1
|
Li T, Zhang W, Wang J, Liu B, Gao Q, Zhang J, Qian H, Pan J, Liu M, Huang Q, Fang A, Zhang Q, Gong X, Cui R, Liang Y, Lu Q, Wu W, Chi Z. Circulating Small Extracellular Vesicles Involved in Systemic Regulation Respond to RGC Degeneration in Glaucoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309307. [PMID: 38923329 PMCID: PMC11348076 DOI: 10.1002/advs.202309307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/14/2024] [Indexed: 06/28/2024]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by progressive retinal ganglion cell (RGC) degeneration and vision loss. Since irreversible neurodegeneration occurs before diagnosable, early diagnosis and effective neuroprotection are critical for glaucoma management. Small extracellular vesicles (sEVs) are demonstrated to be potential novel biomarkers and therapeutics for a variety of diseases. In this study, it is found that intravitreal injection of circulating plasma-derived sEVs (PDEV) from glaucoma patients ameliorated retinal degeneration in chronic ocular hypertension (COH) mice. Moreover, it is found that PDEV-miR-29s are significantly upregulated in glaucoma patients and are associated with visual field defects in progressed glaucoma. Subsequently, in vivo and in vitro experiments are conducted to investigate the possible function of miR-29s in RGC pathophysiology. It is showed that the overexpression of miR-29b-3p effectively prevents RGC degeneration in COH mice and promotes the neuronal differentiation of human induced pluripotent stem cells (hiPSCs). Interestingly, engineered sEVs with sufficient miR-29b-3p delivery exhibit more effective RGC protection and neuronal differentiation efficiency. Thus, elevated PDEV-miR-29s may imply systemic regulation to prevent RGC degeneration in glaucoma patients. This study provides new insights into PDEV-based glaucoma diagnosis and therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Wen‐Meng Zhang
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Jie Wang
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Bai‐Jing Liu
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Qiao Gao
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Jing Zhang
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Hai‐Dong Qian
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Jun‐Yi Pan
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Ming Liu
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Qing Huang
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Ai‐Wu Fang
- National Clinical Research Center for Ocular DiseasesEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Qi Zhang
- National Clinical Research Center for Ocular DiseasesEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian‐Hui Gong
- National Clinical Research Center for Ocular DiseasesEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Ren‐Zhe Cui
- Department of OphthalmologyAffiliated Hospital of Yanbian UniversityYanji136200China
| | - Yuan‐Bo Liang
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
- National Clinical Research Center for Ocular DiseasesEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Qin‐Kang Lu
- Department of OphthalmologyYinzhou People's HospitalMedical School of Ningbo UniversityNingbo315040China
| | - Wen‐Can Wu
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
- National Clinical Research Center for Ocular DiseasesEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Zai‐Long Chi
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
- National Clinical Research Center for Ocular DiseasesEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| |
Collapse
|
2
|
Mabrouk M, Ismail E, Beherei H, Abo-Elfadl MT, Salem ZA, Das DB, AbuBakr N. Biocompatibility of hydroxyethyl cellulose/glycine/RuO 2 composite scaffolds for neural-like cells. Int J Biol Macromol 2022; 209:2097-2108. [PMID: 35504415 DOI: 10.1016/j.ijbiomac.2022.04.190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
Fabrication of scaffolds for nerve regeneration is one of the most challenging topics in regenerative medicine at the moment, which is also interlinked with the development of biocompatible substrates for cells growth. This work is targeted towards the development of green biomaterial composite scaffolds for nerve cell culture applications. Hybrid scaffolds of hydroxyethyl cellulose/glycine (HEC/Gly) composite doped with different concentrations of green ruthenium oxide (RuO2) were synthesized and characterized via a combination of different techniques. X-rays diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed a crystalline nature for all the samples with noticeable decrease in the peak intensity of the fabricated scaffolds as compared to that for pure glycine. Fourier transform infrared spectroscopy (FTIR) tests revealed an increase in the vibrational bands of the synthesized RuO2 containing scaffolds which are related to the functional groups of the natural plant extract (Aspalathuslinearis) used for RuO2 nanoparticles (NPs) synthesis. Scanning electron microscopy (SEM) results revealed a 3D porous structure of the scaffolds with variant features attributed to the concentration of RuO2 NPs in the scaffold. The compressive test results recorded an enhancement in mechanical properties of the fabricated scaffolds (up to 8.55 MPa), proportionally correlated to increasing the RuO2 NPs concentration in HEC/Gly composite scaffold. Our biocompatibility tests revealed that the composite scaffolds doped with 1 and 2 ml of RuO2 demonstrated the highest proliferation percentages (152.2 and 135.6%) compared to control. Finally, the SEM analyses confirmed the impressive cells attachments and differentiation onto the scaffold surfaces as evidenced by the presence of many neuron-like cells with apparent cell bodies and possessing few short neurite-like processes. The presence of RuO2 and glycine was due to their extraordinary biocompatibility due to their cytoprotective and regenerative effects. Therefore, we conclude that these scaffolds are promising for accommodation and growth of neural-like cells.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33El Bohouth St. (former EL Tahrir St.), Dokki, Giza, P.O.12622, Egypt.
| | - Enas Ismail
- Department of Restorative Dentistry, Faculty of Dentistry, University of the Western Cape, Cape Town 7505, South Africa; Physics Department, Faculty of Science (Girl's branch), Al Azhar University, Nasr City, Cairo, Egypt
| | - Hanan Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33El Bohouth St. (former EL Tahrir St.), Dokki, Giza, P.O.12622, Egypt.
| | - Mahmoud T Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt; Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Zeinab A Salem
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt; Faculty of Oral and Dental Medicine, Ahram Canadian University, Cairo, Egypt
| | - Diganta B Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, Leicestershire, UK
| | - Nermeen AbuBakr
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt; Stem Cells and Tissue Engineering Unit, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Jalali H, Golchin H, Sadri Z, Karimzadeh Bardei L, Nabiuni M. Selenium enhances the expression of miR-9, miR-124 and miR-29a during neural differentiation of bone marrow mesenchymal stem cells. J Trace Elem Med Biol 2022; 69:126898. [PMID: 34800856 DOI: 10.1016/j.jtemb.2021.126898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/22/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Selenium (Se) is a trace element that plays important role in antioxidant defense in the brain. Sodium selenite (Na2SeO3) is an inorganic salt of Se which has an antioxidant function. In the present study, we investigated the effect of Sodium selenite on the expression of important neuronal microRNAs during neural differentiation of bone marrow-derived stem cells (BMSCs). METHODS Mesenchymal stem cells were collected from rat bone marrow and cultured in the Dulbecco's Modified Eagle Medium (DMEM) medium. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay was conducted to determine the toxicity of Na2SeO3. For neural induction, BMSCs were divided into control, Na2SeO3 containing (10 ng/mL) and Na2SeO3 free groups and cultured in DMEM medium supplemented with Isobutyl-l-methylxanthine (IBMX), Fibroblast growth factor 2 (FGF2), B27, Retinoic acid, and brain derived neurotrophic factor (BDNF) for 14 days. At the end of the differentiation, immunostaining against Microtubule associated protein 2 (Map-2) and Choline acetyltransferase (ChAT) proteins was performed. Also, the total RNA is extracted from control and neural differentiated cells using a special kit, and the expression of miR-9, miR-124, and miR-29a was analyzed using real-time polymerase chain reaction (RT-PCR). RESULTS Increasing Na2SeO3 concentrations had increasing toxicity; therefore, the concentration of 10 ng/mL was used as a supplement during neural differentiation. Examination of the expression of Map-2 and ChAT proteins showed that Na2SeO3 increased the expression of them and consequently the neuronal differentiation of BMSCs. Na2SeO3 also significantly increased the expression of miR-9, miR-124, and miR-29a in BMSCs undergoing neuronal differentiation. CONCLUSIONS Our results suggest that the protective effect of selenium on neural differentiation of stem cells may be mediated through neuron specific microRNAs. This result further highlights the importance of selenium supplementation in preventing neuronal diseases.
Collapse
Affiliation(s)
- Hanieh Jalali
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, No. 43, South Moffateh Ave., Tehran, 15719-14911, Iran.
| | - Hasti Golchin
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, No. 43, South Moffateh Ave., Tehran, 15719-14911, Iran.
| | - Zahra Sadri
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, No. 43, South Moffateh Ave., Tehran, 15719-14911, Iran.
| | - Latifeh Karimzadeh Bardei
- School of Biology, College of Science, University of Tehran, Engelab Ave., Tehran, 14155-6655, Iran.
| | - Mohammad Nabiuni
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, No. 43, South Moffateh Ave., Tehran, 15719-14911, Iran.
| |
Collapse
|
4
|
Dräger O, Metz K, Busch M, Dünker N. Role of L1CAM in retinoblastoma tumorigenesis: identification of novel therapeutic targets. Mol Oncol 2021; 16:957-981. [PMID: 34228897 PMCID: PMC8847994 DOI: 10.1002/1878-0261.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022] Open
Abstract
The study presented focuses on the role of the neuronal cell adhesion molecule L1 cell adhesion molecule (L1CAM) in retinoblastoma (RB), the most common malignant intraocular childhood tumor. L1CAM is differentially expressed in a variety of human cancers and has been suggested as a promising therapeutic target. We likewise observed differential expression patterns for L1CAM in RB cell lines and patient samples. The two proteases involved in ectodomain shedding of L1CAM (L1CAM sheddases: ADAM10 and ADAM17) were likewise differentially expressed in the RB cell lines investigated, and an involvement in L1CAM processing in RB cells could be verified. We also identified ezrin, galectin-3, and fibroblast growth factor basic as L1CAM signaling target genes in RB cells. Lentiviral L1CAM knockdown induced apoptosis and reduced cell viability, proliferation, growth, and colony formation capacity of RB cells, whereas L1CAM-overexpressing RB cells displayed the opposite effects. Chicken chorioallantoic membrane assays revealed that L1CAM depletion decreases the tumorigenic and migration potential of RB cells in vivo. Moreover, L1CAM depletion decreased viability and tumor growth of etoposide-resistant RB cell lines upon etoposide treatment in vitro and in vivo. Thus, L1CAM and its processing sheddases are potential novel targets for future therapeutic RB approaches.
Collapse
Affiliation(s)
- Oliver Dräger
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| | - Klaus Metz
- Institute of Pathology, University of Duisburg-Essen, Medical Faculty, Germany
| | - Maike Busch
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| | - Nicole Dünker
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| |
Collapse
|
5
|
A Two-Stage Process for Differentiation of Wharton's Jelly-Derived Mesenchymal Stem Cells into Neuronal-like Cells. Stem Cells Int 2021; 2021:6631651. [PMID: 34135973 PMCID: PMC8177978 DOI: 10.1155/2021/6631651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/29/2021] [Accepted: 05/15/2021] [Indexed: 11/29/2022] Open
Abstract
With no permanent cure for neurodegenerative diseases, the symptoms reappear shortly after the withdrawal of medicines. A better treatment outcome can be expected if the damaged neurons are partly replaced by functional neurons and/or they are repaired using trophic factors. In this regard, safe cell therapy has been considered as a potential alternative to conventional treatment. Here, we have described a two-stage culture process to differentiate Wharton Jelly mesenchymal stem cells (WJ-MSCs) into neuronal-like cells in the presence of various cues involved in neurogenesis. The fate of cells at the end of each stage was analyzed at the morphometric, transcriptional, and translational levels. In the first stage of priming, constitutively, wingless-activated WJ-MSCs crossed the lineage boundary in favor of neuroectodermal lineage, identified by the loss of mesenchymal genes with concomitant expression of neuron-specific markers, like SOX1, PAX6, NTRK1, and NEUROD2. Neuronal-like cells formed in the second stage expressed many mature neuronal proteins like Map2, neurofilament, and Tuj1 and possessed axon hillock-like structures. In conclusion, the differentiation of a large number of neuronal-like cells from nontumorigenic and trophic factors secreting WJ-MSCs promises the development of a therapeutic strategy to treat neurodegenerative diseases.
Collapse
|
6
|
Yan Z, Shi X, Wang H, Si C, Liu Q, Du Y. Neurotrophin-3 Promotes the Neuronal Differentiation of BMSCs and Improves Cognitive Function in a Rat Model of Alzheimer's Disease. Front Cell Neurosci 2021; 15:629356. [PMID: 33642999 PMCID: PMC7902862 DOI: 10.3389/fncel.2021.629356] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) has the potential to be developed into an effective treatment for neurodegenerative diseases such as Alzheimer's disease (AD). However, the therapeutic effects of BMSCs are limited by their low neural differentiation rate. We transfected BMSCs with neurotrophin-3 (NT-3), a neurotrophic factor that promotes neuronal differentiation, and investigated the effects of NT-3 gene overexpression on the differentiation of BMSCs into neurons in vitro and in vivo. We further studied the possible molecular mechanisms. We found that overexpression of NT-3 promoted the differentiation of BMSCs into neurons in vitro and in vivo and improved cognitive function in rats with experimental AD. By contrast, silencing NT-3 inhibited the differentiation of BMSCs and decreased cognitive function in rats with AD. The Wnt/β-catenin signaling pathway was involved in the mechanism by which NT-3 gene modification influenced the neuronal differentiation of BMSCs in vitro and in vivo. Our findings support the prospect of using NT-3-transduced BMSCs for the development of novel therapies for AD.
Collapse
Affiliation(s)
- Zhongrui Yan
- Departments of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Neurology, Jining No. 1 People's Hospital, Jining, China
| | - Xianjing Shi
- Department of Neurology, Jining No. 1 People's Hospital, Jining, China
| | - Hui Wang
- Department of Neurology, Jining No. 1 People's Hospital, Jining, China
| | - Cuiping Si
- Department of Neurology, Jining No. 1 People's Hospital, Jining, China
| | - Qian Liu
- Department of Neurology, Jining No. 1 People's Hospital, Jining, China
| | - Yifeng Du
- Departments of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Departments of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Xia X, Teotia P, Ahmad I. miR-29c regulates neurogliogenesis in the mammalian retina through REST. Dev Biol 2019; 450:90-100. [PMID: 30914322 DOI: 10.1016/j.ydbio.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
In the developing central nervous system, including its simple and accessible model retina, neurogenesis is followed by gliogenesis. However, the mechanism underlying the neurogliogenic switch remains poorly understood despite the identification of several regulatory genes, associated with the lineage identity and transition. The mechanism may involve cross talks between regulatory genes, facilitated through microRNAs. Here, we posit miR-29c as one of the regulatory miRNAs that may influence neuronal versus glial differentiation. We observed that the temporal patterns of miR-29c expression corresponded with late retinal histogenesis, the stage in the developing retina when neurogliogenic decision predominantly occurs. Examination of the effects of miR-29c on neurogliogenesis by the perturbation of function approach revealed that miR-29c preferentially facilitated differentiation of late RPCs into rod photoreceptors and bipolar cells, the late-born neurons, at the expense of Müller glia, the sole glia generated by retinal progenitor cells. We further observed that miR-29c facilitated neurogenesis and inhibited gliogenesis by regulating the expression of RE-1 silencing transcription factor (REST), which encodes a transcriptional repressor of cell cycle regulators and neuronal genes. Thus, miR-29c may influence neurogliogenic decision in the developing retina by regulating the instructive out put of a molecular axis helmed by REST.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Pooja Teotia
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Iqbal Ahmad
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
8
|
Wei ZJ, Fan BY, Liu Y, Ding H, Tang HS, Pan DY, Shi JX, Zheng PY, Shi HY, Wu H, Li A, Feng SQ. MicroRNA changes of bone marrow-derived mesenchymal stem cells differentiated into neuronal-like cells by Schwann cell-conditioned medium. Neural Regen Res 2019; 14:1462-1469. [PMID: 30964074 PMCID: PMC6524508 DOI: 10.4103/1673-5374.253532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and identified differentially expressed microRNAs in bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium, and explored targets and related pathways involved in their differentiation into neuronal-like cells. Primary bone marrow-derived mesenchymal stem cells were isolated from femoral and tibial bones, while primary Schwann cells were isolated from bilateral saphenous nerves. Bone marrow-derived mesenchymal stem cells were cultured in unconditioned (control group) and Schwann cell-conditioned medium (bone marrow-derived mesenchymal stem cell + Schwann cell group). Neuronal differentiation of bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium was observed by time-lapse imaging. Upon induction, the morphology of bone marrow-derived mesenchymal stem cells changed into a neural shape with neurites. Results of quantitative reverse transcription-polymerase chain reaction revealed that nestin mRNA expression was upregulated from 1 to 3 days and downregulated from 3 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. Compared with the control group, microtubule-associated protein 2 mRNA expression gradually increased from 1 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. After 7 days of induction, microRNA analysis identified 83 significantly differentially expressed microRNAs between the two groups. Gene Ontology analysis indicated enrichment of microRNA target genes for neuronal projection development, regulation of axonogenesis, and positive regulation of cell proliferation. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that Hippo, Wnt, transforming growth factor-beta, and Hedgehog signaling pathways were potentially associated with neural differentiation of bone marrow-derived mesenchymal stem cells. This study, which carried out successful microRNA analysis of neuronal-like cells differentiated from bone marrow-derived mesenchymal stem cells by Schwann cell induction, revealed key microRNAs and pathways involved in neural differentiation of bone marrow-derived mesenchymal stem cells. All protocols were approved by the Animal Ethics Committee of Institute of Radiation Medicine, Chinese Academy of Medical Sciences on March 12, 2017 (approval number: DWLI-20170311).
Collapse
Affiliation(s)
- Zhi-Jian Wei
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bao-You Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Han Ding
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao-Shuai Tang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Da-Yu Pan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jia-Xiao Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng-Yuan Zheng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-Yu Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Heng Wu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ang Li
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Shi-Qing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
9
|
Ng TK, Yang Q, Fortino VR, Lai NYK, Carballosa CM, Greenberg JM, Choy KW, Pelaez D, Pang CP, Cheung HS. MicroRNA-132 directs human periodontal ligament-derived neural crest stem cell neural differentiation. J Tissue Eng Regen Med 2019; 13:12-24. [PMID: 30352481 DOI: 10.1002/term.2759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/02/2018] [Accepted: 10/18/2018] [Indexed: 02/05/2023]
Abstract
Neurogenesis is the basis of stem cell tissue engineering and regenerative medicine for central nervous system (CNS) disorders. We have established differentiation protocols to direct human periodontal ligament-derived stem cells (PDLSCs) into neuronal lineage, and we recently isolated the neural crest subpopulation from PDLSCs, which are pluripotent in nature. Here, we report the neural differentiation potential of these periodontal ligament-derived neural crest stem cells (NCSCs) as well as its microRNA (miRNA) regulatory mechanism and function in NCSC neural differentiation. NCSCs, treated with basic fibroblast growth factor and epidermal growth factor-based differentiation medium for 24 days, expressed neuronal and glial markers (βIII-tubulin, neurofilament, NeuN, neuron-specific enolase, GFAP, and S100) and exhibited glutamate-induced calcium responses. The global miRNA expression profiling identified 60 upregulated and 19 downregulated human miRNAs after neural differentiation, and the gene ontology analysis of the miRNA target genes confirmed the neuronal differentiation-related biological functions. In addition, overexpression of miR-132 in NCSCs promoted the expression of neuronal markers and downregulated ZEB2 protein expression. Our results suggested that the pluripotent NCSCs from human periodontal ligament can be directed into neural lineage, which demonstrate its potential in tissue engineering and regenerative medicine for CNS disorders.
Collapse
Affiliation(s)
- Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
- Geriatric Research, Education and Clinical Center, Miami Veterans Affairs Medical Center, Miami, Florida
| | - Qichen Yang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| | - Veronica R Fortino
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, Florida
| | - Nikky Yuk-Ki Lai
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| | - Carlos M Carballosa
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida
| | - Jordan M Greenberg
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Daniel Pelaez
- Geriatric Research, Education and Clinical Center, Miami Veterans Affairs Medical Center, Miami, Florida
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, Florida
| | - Chi Pui Pang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| | - Herman S Cheung
- Geriatric Research, Education and Clinical Center, Miami Veterans Affairs Medical Center, Miami, Florida
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida
| |
Collapse
|
10
|
Yin H, Shen L, Xu C, Liu J. Lentivirus-Mediated Overexpression of miR-29a Promotes Axonal Regeneration and Functional Recovery in Experimental Spinal Cord Injury via PI3K/Akt/mTOR Pathway. Neurochem Res 2018; 43:2038-2046. [PMID: 30173324 DOI: 10.1007/s11064-018-2625-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/24/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
MicroRNAs as a novel class of endogenous small non-coding RNAs, modulate negative gene expression at the post-transcriptional level. Our previous work has demonstrated that miR-29a reduces PTEN expression by directly targeting the 3'-UTRs (untranslated regions) of its mRNA, thus promoting neurite outgrowth. To further confirm the role of miR-29a in the recovery of SCI and its potential mechanisms, a recombinant lentiviral vector was used to promote miR-29a expression in the injured spinal cord. As compared with the LV-eGFP group and normal saline group, a significantly increased level of miR-29a expression and a markedly decreased level of PTEN expression were observed in the LV-miR-29a group. Overexpression of miR-29a increased the phosphorylation of two proteins (Akt and S6) of PI3K-AKT-mTOR signaling pathway and the expression of axonal regeneration associated key marker protein (neurofiament-200). Moreover, quantitative imaging analysis was performed to confirm that LV-miR-29a group expressed axonal regeneration at 4.0 ± 0.2-fold as much as the other two groups. Besides, miR-29a overexpression promoted hindlimb motor functional recovery. Collectively, these results suggested that miR-29a may be an important regulator for axon regeneration, and a potential therapeutic target for SCI recovery.
Collapse
Affiliation(s)
- Hua Yin
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.,Department of Orthopedics, The Jintan Affiliated Hospital of Jiangsu University, Jintan, 213200, Jiangsu, China
| | - Liming Shen
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Chao Xu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Jinbo Liu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
11
|
REST, regulated by RA through miR-29a and the proteasome pathway, plays a crucial role in RPC proliferation and differentiation. Cell Death Dis 2018; 9:444. [PMID: 29670089 PMCID: PMC5906654 DOI: 10.1038/s41419-018-0473-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 01/07/2023]
Abstract
One of the primary obstacles in the application of retinal progenitor cells (RPCs) to the treatment of retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), is their limited ability to proliferate and differentiate into specific retinal neurons. In this study, we revealed that repressor element-1-silencing transcription factor (REST), whose expression could be transcriptionally and post-transcriptionally mediated by retinoic acid (RA, one isomeride of a vitamin A derivative used as a differentiation-inducing agent in many disease treatments), plays a pivotal role in the regulation of proliferation and differentiation of RPCs. Our results show that direct knockdown of endogenous REST reduced RPC proliferation but accelerated RPC differentiation toward retinal neurons, which phenocopied the observed effects of RA on RPCs. Further studies disclosed that the expression level of REST could be downregulated by RA not only through upregulating microRNA (miR)-29a, which directly interacted with the 3′-untranslated region (3′-UTR) of the REST mRNA, but also through promoting REST proteasomal degradation. These results show us a novel functional protein, REST, which regulates RPC proliferation and differentiation, can be mediated by RA. Understanding the mechanisms of REST and RA in RPC fate determination enlightens a promising future for the application of REST and RA in the treatment of retinal degeneration diseases.
Collapse
|
12
|
He H, Li W, Peng M, Qin J, Shi J, Li H, Tian M, Zhang X, Lv G, Jin G. MicroRNA expression profiles of neural stem cells following valproate inducement. J Cell Biochem 2018; 119:6204-6215. [PMID: 29575035 DOI: 10.1002/jcb.26831] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/28/2018] [Indexed: 12/18/2022]
Abstract
Neural stem cells (NSCs) possess self-renewal and multilineage differentiation ability, thus are considered to be a potential source for cell replacement therapy of many nervous system diseases, such as neurodegenerative diseases. Valproate (VPA), a member of histone deacetylase inhibitor family, is an epigenetic regulator and can promote NSCs to differentiate into neurons, nevertheless, the underlying mechanisms of the process remain unclear. MicroRNAs (miRNAs) exert a crucial part in the posttranscriptional regulation of gene expression. Epigenetic mechanisms involve in the regulation of miRNAs expression. Therefore we speculated that miRNAs may be important factors during the promotion of neuronal differentiation by VPA. Here, after selecting appropriate concentration and treatment time of VPA, we conducted microRNA arrays at 24 h on the treatment of 1 mM VPA or vehicle. After validation, we obtained 5 significantly upregulated miRNAs (miR-29a-5p, miR-674-5p, miR-155-5p, miR-652-3p, and miR-210-3p) in VPA group compared with control. We predicted the target genes of these miRNAs on the website. Through gene ontology (GO) and pathway analyses, we obtained preliminary comprehension of the function of these genes. The bioinformatics analyses indicated the involvement of them during neurogenesis. In addition, we observed high expression of miR-210-3p, miR-29a-5p, and miR-674-5p in central nervous system, which suggested that they were likely to play crucial roles in neuronal differentiation. We then defined the upregulation of Map2 by transfecting mimic of miR-674-5p, which indicated the promotion of miR-674-5p on NSCs differentiation. The present study explored the miRNAs potentially mediated the function of VPA on promoting NSCs to differentiate into neurons.
Collapse
Affiliation(s)
- Hui He
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Wen Li
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Min Peng
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Jianbing Qin
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Jinhong Shi
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Haoming Li
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Meiling Tian
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Xinhua Zhang
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Guangming Lv
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China.,Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, PR China
| | - Guohua Jin
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China.,Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, PR China
| |
Collapse
|
13
|
Zhang Y, Shen B, Zhang D, Wang Y, Tang Z, Ni N, Jin X, Luo M, Sun H, Gu P. miR-29a regulates the proliferation and differentiation of retinal progenitors by targeting Rbm8a. Oncotarget 2018; 8:31993-32008. [PMID: 28404883 PMCID: PMC5458264 DOI: 10.18632/oncotarget.16669] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Abstract
During development, tight regulation of the expansion of retinal progenitor cells (RPCs) and their differentiation into neuronal and glial cells is important for retinal formation and function. Our study demonstrated that microRNA (miR)-29a modulated the proliferation and differentiation of RPCs by suppressing RBM8A (one of the factors in the exon junction complex). Particularly, overexpression of miR-29a reduced RPC proliferation but accelerated RPC differentiation. By contrast, reduction of endogenous miR-29a elicited the opposite effects. Overexpression of miR-29a repressed the translation of Rbm8a, thus negatively regulating RPC proliferation and promoting the neuronal and glial differentiation of RPCs, and knockdown of endogenous Rbm8a phenocopied the observed effects of miR-29a overexpression. Furthermore, a luciferase reporter assay showed that miR-29a directly interacted with the Rbm8a mRNA 3′UTR, which indicated that Rbm8a is the direct target of miR-29a. To further verify the result, co-overexpression of the Rbm8a 3′ UTR-wt (plasmids into which the Rbm8a 3′ UTR sequence had been introduced) and miR-29a in RPCs rescued the phenotype associated with miR-29a overexpression, reversing the promotion of differentiation and inhibition of proliferation. These results show a novel mechanism by which miR-29a regulates the proliferation and differentiation of RPCs through Rbm8a.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Bingqiao Shen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Dandan Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Yuyao Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Zhimin Tang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Xiaoliang Jin
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Min Luo
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Hao Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
14
|
Zammit V, Baron B, Ayers D. MiRNA Influences in Neuroblast Modulation: An Introspective Analysis. Genes (Basel) 2018; 9:genes9010026. [PMID: 29315268 PMCID: PMC5793179 DOI: 10.3390/genes9010026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB) is the most common occurring solid paediatric cancer in children under the age of five years. Whether of familial or sporadic origin, chromosome abnormalities contribute to the development of NB and cause dysregulation of microRNAs (miRNAs). MiRNAs are small non-coding, single stranded RNAs that target messenger RNAs at the post-transcriptional levels by repressing translation within all facets of human physiology. Such gene 'silencing' activities by miRNAs allows the development of regulatory feedback loops affecting multiple functions within the cell, including the possible differentiation of neural stem cell (NSC) lineage selection. Neurogenesis includes stages of self-renewal and fate specification of NSCs, migration and maturation of young neurones, and functional integration of new neurones into the neural circuitry, all of which are regulated by miRNAs. The role of miRNAs and their interaction in cellular processes are recognised aspects of cancer genetics, and miRNAs are currently employed as biomarkers for prognosis and tumour characterisation in multiple cancer models. Consequently, thorough understanding of the mechanisms of how these miRNAs interplay at the transcriptomic level will definitely lead to the development of novel, bespoke and efficient therapeutic measures, with this review focusing on the influences of miRNAs on neuroblast modulations leading to neuroblastoma.
Collapse
Affiliation(s)
- Vanessa Zammit
- National Blood Transfusion Service, St. Luke's Hospital, PTA1010 G'Mangia, Malta.
- School of Biomedical Science and Physiology, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta.
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta.
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
15
|
Eve DJ, Sanberg PR, Buzanska L, Sarnowska A, Domanska-Janik K. Human Somatic Stem Cell Neural Differentiation Potential. Results Probl Cell Differ 2018; 66:21-87. [DOI: 10.1007/978-3-319-93485-3_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
16
|
MicroRNA let-7f-5p regulates neuronal differentiation of rat bone marrow mesenchymal stem cells by targeting Par6α. Biochem Biophys Res Commun 2017; 495:1476-1481. [PMID: 29155179 DOI: 10.1016/j.bbrc.2017.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022]
Abstract
Par6α (partitioning defective 6 homologue alpha), a component of the Par3/Par6/aPKC complex, was recently shown to be essential for axon specification during neuronal development. However, the biological functions and regulatory mechanisms of Par6α in the mesenchymal stem cell (MSC) differentiation process have not been investigated. In this study, we found that the expression of let-7f-5p was downregulated during differentiation of bone marrow-derived MSCs to neuron-like cells. Interestingly, Par6α was predicted to be a target gene of let-7f-5p by computerized analysis and the luciferase reporter assay. Using gain- and loss-of-function approaches, we found that expression of Par6α was inversely correlated with let-7f-5p levels during differentiation (p < 0.05). By silencing Par6α using siRNAs, we demonstrated that Par6α was necessary for MSC neuronal differentiation. Altogether, our studies proved that inhibition of let-7f-5p facilitates induction of MSCs into neuron-like cells by directly targeting Par6α.
Collapse
|
17
|
Gnanasegaran N, Govindasamy V, Kathirvaloo P, Musa S, Abu Kasim NH. Effects of cell cycle phases on the induction of dental pulp stem cells toward dopaminergic-like cells. J Tissue Eng Regen Med 2017; 12:e881-e893. [PMID: 28079995 DOI: 10.1002/term.2401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/16/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is characterized by tremors and cognitive issues, and is due to the death of dopaminergic (DA-ergic) neurons in brain circuits that are responsible for producing neurotransmitter dopamine (DA). Currently, cell replacement therapies are underway to improve upon existing therapeutic approaches such as drug treatments and electrical stimulation. Among the widely available sources, dental pulp stem cells (DPSCs) from deciduous teeth have gained popularity because of their neural crest origin and inherent propensity toward neuronal lineage. Despite the various pre-clinical studies conducted, an important factor yet to be elucidated is the influence of growth phases in a typical trans-differentiation process. This study selected DPSCs at three distinct time points with variable growth phase proportions (G0/G1, S and G2/M) for in vitro trans-differentiation into DA-ergic-like cells. Using commercially available PCR arrays, we identified distinct gene profiles pertaining to cell cycles in these phases. The differentiation outcomes were assessed in terms of morphology and gene and protein expression, as well as with functional assays. It was noted that DPSCs with the highest G0/G1 phase were comparatively the best, representing at least a 2-fold up regulation (p < 0.05) of DA-ergic molecular cues compared to those from the remaining time points. Further investigations in terms of protein expression and DA-release assays also revealed a similar phenomenon (p < 0.05). These findings are expected to provide vital information for consideration in improving standard operating procedures in future cell transplantation work. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nareshwaran Gnanasegaran
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Vijayendran Govindasamy
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Premasangery Kathirvaloo
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Sabri Musa
- Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Gnanasegaran N, Govindasamy V, Simon C, Gan QF, Vincent-Chong VK, Mani V, Krishnan Selvarajan K, Subramaniam V, Musa S, Abu Kasim NH. Effect of dental pulp stem cells in MPTP-induced old-aged mice model. Eur J Clin Invest 2017; 47:403-414. [PMID: 28369799 DOI: 10.1111/eci.12753] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/24/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic (DA-ergic) neurons in the substantia nigra (SN) and represented as a huge threat to the geriatric population. Cell replacement therapies (CRTs) have been proposed as a promising strategy to slow down or replace neuronal loss. Among the widely available cell sources, dental pulp stem cells (DPSCs) portray as an attractive source primarily due to their neural crest origin, ease of tissue procurement and less ethical hurdles. MATERIALS AND METHODS We first demonstrated the in vitro differentiation ability of DPSCs towards DA-ergic-like cells before evaluating their neuro-protection/neuro-restoration capacities in MPTP-induced mice. Transplantation via intrathecal was performed with behavioural assessments being evaluated every fortnight. Subsequent analysis investigating their immuno-modulatory behaviour was conducted using neuronal and microglial cell lines. RESULTS It was apparent that the behavioural parameters began to improve corresponding to tyrosine hydroxylase (TH), dopamine transporter (DAT) and dopamine decarboxylase (AADC) immunostaining in SN and striatum as early as 8-week post-transplantation (P < 0·05). About 60% restoration of DA-ergic neurons was observed at SN in MPTP-treated mice after 12-week post-transplantation. Similarly, their ability to reduce toxic effects of MPTP (DNA damages, reactive oxygen species and nitric oxide release) and regulate cytokine levels was distinctly noted (P < 0·05) upon exposure in in vitro model. CONCLUSIONS Our results suggest that DPSCs may provide a therapeutic benefit in the old-aged PD mice model and may be explored in stem cell-based CRTs especially in geriatric population as an attempt towards 'personalized medicine'.
Collapse
Affiliation(s)
- Nareshwaran Gnanasegaran
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Vijayendran Govindasamy
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Christopher Simon
- Faculty of Applied Sciences, AIMST University, Semeling, Bedong, Kedah, Malaysia
| | - Quan Fu Gan
- Faculty of Applied Sciences, AIMST University, Semeling, Bedong, Kedah, Malaysia
| | - Vui King Vincent-Chong
- Oral Cancer Research and Coordinating Center (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | | | - Vellayan Subramaniam
- Laboratory Animal Facility and Management (LAFAM), Faculty of Pharmacy, UiTM Puncak, Alam Selangor, Malaysia
| | - Sabri Musa
- Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Hou XQ, Wang L, Wang FG, Zhao XM, Zhang HT. Combination of RNA Interference and Stem Cells for Treatment of Central Nervous System Diseases. Genes (Basel) 2017; 8:genes8050135. [PMID: 28481269 PMCID: PMC5448009 DOI: 10.3390/genes8050135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/31/2022] Open
Abstract
RNA interference (RNAi), including microRNAs, is an important player in the mediation of differentiation and migration of stem cells via target genes. It is used as a potential strategy for gene therapy for central nervous system (CNS) diseases. Stem cells are considered vectors of RNAi due to their capacity to deliver RNAi to other cells. In this review, we discuss the recent advances in studies of RNAi pathways in controlling neuronal differentiation and migration of stem cells. We also highlight the utilization of a combination of RNAi and stem cells in treatment of CNS diseases.
Collapse
Affiliation(s)
- Xue-Qin Hou
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
| | - Lei Wang
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
| | - Fu-Gang Wang
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
| | - Xiao-Min Zhao
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
| | - Han-Ting Zhang
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA.
| |
Collapse
|
20
|
Wang Q, Xu C, Zhao Y, Xu Z, Zhang Y, Jiang J, Yan B, Gu D, Wu M, Wang Y, Liu H. miR-26b-3p Regulates Human Umbilical Cord-Derived Mesenchymal Stem Cell Proliferation by Targeting Estrogen Receptor. Stem Cells Dev 2016; 25:415-26. [PMID: 26723394 DOI: 10.1089/scd.2015.0267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUC-MSC) have been considered as promising candidates for cell-based regeneration medicine. However, the application was limited to its poor in vitro proliferation ability against the huge demand of cells. MicroRNA plays important roles in the regulation of cell proliferation, apoptosis, and differentiation. The objective of this study is to explore the roles of miRNAs in regulating the in vitro proliferation of hUC-MSC and unveil their possible mechanism. In this study, we found that miR-26b-3p was significantly upregulated during serial in vitro passage of hUC-MSC and was correlated with cellular senescence and cell cycle genes. The overexpression of miR-26b-3p greatly inhibited the proliferation of hUC-MSC in vitro, which is indicated by 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, cell cycle, and cell growth curve analyses. miR-26b-3p suppression partly rescued this phenotype by maintaining its proliferation ability in vitro. For mechanism studies, we predicted and validated that miR-26b-3p suppresses estrogen receptor 1 (ESR1) expression by directly binding to the coding sequence (CDS) region of its message RNA (mRNA), thus subsequently changing the expression of its downstream effector Cyclin D1. In conclusion, we found that miR-26b-3p played an important role in the regulation of hUC-MSC proliferation in vitro by targeting the ESR-CCND1 pathway.
Collapse
Affiliation(s)
- Qiaoling Wang
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China
| | - Chen Xu
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China .,3 Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University , Shanghai, People's Republic of China
| | - Yunpeng Zhao
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China
| | - Zhenyu Xu
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China
| | - Yan Zhang
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China
| | - Junfeng Jiang
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China
| | - Binghao Yan
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China
| | - Daolan Gu
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China
| | - Minjuan Wu
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China
| | - Yue Wang
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China
| | - Houqi Liu
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China
| |
Collapse
|
21
|
Mohd Ali N, Boo L, Yeap SK, Ky H, Satharasinghe DA, Liew WC, Ong HK, Cheong SK, Kamarul T. Probable impact of age and hypoxia on proliferation and microRNA expression profile of bone marrow-derived human mesenchymal stem cells. PeerJ 2016; 4:e1536. [PMID: 26788424 PMCID: PMC4715434 DOI: 10.7717/peerj.1536] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/05/2015] [Indexed: 12/25/2022] Open
Abstract
Decline in the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSC) is often seen with older donors as compared to young. Although hypoxia is known as an approach to improve the therapeutic potential of MSC in term of cell proliferation and differentiation capacity, its effects on MSC from aged donors have not been well studied. To evaluate the influence of hypoxia on different age groups, MSC from young (<30 years) and aged (>60 years) donors were expanded under hypoxic (5% O2) and normal (20% O2) culture conditions. MSC from old donors exhibited a reduction in proliferation rate and differentiation potential together with the accumulation of senescence features compared to that of young donors. However, MSC cultured under hypoxic condition showed enhanced self-renewing and proliferation capacity in both age groups as compared to normal condition. Bioinformatic analysis of the gene ontology (GO) and KEGG pathway under hypoxic culture condition identified hypoxia-inducible miRNAs that were found to target transcriptional activity leading to enhanced cell proliferation, migration as well as decrease in growth arrest and apoptosis through the activation of multiple signaling pathways. Overall, differentially expressed miRNA provided additional information to describe the biological changes of young and aged MSCs expansion under hypoxic culture condition at the molecular level. Based on our findings, the therapeutic potential hierarchy of MSC according to donor’s age group and culture conditions can be categorized in the following order: young (hypoxia) > young (normoxia) > old aged (hypoxia) > old aged (normoxia).
Collapse
Affiliation(s)
- Norlaily Mohd Ali
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman , Cheras, Selangor , Malaysia
| | - Lily Boo
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman , Cheras, Selangor , Malaysia
| | - Swee Keong Yeap
- Institute of Bioscience, Universiti Putra Malaysia , Serdang, Selangor , Malaysia
| | - Huynh Ky
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Department of Agriculture Genetics and Breeding, College of Agriculture and Applied Biology, Cantho University, Cantho, Vietnam
| | - Dilan A Satharasinghe
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Woan Charn Liew
- Institute of Bioscience, Universiti Putra Malaysia , Serdang, Selangor , Malaysia
| | - Han Kiat Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman , Cheras, Selangor , Malaysia
| | - Soon Keng Cheong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia; Cryocord Sdn Bhd, Cyberjaya, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedic Center of Excellence for Research and Learning (NOCERAL), Faculty of Medicine, Universiti Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
22
|
Wang Y, Wang D, Guo D. MiR-124 Promote Neurogenic Transdifferentiation of Adipose Derived Mesenchymal Stromal Cells Partly through RhoA/ROCK1, but Not ROCK2 Signaling Pathway. PLoS One 2016; 11:e0146646. [PMID: 26745800 PMCID: PMC4706435 DOI: 10.1371/journal.pone.0146646] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/21/2015] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Some recent studies suggest that multiple miRNAs might regulate neurogenic transdifferentiation of mesenchymal stromal cells (MSCs). In the present study, we hypothesized that the miR-124 can repress the expression of RhoA upon the neurogenesis of adipose derived MSCs (ADMSCs). METHODS MiRNA expression dynamics during neurogenic transdifferentiation of ADMSCs were measured. The expression of neuron-specific enolase (NSE), Tuj-1 (Neuron-specific class III beta-tubulin) and glial fibrillary acidic protein (GFAP), as well as electrophysiological properties, were detected after neurogenic transdifferentiation. The targeting of miR-124 over RhoA was verified by dual luciferase assay, qRT-PCR and western blot. The functions of miR-124 and the RhoA/ROCK signaling pathway were studied using gain and loss of function experiments in vitro. RESULTS MiR-124 is significantly upregulated during neurogenic transdifferentiation of ADMSCs. Knockdown of endogenous miR-124 hampered neurogenic transdifferentiation and the acquired electrophysiological properties. MiR-124 could directly target RHOA mRNA and repress its expression, through which it increased the proportion of transdifferentiated (transdiff.) cells with positive NSE, Tuj-1 and GFAP. RhoA/ROCK1, but not ROCK2 is a downstream signaling pathway of miR-124 in the process of transdifferentiation. CONCLUSION MiR-124 is an important miRNA modulating neurogenic transdifferentiation of ADMSCs at least partly via the miR-124/RhoA/ROCK1 signaling pathway. These findings provided some fundamental information for future use of ADMSCs as an agent for regenerative medicine and cell therapy for neurological diseases.
Collapse
Affiliation(s)
- Ye Wang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Desheng Wang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Dawen Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- * E-mail:
| |
Collapse
|
23
|
Altevogt P, Doberstein K, Fogel M. L1CAM in human cancer. Int J Cancer 2015; 138:1565-76. [DOI: 10.1002/ijc.29658] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/19/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany and Department of Dermatology, Venereology and Allergology; University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg; Mannheim Germany
| | - Kai Doberstein
- Ovarian Cancer Research Center, Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA
| | - Mina Fogel
- Central Laboratories; Kaplan Medical Center; Rehovot Israel
| |
Collapse
|
24
|
Zhuang H, Zhang R, Zhang S, Shu Q, Zhang D, Xu G. Altered expression of microRNAs in the neuronal differentiation of human Wharton's Jelly mesenchymal stem cells. Neurosci Lett 2015; 600:69-74. [PMID: 26049006 DOI: 10.1016/j.neulet.2015.05.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/03/2015] [Accepted: 05/30/2015] [Indexed: 01/01/2023]
Abstract
Mesenchymal stem cells (MSCs) have the capacity to generate multiple tissues of mesodermal origin, and also have the potential to trans-differentiate into neurons. We isolated MSCs from the Wharton's jelly of the human umbilical cord (WJ-MSCs), and efficiently induced WJ-MSCs into neuron-like cells using a modified method. After neuronal induction for 12 days, most of WJ-MSCs expressed mature neuronal marker MAP2 (83 ± 7%), and meanwhile some adopted neuronal morphology. WJ-MSCs also expressed Nestin (34 ± 6%), NSE (30 ± 5%), and GFAP (12 ± 3%). Moreover, we used miRNA microarray to analyze the differentially expressed miRNAs in neuronal differentiation of WJ-MSCs. Microarray analysis revealed discrepant miRNA profiles in the uninduced WJ-MSCs and WJ-MSCs derived neurons. Six miRNAs were chosen for further qRT-PCR validation. Among these 6 miRNAs, four miRNAs (miR-1290, miR-26b, miR-194, and miR-124a) were up-regulated and 2 miRNAs (miR-4521 and miR-543) were down-regulated in the WJ-MSCs derived neurons. In conclusion, WJ-MSCs could be efficiently induced into neuron-like cells. More importantly, our findings suggested that miRNAs might play important roles in the neuronal differentiation of WJ-MSCs.
Collapse
Affiliation(s)
- Hong Zhuang
- Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Rong Zhang
- Research Center, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Shujie Zhang
- Research Center, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Qinmeng Shu
- Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Dan Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Mellott AJ, Devarajan K, Shinogle HE, Moore DS, Talata Z, Laurence JS, Forrest ML, Noji S, Tanaka E, Staecker H, Detamore MS. Nonviral Reprogramming of Human Wharton's Jelly Cells Reveals Differences Between ATOH1 Homologues. Tissue Eng Part A 2015; 21:1795-809. [PMID: 25760435 DOI: 10.1089/ten.tea.2014.0340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The transcription factor atonal homolog 1 (ATOH1) has multiple homologues that are functionally conserved across species and is responsible for the generation of sensory hair cells. To evaluate potential functional differences between homologues, human and mouse ATOH1 (HATH1 and MATH-1, respectively) were nonvirally delivered to human Wharton's jelly cells (hWJCs) for the first time. Delivery of HATH1 to hWJCs demonstrated superior expression of inner ear hair cell markers and characteristics than delivery of MATH-1. Inhibition of HES1 and HES5 signaling further increased the atonal effect. Transfection of hWJCs with HATH1 DNA, HES1 siRNA, and HES5 siRNA displayed positive identification of key hair cell and support cell markers found in the cochlea, as well as a variety of cell shapes, sizes, and features not native to hair cells, suggesting the need for further examination of other cell types induced by HATH1 expression. In the first side-by-side evaluation of HATH1 and MATH-1 in human cells, substantial differences were observed, suggesting that the two atonal homologues may not be interchangeable in human cells, and artificial expression of HATH1 in hWJCs requires further study. In the future, this line of research may lead to engineered systems that would allow for evaluation of drug ototoxicity or potentially even direct therapeutic use.
Collapse
Affiliation(s)
- Adam J Mellott
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas
| | | | - Heather E Shinogle
- 3Microscopy and Analytical Imaging Lab, University of Kansas, Lawrence, Kansas
| | - David S Moore
- 3Microscopy and Analytical Imaging Lab, University of Kansas, Lawrence, Kansas
| | - Zsolt Talata
- 4Department of Mathematics, University of Kansas, Lawrence, Kansas
| | - Jennifer S Laurence
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,5Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas
| | - M Laird Forrest
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,5Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas
| | - Sumihare Noji
- 6Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Eiji Tanaka
- 7Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Hinrich Staecker
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,8Department of Otolaryngology, Head and Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael S Detamore
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,9Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas
| |
Collapse
|
26
|
Kuwanon V inhibits proliferation, promotes cell survival and increases neurogenesis of neural stem cells. PLoS One 2015; 10:e0118188. [PMID: 25706719 PMCID: PMC4338147 DOI: 10.1371/journal.pone.0118188] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/05/2015] [Indexed: 02/07/2023] Open
Abstract
Neural stem cells (NSCs) have the ability to proliferate and differentiate into neurons and glia. Regulation of NSC fate by small molecules is important for the generation of a certain type of cell. The identification of small molecules that can induce new neurons from NSCs could facilitate regenerative medicine and drug development for neurodegenerative diseases. In this study, we screened natural compounds to identify molecules that are effective on NSC cell fate determination. We found that Kuwanon V (KWV), which was isolated from the mulberry tree (Morus bombycis) root, increased neurogenesis in rat NSCs. In addition, during NSC differentiation, KWV increased cell survival and inhibited cell proliferation as shown by 5-bromo-2-deoxyuridine pulse experiments, Ki67 immunostaining and neurosphere forming assays. Interestingly, KWV enhanced neuronal differentiation and decreased NSC proliferation even in the presence of mitogens such as epidermal growth factor and fibroblast growth factor 2. KWV treatment of NSCs reduced the phosphorylation of extracellular signal-regulated kinase 1/2, increased mRNA expression levels of the cyclin-dependent kinase inhibitor p21, down-regulated Notch/Hairy expression levels and up-regulated microRNA miR-9, miR-29a and miR-181a. Taken together, our data suggest that KWV modulates NSC fate to induce neurogenesis, and it may be considered as a new drug candidate that can regenerate or protect neurons in neurodegenerative diseases.
Collapse
|