1
|
Zveik O, Rechtman A, Ganz T, Vaknin-Dembinsky A. The interplay of inflammation and remyelination: rethinking MS treatment with a focus on oligodendrocyte progenitor cells. Mol Neurodegener 2024; 19:53. [PMID: 38997755 PMCID: PMC11245841 DOI: 10.1186/s13024-024-00742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) therapeutic goals have traditionally been dichotomized into two distinct avenues: immune-modulatory-centric interventions and pro-regenerative strategies. Oligodendrocyte progenitor cells (OPCs) were regarded for many years solely in concern to their potential to generate oligodendrocytes and myelin in the central nervous system (CNS). However, accumulating data elucidate the multifaceted roles of OPCs, including their immunomodulatory functions, positioning them as cardinal constituents of the CNS's immune landscape. MAIN BODY In this review, we will discuss how the two therapeutic approaches converge. We present a model by which (1) an inflammation is required for the appropriate pro-myelinating immune function of OPCs in the chronically inflamed CNS, and (2) the immune function of OPCs is crucial for their ability to differentiate and promote remyelination. This model highlights the reciprocal interactions between OPCs' pro-myelinating and immune-modulating functions. Additionally, we review the specific effects of anti- and pro-inflammatory interventions on OPCs, suggesting that immunosuppression adversely affects OPCs' differentiation and immune functions. CONCLUSION We suggest a multi-systemic therapeutic approach, which necessitates not a unidimensional focus but a harmonious balance between OPCs' pro-myelinating and immune-modulatory functions.
Collapse
Affiliation(s)
- Omri Zveik
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
- The Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem P.O.B. 12000, Jerusalem, 91120, Israel
| | - Ariel Rechtman
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
- The Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem P.O.B. 12000, Jerusalem, 91120, Israel
| | - Tal Ganz
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
- The Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem P.O.B. 12000, Jerusalem, 91120, Israel
| | - Adi Vaknin-Dembinsky
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
- The Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem P.O.B. 12000, Jerusalem, 91120, Israel.
| |
Collapse
|
2
|
Reyes-Reyes EM, Brown J, Trial MD, Chinnasamy D, Wiegand JP, Bradford D, Brinton RD, Rodgers KE. Vivaria housing conditions expose sex differences in brain oxidation, microglial activation, and immune system states in aged hAPOE4 mice. Exp Brain Res 2024; 242:543-557. [PMID: 38206365 PMCID: PMC10894770 DOI: 10.1007/s00221-023-06763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Apolipoprotein E ε4 allele (APOE4) is the predominant genetic risk factor for late-onset Alzheimer's disease (AD). APOE4 mouse models have provided advances in the understanding of disease pathogenesis, but unaccounted variables like rodent housing status may hinder translational outcomes. Non-sterile aspects like food and bedding can be major sources of changes in rodent microflora. Alterations in intestinal microbial ecology can cause mucosal barrier impairment and increase pro-inflammatory signals. The present study examined the role of sterile and non-sterile food and housing on redox indicators and the immune status of humanized-APOE4 knock-in mice (hAPOe4). hAPOE4 mice were housed under sterile conditions until 22 months of age, followed by the transfer of a cohort of mice to non-sterile housing for 2 months. At 24 months of age, the redox/immunologic status was evaluated by flow cytometry/ELISA. hAPOE4 females housed under non-sterile conditions exhibited: (1) higher neuronal and microglial oxygen radical production and (2) lower CD68+ microglia (brain) and CD8+ T cells (periphery) compared to sterile-housed mice. In contrast, hAPOE4 males in non-sterile housing exhibited: (1) higher MHCII+ microglia and CD11b+CD4+ T cells (brain) and (2) higher CD11b+CD4+ T cells and levels of lipopolysaccharide-binding protein and inflammatory cytokines in the periphery relative to sterile-housed mice. This study demonstrated that sterile vs. non-sterile housing conditions are associated with the activation of redox and immune responses in the brain and periphery in a sex-dependent manner. Therefore, housing status may contribute to variable outcomes in both the brain and periphery.
Collapse
Affiliation(s)
- E M Reyes-Reyes
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - J Brown
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - M D Trial
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - D Chinnasamy
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - J P Wiegand
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - D Bradford
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - R D Brinton
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - K E Rodgers
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA.
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
3
|
Peck T, Davis C, Lenihan-Geels G, Griffiths M, Spijkers-Shaw S, Zubkova OV, La Flamme AC. The novel HS-mimetic, Tet-29, regulates immune cell trafficking across barriers of the CNS during inflammation. J Neuroinflammation 2023; 20:251. [PMID: 37915090 PMCID: PMC10619265 DOI: 10.1186/s12974-023-02925-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Disruption of the extracellular matrix at the blood-brain barrier (BBB) underpins neuroinflammation in multiple sclerosis (MS). The degradation of extracellular matrix components, such as heparan sulfate (HS) proteoglycans, can be prevented by treatment with HS-mimetics through their ability to inhibit the enzyme heparanase. The heparanase-inhibiting ability of our small dendrimer HS-mimetics has been investigated in various cancers but their efficacy in neuroinflammatory models has not been evaluated. This study investigates the use of a novel HS-mimetic, Tet-29, in an animal model of MS. METHODS Neuroinflammation was induced in mice by experimental autoimmune encephalomyelitis, a murine model of MS. In addition, the BBB and choroid plexus were modelled in vitro using transmigration assays, and migration of immune cells in vivo and in vitro was quantified by flow cytometry. RESULTS We found that Tet-29 significantly reduced lymphocyte accumulation in the central nervous system which, in turn, decreased disease severity in experimental autoimmune encephalomyelitis. The disease-modifying effect of Tet-29 was associated with a rescue of BBB integrity, as well as inhibition of activated lymphocyte migration across the BBB and choroid plexus in transwell models. In contrast, Tet-29 did not significantly impair in vivo or in vitro steady state-trafficking under homeostatic conditions. CONCLUSIONS Together these results suggest that Tet-29 modulates, rather than abolishes, trafficking across central nervous system barriers.
Collapse
Affiliation(s)
- Tessa Peck
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
| | - Connor Davis
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
| | - Georgia Lenihan-Geels
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
| | - Maddie Griffiths
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
| | - Sam Spijkers-Shaw
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Olga V Zubkova
- Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Anne Camille La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
- Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand.
- Malaghan Institute of Medical Research, Wellington, New Zealand.
| |
Collapse
|
4
|
Al Abadey A, Connor B, Flamme ACL, Robichon K. Clozapine reduces chemokine-mediated migration of lymphocytes by targeting NF-κB and AKT phosphorylation. Cell Signal 2022; 99:110449. [PMID: 36031090 DOI: 10.1016/j.cellsig.2022.110449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022]
Abstract
Multiple sclerosis is a disease characterised by demyelination of axons in the central nervous system. The atypical antipsychotic drug clozapine has been shown to attenuate disease severity in experimental autoimmune encephalomyelitis (EAE), a mouse model that is useful for the study of multiple sclerosis. However, the mechanism of action by which clozapine reduces disease in EAE is poorly understood. To better understand how clozapine exerts its protective effects, we investigated the underlying signalling pathways by which clozapine may reduce immune cell migration by evaluating chemokine and dopamine receptor-associated signalling pathways. We found that clozapine inhibits migration of immune cells by reducing chemokine production in microglia cells by targeting NF-κB phosphorylation and promoting an anti-inflammatory milieu. Furthermore, clozapine directly targets immune cell migration by changing Ca2+ levels within immune cells and reduces the phosphorylation of signalling protein AKT. Linking these pathways to the antagonising effect of clozapine on dopamine and serotonin receptors, we provide insight into how clozapine alters immune cells migration by directly targeting the underlying migration-associated pathways.
Collapse
Affiliation(s)
- Afnan Al Abadey
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Anne Camille La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand; Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Katharina Robichon
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
5
|
Abstract
CD4dim CD8bright T cells are a mature population of CD8+ T cells that upon activation upregulate CD4 dimly on their surface. Expression of CD4 on these cells suggests that they can be an additional source of HIV neuroinvasion and persistence in the brain. We used HIV-infected NOD/SCID/IL-2rcγ-/- (NSG) humanized mice to track CD4dim CD8bright T cell homing to the brain and define their role in HIV dissemination into the brain. We report here that CD4dim CD8bright T cells are found in the brain at a median frequency of 2.6% and in the spleen at median frequency of 7.6% of CD3+ T cells. In the brain, 10 to 20% of CD4dim CD8bright T cells contain integrated provirus, which is infectious as demonstrated by viral outgrowth assay. CD4dim CD8bright T cells in the brain exhibited significantly higher expression of the brain homing receptors CX3CR1 and CXCR3 in comparison to their single-positive CD8+ T cell counterpart. Blocking lymphocyte trafficking into the brain of humanized mice via anti-VLA4 and anti-LFA1 antibodies reduced CD4dim CD8bright T cell trafficking into the brain by 60% and diminished brain HIV proviral DNA by 72%. Collectively, our findings demonstrate that CD4dim CD8bright T cells can home to the brain and support productive HIV replication. These studies also reveal for the first time that CD4dim CD8bright T cells are capable of HIV neuroinvasion and are a reservoir for HIV. IMPORTANCE We report here a seminal finding of a novel population of T cells, termed CD4dim CD8bright T cells, that plays a role in HIV neuroinvasion and is a reservoir for HIV in the brain.
Collapse
|
6
|
Melnikov M, Sviridova A, Rogovskii V, Boyko A, Pashenkov M. The role of macrophages in the development of neuroinflammation in multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:51-56. [DOI: 10.17116/jnevro202212205151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Radandish M, Khalilian P, Esmaeil N. The Role of Distinct Subsets of Macrophages in the Pathogenesis of MS and the Impact of Different Therapeutic Agents on These Populations. Front Immunol 2021; 12:667705. [PMID: 34489926 PMCID: PMC8417824 DOI: 10.3389/fimmu.2021.667705] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/31/2021] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating inflammatory disorder of the central nervous system (CNS). Besides the vital role of T cells, other immune cells, including B cells, innate immune cells, and macrophages (MФs), also play a critical role in MS pathogenesis. Tissue-resident MФs in the brain’s parenchyma, known as microglia and monocyte-derived MФs, enter into the CNS following alterations in CNS homeostasis that induce inflammatory responses in MS. Although the neuroprotective and anti-inflammatory actions of monocyte-derived MФs and resident MФs are required to maintain CNS tolerance, they can release inflammatory cytokines and reactivate primed T cells during neuroinflammation. In the CNS of MS patients, elevated myeloid cells and activated MФs have been found and associated with demyelination and axonal loss. Thus, according to the role of MФs in neuroinflammation, they have attracted attention as a therapeutic target. Also, due to their different origin, location, and turnover, other strategies may require to target the various myeloid cell populations. Here we review the role of distinct subsets of MФs in the pathogenesis of MS and different therapeutic agents that target these cells.
Collapse
Affiliation(s)
- Maedeh Radandish
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Khalilian
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Ma C, Li S, Hu Y, Ma Y, Wu Y, Wu C, Liu X, Wang B, Hu G, Zhou J, Yang S. AIM2 controls microglial inflammation to prevent experimental autoimmune encephalomyelitis. J Exp Med 2021; 218:e20201796. [PMID: 33710283 PMCID: PMC7961553 DOI: 10.1084/jem.20201796] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/13/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
The role of the PYHIN family member absent in melanoma 2 (AIM2), another important inflammasome sensor, in EAE remains unclear. In this study, we found that AIM2 negatively regulates the pathogenesis of EAE independent of inflammasome activation. AIM2 deficiency enhanced microglia activation and infiltration of peripheral immune cells into the CNS, thereby promoting neuroinflammation and demyelination during EAE. Mechanistically, AIM2 negatively regulates the DNA-PK-AKT3 in microglia to control neuroinflammation synergistically induced by cGAS and DNA-PK. Administration of a DNA-PK inhibitor reduced the severity of the EAE. Collectively, these findings identify a new role for AIM2 in controlling the onset of EAE. Furthermore, delineation of the underlying inflammasome-independent mechanism highlights cGAS and DNA-PK signaling as potential targets for the treatment of heterogeneous MS.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cells, Cultured
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- DNA-Activated Protein Kinase/genetics
- DNA-Activated Protein Kinase/immunology
- DNA-Activated Protein Kinase/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- DNA-Binding Proteins/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Gene Expression/immunology
- Inflammasomes/genetics
- Inflammasomes/immunology
- Inflammasomes/metabolism
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microglia/immunology
- Microglia/metabolism
- Microglia/pathology
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/immunology
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Mice
Collapse
Affiliation(s)
- Chunmei Ma
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Sheng Li
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yingchao Hu
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yan Ma
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuqing Wu
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Chunyan Wu
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xue Liu
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Bingwei Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiawei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Yang
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Chen YH, Eskandarpour M, Zhang X, Galatowicz G, Greenwood J, Lightman S, Calder V. Small-molecule antagonist of VLA-4 (GW559090) attenuated neuro-inflammation by targeting Th17 cell trafficking across the blood-retinal barrier in experimental autoimmune uveitis. J Neuroinflammation 2021; 18:49. [PMID: 33602234 PMCID: PMC7893745 DOI: 10.1186/s12974-021-02080-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background The integrin VLA-4 (α4β1) plays an important role in leukocyte trafficking. This study investigated the efficacy of a novel topical α4β1 integrin inhibitor (GW559090, GW) in a mouse model for non-infectious posterior uveitis (experimental autoimmune uveitis; EAU) and its effect on intraocular leukocyte subsets. Methods Mice (female; B10.RIII or C57Bl/6; aged 6–8 weeks) were immunized with specific interphotoreceptor retinoid-binding protein (IRBP) peptides to induce EAU. Topically administered GW (3, 10, and 30 mg/ml) were given twice daily either therapeutically once disease was evident, or prophylactically, and compared with vehicle-treated (Veh) and 0.1% dexamethasone-treated (Dex) controls. Mice were sacrificed at peak disease. The retinal T cell subsets were investigated by immunohistochemistry and immunofluorescence staining. The immune cells within the retina, blood, and draining lymph nodes (dLNs) were phenotyped by flow cytometry. The effect of GW559090 on non-adherent, adherent, and migrated CD4+ T cell subsets across a central nervous system (CNS) endothelium was further assayed in vitro and quantitated by flow cytometry. Results There was a significant reduction in clinical and histological scores in GW10- and Dex-treated groups as compared to controls either administered therapeutically or prophylactically. There were fewer CD45+ leukocytes infiltrating the retinae and vitreous fluids in the treated GW10 group (P < 0.05). Immunofluorescence staining and flow cytometry data identified decreased levels of retinal Th17 cells (P ≤ 0.001) in the GW10-treated eyes, leaving systemic T cell subsets unaffected. In addition, fewer Ly6C+ inflammatory monocyte/macrophages (P = 0.002) and dendritic cells (P = 0.017) crossed the BRB following GW10 treatment. In vitro migration assays confirmed that Th17 cells were selectively suppressed by GW559090 in adhering to endothelial monolayers. Conclusions This α4β1 integrin inhibitor may exert a modulatory effect in EAU progression by selectively blocking Th17 cell migration across the blood-retinal barrier without affecting systemic CD4+ T cell subsets. Local α4β1 integrin-directed inhibition could be clinically relevant in treating a Th17-dominant form of uveitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02080-8.
Collapse
Affiliation(s)
- Yi Hsing Chen
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.,Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Malihe Eskandarpour
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Xiaozhe Zhang
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Grazyna Galatowicz
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - John Greenwood
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital and UCL Biomedical Research Centre, London, UK
| | - Sue Lightman
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital, London, UK
| | - Virginia Calder
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK. .,Moorfields Eye Hospital and UCL Biomedical Research Centre, London, UK.
| |
Collapse
|
10
|
Harro CM, Perez-Sanz J, Costich TL, Payne KK, Anadon CM, Chaurio RA, Biswas S, Mandal G, Rigolizzo KE, Sprenger KB, Mine JA, Showe LC, Yu X, Liu K, Rodriguez PC, Pinilla-Ibarz J, Sokol L, Conejo-Garcia JR. Methyltransferase inhibitors restore SATB1 protective activity against cutaneous T cell lymphoma in mice. J Clin Invest 2021; 131:135711. [PMID: 33270606 PMCID: PMC7843215 DOI: 10.1172/jci135711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 11/25/2020] [Indexed: 12/27/2022] Open
Abstract
Cutaneous T cell lymphoma (CTCL) has a poorly understood etiology and no known cure. Using conditional knockout mice, we found that ablation of the genomic organizer special AT-rich sequence-binding protein 1 (Satb1) caused malignant transformation of mature, skin-homing, Notch-activated CD4+ and CD8+ T cells into progressively fatal lymphoma. Mechanistically, Satb1 restrained Stat5 phosphorylation and the expression of skin-homing chemokine receptors in mature T cells. Notably, methyltransferase-dependent epigenetic repression of SATB1 was universally found in human Sézary syndrome, but not in other peripheral T cell malignancies. H3K27 and H3K9 trimethylation occluded the SATB1 promoter in Sézary cells, while inhibition of SUV39H1/2 methyltransferases (unlike EZH2 inhibition) restored protective SATB1 expression and selectively abrogated the growth of primary Sézary cells more effectively than romidepsin. Therefore, inhibition of methyltransferases that silence SATB1 could address an unmet need for patients with mycosis fungoides/Sézary syndrome, a set of incurable diseases.
Collapse
Affiliation(s)
- Carly M. Harro
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
- Department of Cell Biology, Microbiology, and Molecular Biology, and
- Cancer Biology PhD Program, College of Arts and Sciences, University of South Florida, Tampa, Florida, and H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Jairo Perez-Sanz
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Tara Lee Costich
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Kyle K. Payne
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Carmen M. Anadon
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Ricardo A. Chaurio
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Subir Biswas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Gunjan Mandal
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Kristen E. Rigolizzo
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Kimberly B. Sprenger
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Jessica A. Mine
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Louise C. Showe
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Xiaoqing Yu
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA
| | - Paulo C. Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | | | | | - Jose R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| |
Collapse
|
11
|
Zrzavy T, Wimmer I, Rommer PS, Berger T. Immunology of COVID-19 and disease-modifying therapies: The good, the bad and the unknown. Eur J Neurol 2020; 28:3503-3516. [PMID: 33090599 PMCID: PMC7675490 DOI: 10.1111/ene.14578] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/04/2020] [Indexed: 01/08/2023]
Abstract
Objective The outbreak of the SARS‐CoV‐2 pandemic, caused by a previously unknown infectious agent, posed unprecedented challenges to healthcare systems and unmasked their vulnerability and limitations worldwide. Patients with long‐term immunomodulatory/suppressive therapies, as well as their physicians, were and are concerned about balancing the risk of infection and effects of disease‐modifying therapy. Over the last few months, knowledge regarding SARS‐CoV‐2 has been growing tremendously, and the first experiences of infections in patients with multiple sclerosis (MS) have been reported. Methods This review summarizes the currently still limited knowledge about SARS‐CoV‐2 immunology and the commonly agreed modes of action of approved drugs in immune‐mediated diseases of the central nervous system (MS and neuromyelitis optica spectrum disorder). Specifically, we discuss whether immunosuppressive/immunomodulatory drugs may increase the risk of SARS‐CoV‐2 infection and, conversely, may decrease the severity of a COVID‐19 disease course. Results At present, it can be recommended in general that none of those therapies with a definite indication needs to be stopped per se. A possibly increased risk of infection for most medications is accompanied by the possibility to reduce the severity of COVID‐19. Conclusions Despite the knowledge gain over the last few months, current evidence remains limited, and, thus, further clinical vigilance and systematic documentation is essential.
Collapse
Affiliation(s)
- Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus S Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Molecular Effects of FDA-Approved Multiple Sclerosis Drugs on Glial Cells and Neurons of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21124229. [PMID: 32545828 PMCID: PMC7352301 DOI: 10.3390/ijms21124229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is characterized by peripheral and central inflammatory features, as well as demyelination and neurodegeneration. The available Food and Drug Administration (FDA)-approved drugs for MS have been designed to suppress the peripheral immune system. In addition, however, the effects of these drugs may be partially attributed to their influence on glial cells and neurons of the central nervous system (CNS). We here describe the molecular effects of the traditional and more recent FDA-approved MS drugs Fingolimod, Dimethyl Fumarate, Glatiramer Acetate, Interferon-β, Teriflunomide, Laquinimod, Natalizumab, Alemtuzumab and Ocrelizumab on microglia, astrocytes, neurons and oligodendrocytes. Furthermore, we point to a possible common molecular effect of these drugs, namely a key role for NFκB signaling, causing a switch from pro-inflammatory microglia and astrocytes to anti-inflammatory phenotypes of these CNS cell types that recently emerged as central players in MS pathogenesis. This notion argues for the need to further explore the molecular mechanisms underlying MS drug action.
Collapse
|
13
|
Chen J, Martindale JL, Abdelmohsen K, Kumar G, Fortina PM, Gorospe M, Rostami A, Yu S. RNA-Binding Protein HuR Promotes Th17 Cell Differentiation and Can Be Targeted to Reduce Autoimmune Neuroinflammation. THE JOURNAL OF IMMUNOLOGY 2020; 204:2076-2087. [PMID: 32169842 DOI: 10.4049/jimmunol.1900769] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/06/2020] [Indexed: 02/06/2023]
Abstract
Dysregulated Th17 cell differentiation is associated with autoimmune diseases such as multiple sclerosis, which has no curative treatment. Understanding the molecular mechanisms of regulating Th17 cell differentiation will help find a novel therapeutic target for treating Th17 cell-mediated diseases. In this study, we investigated the cell-intrinsic processes by which RNA-binding protein HuR orchestrates Th17 cell fate decisions by posttranscriptionally regulating transcription factors Irf4 and Runx1 and receptor Il12rb1 expression, in turn promoting Th17 cell and Th1-like Th17 cell differentiation in C57BL/6J mice. Knockout of HuR altered the transcriptome of Th17 cells characterized by reducing the levels of RORγt, IRF4, RUNX1, and T-bet, thereby reducing the number of pathogenic IL-17+IFN-γ+CD4+ T cells in the spleen during experimental autoimmune encephalomyelitis. In keeping with the fact that HuR increased the abundance of adhesion molecule VLA-4 on Th17 cells, knockout of HuR impaired splenic Th17 cell migration to the CNS and abolished the disease. Accordingly, targeting HuR by its inhibitor DHTS inhibited splenic Th17 cell differentiation and reduced experimental autoimmune encephalomyelitis severity. In sum, we uncovered the molecular mechanism of HuR regulating Th17 cell functions, underscoring the therapeutic value of HuR for treatment of autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107;
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224; and
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224; and
| | - Gaurav Kumar
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Paolo M Fortina
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224; and
| | | | - Shiguang Yu
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107;
| |
Collapse
|
14
|
Melchor GS, Khan T, Reger JF, Huang JK. Remyelination Pharmacotherapy Investigations Highlight Diverse Mechanisms Underlying Multiple Sclerosis Progression. ACS Pharmacol Transl Sci 2019; 2:372-386. [PMID: 32259071 DOI: 10.1021/acsptsci.9b00068] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by a complex lesion microenvironment. Although much progress has been made in developing immunomodulatory treatments to reduce myelin damage and delay the progression of MS, there is a paucity in treatment options that address the multiple pathophysiological aspects of the disease. Currently available immune-centered therapies are able to reduce the immune-mediated damage exhibited in MS patients, however, they cannot rescue the eventual failure of remyelination or permanent neuronal damage that occurs as MS progresses. Recent advances have provided a better understanding of remyelination processes, specifically oligodendrocyte lineage cell progression following demyelination. Further there have been new findings highlighting various components of the lesion microenvironment that contribute to myelin repair and restored axonal health. In this review we discuss the complexities of myelin repair following immune-mediated damage in the CNS, the contribution of animal models of MS in providing insight on OL progression and myelin repair, and current and potential remyelination-centered therapeutic targets. As remyelination therapies continue to progress into clinical trials, we consider a dual approach targeting the inflammatory microenvironment and intrinsic remyelination mechanisms to be optimal in aiding MS patients.
Collapse
Affiliation(s)
- George S Melchor
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, United States
| | - Tahiyana Khan
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, United States
| | - Joan F Reger
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, United States
| | - Jeffrey K Huang
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
15
|
Manocha G, Ghatak A, Puig K, Combs C. Anti-α4β1 Integrin Antibodies Attenuated Brain Inflammatory Changes in a Mouse Model of Alzheimer's Disease. Curr Alzheimer Res 2019; 15:1123-1135. [PMID: 30068274 PMCID: PMC6302348 DOI: 10.2174/1567205015666180801111033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/11/2018] [Accepted: 07/23/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with age-associated central nervous system degeneration and dementia. This decline in the function correlates with deposition of Aβ peptide containing plaques and associated reactive gliosis. The inflammatory phenotype of microglia, in particular, is often considered detrimental to cognitive function in AD. In addition to the changes in the CNS, altered immune changes in the periphery have recently been observed in AD suggesting a critical immune- related communication between the periphery and the brain. OBJECTIVE We hypothesized that modulating the peripheral immune system may alter the proinflammatory gliosis associated with AD. Therapeutic antibodies against the α4β1 integrin receptor have been used clinically to attenuate the ability of various immune cells to adhere to endothelium and migrate into target tissues such as the intestines (Crohn's disease) or brain (multiple sclerosis). We hypothesized that a similar peripheral antibody-based therapy would attenuate gliosis by altering immune cell infiltration or phenotype in peripheral organs and the brain using an APP/PS1 mouse model of Alzheimer's disease. METHOD Littermate control wild-type and APP/PS1 mice were tail vein injected with either saline, isotype control (IgG2b), or an antibody recognizing α4-integrin, anti-CD49d, once a week for 4 consecutive weeks. To understand CNS and peripheral immune changes, brains and spleen were used. RESULTS/CONCLUSION Our data suggests that the antibody therapy was able to reduce microgliosis, astrogliosis, and synaptic changes in the APP/PS1 mice compared to isotype control injections without changing amyloid-β plaque load. Interestingly, both isotype control and antibody therapy also reduced the number of proinflammatory cytokines in the spleen although changes in the brain were less robust. The anti-CD49d and isotype control treatments also reduced CD4 immunoreactivity in the brains, suggesting a possible mechanism for attenuation of inflammation in the brain. This data suggests that it is indeed feasible to alter the immune component of AD brain changes using a clinically feasible strategy of delivering a particular subtype of IgG or epitope selective antibodies that target infiltration of the peripheral immune system.
Collapse
Affiliation(s)
- Gunjan Manocha
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, ND 58202, United States
| | - Atreyi Ghatak
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, ND 58202, United States
| | - Kendra Puig
- Presentation College Aberdeen, South Dakota, ND 58202, United States
| | - Colin Combs
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, ND 58202, United States
| |
Collapse
|
16
|
Pietronigro E, Zenaro E, Bianca VD, Dusi S, Terrabuio E, Iannoto G, Slanzi A, Ghasemi S, Nagarajan R, Piacentino G, Tosadori G, Rossi B, Constantin G. Blockade of α4 integrins reduces leukocyte-endothelial interactions in cerebral vessels and improves memory in a mouse model of Alzheimer's disease. Sci Rep 2019; 9:12055. [PMID: 31427644 PMCID: PMC6700124 DOI: 10.1038/s41598-019-48538-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/02/2019] [Indexed: 01/19/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline associated with the deposition of amyloid-β (Aβ) plaques, hyperphosphorylation of tau protein, and neuronal loss. Vascular inflammation and leukocyte trafficking may contribute to AD pathogenesis, and a better understanding of these inflammation mechanisms could therefore facilitate the development of new AD therapies. Here we show that T cells extravasate in the proximity of cerebral VCAM-1+ vessels in 3xTg-AD transgenic mice, which develop both Aβ and tau pathologies. The counter-ligand of VCAM-1 - α4β1 integrin, also known as very late antigen-4 (VLA-4) - was more abundant on circulating CD4+ T cells and was also expressed by a significant proportion of blood CD8+ T cells and neutrophils in AD mice. Intravital microscopy of the brain microcirculation revealed that α4 integrins control leukocyte-endothelial interactions in AD mice. Therapeutic targeting of VLA-4 using antibodies that specifically block α4 integrins improved the memory of 3xTg-AD mice compared to an isotype control. These antibodies also reduced neuropathological hallmarks of AD, including microgliosis, Aβ load and tau hyperphosphorylation. Our results demonstrate that α4 integrin-dependent leukocyte trafficking promotes cognitive impairment and AD neuropathology, suggesting that the blockade of α4 integrins may offer a new therapeutic strategy in AD.
Collapse
Affiliation(s)
| | - Elena Zenaro
- Department of Medicine, University of Verona, 37134, Verona, Italy
| | | | - Silvia Dusi
- Department of Medicine, University of Verona, 37134, Verona, Italy
| | | | - Giulia Iannoto
- Department of Medicine, University of Verona, 37134, Verona, Italy
| | - Anna Slanzi
- Department of Medicine, University of Verona, 37134, Verona, Italy
| | | | | | - Gennj Piacentino
- Department of Medicine, University of Verona, 37134, Verona, Italy
| | - Gabriele Tosadori
- Department of Medicine, University of Verona, 37134, Verona, Italy
- The Center for Biomedical Computing (CBMC), University of Verona, 37134, Verona, Italy
| | - Barbara Rossi
- Department of Medicine, University of Verona, 37134, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, University of Verona, 37134, Verona, Italy.
- The Center for Biomedical Computing (CBMC), University of Verona, 37134, Verona, Italy.
| |
Collapse
|
17
|
Nally FK, De Santi C, McCoy CE. Nanomodulation of Macrophages in Multiple Sclerosis. Cells 2019; 8:cells8060543. [PMID: 31195710 PMCID: PMC6628349 DOI: 10.3390/cells8060543] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022] Open
Abstract
Multiple Sclerosis (MS) is a chronic demyelinating autoimmune disease primarily affecting young adults. Despite an unclear causal factor, symptoms and pathology arise from the infiltration of peripheral immune cells across the blood brain barrier. Accounting for the largest fraction of this infiltrate, macrophages are functionally heterogeneous innate immune cells capable of adopting either a pro or an anti-inflammatory phenotype, a phenomenon dependent upon cytokine milieu in the CNS. This functional plasticity is of key relevance in MS, where the pro-inflammatory state dominates the early stage, instructing demyelination and axonal loss while the later anti-inflammatory state holds a key role in promoting tissue repair and regeneration in later remission. This review highlights a potential therapeutic benefit of modulating macrophage polarisation to harness the anti-inflammatory and reparative state in MS. Here, we outline the role of macrophages in MS and look at the role of current FDA approved therapeutics in macrophage polarisation. Moreover, we explore the potential of particulate carriers as a novel strategy to manipulate polarisation states in macrophages, whilst examining how optimising macrophage uptake via nanoparticle size and functionalisation could offer a novel therapeutic approach for MS.
Collapse
Affiliation(s)
- Frances K Nally
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, 2 D02 YN77 Dublin, Ireland.
| | - Chiara De Santi
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, 2 D02 YN77 Dublin, Ireland.
| | - Claire E McCoy
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, 2 D02 YN77 Dublin, Ireland.
| |
Collapse
|
18
|
Vainio SK, Dickens AM, Tuisku J, Eskola O, Solin O, Löyttyniemi E, Anthony DC, Rinne JO, Airas L, Haaparanta-Solin M. Cessation of anti-VLA-4 therapy in a focal rat model of multiple sclerosis causes an increase in neuroinflammation. EJNMMI Res 2019; 9:38. [PMID: 31073768 PMCID: PMC6509289 DOI: 10.1186/s13550-019-0508-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/15/2019] [Indexed: 11/21/2022] Open
Abstract
Background Positron emission tomography (PET) can be used for in vivo evaluation of the pathology associated with multiple sclerosis. We investigated the use of longitudinal PET imaging and the 18-kDa translocator protein (TSPO) binding radioligand [18F]GE-180 to detect changes in a chronic multiple sclerosis-like focal delayed-type hypersensitivity experimental autoimmune encephalomyelitis (fDTH-EAE) rat model during and after anti-VLA-4 monoclonal antibody (mAb) treatment. Thirty days after lesion activation, fDTH-EAE rats were treated with the anti-VLA-4 mAb (n = 4) or a control mAb (n = 4; 5 mg/kg, every third day, subcutaneously) for 31 days. Animals were imaged with [18F]GE-180 on days 30, 44, 65, 86 and 142. Another group of animals (n = 4) was used for visualisation the microglia with Iba-1 at day 44 after a 2-week treatment period. Results After a 2-week treatment period on day 44, there was a declining trend (p = 0.067) in [18F]GE-180-binding in the anti-VLA-4 mAb-treated animals versus controls. However, cessation of treatment for 4 days after a 31-day treatment period increased [18F]GE-180 binding in animals treated with anti-VLA-4 mAb compared to the control group (p = 0.0003). There was no difference between the groups in TSPO binding by day 142. Conclusions These results demonstrated that cessation of anti-VLA-4 mAb treatment for 4 days caused a transient rebound increase in neuroinflammation. This highlights the usefulness of serial TSPO imaging in the fDTH-EAE model to better understand the rebound phenomenon.
Collapse
Affiliation(s)
- S K Vainio
- Turku PET Centre, Preclinical PET Imaging, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland. .,MediCity Research Laboratory, University of Turku, Turku, Finland.
| | - A M Dickens
- Turku Centre for Biotechnology, University of Turku, Turku, Finland.,Department of Pharmacology, University of Oxford, Oxford, UK
| | - J Tuisku
- Turku PET Centre, Clinical Neurology, Turku University Hospital, Turku, Finland
| | - O Eskola
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, University of Turku, Turku, Finland
| | - O Solin
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, University of Turku, Turku, Finland.,Department of Chemistry, University of Turku, Turku, Finland.,Accelerator Laboratory, Åbo Akademi University, Turku, Finland
| | - E Löyttyniemi
- Department of Biostatistics, University of Turku, Turku, Finland
| | - D C Anthony
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - J O Rinne
- Turku PET Centre, Clinical Neurology, Turku University Hospital, Turku, Finland
| | - L Airas
- Turku PET Centre, Clinical Neurology, Turku University Hospital, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland.,Department of Clinical Medicine, University of Turku, Turku, Finland
| | - M Haaparanta-Solin
- Turku PET Centre, Preclinical PET Imaging, University of Turku, Tykistökatu 6 A, 20520, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| |
Collapse
|
19
|
Sagar D, Singh NP, Ginwala R, Huang X, Philip R, Nagarkatti M, Nagarkatti P, Neumann K, Ruland J, Andrews AM, Ramirez SH, Khan ZK, Jain P. Antibody blockade of CLEC12A delays EAE onset and attenuates disease severity by impairing myeloid cell CNS infiltration and restoring positive immunity. Sci Rep 2017; 7:2707. [PMID: 28578388 PMCID: PMC5457463 DOI: 10.1038/s41598-017-03027-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
The mechanism of dendritic cells (DCs) recruitment across the blood brain barrier (BBB) during neuroinflammation has been the least explored amongst all leukocytes. For cells of myeloid origin, while integrins function at the level of adhesion, the importance of lectins remains unknown. Here, we identified functions of one C-type lectin receptor, CLEC12A, in facilitating DC binding and transmigration across the BBB in response to CCL2 chemotaxis. To test function of CLEC12A in an animal model of multiple sclerosis (MS), we administered blocking antibody to CLEC12A that significantly ameliorated disease scores in MOG35–55-induced progressive, as well as PLP138–151-induced relapsing-remitting experimental autoimmune encephalomyelitis (EAE) mice. The decline in both progression and relapse of EAE occurred as a result of reduced demyelination and myeloid cell infiltration into the CNS tissue. DC numbers were restored in the spleen of C57BL/6 and peripheral blood of SJL/J mice along with a decreased TH17 phenotype within CD4+ T-cells. The effects of CLEC12A blocking were further validated using CLEC12A knockout (KO) animals wherein EAE disease induction was delayed and reduced disease severity was observed. These studies reveal the utility of a DC-specific mechanism in designing new therapeutics for MS.
Collapse
Affiliation(s)
- Divya Sagar
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Narendra P Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Rashida Ginwala
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Xiaofang Huang
- Immunotope Inc., Pennsylvania Biotechnology Center, Doylestown, PA, USA
| | - Ramila Philip
- Immunotope Inc., Pennsylvania Biotechnology Center, Doylestown, PA, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA.,William Jennings Bryan Dorn VA Medical Center, Columbia, SC, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Konstantin Neumann
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Allison M Andrews
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Servio H Ramirez
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Zafar K Khan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Stojić-Vukanić Z, Kotur-Stevuljević J, Nacka-Aleksić M, Kosec D, Vujnović I, Pilipović I, Dimitrijević M, Leposavić G. Sex Bias in Pathogenesis of Autoimmune Neuroinflammation: Relevance for Dimethyl Fumarate Immunomodulatory/Anti-oxidant Action. Mol Neurobiol 2017; 55:3755-3774. [PMID: 28534275 DOI: 10.1007/s12035-017-0595-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/02/2017] [Indexed: 01/22/2023]
Abstract
In the present study, upon showing sexual dimorphism in dimethyl fumarate (DMF) efficacy to moderate the clinical severity of experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats, cellular and molecular substrate of this dimorphism was explored. In rats of both sexes, DMF administration from the day of immunization attenuated EAE severity, but this effect was more prominent in males leading to loss of the sexual dimorphism observed in vehicle-administered controls. Consistently, in male rats, DMF was more efficient in diminishing the number of CD4+ T lymphocytes infiltrating spinal cord (SC) and their reactivation, the number of IL-17+ T lymphocytes and particularly cellularity of their highly pathogenic IFN-γ+GM-CSF+IL-17+ subset. This was linked with changes in SC CD11b+CD45+TCRαβ- microglia/proinflammatory monocyte progeny, substantiated in a more prominent increase in the frequency of anti-inflammatory phygocyting CD163+ cells and the cells expressing high surface levels of immunoregulatory CD83 molecule (associated with apoptotic cells phagocytosis and implicated in downregulation of CD4+ T lymphocyte reactivation) among CD11b+CD45+TCRαβ- cells in male rat SC. These changes were associated with greater increase in the nuclear factor (erythroid-derived 2)-like 2 expression in male rats administered with DMF. In accordance with the previous findings, DMF diminished reactive nitrogen and oxygen species generation and consistently, SC level of advanced oxidation protein products, to the greater extent in male rats. Overall, our study indicates sex-specificity in the sensitivity of DMF cellular and molecular targets and encourages sex-based clinical research to define significance of sex for action of therapeutic agents moderating autoimmune neuroinflammation-/oxidative stress-related nervous tissue damage.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Jelena Kotur-Stevuljević
- Department for Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Ivana Vujnović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia.
| |
Collapse
|
21
|
Multiple functional therapeutic effects of TnP: A small stable synthetic peptide derived from fish venom in a mouse model of multiple sclerosis. PLoS One 2017; 12:e0171796. [PMID: 28235052 PMCID: PMC5325231 DOI: 10.1371/journal.pone.0171796] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/26/2017] [Indexed: 12/20/2022] Open
Abstract
The pathological condition of multiple sclerosis (MS) relies on innate and adaptive immunity. New types of agents that beneficially modify the course of MS, stopping the progression and repairing the damage appear promising. Here, we studied TnP, a small stable synthetic peptide derived from fish venom in the control of inflammation and demyelination in experimental autoimmune encephalomyelitis as prophylactic treatment. TnP decreased the number of the perivascular infiltrates in spinal cord, and the activity of MMP-9 by F4/80+ macrophages were decreased after different regimen treatments. TnP reduces in the central nervous system the infiltration of IFN-γ-producing Th1 and IL-17A-producing Th17 cells. Also, treatment with therapeutic TnP promotes the emergence of functional Treg in the central nervous system entirely dependent on IL-10. Therapeutic TnP treatment accelerates the remyelination process in a cuprizone model of demyelination. These findings support the beneficial effects of TnP and provides a new therapeutic opportunity for the treatment of MS.
Collapse
|
22
|
Bhise V, Dhib-Jalbut S. Further understanding of the immunopathology of multiple sclerosis: impact on future treatments. Expert Rev Clin Immunol 2016; 12:1069-89. [PMID: 27191526 DOI: 10.1080/1744666x.2016.1191351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The understanding of the immunopathogenesis of multiple sclerosis (MS) has expanded with more research into T-cell subtypes, cytokine contributors, B-cell participation, mitochondrial dysfunction, and more. Treatment options have rapidly expanded with three relatively recent oral therapy alternatives entering the arena. AREAS COVERED In the following review, we discuss current mechanisms of immune dysregulation in MS, how they relate to current treatments, and the impact these findings will have on the future of therapy. Expert commentary: The efficacy of these medications and understanding their mechanisms of actions validates the immunopathogenic mechanisms thought to underlie MS. Further research has exposed new targets, while new promising therapies have shed light on new aspects into the pathophysiology of MS.
Collapse
Affiliation(s)
- Vikram Bhise
- a Rutgers Biomedical and Health Sciences - Departments of Pediatrics , Robert Wood Johnson Medical School , New Brunswick , NJ , USA
| | - Suhayl Dhib-Jalbut
- b Rutgers Biomedical and Health Sciences - Departments of Neurology , Robert Wood Johnson Medical School , New Brunswick , NJ , USA
| |
Collapse
|
23
|
Sellebjerg F, Cadavid D, Steiner D, Villar LM, Reynolds R, Mikol D. Exploring potential mechanisms of action of natalizumab in secondary progressive multiple sclerosis. Ther Adv Neurol Disord 2016; 9:31-43. [PMID: 26788129 DOI: 10.1177/1756285615615257] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is a common and chronic central nervous system (CNS) demyelinating disease and a leading cause of permanent disability. Patients most often present with a relapsing-remitting disease course, typically progressing over time to a phase of relentless advancement in secondary progressive MS (SPMS), for which approved disease-modifying therapies are limited. In this review, we summarize the pathophysiological mechanisms involved in the development of SPMS and the rationale and clinical potential for natalizumab, which is currently approved for the treatment of relapsing forms of MS, to exert beneficial effects in reducing disease progression unrelated to relapses in SPMS. In both forms of MS, active brain-tissue injury is associated with inflammation; but in SPMS, the inflammatory response occurs at least partly behind the blood-brain barrier and is followed by a cascade of events, including persistent microglial activation that may lead to chronic demyelination and neurodegeneration associated with irreversible disability. In patients with relapsing forms of MS, natalizumab therapy is known to significantly reduce intrathecal inflammatory responses which results in reductions in brain lesions and brain atrophy as well as beneficial effects on clinical measures, such as reduced frequency and severity of relapse and reduced accumulation of disability. Natalizumab treatment also reduces levels of cerebrospinal fluid chemokines and other biomarkers of intrathecal inflammation, axonal damage and demyelination, and has demonstrated the ability to reduce innate immune activation and intrathecal immunoglobulin synthesis in patients with MS. The efficacy of natalizumab therapy in SPMS is currently being investigated in a randomized, double-blind, placebo-controlled trial.
Collapse
Affiliation(s)
- Finn Sellebjerg
- Danish Multiple Sclerosis Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Luisa Maria Villar
- Department of Immunology, Ramón y Cajal University Hospital, Institute Ramón y Cajal for Biomedical Research, Madrid, Spain
| | - Richard Reynolds
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Recent studies indicate a role for immune dysregulation in the pathogenesis of multiple sclerosis, an inflammatory demyelinating and degenerative disease of the central nervous system. This review addresses the current mechanisms of immune dysregulation in the development of multiple sclerosis, including the impact of environmental risk factors on immunity in both multiple sclerosis and its animal models. RECENT FINDINGS CD4 T-helper (Th) cells have long been implicated as the main drivers of pathogenesis of multiple sclerosis. However, current studies indicate that multiple sclerosis is largely a heterogeneous disease process, which involves both innate and adaptive immune-mediated inflammatory mechanisms that ultimately contribute to demyelination and neurodegeneration. Therefore, B cells, CD8 T cells, and microglia/macrophages can also play an important role in the immunopathogenesis of multiple sclerosis apart from proinflammatory CD4 Th1/Th17 cell subsets. Furthermore, increasing evidence indicates that environmental risk factors, such as Vitamin D deficiency, Epstein-Barr virus, smoking, Western diet, and the commensal microbiota, influence the development of multiple sclerosis through interactions with genetic variants of multiple sclerosis, thus leading to the dysregulation of immune responses. SUMMARY A better understanding of immune-mediated mechanisms in the pathogenesis of multiple sclerosis and the contribution of environmental risk factors toward the development of multiple sclerosis will help further improve therapeutic approaches to prevent disease progression.
Collapse
|
25
|
Ramroodi N, Khani M, Ganjali Z, Javan MR, Sanadgol N, Khalseh R, Ravan H, Sanadgol E, Abdollahi M. Prophylactic Effect of BIO-1211 Small-Molecule Antagonist of VLA-4 in the EAE Mouse Model of Multiple Sclerosis. Immunol Invest 2015; 44:694-712. [PMID: 26436854 DOI: 10.3109/08820139.2015.1085391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Some functional limitations and economic burden of therapeutic antibodies indicated that introducing of alternative therapeutic compounds with same or different mechanism of action could be worthwhile. In this regard small-molecule antagonists can have a wide range of impacts, so in this research, we examine the prophylactic effects of BIO-1211 [Very Late Antigen-4 (VLA4) blocker], in experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis in comparison with commercial available medicine, Natalizumab (NTZ)]. METHODS EAE was induced by subcutaneous immunization of myelin oligodendrocyte glycoprotein (MOG35-55) in 8-week-old C57BL/6 mice. During EAE induction, mice were separated to distinct groups and provided either BIO-1211 (5 and 10 mg/kg) or NTZ (5 mg/kg) and co-administration of these two compounds. After 21 days, neuro-inflammatory responses were analyzed using qRT-PCR, western blot, and ELISA methods. Pervade of immune cells to brain was examined by Evans blue staining and immunohistochemistry (IHC) analysis of specific markers of microglia/monocytes (CD11b) and leukocytes (CD45). RESULTS Targeted disruption of VLA4/VCAM1 interactions, by BIO-1211 agonist in mice, results in reduced cytokines expression, leukocyte trafficking, and inhibition of inflammatory responses in EAE (p < 0.01) in a dose-independent manner (data not shown). Mice treated with both BIO-1211 and NTZ exhibited a considerable depletion in the EAE clinical score, which correlated with decreased expression of TNF-α, IL-17, IFN-γ and pervade of CD11b(+) and CD45(+) cells into the cerebral cortex. CONCLUSION Our results indicated that BIO12-11 compound would be an useful tool to further understand the biological roles of VLA4/VCAM1 interactions, and could also be considered as EAE-suppressing agent.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/metabolism
- CD11b Antigen/metabolism
- Cell Movement/immunology
- Cerebral Cortex/immunology
- Cerebral Cortex/metabolism
- Cerebral Cortex/pathology
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression Regulation/drug effects
- Inflammation Mediators/metabolism
- Integrin alpha4beta1/antagonists & inhibitors
- Leukocyte Common Antigens/metabolism
- Leukocytes/immunology
- Leukocytes/metabolism
- Male
- Mice
- Monocytes/immunology
- Monocytes/metabolism
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Nitro Compounds
- Oligopeptides/administration & dosage
- Oligopeptides/chemistry
- Oligopeptides/pharmacology
- Permeability/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Thiazoles/administration & dosage
- Thiazoles/pharmacology
Collapse
Affiliation(s)
- Nourollah Ramroodi
- a Department of Neurology, Faculty of Medicine , Zahedan University of Medical Sciences , Zahedan , Iran
| | - Masood Khani
- b Department of Immunology, Faculty of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Zohre Ganjali
- c Department of Biology, Faculty of Sciences , University of Zabol , Zabol , Iran
| | - Mohammad Reza Javan
- d Department of Immunology, Faculty of Medicine , Zabol University of Medical Sciences , Zabol , Iran
| | - Nima Sanadgol
- c Department of Biology, Faculty of Sciences , University of Zabol , Zabol , Iran
- e Department of Pharmacy and Pharmaceutical Science Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Roghayeh Khalseh
- f Department of Chemical Engineering , Babol Noushirvani University of Technology , Babol , Iran
| | - Hadi Ravan
- g Department of Biology, Faculty of Science , Shahid Bahonar University of Kerman , Kerman , Iran , and
| | - Ehsan Sanadgol
- h Department of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Abdollahi
- e Department of Pharmacy and Pharmaceutical Science Research Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|