1
|
Deng JY, Wang YJ, Chen LF, Luo T, Wang R, Chen XY. Functional trait divergence associated with heteromorphic leaves in a climbing fig. FRONTIERS IN PLANT SCIENCE 2023; 14:1261240. [PMID: 37794929 PMCID: PMC10546399 DOI: 10.3389/fpls.2023.1261240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Introduction Plants that display heteroblasty possess conspicuous variations in leaf morphology between their juvenile and adult phases, with certain species retaining juvenile-like leaves even in adulthood. Nevertheless, the ecological advantages of maintaining two or more distinct leaf types in heteroblastic plants at the adult stage remain unclear. Method The aim of this study is to examine the adaptive significance of heteroblastic leaves sampled from branches with divergent functions (sterile and fertile branches) of mature Ficus pumila individuals by comparing their morphological, anatomical, and physiological characteristics. Result Leaves on sterile branches (LSs) exhibited a significantly larger specific leaf area, thinner palisade and spongy tissues, lower chlorophyll contents, and lower light saturation points than leaves on fertile branches (LFs). These results demonstrate that LSs are better adapted to low light environments, while LFs are well equipped to take advantages of high light conditions. However, both LFs and LSs have a low light compensation point with no significant difference between them, indicating that they start to accumulate photosynthetic products under similar light conditions. Interestingly, significant higher net photosynthetic rate was detected in LFs, showing they have higher photosynthetic capacity. Furthermore, LFs produced significant more nutrients compared to LSs, which may associate to their ability of accumulating more photosynthetic products under full light conditions and higher photosynthetic capacity. Discussion Overall, we observed a pattern of divergence in morphological features of leaves on two functional branches. Anatomical and physiological features indicate that LFs have an advantage in varied light conditions, providing amounts of photosynthetic products to support the sexual reproduction, while LSs adapt to low light environments. Our findings provide evidence that heteroblasty facilitates F. pumila to utilize varying light environments, likely associated with its growth form as a climbing plant. This strategy allows the plant to allocate resources more effectively and optimize its overall fitness.
Collapse
Affiliation(s)
- Jun-Yin Deng
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yong-Jin Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Lu-Fan Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Tong Luo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Rong Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Shanghai Institute of Pollution Control & Ecological Security, Shanghai, China
| | - Xiao-Yong Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Shanghai Institute of Pollution Control & Ecological Security, Shanghai, China
| |
Collapse
|
2
|
Çetinbaş-Genç A, Toksöz O, Piccini C, Kilin Ö, Sesal NC, Cai G. Effects of UV-B Radiation on the Performance, Antioxidant Response and Protective Compounds of Hazelnut Pollen. PLANTS (BASEL, SWITZERLAND) 2022; 11:2574. [PMID: 36235440 PMCID: PMC9573160 DOI: 10.3390/plants11192574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Increasing ultraviolet (UV) radiation is expected to become a problem in hazelnut cultivation. The aim of this study is to examine the effects of UV-B on hazelnut pollen. To this end, the pollens were exposed to UV-B for 1, 2, and 3 h at distances of 10, 20, 30, and 40 cm. Groups treated for 2 h at 20 cm and 3 h at 10 and 20 cm were identified as the most affected based on the results of viability, germination, and tube elongation. Further studies on these groups showed that UV-B does not change the DPPH radical scavenging activity for all groups. However, total phenolic compounds decreased after 3 h of treatment at 10 and 20 cm, while total flavonoid compounds decreased after all treatment groups. The UV-B absorbance of cytoplasmic and cell-wall-bound fractions decreased for all groups. The UV-B absorbance of the sporopollenin-derived fraction increased after 2 h of treatment at 20 cm but decreases after treatment for 3 h at 10 and 20 cm. In summary, exposure to UV-B for different times and distances adversely affected pollen grains in terms of pollen viability, germination rate, tube length, and the level of antioxidant molecules and UV-absorbing compounds.
Collapse
Affiliation(s)
- Aslıhan Çetinbaş-Genç
- Department of Biology, Faculty of Science, Marmara University, Kadıköy, Istanbul 34722, Turkey
| | - Orçun Toksöz
- Institute of Pure and Applied Sciences, Marmara University, Istanbul 34722, Turkey
| | - Chiara Piccini
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - Özkan Kilin
- Department of Biology, Faculty of Science, Marmara University, Kadıköy, Istanbul 34722, Turkey
| | - Nüzhet Cenk Sesal
- Department of Biology, Faculty of Science, Marmara University, Kadıköy, Istanbul 34722, Turkey
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| |
Collapse
|
3
|
Tong X, Ding YY, Deng JY, Wang R, Chen XY. Source-sink dynamics assists the maintenance of a pollinating wasp. Mol Ecol 2021; 30:4695-4707. [PMID: 34347898 DOI: 10.1111/mec.16104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022]
Abstract
Dispersal that unites spatially subdivided populations into a metapopulation with source-sink dynamics is crucial for species persistence in fragmented landscapes. Understanding such dynamics for pollinators is particularly urgent owing to the ongoing global pollination crisis. Here, we investigated the population structure and source-sink dynamics of a pollinating wasp (Wiebesia sp. 3) of Ficus pumila in the Zhoushan Archipelago of China. We found significant asymmetry in the pairwise migrant numbers for 22 of 28 cases on the historical timescale, but only two on the contemporary timescale. Despite a small population size, the sole island not colonized by a superior competitor wasp (Wiebesia sp. 1) consistently behaved as a net exporter of migrants, supplying large sinks. Comparable levels of genetic diversity, with few private alleles and low genetic differentiation (total Fst : 0.03; pairwise Fst : 0.0005-0.0791), were revealed among all the islands. There was a significant isolation-by-distance pattern caused mainly by migration between the competition-free island and other islands, otherwise the pattern was negligible. The clustering analysis failed to detect multiple gene pools for the whole region. Thus, the sinks were most probably organized into a patchy population. Moreover, the estimates of effective population sizes were comparable between the two timescales. Thus the source-sink dynamics embedded within a well-connected population network may allow Wiebesia sp. 3 to persist at a competitive disadvantage. This study provides evidence that metapopulations in the real world may be complicated and changeable over time, highlighting the necessity to study such metapopulations in detail.
Collapse
Affiliation(s)
- Xin Tong
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuan-Yuan Ding
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jun-Yin Deng
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Rong Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Xiao-Yong Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| |
Collapse
|
4
|
Deng JY, Fu RH, Compton SG, Liu M, Wang Q, Yuan C, Zhang LS, Chen Y. Sky islands as foci for divergence of fig trees and their pollinators in southwest China. Mol Ecol 2020; 29:762-782. [PMID: 31943487 DOI: 10.1111/mec.15353] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 11/26/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
The dynamics of populations and their divergence over time have shaped current levels of biodiversity and in the case of the "sky islands" of mountainous southwest (SW) China have resulted in an area of exceptional botanical diversity. Ficus tikoua is a prostrate fig tree subendemic to the area that displays unique intraspecific diversity, producing figs typical of different pollination modes in different parts of its range. By combining climate models, genetic variation in populations of the tree's obligate fig wasp pollinators and distributions of the different plant phenotypes, we examined how this unusual situation may have developed. We identified three genetically distinct groups of a single Ceratosolen pollinator species that have largely parapatric distributions. The complex topography of the region contributed to genetic divergence among the pollinators by facilitating geographical isolation and providing refugia. Migration along elevations in response to climate oscillations further enhanced genetic differentiation of the three pollinator groups. Their distributions loosely correspond to the distributions of the functionally significant morphological differences in the male figs of their host plants, but postglacial expansion of one group has not been matched by spread of its associated plant phenotype, possibly due to a major river barrier. The results highlight how interplay between the complex topography of the "sky island" complex and climate change has shaped intraspecies differentiation and relationships between the plant and its pollinator. Similar processes may explain the exceptional botanical diversity of SW China.
Collapse
Affiliation(s)
- Jun-Yin Deng
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China.,Division of Genetics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Rong-Hua Fu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | | | - Mei Liu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Qin Wang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Chuan Yuan
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Lu-Shui Zhang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Yan Chen
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| |
Collapse
|
5
|
Souto‐Vilarós D, Machac A, Michalek J, Darwell CT, Sisol M, Kuyaiva T, Isua B, Weiblen GD, Novotny V, Segar ST. Faster speciation of fig‐wasps than their host figs leads to decoupled speciation dynamics: Snapshots across the speciation continuum. Mol Ecol 2019; 28:3958-3976. [DOI: 10.1111/mec.15190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel Souto‐Vilarós
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
- Biology Centre of the Czech Academy of Sciences Institute of Entomology České Budějovice Czech Republic
| | - Antonin Machac
- Center for Theoretical Study Charles University and Czech Academy of Sciences Prague Czech Republic
- Department of Ecology Charles University Prague Czech Republic
- Center for Macroecology, Evolution and Climate Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- Biodiversity Research Centre University of British Columbia Vancouver BC Canada
| | - Jan Michalek
- Biology Centre of the Czech Academy of Sciences Institute of Entomology České Budějovice Czech Republic
| | | | - Mentap Sisol
- New Guinea Binatang Research Centre Madang Papua New Guinea
| | - Thomas Kuyaiva
- New Guinea Binatang Research Centre Madang Papua New Guinea
| | - Brus Isua
- New Guinea Binatang Research Centre Madang Papua New Guinea
| | - George D. Weiblen
- Institute on the Environment University of Minnesota Saint Paul MN USA
| | - Vojtech Novotny
- Biology Centre of the Czech Academy of Sciences Institute of Entomology České Budějovice Czech Republic
- New Guinea Binatang Research Centre Madang Papua New Guinea
| | - Simon T. Segar
- Biology Centre of the Czech Academy of Sciences Institute of Entomology České Budějovice Czech Republic
- Department of Crop and Environment Sciences Harper Adams University Newport UK
| |
Collapse
|
6
|
Sun BF, Wang RW. Foundress numbers and the timing of selective events during interactions between figs and fig wasps. Sci Rep 2019; 9:3420. [PMID: 30833578 PMCID: PMC6399315 DOI: 10.1038/s41598-018-37498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/07/2018] [Indexed: 11/09/2022] Open
Abstract
In intimate mutualisms between hosts and symbionts, selection can act repeatedly over the development times of the interacting individuals. Although much is now known about the overall ecological conditions that favor the evolution of mutualism, a current challenge is to understand how natural selection acts on the number and kinds of partners to shape the evolution and stability of these interactions. Using the obligate fig-fig wasp mutualism, our experiments showed that the proportion of figs developed to maturity increased quickly to 1.0 as the number of foundresses increased, regardless of whether the foundresses carried pollen. Selection against pollen-free wasps did not occur at this early stage in fig development. Within figs that developed, the proportion of galls producing adult wasps remained high as the number of pollen-carrying foundresses increases. In contrast, the proportion of galls producing adult wasps decreased as the number of pollen-free foundresses increased. Viable seed production increased as the number or proportion of pollen-carrying foundresses increased, but the average number of wasp offspring per pollen-carrying foundress was highest when she was the sole foundress. These results show that figs and their pollinator wasps differ in how fitness effects are distributed throughout the development of the interaction and depend on the number and proportion of pollen-carrying foundresses contributing to the interaction. These results suggest that temporal fluctuations in the local number and proportion of pollen-carrying wasps available to enter figs are likely to have strong but different effects on the figs and the wasps.
Collapse
Affiliation(s)
- Bao-Fa Sun
- Center for Ecological and Environmental Sciences, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China. .,CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Rui-Wu Wang
- Center for Ecological and Environmental Sciences, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
7
|
Wang R, Yang CH, Ding YY, Tong X, Chen XY. Weak genetic divergence suggests extensive gene flow at the northeastern range limit of a dioecious Ficus species. ACTA OECOLOGICA 2018. [DOI: 10.1016/j.actao.2018.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Topographic effect on the phenology of Ficus pedunculosa var. mearnsii (Mearns fig) in its northern boundary distribution, Taiwan. Sci Rep 2017; 7:14699. [PMID: 29116109 PMCID: PMC5676713 DOI: 10.1038/s41598-017-14402-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/09/2017] [Indexed: 11/24/2022] Open
Abstract
Mearns fig grows at the edge of coastal vegetation on uplifted coral reefs, its population and mutualistic-pollinators are susceptible to the influence of extreme weather. To determine the phenology of Mearns fig and the effects of various weather events under small-scale topographic differences, phenology was conducted for 3 years and 7 months. Results showed that Mearns figs had multiple leaf and fig productions year-round. Topographic effects caused population in Frog Rock Trail and Jialeshuei, which are less than 10 km away from each other, to exhibit different phenological patterns after experiencing severe weather events. Northeast monsoons led the Jialeshuei population to show low amounts of leaves and figs in winter and the phenological production was also susceptible to disturbances by typhoons in summer. Fig reproduction in such environment was disadvantageous to maintain pollinators. Besides, topographic complex in microhabitat of Frog Rock Trail protected some individuals from these same events thus safeguard population’s survival. The phenology of Mearns fig would respond to the weather events sensitively, which serve as references for estimating the mutualism system, and as indicators of climate change.
Collapse
|
9
|
Rodriguez LJ, Bain A, Chou LS, Conchou L, Cruaud A, Gonzales R, Hossaert-McKey M, Rasplus JY, Tzeng HY, Kjellberg F. Diversification and spatial structuring in the mutualism between Ficus septica and its pollinating wasps in insular South East Asia. BMC Evol Biol 2017; 17:207. [PMID: 28851272 PMCID: PMC5576367 DOI: 10.1186/s12862-017-1034-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/04/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Interspecific interactions have long been assumed to play an important role in diversification. Mutualistic interactions, such as nursery pollination mutualisms, have been proposed as good candidates for diversification through co-speciation because of their intricate nature. However, little is known about how speciation and diversification proceeds in emblematic nursery pollination systems such as figs and fig wasps. Here, we analyse diversification in connection with spatial structuring in the obligate mutualistic association between Ficus septica and its pollinating wasps throughout the Philippines and Taiwan. RESULTS Ceratosolen wasps pollinating F. septica are structured into a set of three vicariant black coloured species, and a fourth yellow coloured species whose distribution overlaps with those of the black species. However, two black pollinator species were found to co-occur on Lanyu island. Microsatellite data on F. septica indicates the presence of three gene pools that broadly mirrors the distribution of the three black clades. Moreover, receptive fig odours, the specific message used by pollinating wasps to locate their host tree, varied among locations. CONCLUSIONS F. septica and its black pollinator clades exhibited similar geographic structuring. This could be due originally to geographic barriers leading to isolation, local adaptation, and finally co-structuring. Nevertheless, the co-occurrence of two black pollinator species on Lanyu island suggests that the parapatric distribution of the black clades is now maintained by the inability of migrating individuals of black pollinators to establish populations outside their range. On the other hand, the distribution of the yellow clade strongly suggests an initial case of character displacement followed by subsequent range extension: in our study system, phenotypic or microevolutionary plasticity has allowed the yellow clade to colonise hosts presenting distinct odours. Hence, while variation in receptive fig odours allows specificity in the interaction, this variation does not necessarily lead to coevolutionary plant-insect diversification. Globally, our results evidence evolutionary plasticity in the fig-fig wasp mutualism. This is the first documentation of the presence of two distinct processes in pollinating fig wasp diversification on a host species: the formation of vicariant species and the co-occurrence of other species over large parts of their ranges probably made possible by character displacement.
Collapse
Affiliation(s)
- Lillian Jennifer Rodriguez
- Institute of Biology, University of the Philippines, Diliman, Quezon City, Philippines
- CEFE UMR 5175, CNRS—Université de Montpellier—Université Paul-Valéry Montpellier—EPHE, Montpellier, France
- INRA, UMR 1062 CBGP, Montferrier-sur-Lez, France
| | - Anthony Bain
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Lien-Siang Chou
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Lucie Conchou
- CEFE UMR 5175, CNRS—Université de Montpellier—Université Paul-Valéry Montpellier—EPHE, Montpellier, France
- Institut d’Ecologie et des Sciences de l’Environnement de Paris—ECOSENS, INRA-UPMC, Versailles, France
| | | | - Regielene Gonzales
- Institute of Biology, University of the Philippines, Diliman, Quezon City, Philippines
| | - Martine Hossaert-McKey
- CEFE UMR 5175, CNRS—Université de Montpellier—Université Paul-Valéry Montpellier—EPHE, Montpellier, France
| | | | - Hsy-Yu Tzeng
- Department of Forestry and Natural Resources, National Chung-Hsing University, Taichung, Taiwan
| | - Finn Kjellberg
- CEFE UMR 5175, CNRS—Université de Montpellier—Université Paul-Valéry Montpellier—EPHE, Montpellier, France
| |
Collapse
|
10
|
Abstract
The displacement of a species from a habitat by actions of another is the most severe outcome of interspecific interactions. This review focuses on recent developments in the understanding of (a) ecological mechanisms that lead to displacements, (b) how outcomes of interspecific interactions are affected by the context of where and when they occur, and (c) impacts of displacements. Displacements are likely to escalate as their primary initiating factors-the spread of non-native species and environmental change-continue at unprecedented rates. Displacements typically result from interactions of multiple mechanisms, not all of which involve direct competition. Various biotic and abiotic factors mediate these mechanisms, so variable outcomes occur when the same species interact in different environments. Though replacement of one species by another has particular relevance to pest management and conservation biology, the cascading effects that displacements have in managed and natural systems are critical to understand.
Collapse
Affiliation(s)
- Yulin Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China;
| | - Stuart R Reitz
- Department of Crop and Soil Sciences, Malheur County Extension, Oregon State University, Ontario, Oregon 97914;
| |
Collapse
|
11
|
Geographic structuring into vicariant species-pairs in a wide-ranging, high-dispersal plant–insect mutualism: the case of Ficus racemosa and its pollinating wasps. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9836-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Liu M, Compton SG, Peng FE, Zhang J, Chen XY. Movements of genes between populations: are pollinators more effective at transferring their own or plant genetic markers? Proc Biol Sci 2016; 282:20150290. [PMID: 25948688 DOI: 10.1098/rspb.2015.0290] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The transfer of genes between populations is increasingly important in a world where pollinators are declining, plant and animal populations are increasingly fragmented and climate change is forcing shifts in distribution. The distances that pollen can be transported by small insects are impressive, as is the extensive gene flow between their own populations. We compared the relative ease by which small insects introduce genetic markers into their own and host-plant populations. Gene flow via seeds and pollen between populations of an Asian fig species were evaluated using cpDNA and nuclear DNA markers, and between-population gene flow of its pollinator fig wasp was determined using microsatellites. This insect is the tree's only pollinator locally, and only reproduces in its figs. The plant's pollen-to-seed dispersal ratio was 9.183-9.437, smaller than that recorded for other Ficus. The relative effectiveness of the pollinator at introducing markers into its own populations was higher than the rate it introduced markers into the plant's populations (ratio = 14 : 1), but given the demographic differences between plant and pollinator, pollen transfer effectiveness is remarkably high. Resource availability affects the dispersal of fig wasps, and host-plant flowering phenology here and in other plant-pollinator systems may strongly influence relative gene flow rates.
Collapse
Affiliation(s)
- Min Liu
- School of Ecological and Environmental Sciences, Tiantong National Station of Forest Ecosystem, East China Normal University, Shanghai 200241, People's Republic of China
| | - Stephen G Compton
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Fo-En Peng
- School of Ecological and Environmental Sciences, Tiantong National Station of Forest Ecosystem, East China Normal University, Shanghai 200241, People's Republic of China
| | - Jian Zhang
- School of Ecological and Environmental Sciences, Tiantong National Station of Forest Ecosystem, East China Normal University, Shanghai 200241, People's Republic of China
| | - Xiao-Yong Chen
- School of Ecological and Environmental Sciences, Tiantong National Station of Forest Ecosystem, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
13
|
Tian E, Nason JD, Machado CA, Zheng L, Yu H, Kjellberg F. Lack of genetic isolation by distance, similar genetic structuring but different demographic histories in a fig-pollinating wasp mutualism. Mol Ecol 2015; 24:5976-91. [DOI: 10.1111/mec.13438] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Enwei Tian
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization; South China Botanical Garden; The Chinese Academy of Sciences; Guangzhou 510650 China
| | - John D. Nason
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames IA 50011 USA
| | - Carlos A. Machado
- Department of Biology; University of Maryland; College Park MD 20742 USA
| | - Linna Zheng
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization; South China Botanical Garden; The Chinese Academy of Sciences; Guangzhou 510650 China
| | - Hui Yu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization; South China Botanical Garden; The Chinese Academy of Sciences; Guangzhou 510650 China
| | - Finn Kjellberg
- CEFE UMR 5175; CNRS; Université de Montpellier; Université Paul-Valéry Montpellier; EPHE; Montpellier France
| |
Collapse
|
14
|
Winter cropping in Ficus tinctoria: an alternative strategy. Sci Rep 2015; 5:16496. [PMID: 26560072 PMCID: PMC4642331 DOI: 10.1038/srep16496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/14/2015] [Indexed: 11/13/2022] Open
Abstract
The many species of figs (Ficus, Moraceae) have evolved a variety of reproductive phenologies that ensure the survival of both the fig plants and their short-lived, species-specific, pollinating wasps. A phenological study of 28 male and 23 female plants of a dioecious hemiepiphytic fig, Ficus tinctoria, was conducted in Xishuangbanna, SW China at the northern margin of tropical SE Asia. In contrast to other figs of seasonal climates, which have a winter low in fig production, both sexes produced their major fig crops at the coldest time of the year. Male plants released pollinators during the period when most female trees were receptive and male syconia had a long wasp-producing (D) phase, which ensured high levels of pollination. Female crops ripened at the end of the dry season, when they attracted numerous frugivorous birds and dispersed seeds can germinate with the first reliable rains. Few syconia were produced by either sex during the rest of the year, but these were sufficient to maintain local pollinator populations. We suggest that this unique phenological strategy has evolved to maximize seed dispersal and establishment in this seasonal climate.
Collapse
|
15
|
Wang R, Compton SG, Quinnell RJ, Peng YQ, Barwell L, Chen Y. Insect responses to host plant provision beyond natural boundaries: latitudinal and altitudinal variation in a Chinese fig wasp community. Ecol Evol 2015; 5:3642-56. [PMID: 26380693 PMCID: PMC4567868 DOI: 10.1002/ece3.1622] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 06/24/2015] [Accepted: 07/03/2015] [Indexed: 01/18/2023] Open
Abstract
Many plants are grown outside their natural ranges. Plantings adjacent to native ranges provide an opportunity to monitor community assembly among associated insects and their parasitoids in novel environments, to determine whether gradients in species richness emerge and to examine their consequences for host plant reproductive success. We recorded the fig wasps (Chalcidoidea) associated with a single plant resource (ovules of Ficus microcarpa) along a 1200 km transect in southwest China that extended for 1000 km beyond the tree's natural northern range margin. The fig wasps included the tree's agaonid pollinator and other species that feed on the ovules or are their parasitoids. Phytophagous fig wasps (12 species) were more numerous than parasitoids (nine species). The proportion of figs occupied by fig wasps declined with increasing latitude, as did the proportion of utilized ovules in occupied figs. Species richness, diversity, and abundance of fig wasps also significantly changed along both latitudinal and altitudinal gradients. Parasitoids declined more steeply with latitude than phytophages. Seed production declined beyond the natural northern range margin, and at high elevation, because pollinator fig wasps became rare or absent. This suggests that pollinator climatic tolerances helped limit the tree's natural distribution, although competition with another species may have excluded pollinators at the highest altitude site. Isolation by distance may prevent colonization of northern sites by some fig wasps and act in combination with direct and host-mediated climatic effects to generate gradients in community composition, with parasitoids inherently more sensitive because of declines in the abundance of potential hosts.
Collapse
Affiliation(s)
- Rong Wang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal UniversitySichuan, 621000, China
- School of Ecological and Environmental Sciences, Tiantong National Station of Forest Ecosystem, East China Normal UniversityDongchuan Road 500, Shanghai, 200241, China
- School of Biology, University of LeedsLeeds, LS2 9JT, UK
| | - Stephen G Compton
- School of Biology, University of LeedsLeeds, LS2 9JT, UK
- Department of Zoology & Entomology, Rhodes UniversityGrahamstown, 6140, South Africa
| | | | - Yan-Qiong Peng
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesKunming, 666303, China
| | - Louise Barwell
- School of Biology, University of LeedsLeeds, LS2 9JT, UK
| | - Yan Chen
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal UniversitySichuan, 621000, China
| |
Collapse
|
16
|
Zhao TT, Compton SG, Yang YJ, Wang R, Chen Y. Phenological adaptations in Ficus tikoua exhibit convergence with unrelated extra-tropical fig trees. PLoS One 2014; 9:e114344. [PMID: 25474008 PMCID: PMC4256256 DOI: 10.1371/journal.pone.0114344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/08/2014] [Indexed: 11/18/2022] Open
Abstract
Flowering phenology is central to the ecology and evolution of most flowering plants. In highly-specific nursery pollination systems, such as that involving fig trees (Ficus species) and fig wasps (Agaonidae), any mismatch in timing has serious consequences because the plants must balance seed production with maintenance of their pollinator populations. Most fig trees are found in tropical or subtropical habitats, but the dioecious Chinese Ficus tikoua has a more northerly distribution. We monitored how its fruiting phenology has adapted in response to a highly seasonal environment. Male trees (where fig wasps reproduce) had one to three crops annually, whereas many seed-producing female trees produced only one fig crop. The timing of release of Ceratosolen fig wasps from male figs in late May and June was synchronized with the presence of receptive figs on female trees, at a time when there were few receptive figs on male trees, thereby ensuring seed set while allowing remnant pollinator populations to persist. F. tikoua phenology has converged with those of other (unrelated) northern Ficus species, but there are differences. Unlike F. carica in Europe, all F. tikoua male figs contain male flowers, and unlike F. pumila in China, but like F. carica, it is the second annual generation of adult wasps that pollinate female figs. The phenologies of all three temperate fig trees generate annual bottlenecks in the size of pollinator populations and for female F. tikoua also a shortage of fig wasps that results in many figs failing to be pollinated.
Collapse
Affiliation(s)
- Ting-Ting Zhao
- Ecological Security and Protection Key laboratory of Sichuan Province, College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, Sichuan 621000, China
| | - Stephen G. Compton
- School of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| | - Yong-Jiang Yang
- Ecological Security and Protection Key laboratory of Sichuan Province, College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, Sichuan 621000, China
| | - Rong Wang
- School of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yan Chen
- Ecological Security and Protection Key laboratory of Sichuan Province, College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, Sichuan 621000, China
| |
Collapse
|