidative response, and inflammation. Specific kinase-regulated protein interactomes for Delta-24-RGD-modulated proteome revealed interferences with the activation dynamics of protein kinases C and A (PKC, PKA), tyrosine-protein kinase Src (c-Src), glycogen synthase kinase-3 (GSK-3) as well as serine/threonine-protein phosphatases 1 and 2A (PP1, PP2A) at 48hpi, in parallel with adenoviral protein overproduction. Moreover, the late activation of the nuclear factor kappa B (NF-κB) correlates with the extracellular increment of specific cytokines involved in migration, and activation of different inflammatory cells. Taken together, our integrative analysis provides further insights into the effects triggered by Delta-24-RGD in the modulation of tumor suppression and immune response against glioma. SIGNIFICANCE: The current study provides new insights regarding the molecular mechanisms governing the glioma metabolism during Delta-24-RGD oncolytic adenoviral therapy. The compilation and analysis of intracellular and extracellular proteomics have led us to characterize: i) the cell survival reprogramming during Delta-24-RGD internalization, ii) the proteostatic disarrangement induced by Delta-24-RGD during the autophagic stage, iii) the protein interactomes for Delta-24-RGD-modulated proteome, iv) the regulatory effects on kinase dynamics induced by Delta-24-RGD late in infection, and v) the overproduction of multitasking cytokines upon Delta-24-RGD treatment. We consider that the quantitative molecular maps generated in this study may establish the foundations for the development of complementary adenoviral based-vectors to increase the potency against glioma.
Collapse
Affiliation(s)
- Andrea González-Morales
- Clinical Neuroproteomics Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; IDISNA, Navarra Institute for Health Research, Pamplona, Spain; Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Aintzane Zabaleta
- IDISNA, Navarra Institute for Health Research, Pamplona, Spain; Oncohematology Area, University Hospital of Navarra, Center for Applied Medical Research, CIBERONC, Pamplona, Spain
| | - Marc García-Moure
- IDISNA, Navarra Institute for Health Research, Pamplona, Spain; Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain; Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | - Marta M Alonso
- IDISNA, Navarra Institute for Health Research, Pamplona, Spain; Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain; Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; IDISNA, Navarra Institute for Health Research, Pamplona, Spain; Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; IDISNA, Navarra Institute for Health Research, Pamplona, Spain; Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.
| |
Collapse
|
34
|
Maxwell R, Luksik AS, Garzon-Muvdi T, Hung AL, Kim ES, Wu A, Xia Y, Belcaid Z, Gorelick N, Choi J, Theodros D, Jackson CM, Mathios D, Ye X, Tran PT, Redmond KJ, Brem H, Pardoll DM, Kleinberg LR, Lim M. Contrasting impact of corticosteroids on anti-PD-1 immunotherapy efficacy for tumor histologies located within or outside the central nervous system. Oncoimmunology 2018; 7:e1500108. [PMID: 30524891 PMCID: PMC6279341 DOI: 10.1080/2162402x.2018.1500108] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint blockade targeting programmed cell death protein 1 (PD-1) is emerging as an important treatment strategy in a growing list of cancers, yet its clinical benefits are limited to a subset of patients. Further investigation of tumor-intrinsic predictors of response and how extrinsic factors, such as iatrogenic immunosuppression caused by conventional therapies, impact the efficacy of anti-PD-1 therapy are paramount. Given the widespread use of corticosteroids in cancer management and their immunosuppressive nature, this study sought to determine how corticosteroids influence anti-PD-1 responses and whether their effects were dependent on tumor location within the periphery versus central nervous system (CNS), which may have a more limiting immune environment. In well-established anti-PD-1-responsive murine tumor models, corticosteroid therapy resulted in systemic immune effects, including severe and persistent reductions in peripheral CD4+ and CD8 + T cells. Corticosteroid treatment was found to diminish the efficacy of anti-PD-1 therapy in mice bearing peripheral tumors with responses correlating with peripheral CD8/Treg ratio changes. In contrast, in mice bearing intracranial tumors, corticosteroids did not abrogate the benefits conferred by anti-PD-1 therapy. Despite systemic immune changes, anti-PD-1-mediated antitumor immune responses remained intact during corticosteroid treatment in mice bearing intracranial tumors. These findings suggest that anti-PD-1 responses may be differentially impacted by concomitant corticosteroid use depending on tumor location within or outside the CNS. As an immune-specialized site, the CNS may potentially play a protective role against the immunosuppressive effects of corticosteroids, thus sustaining antitumor immune responses mediated by PD-1 blockade.
Collapse
Affiliation(s)
- Russell Maxwell
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA.,Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, USA
| | - Andrew S Luksik
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | | | - Alice L Hung
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Eileen S Kim
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Adela Wu
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Yuanxuan Xia
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Zineb Belcaid
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Noah Gorelick
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - John Choi
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Debebe Theodros
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | | | | | - Xiaobu Ye
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, USA
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, USA
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins Hospital, Baltimore, USA
| | - Lawrence R Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, USA
| |
Collapse
|
35
|
González-Morales A, Zabaleta A, Guruceaga E, Alonso MM, García-Moure M, Fernández-Irigoyen J, Santamaría E. Spatial and temporal proteome dynamics of glioma cells during oncolytic adenovirus Delta-24-RGD infection. Oncotarget 2018; 9:31045-31065. [PMID: 30123426 PMCID: PMC6089549 DOI: 10.18632/oncotarget.25774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/22/2018] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive type of malignant glioma. Oncolytic adenoviruses are being modified to exploit the aberrant expression of proteins in tumor cells to increase the antiglioma efficacy. E1A mutant adenovirus Delta-24-RGD (DNX-2401) has shown a favorable toxicity profile and remarkable efficacy in a first-in-human phase I clinical trial. However, the comprehensive modulation of glioma metabolism in response to Delta-24-RGD infection is poorly understood. Integrating mass spectrometry based-quantitative proteomics, physical and functional interaction data, and biochemical approaches, we conducted a cell-wide study of cytosolic, nuclear, and secreted glioma proteomes throughout the early time course of Delta-24-RGD infection. In addition to the severe proteostasis impairment detected during the first hours post-infection (hpi), Delta-24-RGD induces a transient inhibition of signal transducer and activator of transcription 3 (STAT3), and transcription factor AP-1 (c-JUN) between 3 and 10hpi, increasing the nuclear factor kappa B (NF-κB) activity at 6hpi. Furthermore, Delta-24-RGD specifically modulates the activation dynamics of protein kinase C (PKC), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 mitogen-activated protein kinase (p38 MAPK) pathways early in infection. At extracellular level, Delta-24-RGD triggers a time -dependent dynamic production of multitasking cytokines, and chemotactic factors, suggesting potential pleiotropic effects on the immune system reactivation. Taken together, these data help us to understand the mechanisms used by Delta-24-RGD to exploit glioma proteome organization. Further mining of this proteomic resource may enable design and engineering complementary adenoviral based-vectors to increase the specificity and potency against glioma.
Collapse
Affiliation(s)
- Andrea González-Morales
- Clinical Neuroproteomics Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea, Pamplona, Spain.,IDISNA, Navarra Institute for Health Research, Pamplona, Spain.,Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea, Pamplona, Spain
| | - Aintzane Zabaleta
- IDISNA, Navarra Institute for Health Research, Pamplona, Spain.,Oncohematology Area, University Hospital of Navarra, Center for Applied Medical Research, CIBERONC, Pamplona, Spain
| | - Elizabeth Guruceaga
- IDISNA, Navarra Institute for Health Research, Pamplona, Spain.,Bioinformatics Unit, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Marta M Alonso
- IDISNA, Navarra Institute for Health Research, Pamplona, Spain.,Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | - Marc García-Moure
- IDISNA, Navarra Institute for Health Research, Pamplona, Spain.,Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea, Pamplona, Spain.,IDISNA, Navarra Institute for Health Research, Pamplona, Spain.,Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea, Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea, Pamplona, Spain.,IDISNA, Navarra Institute for Health Research, Pamplona, Spain.,Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea, Pamplona, Spain
| |
Collapse
|
36
|
Adenovirus Coding for Interleukin-2 and Tumor Necrosis Factor Alpha Replaces Lymphodepleting Chemotherapy in Adoptive T Cell Therapy. Mol Ther 2018; 26:2243-2254. [PMID: 30017877 DOI: 10.1016/j.ymthe.2018.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 02/08/2023] Open
Abstract
Lymphodepleting preconditioning with high-dose chemotherapy is commonly used to increase the clinical efficacy of adoptive T cell therapy (ACT) strategies, however, with severe toxicity for patients. Conversely, oncolytic adenoviruses are safe and, when engineered to express interleukin-2 (IL-2) and tumor necrosis factor alpha (TNF-α), they can achieve antitumor immunomodulatory effects similar to lymphodepletion. Therefore, we compare the safety and efficacy of such adenoviruses with a cyclophosphamide- and fludarabine-containing lymphodepleting regimen in the setting of ACT. Human adenovirus (Ad5/3-E2F-D24-hTNF-α-IRES-hIL-2; TILT-123) replication was studied using a Syrian hamster pancreatic tumor model (HapT1) infused with tumor-infiltrating lymphocytes (TILs). Using the oncolytic virus instead of lymphodepletion resulted in superior efficacy and survival. Immune cells responsive to TNF-α IL-2 were studied using an immunocompetent mouse melanoma model (B16.OVA) infused with ovalbumin-specific T (OT-I) cells. Here, the adenovirus approach improved tumor control together with increased intratumoral Th1 cytokine levels and infiltration of CD8+ T cells and CD86+ dendritic cells. Similar to humans, lymphodepleting preconditioning caused severe cytopenias, systemic inflammation, and damage to vital organs. Toxicity was minimal in adenovirus- and OT-I-treated mice. These findings demonstrate that ACT can be effectively facilitated by cytokine-coding adenovirus without requiring lymphodepletion, a rationale being clinically investigated.
Collapse
|
37
|
Twumasi-Boateng K, Pettigrew JL, Kwok YYE, Bell JC, Nelson BH. Oncolytic viruses as engineering platforms for combination immunotherapy. Nat Rev Cancer 2018; 18:419-432. [PMID: 29695749 DOI: 10.1038/s41568-018-0009-4] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To effectively build on the recent successes of immune checkpoint blockade, adoptive T cell therapy and cancer vaccines, it is critical to rationally design combination strategies that will increase and extend efficacy to a larger proportion of patients. For example, the combination of anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and anti-programmed cell death protein 1 (PD1) immune checkpoint inhibitors essentially doubles the response rate in certain patients with metastatic melanoma. However, given the heterogeneity of cancer, it seems likely that even more complex combinations of immunomodulatory agents may be required to obtain consistent, durable therapeutic responses against a broad spectrum of cancers. This carries serious implications in terms of toxicities for patients, feasibility for care providers and costs for health-care systems. A compelling solution is offered by oncolytic viruses (OVs), which can be engineered to selectively replicate within and destroy tumour tissue while simultaneously augmenting antitumour immunity. In this Opinion article, we argue that the future of immunotherapy will include OVs that function as multiplexed immune-modulating platforms expressing factors such as immune checkpoint inhibitors, tumour antigens, cytokines and T cell engagers. We illustrate this concept by following the trials and tribulations of tumour-reactive T cells from their initial priming through to the execution of cytotoxic effector function in the tumour bed. We highlight the myriad opportunities for OVs to help overcome critical barriers in the T cell journey, leading to new synergistic mechanisms in the battle against cancer.
Collapse
Affiliation(s)
- Kwame Twumasi-Boateng
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada
| | - Jessica L Pettigrew
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Y Y Eunice Kwok
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada
| | - John C Bell
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Brad H Nelson
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada.
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
38
|
Lang FF, Conrad C, Gomez-Manzano C, Yung WA, Sawaya R, Weinberg JS, Prabhu SS, Rao G, Fuller GN, Aldape KD, Gumin J, Vence LM, Wistuba I, Rodriguez-Canales J, Villalobos PA, Dirven CM, Tejada S, Valle RD, Alonso MM, Ewald B, Peterkin JJ, Tufaro F, Fueyo J. Phase I Study of DNX-2401 (Delta-24-RGD) Oncolytic Adenovirus: Replication and Immunotherapeutic Effects in Recurrent Malignant Glioma. J Clin Oncol 2018; 36:1419-1427. [PMID: 29432077 PMCID: PMC6075856 DOI: 10.1200/jco.2017.75.8219] [Citation(s) in RCA: 468] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose DNX-2401 (Delta-24-RGD; tasadenoturev) is a tumor-selective, replication-competent oncolytic adenovirus. Preclinical studies demonstrated antiglioma efficacy, but the effects and mechanisms of action have not been evaluated in patients. Methods A phase I, dose-escalation, biologic-end-point clinical trial of DNX-2401 was conducted in 37 patients with recurrent malignant glioma. Patients received a single intratumoral injection of DNX-2401 into biopsy-confirmed recurrent tumor to evaluate safety and response across eight dose levels (group A). To investigate the mechanism of action, a second group of patients (group B) underwent intratumoral injection through a permanently implanted catheter, followed 14 days later by en bloc resection to acquire post-treatment specimens. Results In group A (n = 25), 20% of patients survived > 3 years from treatment, and three patients had a ≥ 95% reduction in the enhancing tumor (12%), with all three of these dramatic responses resulting in > 3 years of progression-free survival from the time of treatment. Analyses of post-treatment surgical specimens (group B, n = 12) showed that DNX-2401 replicates and spreads within the tumor, documenting direct virus-induced oncolysis in patients. In addition to radiographic signs of inflammation, histopathologic examination of immune markers in post-treatment specimens showed tumor infiltration by CD8+ and T-bet+ cells, and transmembrane immunoglobulin mucin-3 downregulation after treatment. Analyses of patient-derived cell lines for damage-associated molecular patterns revealed induction of immunogenic cell death in tumor cells after DNX-2401 administration. Conclusion Treatment with DNX-2401 resulted in dramatic responses with long-term survival in recurrent high-grade gliomas that are probably due to direct oncolytic effects of the virus followed by elicitation of an immune-mediated antiglioma response.
Collapse
Affiliation(s)
- Frederick F. Lang
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Charles Conrad
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Candelaria Gomez-Manzano
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - W.K. Alfred Yung
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Raymond Sawaya
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jeffrey S. Weinberg
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sujit S. Prabhu
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ganesh Rao
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gregory N. Fuller
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Kenneth D. Aldape
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Joy Gumin
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Luis M. Vence
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ignacio Wistuba
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jaime Rodriguez-Canales
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pamela A. Villalobos
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Clemens M.F. Dirven
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sonia Tejada
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ricardo D. Valle
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marta M. Alonso
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Brett Ewald
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Joanna J. Peterkin
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Frank Tufaro
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| | - Juan Fueyo
- Frederick F. Lang, Charles Conrad, Candelaria Gomez-Manzano, W.K. Alfred Yung, Raymond Sawaya, Jeffrey S. Weinberg, Sujit S. Prabhu, Ganesh Rao, Gregory N. Fuller, Kenneth D. Aldape, Joy Gumin, Luis M. Vence, Ignacio Wistuba, Jaime Rodriguez-Canales, Pamela A. Villalobos, and Juan Fueyo, The University of Texas MD Anderson Cancer Center; Brett Ewald, Joanna J. Peterkin, and Frank Tufaro, DNAtrix, Houston, TX; Clemens M.F. Dirven, Erasmus University Medical Center, Rotterdam, the Netherlands; and Sonia Tejada, Ricardo D. Valle, and Marta M. Alonso, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
39
|
Luksik AS, Maxwell R, Garzon-Muvdi T, Lim M. The Role of Immune Checkpoint Inhibition in the Treatment of Brain Tumors. Neurotherapeutics 2017; 14:1049-1065. [PMID: 28258545 PMCID: PMC5722751 DOI: 10.1007/s13311-017-0513-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The standard of care for malignant gliomas of the brain has changed very little over the last few decades, and does not offer a cure for these rare, but fatal, tumors. The field of immunotherapy has brought potent new drugs into the oncological armamentarium, and is becoming recognized as a potentially important arm in the treatment of glioblastoma for adults. Immune checkpoints are inhibitory receptors found on immune cells that, when stimulated, cause those immune cells to become quiescent. While this is a natural mechanism to prevent excessive inflammatory damage and autoimmunity in otherwise healthy tissues, cancer cells may utilize this process to grow in the absence of targeted immune destruction. Antibodies derived to block the stimulation of these negative checkpoints, allowing immune cells to remain activated and undergo effector function, are a growing area of immunotherapy. These therapies have seen much success in both the preclinical and clinical arenas for various tumors, particularly melanoma and nonsmall-cell lung cancer. Multiple clinical trials are underway to determine if these drugs have efficacy in glioblastoma. Here, we review the current evidence, from early preclinical data to lessons learned from clinical trials outside of glioblastoma, to assess the potential of immune checkpoint inhibition in the treatment of brain tumors and discuss how this therapy may be implemented with the present standard of care.
Collapse
Affiliation(s)
- Andrew S Luksik
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Russell Maxwell
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tomas Garzon-Muvdi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
40
|
Jiang H, Rivera-Molina Y, Gomez-Manzano C, Clise-Dwyer K, Bover L, Vence LM, Yuan Y, Lang FF, Toniatti C, Hossain MB, Fueyo J. Oncolytic Adenovirus and Tumor-Targeting Immune Modulatory Therapy Improve Autologous Cancer Vaccination. Cancer Res 2017; 77:3894-3907. [PMID: 28566332 PMCID: PMC5549681 DOI: 10.1158/0008-5472.can-17-0468] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/20/2017] [Accepted: 05/23/2017] [Indexed: 01/10/2023]
Abstract
Oncolytic viruses selectively lyse tumor cells, disrupt immunosuppression within the tumor, and reactivate antitumor immunity, but they have yet to live up to their therapeutic potential. Immune checkpoint modulation has been efficacious in a variety of cancer with an immunogenic microenvironment, but is associated with toxicity due to nonspecific T-cell activation. Therefore, combining these two strategies would likely result in both effective and specific cancer therapy. To test the hypothesis, we first constructed oncolytic adenovirus Delta-24-RGDOX expressing the immune costimulator OX40 ligand (OX40L). Like its predecessor Delta-24-RGD, Delta-24-RGDOX induced immunogenic cell death and recruit lymphocytes to the tumor site. Compared with Delta-24-RGD, Delta-24-RGDOX exhibited superior tumor-specific activation of lymphocytes and proliferation of CD8+ T cells specific to tumor-associated antigens, resulting in cancer-specific immunity. Delta-24-RGDOX mediated more potent antiglioma activity in immunocompetent C57BL/6 but not immunodeficient athymic mice, leading to specific immune memory against the tumor. To further overcome the immune suppression mediated by programmed death-ligand 1 (PD-L1) expression on cancer cells accompanied with virotherapy, intratumoral injection of Delta-24-RGDOX and an anti-PD-L1 antibody showed synergistic inhibition of gliomas and significantly increased survival in mice. Our data demonstrate that combining an oncolytic virus with tumor-targeting immune checkpoint modulators elicits potent in situ autologous cancer vaccination, resulting in an efficacious, tumor-specific, and long-lasting therapeutic effect. Cancer Res; 77(14); 3894-907. ©2017 AACR.
Collapse
Affiliation(s)
- Hong Jiang
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Yisel Rivera-Molina
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laura Bover
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luis M Vence
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frederick F Lang
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlo Toniatti
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mohammad B Hossain
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Juan Fueyo
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
41
|
Kim JW, Miska J, Young JS, Rashidi A, Kane JR, Panek WK, Kanojia D, Han Y, Balyasnikova IV, Lesniak MS. A Comparative Study of Replication-Incompetent and -Competent Adenoviral Therapy-Mediated Immune Response in a Murine Glioma Model. Mol Ther Oncolytics 2017; 5:97-104. [PMID: 28573184 PMCID: PMC5443908 DOI: 10.1016/j.omto.2017.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Oncolytic virotherapy is a treatment approach with increasing clinical relevance, as indicated by the marked survival benefit seen in animal models and its current exploration in human patients with cancer. The use of an adenovirus vector for this therapeutic modality is common, has significant clinical benefit in animals, and its efficacy has recently been linked to an anti-tumor immune response that occurs following tumor antigen presentation. Here, we analyzed the adaptive immune system's response following viral infection by comparing replication-incompetent and replication-competent adenoviral vectors. Our findings suggest that cell death caused by replication-competent adenoviral vectors is required to induce a significant anti-tumor immune response and survival benefits in immunocompetent mice bearing intracranial glioma. We observed significant changes in the repertoire of immune cells in the brain and draining lymph nodes and significant recruitment of CD103+ dendritic cells (DCs) in response to oncolytic adenoviral therapy, suggesting the active role of the immune system in anti-tumor response. Our data suggest that the response to oncolytic virotherapy is accompanied by local and systemic immune responses and should be taken in consideration in the future design of the clinical studies evaluating oncolytic virotherapy in patients with glioblastoma multiforme (GBM).
Collapse
Affiliation(s)
- Julius W. Kim
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jacob S. Young
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - J. Robert Kane
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wojciech K. Panek
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yu Han
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Irina V. Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
42
|
Bartee MY, Dunlap KM, Bartee E. Tumor-Localized Secretion of Soluble PD1 Enhances Oncolytic Virotherapy. Cancer Res 2017; 77:2952-2963. [PMID: 28314785 PMCID: PMC5457316 DOI: 10.1158/0008-5472.can-16-1638] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 02/03/2017] [Accepted: 03/08/2017] [Indexed: 12/28/2022]
Abstract
Oncolytic virotherapy represents an attractive option for the treatment of a variety of aggressive or refractory tumors. While this therapy is effective at rapidly debulking directly injected tumor masses, achieving complete eradication of established disease has proven difficult. One method to overcome this challenge is to use oncolytic viruses to induce secondary antitumor immune responses. Unfortunately, while the initial induction of these immune responses is typically robust, their subsequent efficacy is often inhibited through a variety of immunoregulatory mechanisms, including the PD1/PDL1 T-cell checkpoint pathway. To overcome this inhibition, we generated a novel recombinant myxoma virus (vPD1), which inhibits the PD1/PDL1 pathway specifically within the tumor microenvironment by secreting a soluble form of PD1 from infected cells. This virus both induced and maintained antitumor CD8+ T-cell responses within directly treated tumors and proved safer and more effective than combination therapy using unmodified myxoma and systemic αPD1 antibodies. Localized vPD1 treatment combined with systemic elimination of regulatory T cells had potent synergistic effects against metastatic disease that was already established in secondary solid organs. These results demonstrate that tumor-localized inhibition of the PD1/PDL1 pathway can significantly improve outcomes during oncolytic virotherapy. Furthermore, they establish a feasible path to translate these findings against clinically relevant disease. Cancer Res; 77(11); 2952-63. ©2017 AACR.
Collapse
Affiliation(s)
- Mee Y Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Katherine M Dunlap
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
43
|
Fend L, Yamazaki T, Remy C, Fahrner C, Gantzer M, Nourtier V, Préville X, Quéméneur E, Kepp O, Adam J, Marabelle A, Pitt JM, Kroemer G, Zitvogel L. Immune Checkpoint Blockade, Immunogenic Chemotherapy or IFN-α Blockade Boost the Local and Abscopal Effects of Oncolytic Virotherapy. Cancer Res 2017; 77:4146-4157. [PMID: 28536278 DOI: 10.1158/0008-5472.can-16-2165] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 02/08/2017] [Accepted: 05/17/2017] [Indexed: 11/16/2022]
Abstract
Athough the clinical efficacy of oncolytic viruses has been demonstrated for local treatment, the ability to induce immune-mediated regression of distant metastases is still poorly documented. We report here that the engineered oncolytic vaccinia virus VVWR-TK-RR--Fcu1 can induce immunogenic cell death and generate a systemic immune response. Effects on tumor growth and survival was largely driven by CD8+ T cells, and immune cell infiltrate in the tumor could be reprogrammed toward a higher ratio of effector T cells to regulatory CD4+ T cells. The key role of type 1 IFN pathway in oncolytic virotherapy was also highlighted, as we observed a strong abscopal response in Ifnar-/- tumors. In this model, single administration of virus directly into the tumors on one flank led to regression in the contralateral flank. Moreover, these effects were further enhanced when oncolytic treatment was combined with immunogenic chemotherapy or with immune checkpoint blockade. Taken together, our results suggest how to safely improve the efficacy of local oncolytic virotherapy in patients whose tumors are characterized by dysregulated IFNα signaling. Cancer Res; 77(15); 4146-57. ©2017 AACR.
Collapse
Affiliation(s)
- Laetitia Fend
- Transgene S.A., Illkirch-Graffenstaden, France.,Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France
| | - Takahiro Yamazaki
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,INSERM Unit U1015, Villejuif, France.,Université Paris Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France
| | | | | | | | | | - Xavier Préville
- Transgene S.A., Illkirch-Graffenstaden, France.,Amoneta Diagnostics, Huningue, France
| | | | - Oliver Kepp
- INSERM, U1138, Centre de Recherche des Cordeliers, Paris, France.,Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Villejuif, France
| | - Julien Adam
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Department of Pathology, GRCC, Villejuif, France
| | - Aurélien Marabelle
- DITEP (Département d'Innovations Thérapeutiques et Essais Précoces), Gustave Roussy, INSERM U1015, Villejuif, France
| | - Jonathan M Pitt
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,INSERM Unit U1015, Villejuif, France.,Université Paris Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France
| | - Guido Kroemer
- INSERM, U1138, Centre de Recherche des Cordeliers, Paris, France.,Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Laurence Zitvogel
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France. .,INSERM Unit U1015, Villejuif, France.,Université Paris Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Department of Pathology, GRCC, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| |
Collapse
|
44
|
The Sequence of Delta24-RGD and TMZ Administration in Malignant Glioma Affects the Role of CD8 +T Cell Anti-tumor Activity. MOLECULAR THERAPY-ONCOLYTICS 2017; 5:11-19. [PMID: 28480325 PMCID: PMC5415315 DOI: 10.1016/j.omto.2017.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/16/2017] [Indexed: 12/29/2022]
Abstract
The conditionally replicating oncolytic adenovirus Delta24-RGD (Ad) is currently under investigation in clinical trials for glioblastoma, including in combination with temozolomide (TMZ), the standard chemotherapy for this tumor. Previously, we showed that the efficacy of Delta24-RGD in a murine model is primarily dependent on the virus-induced anti-tumor immune response. As observed with most chemotherapies, TMZ has pronounced immune-modulating effects. Here, we studied the combined effects of these treatments in a murine glioma model. In vitro, we observed a synergistic activity between Delta24-RGD and TMZ. In vivo, C57BL/6 mice bearing intracranial GL261 tumors were treated with TMZ for 5 days either prior to intratumoral Delta24-RGD injection (TMZ/Ad) or post virus injection (Ad/TMZ). Notably, the Ad/TMZ regimen led to similar tumoral CD8+ T cell influx as the virus-only treatment, but increased the ability of CD8+ T cells to specifically recognize the tumor cells. This was accompanied by improved survival. The TMZ/Ad regimen also improved survival significantly compared to controls, but not compared to virus alone. In this group, the influx of dendritic cells is impaired, followed by a significantly lower number of tumor-infiltrating CD8+ T cells and no recognition of tumor cells. Depletion of either CD4+ T cells or CD8+ T cells impaired the efficacy of Delta24-RGD, underscoring the role of these cells in therapeutic activity of the virus. Overall, we show that the addition of TMZ to Delta24-RGD treatment leads to a significant increase in survival and that the order of sequence of these treatments affects the CD8+T cell anti-tumor activity.
Collapse
|
45
|
Dai B, Roife D, Kang Y, Gumin J, Rios Perez MV, Li X, Pratt M, Brekken RA, Fueyo-Margareto J, Lang FF, Fleming JB. Preclinical Evaluation of Sequential Combination of Oncolytic Adenovirus Delta-24-RGD and Phosphatidylserine-Targeting Antibody in Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2017; 16:662-670. [PMID: 28138026 DOI: 10.1158/1535-7163.mct-16-0526] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/01/2016] [Accepted: 12/15/2016] [Indexed: 12/24/2022]
Abstract
Delta-24-RGD (DNX-2401) is a conditional replication-competent oncolytic virus engineered to preferentially replicate in and lyse tumor cells with abnormality of p16/RB/E2F pathway. In a phase I clinical trial, Delta-24-RGD has shown favorable safety profile and promising clinical efficacy in brain tumor, which prompted us to evaluate its anticancer activity in pancreatic ductal adenocarcinoma (PDAC), which also has high frequency of homozygous deletion and promoter methylation of CDKN2A encoding the p16 protein. Our results demonstrate that Delta-24-RGD can induce dramatic cytotoxicity in a subset of PDAC cell lines with high cyclin D1 expression. Induction of autophagy and apoptosis by Delta-24-RGD in sensitive PDAC cells was confirmed with LC3B-GFP autophagy reporter and acridine orange staining as well as Western blotting analysis of LC3B-II expression. Notably, we found that Delta-24-RGD induced phosphatidylserine exposure in infected cells independent of cells' sensitivity to Delta-24-RGD, which renders a rationale for combination of Delta-24-RGD viral therapy and phosphatidylserine targeting antibody for PDAC. In a mouse PDAC model derived from a liver metastatic pancreatic cancer cell line, Delta-24-RGD significantly inhibited tumor growth compared with control (P < 0.001), and combination of phosphatidylserine targeting antibody 1N11 further enhanced its anticancer activity (P < 0.01) possibly through inducing synergistic anticancer immune responses. Given that these 2 agents are currently in clinical evaluation, our study warrants further clinical evaluation of this novel combination strategy in pancreatic cancer therapy. Mol Cancer Ther; 16(4); 662-70. ©2016 AACR.
Collapse
Affiliation(s)
- Bingbing Dai
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Roife
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mayrim V Rios Perez
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xinqun Li
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Pratt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas
| | - Juan Fueyo-Margareto
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
46
|
Oncolytic adenoviruses as a therapeutic approach for osteosarcoma: A new hope. J Bone Oncol 2016; 9:41-47. [PMID: 29226089 PMCID: PMC5715440 DOI: 10.1016/j.jbo.2016.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/16/2016] [Accepted: 12/02/2016] [Indexed: 01/07/2023] Open
Abstract
Osteosarcoma is the most common bone cancer among those with non-hematological origin and affects mainly pediatric patients. In the last 50 years, refinements in surgical procedures, as well as the introduction of aggressive neoadjuvant and adjuvant chemotherapeutic cocktails, have increased to nearly 70% the survival rate of these patients. Despite the initial therapeutic progress the fight against osteosarcoma has not substantially improved during the last three decades, and almost 30% of the patients do not respond or recur after the standard treatment. For this group there is an urgent need to implement new therapeutic approaches. Oncolytic adenoviruses are conditionally replicative viruses engineered to selectively replicate in and kill tumor cells, while remaining quiescent in healthy cells. In the last years there have been multiple preclinical and clinical studies using these viruses as therapeutic agents in the treatment of a broad range of cancers, including osteosarcoma. In this review, we summarize some of the most relevant published literature about the use of oncolytic adenoviruses to treat human osteosarcoma tumors in subcutaneous, orthotopic and metastatic mouse models. In conclusion, up to date the preclinical studies with oncolytic adenoviruses have demonstrated that are safe and efficacious against local and metastatic osteosarcoma. Knowledge arising from phase I/II clinical trials with oncolytic adenoviruses in other tumors have shown the potential of viruses to awake the patient´s own immune system generating a response against the tumor. Generating osteosarcoma immune-competent adenoviruses friendly models will allow to better understand this potential. Future clinical trials with oncolytic adenoviruses for osteosarcoma tumors are warranted.
Collapse
|
47
|
Unlocking the promise of oncolytic virotherapy in glioma: combination with chemotherapy to enhance efficacy. Ther Deliv 2016; 6:453-68. [PMID: 25996044 DOI: 10.4155/tde.14.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Malignant glioma is a relentless burden to both patients and clinicians, and calls for innovation to overcome the limitations in current management. Glioma therapy using viruses has been investigated to accentuate the nature of a virus, killing a host tumor cell during its replication. As virus mediated approaches progress with promising therapeutic advantages, combination therapy with chemotherapy and oncolytic viruses has emerged as a more synergistic and possibly efficacious therapy. Here, we will review malignant glioma as well as prior experience with oncolytic viruses, chemotherapy and combination of the two, examining how the combination can be optimized in the future.
Collapse
|
48
|
Swift SL, Stojdl DF. Big Data Offers Novel Insights for Oncolytic Virus Immunotherapy. Viruses 2016; 8:v8020045. [PMID: 26861383 PMCID: PMC4776200 DOI: 10.3390/v8020045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/15/2016] [Accepted: 01/27/2016] [Indexed: 12/20/2022] Open
Abstract
Large-scale assays, such as microarrays, next-generation sequencing and various “omics” technologies, have explored multiple aspects of the immune response following virus infection, often from a public health perspective. Yet a lack of similar data exists for monitoring immune engagement during oncolytic virus immunotherapy (OVIT) in the cancer setting. Tracking immune signatures at the tumour site can create a snapshot or longitudinally analyse immune cell activation, infiltration and functionality within global populations or individual cells. Mapping immune changes over the course of oncolytic biotherapy—from initial infection to tumour stabilisation/regression through to long-term cure or escape/relapse—has the potential to generate important therapeutic insights around virus-host interactions. Further, correlating such immune signatures with specific tumour outcomes has significant value for guiding the development of novel oncolytic virus immunotherapy strategies. Here, we provide insights for OVIT from large-scale analyses of immune populations in the infection, vaccination and immunotherapy setting. We analyse several approaches to manipulating immune engagement during OVIT. We further explore immunocentric changes in the tumour tissue following immunotherapy, and compile several immune signatures of therapeutic success. Ultimately, we highlight clinically relevant large-scale approaches with the potential to strengthen future oncolytic strategies to optimally engage the immune system.
Collapse
Affiliation(s)
- Stephanie L Swift
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada.
| | - David F Stojdl
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada.
- Department of Biology, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
- Department of Pediatrics, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
49
|
Pol J, Buqué A, Aranda F, Bloy N, Cremer I, Eggermont A, Erbs P, Fucikova J, Galon J, Limacher JM, Preville X, Sautès-Fridman C, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Oncolytic viruses and cancer therapy. Oncoimmunology 2016; 5:e1117740. [PMID: 27057469 PMCID: PMC4801444 DOI: 10.1080/2162402x.2015.1117740] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy relies on the administration of non-pathogenic viral strains that selectively infect and kill malignant cells while favoring the elicitation of a therapeutically relevant tumor-targeting immune response. During the past few years, great efforts have been dedicated to the development of oncolytic viruses with improved specificity and potency. Such an intense wave of investigation has culminated this year in the regulatory approval by the US Food and Drug Administration (FDA) of a genetically engineered oncolytic viral strain for use in melanoma patients. Here, we summarize recent preclinical and clinical advances in oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan Pol
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Norma Bloy
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | | | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | | | | | - Catherine Sautès-Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
50
|
Jakeman PG, Hills TE, Fisher KD, Seymour LW. Macrophages and their interactions with oncolytic viruses. Curr Opin Pharmacol 2015; 24:23-9. [PMID: 26164569 DOI: 10.1016/j.coph.2015.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 11/24/2022]
Abstract
Macrophages are a highly plastic cell type and exhibit a range of defensive and regulatory functions in normal physiology. Phagocytic macrophages play an important role in defending against virus infection and they provide an important barrier that can limit the delivery of therapeutic viruses from the injection to the tumour. Within tumours, macrophages generally adopt an immunosuppressive phenotype and are associated with poor clinical prognosis. However their plasticity also provides the opportunity for therapeutic 're-education' of tumour-associated macrophages (TAMs) to adopt an active anticancer role. Oncolytic viruses present the possibility for non-specific stimulation of TAMs, and also the option for tumour-targeted expression of cytokines chosen specifically to modulate macrophage activation.
Collapse
Affiliation(s)
| | - Thomas E Hills
- Department of Oncology, University of Oxford, OX3 7DQ, UK
| | - Kerry D Fisher
- Department of Oncology, University of Oxford, OX3 7DQ, UK
| | | |
Collapse
|