1
|
Agbemabiese CA, Dennis FE, Lartey BL, Damanka SA, Nakagomi T, Nakagomi O, Armah GE. Whole Genome Sequences of the Wildtype AU-1 Rotavirus A Strain: The Prototype of the AU-1-like Genotype Constellation. Viruses 2024; 16:1529. [PMID: 39459863 PMCID: PMC11512235 DOI: 10.3390/v16101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Most human rotaviruses belong to the Wa-like, DS-1-like, or AU-1-like genotype constellation. The AU-1-like constellation, albeit minor, captured attention because its prototype strain AU-1 originated from feline rotavirus, leading to the concept of interspecies transmission of rotavirus. The AU-1 genome sequence determined by various laboratories over the years has documented two conflicting VP7 sequences in the GenBank. As culture-adaptation may introduce changes in the viral genome, the original fecal (wild-type) and the seed stock of culture-adapted AU-1 genomes were sequenced using the Illumina's MiSeq platform to determine the authentic AU-1 sequence and to identify what mutational changes were selected during cell-culture adaptation. The wild-type and culture-adapted AU-1 genomes were identical except for one VP4-P475L substitution. Their VP7 gene was 99.9% identical to the previously reported AU-1 VP7 under accession number AB792641 but only 92.5% to that under accession number D86271. Thus, the wild-type sequences determined in this study (accession numbers OR727616-OR727626) should be used as the reference. The VP4-P475L mutation was more likely incidental than inevitable during cell-culture adaptation. This was the first study in which the whole genomes of both wild-type and cultured RVA strains were simultaneously determined by deep sequencing.
Collapse
Affiliation(s)
- Chantal Ama Agbemabiese
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon P.O. Box LG581, Ghana (G.E.A.)
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (T.N.); (O.N.)
| | - Francis Ekow Dennis
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon P.O. Box LG581, Ghana (G.E.A.)
| | - Belinda Larteley Lartey
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon P.O. Box LG581, Ghana (G.E.A.)
| | - Susan Afua Damanka
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon P.O. Box LG581, Ghana (G.E.A.)
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (T.N.); (O.N.)
| | - Osamu Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (T.N.); (O.N.)
| | - George Enyimah Armah
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon P.O. Box LG581, Ghana (G.E.A.)
| |
Collapse
|
2
|
Fukuda S, Kugita M, Kumamoto K, Akari Y, Higashimoto Y, Nagao S, Murata T, Yoshikawa T, Taniguchi K, Komoto S. Generation of Recombinant Authentic Live Attenuated Human Rotavirus Vaccine Strain RIX4414 (Rotarix ®) from Cloned cDNAs Using Reverse Genetics. Viruses 2024; 16:1198. [PMID: 39205172 PMCID: PMC11359283 DOI: 10.3390/v16081198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
The live attenuated human rotavirus vaccine strain RIX4414 (Rotarix®) is used worldwide to prevent severe rotavirus-induced diarrhea in infants. This strain was attenuated through the cell culture passaging of its predecessor, human strain 89-12, which resulted in multiple genomic mutations. However, the specific molecular reasons underlying its attenuation have remained elusive, primarily due to the absence of a suitable reverse genetics system enabling precise genetic manipulations. Therefore, we first completed the sequencing of its genome and then developed a reverse genetics system for the authentic RIX4414 virus. Our experimental results demonstrate that the rescued recombinant RIX4414 virus exhibits biological characteristics similar to those of the parental RIX4414 virus, both in vitro and in vivo. This novel reverse genetics system provides a powerful tool for investigating the molecular basis of RIX4414 attenuation and may facilitate the rational design of safer and more effective human rotavirus vaccines.
Collapse
Affiliation(s)
- Saori Fukuda
- Department of Virology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (S.F.); (Y.A.); (T.M.); (K.T.)
| | - Masanori Kugita
- Education and Research Facility of Animal Models for Human Diseases, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (M.K.); (K.K.); (S.N.)
| | - Kanako Kumamoto
- Education and Research Facility of Animal Models for Human Diseases, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (M.K.); (K.K.); (S.N.)
| | - Yuki Akari
- Department of Virology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (S.F.); (Y.A.); (T.M.); (K.T.)
- Division of One Health, Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu 879-5593, Oita, Japan
| | - Yuki Higashimoto
- Department of Clinical Microbiology, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Aichi, Japan;
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan;
| | - Shizuko Nagao
- Education and Research Facility of Animal Models for Human Diseases, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (M.K.); (K.K.); (S.N.)
| | - Takayuki Murata
- Department of Virology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (S.F.); (Y.A.); (T.M.); (K.T.)
- Center for Infectious Disease Research, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan;
- Center for Infectious Disease Research, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Koki Taniguchi
- Department of Virology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (S.F.); (Y.A.); (T.M.); (K.T.)
| | - Satoshi Komoto
- Department of Virology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (S.F.); (Y.A.); (T.M.); (K.T.)
- Division of One Health, Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu 879-5593, Oita, Japan
- Center for Infectious Disease Research, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
3
|
Fujii Y, Tsugawa T, Fukuda Y, Adachi S, Honjo S, Akane Y, Kondo K, Sakai Y, Tanaka T, Sato T, Higasidate Y, Kubo N, Mori T, Kato S, Hamada R, Kikuchi M, Tahara Y, Nagai K, Ohara T, Yoshida M, Nakata S, Noguchi A, Kikuchi W, Hamada H, Tokutake-Hirose S, Fujimori M, Muramatsu M. Molecular evolutionary analysis of novel NSP4 mono-reassortant G1P[8]-E2 rotavirus strains that caused a discontinuous epidemic in Japan in 2015 and 2018. Front Microbiol 2024; 15:1430557. [PMID: 39050631 PMCID: PMC11266183 DOI: 10.3389/fmicb.2024.1430557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
In the 2010s, several unusual rotavirus strains emerged, causing epidemics worldwide. This study reports a comprehensive molecular epidemiological study of rotaviruses in Japan based on full-genome analysis. From 2014 to 2019, a total of 489 rotavirus-positive stool specimens were identified, and the associated viral genomes were analyzed by next-generation sequencing. The genotype constellations of those strains were classified into nine patterns (G1P[8] (Wa), G1P[8]-E2, G1P[8] (DS-1), G2P[4] (DS-1), G3P[8] (Wa), G3P[8] (DS-1), G8P[8] (DS-1), G9P[8] (Wa), and G9P[8]-E2). The major prevalent genotype differed by year, comprising G8P[8] (DS-1) (37% of that year's isolates) in 2014, G1P[8] (DS-1) (65%) in 2015, G9P[8] (Wa) (72%) in 2016, G3P[8] (DS-1) (66%) in 2017, G1P[8]-E2 (53%) in 2018, and G9P[8] (Wa) (26%) in 2019. The G1P[8]-E2 strains (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1) isolated from a total of 42 specimens in discontinuous years (2015 and 2018), which were the newly-emerged NSP4 mono-reassortant strains. Based on the results of the Bayesian evolutionary analyses, G1P[8]-E2 and G9P[8]-E2 were hypothesized to have been generated from distinct independent inter-genogroup reassortment events. The G1 strains detected in this study were classified into multiple clusters, depending on the year of detection. A comparison of the predicted amino acid sequences of the VP7 epitopes revealed that the G1 strains detected in different years encoded VP7 epitopes harboring distinct mutations. These mutations may be responsible for immune escape and annual changes in the prevalent strains.
Collapse
Affiliation(s)
- Yoshiki Fujii
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeshi Tsugawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Yuya Fukuda
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Shuhei Adachi
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Saho Honjo
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Yusuke Akane
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Kenji Kondo
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Yoshiyuki Sakai
- Department of Pediatrics, Hakodate Municipal Hospital, Hokkaido, Japan
| | - Toju Tanaka
- Department of Pediatrics, National Hospital Organization Hokkaido Medical Center, Hokkaido, Japan
| | - Toshiya Sato
- Department of Pediatrics, Iwamizawa Municipal General Hospital, Hokkaido, Japan
| | - Yoshihito Higasidate
- Department of Pediatrics, Japan Community Health Care Organization Sapporo Hokushin Hospital, Hokkaido, Japan
| | - Noriaki Kubo
- Department of Pediatrics, Japan Red Cross Urakawa Hospital, Hokkaido, Japan
| | - Toshihiko Mori
- Department of Pediatrics, NTT Medical Center Sapporo, Hokkaido, Japan
| | - Shinsuke Kato
- Department of Pediatrics, Rumoi City Hospital, Hokkaido, Japan
| | - Ryo Hamada
- Department of Pediatrics, Rumoi City Hospital, Hokkaido, Japan
| | - Masayoshi Kikuchi
- Department of Pediatrics, Sunagawa City Medical Center, Hokkaido, Japan
| | - Yasuo Tahara
- Department of Pediatrics, Steel Memorial Muroran Hospital, Hokkaido, Japan
| | - Kazushige Nagai
- Department of Pediatrics, Takikawa Municipal Hospital, Hokkaido, Japan
| | - Toshio Ohara
- Department of Pediatrics, Tomakomai City Hospital, Hokkaido, Japan
| | - Masaki Yoshida
- Department of Pediatrics, Yakumo General Hospital, Hokkaido, Japan
| | | | - Atsuko Noguchi
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita, Japan
| | - Wakako Kikuchi
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Shoko Tokutake-Hirose
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Makoto Fujimori
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Infectious Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| |
Collapse
|
4
|
Fukuda Y, Kusuhara H, Takai-Todaka R, Haga K, Katayama K, Tsugawa T. Human transmission and outbreaks of feline-like G6 rotavirus revealed with whole-genome analysis of G6P[9] feline rotavirus. J Med Virol 2024; 96:e29565. [PMID: 38558056 DOI: 10.1002/jmv.29565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
Group A rotaviruses (RVAs) are generally highly species-specific; however, some strains infect across species. Feline RVAs sporadically infect humans, causing gastroenteritis. In 2012 and 2013, rectal swab samples were collected from 61 asymptomatic shelter cats at a public health center in Mie Prefecture, Japan, to investigate the presence of RVA and any association with human infections. The analysis identified G6P[9] strains in three cats and G3P[9] strains in two cats, although no feline RVA sequence data were available for the former. A whole-genome analysis of these G6P[9] strains identified the genotype constellation G6-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3. The nucleotide identity among these G6P[9] strains exceeded 99.5% across all 11 gene segments, indicating the circulation of this G6P[9] strain among cats. Notably, strain RVA/Human-wt/JPN/KF17/2010/G6P[9], previously detected in a 3-year-old child with gastroenteritis, shares high nucleotide identity (>98%) with Mie20120017f, the representative G6P[9] strain in this study, across all 11 gene segments, confirming feline RVA infection and symptomatic presentation in this child. The VP7 gene of strain Mie20120017f also shares high nucleotide identity with other sporadically reported G6 RVA strains in humans. This suggests that feline-origin G6 strains as the probable source of these sporadic G6 RVA strains causing gastroenteritis in humans globally. Moreover, a feline-like human G6P[8] strain circulating in Brazil in 2022 was identified, emphasizing the importance of ongoing surveillance to monitor potential global human outbreaks of RVA.
Collapse
Affiliation(s)
- Yuya Fukuda
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Hajime Kusuhara
- Mie Prefecture Health and Environment Research Institute, Mie, Japan
| | - Reiko Takai-Todaka
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kei Haga
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Takeshi Tsugawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
5
|
Akari Y, Hatazawa R, Kuroki H, Ito H, Negoro M, Tanaka T, Miwa H, Sugiura K, Umemoto M, Tanaka S, Ogawa M, Ito M, Fukuda S, Murata T, Taniguchi K, Suga S, Kamiya H, Nakano T, Taniguchi K, Komoto S. Full genome-based characterization of an Asian G3P[6] human rotavirus strain found in a diarrheic child in Japan: Evidence for porcine-to-human zoonotic transmission. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105507. [PMID: 37757900 DOI: 10.1016/j.meegid.2023.105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Human rotavirus strains having the unconventional G3P[6] genotype have been sporadically detected in diarrheic patients in different parts of the world. However, the full genomes of only three human G3P[6] strains from Asian countries (China, Indonesia, and Vietnam) have been sequenced and characterized, and thus the exact origin and evolution of G3P[6] strains in Asia remain to be elucidated. Here, we sequenced and characterized the full genome of a G3P[6] strain (RVA/Human-wt/JPN/SO1199/2020/G3P[6]) found in a stool sample from a 3-month-old infant admitted with acute gastroenteritis in Japan. On full genomic analysis, strain SO1199 was revealed to have a unique Wa-like genogroup configuration: G3-P[6]-I5-R1-C1-M1-A8-N1-T1-E1-H1. VP6 genotype I5 and NSP1 genotype A8 are commonly found in porcine rotavirus strains. Furthermore, phylogenetic analysis demonstrated that all 11 genes of strain SO1199 were closely related to those of porcine and/or porcine-like human rotaviruses and thus appeared to be of porcine origin. Thus, strain SO1199 was shown to possess a porcine-like genomic backbone and thus is likely to be the result of interspecies transmission of a porcine rotavirus strain. Of note is that all 11 genes of strain SO1199 were phylogenetically located in clusters, distinct from those of the previously identified porcine-like human G3P[6] strains from around the world including Asia, suggesting the occurrence of independent porcine-to-human zoonotic transmission events. To our knowledge, this is the first report on full genome-based characterization of a human G3P[6] strain that has emerged in Japan. Our findings revealed the diversity of unconventional human G3P[6] strains in Asia, and provide important insights into the origin and evolution of G3P[6] strains.
Collapse
Affiliation(s)
- Yuki Akari
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Riona Hatazawa
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Haruo Kuroki
- Sotobo Children's Clinic, Isumi, Chiba 299-4503, Japan
| | - Hiroaki Ito
- Department of Pediatrics, Kameda Medical Center, Kamogawa, Chiba 296-8602, Japan
| | - Manami Negoro
- Institute for Clinical Research, National Mie Hospital, Tsu, Mie 514-0125, Japan
| | - Takaaki Tanaka
- Department of Pediatrics, Kawasaki Medical School, Okayama, Okayama 700-8505, Japan
| | - Haruna Miwa
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Katsumi Sugiura
- Department of Pediatrics, National Mie Hospital, Tsu, Mie 514-0125, Japan
| | | | - Shigeki Tanaka
- Department of Pediatrics, Mie Chuo Medical Center, Tsu, Mie 514-1101, Japan
| | - Masahiro Ogawa
- Department of Pediatrics, Mie Chuo Medical Center, Tsu, Mie 514-1101, Japan
| | - Mitsue Ito
- Department of Pediatrics, Japanese Red Cross Ise Hospital, Ise, Mie 516-8512, Japan
| | - Saori Fukuda
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Takayuki Murata
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan; Center for Infectious Disease Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Kiyosu Taniguchi
- Department of Pediatrics, National Mie Hospital, Tsu, Mie 514-0125, Japan
| | - Shigeru Suga
- Department of Pediatrics, National Mie Hospital, Tsu, Mie 514-0125, Japan
| | - Hajime Kamiya
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Takashi Nakano
- Department of Pediatrics, Kawasaki Medical School, Okayama, Okayama 700-8505, Japan
| | - Koki Taniguchi
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Satoshi Komoto
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan; Center for Infectious Disease Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan; Division of One Health, Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu, Oita 879-5593, Japan.
| |
Collapse
|
6
|
Zhou X, Wang Y, Chen N, Pang B, Liu M, Cai K, Kobayashi N. Surveillance of Human Rotaviruses in Wuhan, China (2019-2022): Whole-Genome Analysis of Emerging DS-1-like G8P[8] Rotavirus. Int J Mol Sci 2023; 24:12189. [PMID: 37569563 PMCID: PMC10419309 DOI: 10.3390/ijms241512189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Group A rotaviruses (RVAs) are major etiologic agents of gastroenteritis in infants and young children worldwide. To study the prevalence and genetic characteristics of RVAs, a hospital-based surveillance study was conducted in Wuhan, China from June 2019 through May 2022. The detection rates of RVAs were 19.40% (142/732) and 3.51% (8/228) in children and adults, respectively. G9P[8] was the predominant genotype, followed by G8P[8] and G3P[8]. G8P[8] emerged and was dominant in the 2021-2022 epidemic season. The genome constellation of six G8P[8] strains was assigned to G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that the VP7, VP4, VP2, VP3, NSP1, NSP2, NSP3, and NSP5 genes of these G8P[8] strains clustered closely with those of the G8P[8] strains in Asia and were distant from those of the P[8] and G2P[4] strains simultaneously detected in Wuhan. In contrast, the VP1, VP6, and NSP4 genes were closely related to the typical G2P[4] rotavirus, including those of G2P[4] strains simultaneously detected in Wuhan. The detection rate of RVAs decreased in the COVID-19 pandemic era. It was deduced that the G8P[8] rotaviruses that emerged in China may be reassortants, carrying the VP6, VP1, and NSP4 genes derived from the G2P[4] rotavirus in the backbone of the neighboring DS-1-like G8P[8] strains represented by CAU17L-103.
Collapse
Affiliation(s)
- Xuan Zhou
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Yuanhong Wang
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Nan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Beibei Pang
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Manqing Liu
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China;
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| |
Collapse
|
7
|
Kim JS, Jeong HW, Park SH, Kim JA, Jin YH, Kim HS, Jung S, Lee JI, Lee JH. Genotypic shift in rotavirus associated with neonatal outbreaks in Seoul, Korea. J Clin Virol 2023; 164:105497. [PMID: 37253299 DOI: 10.1016/j.jcv.2023.105497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Rotavirus group A (RVA) is a causative agent of acute gastroenteritis among young children worldwide, despite the global expansion of rotavirus vaccination. In Korea, although the prevalence of RVA has been reduced among young children owing to vaccination, nosocomial infections still occur among neonates. OBJECTIVES The aim of this study was to investigate the molecular epidemiology of RVA strains associated with several neonatal outbreaks in Seoul from 2017 to 2020. STUDY DESIGN Clinical and environmental samples were collected and screened for the presence of RVA using ELISA and PCR targeting VP6, respectively. RVA-positive strains were genotyped via RT-PCR and subsequent sequencing of VP4 and VP7 and were phylogenetically compared with RVA strains from other countries. RESULTS During 2017-2020, a total of 15 RVA outbreaks occurred at neonatal facilities (six in hospital neonatal wards and nine in postpartum care centers) in Seoul, and only two RVA genotypes were detected: G4P[6] and G8P[6]. G8P[6] emerged in Seoul November 2018 and immediately became the predominant genotype among neonates, at least up to 2020. Phylogenetic analysis revealed that the G8P[6] genotype in this study was closely related to G8P[6] strains first identified in Korea in 2017, but differed from G8P[6] strains detected in Africa. CONCLUSIONS A novel G8P[6] genotype of RVA strains has emerged and caused outbreaks among neonates in Seoul. Continued surveillance for circulating RVA genotypes is imperative to monitor genotype changes and their potential risks to public health.
Collapse
Affiliation(s)
- Jin Seok Kim
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Republic of Korea.
| | - Hyo-Won Jeong
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Republic of Korea
| | - Sook Hyun Park
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Republic of Korea
| | - Jin-Ah Kim
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Republic of Korea
| | - Young Hee Jin
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Republic of Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Soyoung Jung
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Republic of Korea
| | - Jae In Lee
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Republic of Korea
| | - Jib-Ho Lee
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Republic of Korea
| |
Collapse
|
8
|
Azevedo LS, Costa FF, Ghani MBA, Viana E, França Y, Medeiros RS, Guiducci R, Morillo SG, Primo D, Lopes RD, Gomes-Gouvêa MS, da Costa AC, Luchs A. Full genotype characterization of Brazilian canine G3P[3] strains during a 10-year survey (2012-2021) of rotavirus infection in domestic dogs and cats. Arch Virol 2023; 168:176. [PMID: 37306860 DOI: 10.1007/s00705-023-05807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
There is a dearth of information on the molecular epidemiology of rotaviruses in pets in Brazil. The aim of this study was to monitor rotavirus infections in household dogs and cats, determine full-genotype constellations, and obtain data on evolutionary relationships. Between 2012 and 2021, 600 fecal samples from dogs and cats (516 and 84, respectively) were collected at small animal clinics in São Paulo state, Brazil. Rotavirus screening was conducted using ELISA, PAGE, RT-PCR, sequencing, and phylogenetic analysis. Rotavirus type A (RVA) was detected in 0.5% (3/600) of the animals. No non-RVA types were detected. The three canine RVA strains were found to have a novel genetic constellation, G3-P[3] -I2-R3-C2-M3-A9-N2-T3-E3-H6, which has never been reported in dogs. As expected, all of the viral genes, except those encoding NSP2 and VP7, were closely related to the corresponding genes from canine, feline, and canine-like-human RVA strains. A novel N2 (NSP2) lineage was identified, grouping together Brazilian canine, human, rat and bovine strains, suggesting that genetic reassortment had occurred. Uruguayan G3 strains obtained from sewage contained VP7 genes that were phylogenetically close to those of the Brazilian canine strains, which suggests that these strains are widely distributed in pet populations in South American countries. For the NSP2 (I2), NSP3 (T3), NSP4 (E3), NSP5 (H6), VP1 (R3), VP3 (M3), and VP6 (I2) segments, phylogenetic analysis revealed possibly new lineages. The epidemiological and genetic data presented here point out the necessity for collaborative efforts to implement the One Health strategy in the field of RVA research and to provide an updated understanding of RVA strains circulating canines in Brazil.
Collapse
Affiliation(s)
- Lais Sampaio Azevedo
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | | | - Ellen Viana
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Yasmin França
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Raquel Guiducci
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Dieli Primo
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Michele Soares Gomes-Gouvêa
- Laboratorio de Gastroenterologia e Hepatologia Tropical-LIM07, Departamento de Gastroenterologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Antonio Charlys da Costa
- Laboratorio de Parasitologia Médica-LIM46, Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Adriana Luchs
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil.
- Instituto Adolfo Lutz, Centro de Virologia, Núcleo de Doenças Entéricas, Av. Dr Arnaldo, nº 355, São Paulo, SP, 01246-902, Brazil.
| |
Collapse
|
9
|
Fukuda S, Akari Y, Hatazawa R, Negoro M, Tanaka T, Asada K, Nakamura H, Sugiura K, Umemoto M, Kuroki H, Ito H, Tanaka S, Ito M, Ide T, Murata T, Taniguchi K, Suga S, Kamiya H, Nakano T, Taniguchi K, Komoto S. Rapid spread of unusual G9P[8] human rotavirus strains possessing NSP4 genes of the E2 genotype in Japan. Jpn J Infect Dis 2022; 75:466-475. [DOI: 10.7883/yoken.jjid.2022.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Japan
| | - Yuki Akari
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Japan
| | - Riona Hatazawa
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Japan
| | - Manami Negoro
- Institute for Clinical Research, National Mie Hospital, Japan
| | - Takaaki Tanaka
- Department of Pediatrics, Kawasaki Medical School, Japan
| | | | | | | | | | | | - Hiroaki Ito
- Department of Pediatrics, Kameda Medical Center, Japan
| | - Shigeki Tanaka
- Department of Pediatrics, Mie Chuo Medical Center, Japan
| | - Mitsue Ito
- Department of Pediatrics, Japanese Red Cross Ise Hospital, Japan
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Japan
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Japan
| | | | - Shigeru Suga
- Department of Pediatrics, National Mie Hospital, Japan
| | - Hajime Kamiya
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Japan
| | - Takashi Nakano
- Department of Pediatrics, Kawasaki Medical School, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Japan
| |
Collapse
|
10
|
Wandera EA, Hatazawa R, Tsutsui N, Kurokawa N, Kathiiko C, Mumo M, Waithira E, Wachira M, Mwaura B, Nyangao J, Khamadi SA, Njau J, Fukuda S, Murata T, Taniguchi K, Ichinose Y, Kaneko S, Komoto S. Genomic characterization of an African G4P[6] human rotavirus strain identified in a diarrheic child in Kenya: Evidence for porcine-to-human interspecies transmission and reassortment. INFECTION GENETICS AND EVOLUTION 2021; 96:105133. [PMID: 34767977 DOI: 10.1016/j.meegid.2021.105133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023]
Abstract
Human rotavirus strains having the unconventional G4P[6] genotype have been sporadically identified in diarrheic patients in different parts of the world. However, the whole genome of only one human G4P[6] strain from Africa (central Africa) has been sequenced and analyzed, and thus the exact origin and evolutionary pattern of African G4P[6] strains remain to be elucidated. In this study, we characterized the full genome of an African G4P[6] strain (RVA/Human-wt/KEN/KCH148/2019/G4P[6]) identified in a stool specimen from a diarrheic child in Kenya. Full genome analysis of strain KCH148 revealed a unique Wa-like genogroup constellation: G4-P[6]-I1-R1-C1-M1-A1-N1-T7-E1-H1. NSP3 genotype T7 is commonly found in porcine rotavirus strains. Furthermore, phylogenetic analysis showed that 10 of the 11 genes of strain KCH148 (VP7, VP4, VP6, VP1-VP3, NSP1, and NSP3-NSP5) appeared to be of porcine origin, the remaining NSP2 gene appearing to be of human origin. Therefore, strain KCH148 was found to have a porcine rotavirus backbone and thus is likely to be of porcine origin. Furthermore, strain KCH148 is assumed to have been derived through interspecies transmission and reassortment events involving porcine and human rotavirus strains. To our knowledge, this is the first report on full genome-based characterization of a human G4P[6] strain from east Africa. Our observations demonstrated the diversity of human G4P[6] strains in Africa, and provide important insights into the origin and evolutionary pattern of zoonotic G4P[6] strains on the African continent.
Collapse
Affiliation(s)
- Ernest Apondi Wandera
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Riona Hatazawa
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Naohisa Tsutsui
- Department of Project Planning and Management, Mitsubishi Tanabe Pharma Corporation, Chuo-ku, Tokyo 103-8405, Japan
| | - Natsuki Kurokawa
- Department of Project Planning and Management, Mitsubishi Tanabe Pharma Corporation, Chuo-ku, Tokyo 103-8405, Japan
| | - Cyrus Kathiiko
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Maurine Mumo
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Eunice Waithira
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Mary Wachira
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Boniface Mwaura
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - James Nyangao
- Center for Virus Research, KEMRI, Nairobi 54840-00200, Kenya
| | | | - Joseph Njau
- Department of Pediatrics, Kiambu County Referral Hospital, Kiambu 39-00900, Kenya
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Yoshio Ichinose
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Satoshi Kaneko
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
11
|
Strydom A, Donato CM, Nyaga MM, Boene SS, Peenze I, Mogotsi MT, João ED, Munlela B, Potgieter AC, Seheri ML, de Deus N, O’Neill HG. Genetic Characterisation of South African and Mozambican Bovine Rotaviruses Reveals a Typical Bovine-like Artiodactyl Constellation Derived through Multiple Reassortment Events. Pathogens 2021; 10:pathogens10101308. [PMID: 34684257 PMCID: PMC8539442 DOI: 10.3390/pathogens10101308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
This study presents whole genomes of seven bovine rotavirus strains from South Africa and Mozambique. Double-stranded RNA, extracted from stool samples without prior adaptation to cell culture, was used to synthesise cDNA using a self-annealing anchor primer ligated to dsRNA and random hexamers. The cDNA was subsequently sequenced using an Illumina MiSeq platform without prior genome amplification. All strains exhibited bovine-like artiodactyl genome constellations (G10/G6-P[11]/P[5]-I2-R2-C2-M2-A3/A11/A13-N2-T6-E2-H3). Phylogenetic analysis revealed relatively homogenous strains, which were mostly related to other South African animal strains or to each other. It appears that these study strains represent a specific bovine rotavirus population endemic to Southern Africa that was derived through multiple reassortment events. While one Mozambican strain, MPT307, was similar to the South African strains, the second strain, MPT93, was divergent from the other study strains, exhibiting evidence of interspecies transmission of the VP1 and NSP2 genes. The data presented in this study not only contribute to the knowledge of circulating African bovine rotavirus strains, but also emphasise the need for expanded surveillance of animal rotaviruses in African countries in order to improve our understanding of rotavirus strain diversity.
Collapse
Affiliation(s)
- Amy Strydom
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9300, South Africa; (A.S.); (M.T.M.)
| | - Celeste M. Donato
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville 3010, Australia;
- Department of Paediatrics, Theniversity of Melbourne, Parkville 3010, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne 3052, Australia
| | - Martin M. Nyaga
- Next Generation Sequencing Unit, University of the Free State, Bloemfontein 9300, South Africa;
- Division of Virology, Faculty of Health Sciences, School of Pathology, University of the Free State, Bloemfontein 9300, South Africa
| | - Simone S. Boene
- Instituto Nacional de Saúde (INS), Distrito de Marracuene 1120, Mozambique; (S.S.B.); (E.D.J.); (B.M.); (N.d.D.)
- Biotechnology Center, Eduardo Mondlane University, Maputo 1100, Mozambique
| | - Ina Peenze
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria 0001, South Africa; (I.P.); (M.L.S.)
| | - Milton T. Mogotsi
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9300, South Africa; (A.S.); (M.T.M.)
| | - Eva D. João
- Instituto Nacional de Saúde (INS), Distrito de Marracuene 1120, Mozambique; (S.S.B.); (E.D.J.); (B.M.); (N.d.D.)
| | - Benilde Munlela
- Instituto Nacional de Saúde (INS), Distrito de Marracuene 1120, Mozambique; (S.S.B.); (E.D.J.); (B.M.); (N.d.D.)
- Biotechnology Center, Eduardo Mondlane University, Maputo 1100, Mozambique
| | - A. Christiaan Potgieter
- Biochemistry, Focus Area Human Metabolomics, North-West University, Potchefstroom 2520, South Africa;
- Deltamune (Pty) Ltd., Unit 34 Oxford Office Park, 3 Bauhinia Street, Highveld Techno Park, Centurion 0157, South Africa
| | - Mapaseka L. Seheri
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria 0001, South Africa; (I.P.); (M.L.S.)
| | - Nilsa de Deus
- Instituto Nacional de Saúde (INS), Distrito de Marracuene 1120, Mozambique; (S.S.B.); (E.D.J.); (B.M.); (N.d.D.)
- Departamento de Ciências Biológicas, Universidade Eduardo Mondlane, Maputo 1100, Mozambique
| | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9300, South Africa; (A.S.); (M.T.M.)
- Correspondence: ; Tel.: +27-51-401-2122
| |
Collapse
|
12
|
Tacharoenmuang R, Guntapong R, Upachai S, Singchai P, Fukuda S, Ide T, Hatazawa R, Sutthiwarakom K, Kongjorn S, Onvimala N, Luechakham T, Ruchusatsawast K, Kawamura Y, Sriwanthana B, Motomura K, Tatsumi M, Takeda N, Yoshikawa T, Murata T, Uppapong B, Taniguchi K, Komoto S. Full genome-based characterization of G4P[6] rotavirus strains from diarrheic patients in Thailand: Evidence for independent porcine-to-human interspecies transmission events. Virus Genes 2021; 57:338-357. [PMID: 34106412 DOI: 10.1007/s11262-021-01851-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/17/2021] [Indexed: 12/18/2022]
Abstract
The exact evolutionary patterns of human G4P[6] rotavirus strains remain to be elucidated. Such strains possess unique and strain-specific genotype constellations, raising the question of whether G4P[6] strains are primarily transmitted via independent interspecies transmission or human-to-human transmission after interspecies transmission. Two G4P[6] rotavirus strains were identified in fecal specimens from hospitalized patients with severe diarrhea in Thailand, namely, DU2014-259 (RVA/Human-wt/THA/DU2014-259/2014/G4P[6]) and PK2015-1-0001 (RVA/Human-wt/THA/PK2015-1-0001/2015/G4P[6]). Here, we analyzed the full genomes of the two human G4P[6] strains, which provided the opportunity to study and confirm their evolutionary origin. On whole genome analysis, both strains exhibited a unique Wa-like genotype constellation of G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1. The NSP1 genotype A8 is commonly found in porcine rotavirus strains. Furthermore, on phylogenetic analysis, each of the 11 genes of strains DU2014-259 and PK2015-1-0001 appeared to be of porcine origin. On the other hand, the two study strains consistently formed distinct clusters for nine of the 11 gene segments (VP4, VP6, VP1-VP3, and NSP2-NSP5), strongly indicating the occurrence of independent porcine-to-human interspecies transmission events. Our observations provide important insights into the origin of zoonotic G4P[6] strains, and into the dynamic interaction between porcine and human rotavirus strains.
Collapse
Affiliation(s)
- Ratana Tacharoenmuang
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Ratigorn Guntapong
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Sompong Upachai
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Phakapun Singchai
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Riona Hatazawa
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Karun Sutthiwarakom
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Santip Kongjorn
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Napa Onvimala
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Tipsuda Luechakham
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | | | - Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Busarawan Sriwanthana
- Medical Sciences Technical Office, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Kazushi Motomura
- Thailand-Japan Research Collaboration Center on Emerging and Re-Emerging Infections, Nonthaburi, 11000, Thailand
- Osaka Institute of Public Health, Osaka, 537-0025, Japan
| | - Masashi Tatsumi
- Thailand-Japan Research Collaboration Center on Emerging and Re-Emerging Infections, Nonthaburi, 11000, Thailand
| | - Naokazu Takeda
- Thailand-Japan Research Collaboration Center on Emerging and Re-Emerging Infections, Nonthaburi, 11000, Thailand
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Ballang Uppapong
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
13
|
Murata T, Sakurai A, Suzuki M, Komoto S, Ide T, Ishihara T, Doi Y. Shedding of Viable Virus in Asymptomatic SARS-CoV-2 Carriers. mSphere 2021; 6:e00019-21. [PMID: 34011679 PMCID: PMC8265619 DOI: 10.1128/msphere.00019-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
Information regarding the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in asymptomatic carriers is scarce. In order to determine the duration of infectivity and its correlation with reverse transcription-PCR (RT-PCR) results and time since initial positive PCR test in this population, we evaluated SARS-CoV-2 cell infectivity in nasopharyngeal samples longitudinally obtained from asymptomatic carriers who disembarked from a cruise ship during a COVID-19 outbreak. Of 166 nasopharyngeal samples collected from 39 asymptomatic carriers every 48 h until two consecutive negative PCR test results were obtained, SARS-CoV-2 was successfully isolated from 9 PCR-positive samples which were obtained from 7 persons (18%; 7/39). Viable viruses were isolated predominantly within 7 days after the initial positive PCR test, except for one person who shed viable virus until day 15. The median crossing point (Cp) value of RT-PCR of culture-positive samples was 24.6 (interquartile range [IQR], 20.4 to 25.8; range, 17.9 to 30.3), and Cp values were significantly associated with isolation of viable virus (odds ratio, 0.496; 95% confidence interval [CI], 0.329 to 0.747; P value, 0.001), which was consistent with existing data for symptomatic patients. Genome sequence analysis of SARS-CoV-2 samples consecutively obtained from a person who shed viable virus for 15 days identified the emergence of two novel single nucleotide variants (C8626T transition and C18452T transition) in the sample collected on day 15, with the latter corresponding to an amino acid substitution in nonstructural protein 14. The impact of these mutations on prolonged viable-virus shedding is unclear. These findings underscore the potential role of asymptomatic carriers in transmission.IMPORTANCE A growing number of studies suggest the potential role of asymptomatic SARS-CoV-2 carriers as a major driver of the COVID-19 pandemic; however, virological assessment of asymptomatic infection has largely been limited to reverse transcription-PCR (RT-PCR), which can be persistently positive without necessarily indicating the presence of viable virus (e.g., replication-competent virus). Here, we evaluated the infectivity of asymptomatic SARS-CoV-2 carriers by detecting SARS-CoV-2-induced cytopathic effects on Vero cells using longitudinally obtained nasopharyngeal samples from asymptomatic carriers. We show that asymptomatic carriers can shed viable virus until 7 days after the initial positive PCR test, with one outlier shedding until day 15. The crossing point (Cp) value of RT-PCR was the leading predictive factor for virus viability. These findings provide additional insights into the role of asymptomatic carriers as a source of transmission and highlight the importance of universal source control measures, along with isolation policy for asymptomatic carriers.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Aki Sakurai
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Center for Joint Research Facilities Support, Research Promotion and Support Headquarters, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Yanagido, Gifu, Japan
| | - Yohei Doi
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
14
|
Rasebotsa S, Uwimana J, Mogotsi MT, Rakau K, Magagula NB, Seheri ML, Mwenda JM, Mphahlele MJ, Sabiu S, Mihigo R, Mutesa L, Nyaga MM. Whole-Genome Analyses Identifies Multiple Reassortant Rotavirus Strains in Rwanda Post-Vaccine Introduction. Viruses 2021; 13:v13010095. [PMID: 33445703 PMCID: PMC7828107 DOI: 10.3390/v13010095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/23/2022] Open
Abstract
Children in low-and middle-income countries, including Rwanda, experience a greater burden of rotavirus disease relative to developed countries. Evolutionary mechanisms leading to multiple reassortant rotavirus strains have been documented over time which influence the diversity and evolutionary dynamics of novel rotaviruses. Comprehensive rotavirus whole-genome analysis was conducted on 158 rotavirus group A (RVA) samples collected pre- and post-vaccine introduction in children less than five years in Rwanda. Of these RVA positive samples, five strains with the genotype constellations G4P[4]-I1-R2-C2-M2-A2-N2-T1-E1-H2 (n = 1), G9P[4]-I1-R2-C2-M2-A1-N1-T1-E1-H1 (n = 1), G12P[8]-I1-R2-C2-M1-A1-N2-T1-E2-H3 (n = 2) and G12P[8]-I1-R1-C1-M1-A2-N2-T2-E1-H1 (n = 1), with double and triple gene reassortant rotavirus strains were identified. Phylogenetic analysis revealed a close relationship between the Rwandan strains and cognate human RVA strains as well as the RotaTeq® vaccine strains in the VP1, VP2, NSP2, NSP4 and NSP5 gene segments. Pairwise analyses revealed multiple differences in amino acid residues of the VP7 and VP4 antigenic regions of the RotaTeq® vaccine strain and representative Rwandan study strains. Although the impact of such amino acid changes on the effectiveness of rotavirus vaccines has not been fully explored, this analysis underlines the potential of rotavirus whole-genome analysis by enhancing knowledge and understanding of intergenogroup reassortant strains circulating in Rwanda post vaccine introduction.
Collapse
Affiliation(s)
- Sebotsana Rasebotsa
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (S.R.); (M.T.M.); (S.S.)
| | - Jeannine Uwimana
- Department of Laboratory, Clinical Biology, Kigali University Teaching Hospital, P.O. Box 4285, Kigali, Rwanda;
| | - Milton T. Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (S.R.); (M.T.M.); (S.S.)
| | - Kebareng Rakau
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; (K.R.); (N.B.M.); (M.L.S.); (M.J.M.)
| | - Nonkululeko B. Magagula
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; (K.R.); (N.B.M.); (M.L.S.); (M.J.M.)
| | - Mapaseka L. Seheri
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; (K.R.); (N.B.M.); (M.L.S.); (M.J.M.)
| | - Jason M. Mwenda
- World Health Organization, Regional Office for Africa, P.O. Box 06, Brazzaville, Congo; (J.M.M.); (R.M.)
| | - M. Jeffrey Mphahlele
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; (K.R.); (N.B.M.); (M.L.S.); (M.J.M.)
- South African Medical Research Council, 1 Soutpansberg Road, Pretoria 0001, South Africa
| | - Saheed Sabiu
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (S.R.); (M.T.M.); (S.S.)
| | - Richard Mihigo
- World Health Organization, Regional Office for Africa, P.O. Box 06, Brazzaville, Congo; (J.M.M.); (R.M.)
| | - Leon Mutesa
- Centre for Human Genetics, University of Rwanda, College of Medicine and Health Sciences, P.O. Box 4285, Kigali, Rwanda;
| | - Martin M. Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (S.R.); (M.T.M.); (S.S.)
- Correspondence: ; Tel.: +27-51-401-9158
| |
Collapse
|
15
|
Komoto S, Tacharoenmuang R, Guntapong R, Upachai S, Singchai P, Ide T, Fukuda S, Hatazawa R, Sutthiwarakom K, Kongjorn S, Onvimala N, Luechakham T, Sriwanthana B, Murata T, Uppapong B, Taniguchi K. Genomic characterization of a novel G3P[10] rotavirus strain from a diarrheic child in Thailand: Evidence for bat-to-human zoonotic transmission. INFECTION GENETICS AND EVOLUTION 2021; 87:104667. [DOI: 10.1016/j.meegid.2020.104667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/18/2020] [Accepted: 12/02/2020] [Indexed: 02/04/2023]
|
16
|
Tamim S, Heylen E, Zeller M, Ranst MV, Matthijnssens J, Salman M, Aamir UB, Sharif S, Ikram A, Hasan F. Phylogenetic analysis of open reading frame of 11 gene segments of novel human-bovine reassortant RVA G6P[1] strain in Pakistan. J Med Virol 2020; 92:3179-3186. [PMID: 31696948 DOI: 10.1002/jmv.25625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/30/2019] [Indexed: 11/05/2022]
Abstract
Multiple Rotavirus A (RVA) strains are linked with gastrointestinal infections in children that fall in age bracket of 0 to 60 months. However, the problem is augmented with emergence of unique strains that reassort with RVA strains of animal origin. The study describes the sequence analysis of a rare G6P[1] rotavirus strain isolated from a less than 1 year old child, during rotavirus surveillance in Rawalpindi district, Pakistan in 2010. Extracted RNA from fecal specimen was subjected to high throughput RT-PCR for structural and nonstructural gene segments. The complete rotavirus genome of one isolate RVA/Human-wt/PAK/PAK99/2010/G6P[1] was sequenced for phylogenetic analysis to elucidate the evolutionary linkages and origin. Full genome examination of novel strain RVA/Human-wt/PAK/PAK99/2010/G6P[1] revealed the unique genotype assemblage: G6-P[1]-I2-R2-C2-M2-A3-N2-T6-E2-H1. The evolutionary analyses of VP7, VP4, NSP1 and NSP3 gene segments revealed that PAK99 clustered with bovine, or cattle-like rotavirus strains from other closely related species, in the genotypes G6, P[1], A3 and T6 respectively. Gene segments VP6, VP1, VP2, VP3, NSP2 and NSP4 all possessed the DS-1-like bovine genotype 2 and bovine (-like) RVA strains instead of RVA strains having human origin. However, the NSP5 gene was found to cluster closely with contemporary human Wa-like rotavirus strains of H1 genotype. This is the first report on bovine-human (Wa-like reassortant) genotype constellation of G6P[1] strain from a human case in Pakistan (and the second description worldwide). Our results emphasize the significance of incessant monitoring of circulating RVA strains in humans and animals for better understanding of RV evolution.
Collapse
Affiliation(s)
- Sana Tamim
- Public Health Laboratories, Department of Virology/Immunology, National Institute of Health, Islamabad, Pakistan
| | - Elisabeth Heylen
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Mark Zeller
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California
| | - Marc Van Ranst
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | | | - Muhammad Salman
- Public Health Laboratories, Department of Virology/Immunology, National Institute of Health, Islamabad, Pakistan
| | - Uzma Bashir Aamir
- IHP unit Health Emergencies, WHO Country Office, Islamabad, Pakistan
| | - Salman Sharif
- Public Health Laboratories, Department of Virology/Immunology, National Institute of Health, Islamabad, Pakistan
| | - Aamer Ikram
- Public Health Laboratories, Department of Virology/Immunology, National Institute of Health, Islamabad, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
17
|
Genetic characterisation of novel G29P[14] and G10P[11] rotavirus strains from African buffalo. INFECTION GENETICS AND EVOLUTION 2020; 85:104463. [PMID: 32693063 DOI: 10.1016/j.meegid.2020.104463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 11/22/2022]
Abstract
We report the first description of rotavirus A strains in African buffalo (Syncerus caffer). Following RNA extraction from stool samples, cDNA was prepared, followed either by sequence-independent amplification and 454 pyrosequencing or direct sequencing on an Illumina MiSeq platform. RVA/Buffalo-wt/ZAF/4426/2002/G29P[14] exhibited a novel G29P[14] combination and an artiodactyl backbone: I2-R2-C2-M2-A11-N2-T6-E2-H3. RVA/Buffalo-wt/ZAF/1442/2007/G10P[11] also exhibited an artiodactyl backbone: I2-R2-C2-M2-A13-N2-T6-E2-H3. Characterisation of these genome constellations indicate that the two buffalo strains are moderately diverse from each other and related to South African bovine RVA strains. The detection of RVA in buffalo contribute to our understanding of the host range of rotavirus in animals.
Collapse
|
18
|
Alaoui Amine S, Melloul M, El Alaoui MA, Boulahyaoui H, Loutfi C, Touil N, El Fahime E. Evidence for zoonotic transmission of species A rotavirus from goat and cattle in nomadic herds in Morocco, 2012-2014. Virus Genes 2020; 56:582-593. [PMID: 32651833 PMCID: PMC7351565 DOI: 10.1007/s11262-020-01778-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/28/2020] [Indexed: 12/11/2022]
Abstract
Species A rotaviruses (RVAs) are a leading cause of diarrhea in children and in the young of a large variety of mammalian and avian host species. The purpose of this study was to identify RVA in nomadic goats and calves during severe diarrhea outbreaks in 2012 and 2014 in Bouaarfa, Morocco, and to characterize the complete genomic constellation of two bovine and caprine strains (S18 and S19) and their genetic relatedness with the human strain ma31 detected in 2011 in Morocco. Partial nucleotide sequencing of VP4 and VP7 genes for the twenty-two positive samples revealed three circulating genotypes: G6P[14], G10P[14], and G10P[5] with predominance of G6P[14] genotype. Full-genome sequencing for both strains S18 and S19 presented, respectively, the following genomic constellations: G6-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3 and G10-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3. Phylogenetic analyses and the analysis of the VP8* antigenic epitopes for S18, S19 and ma31 revealed a shared similarity with bovine, caprine, ovine and human strains from Morocco and other countries. The VP2 and NSP1 genes of the S19 strain were closely related to those of the cognate genes of the human ma31 strain, while the VP4 gene of S18 strain was closely related to the cogent gene of the ma31 strain. Our findings revealed cases of zoonotic transmission and confirmed the risk of emergence of new genotypes in some environments such as nomadic regions, where close physical proximity between human and livestock is common. The present study is novel in reporting whole-genome analyses of RVA isolates obtained from nomadic livestock in Morocco.
Collapse
Affiliation(s)
- Sanaâ Alaoui Amine
- Genomic Center for Human Pathologies (GENOPATH), Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Av. Mohamed Belarbi El Alaoui, 6203, Rabat, Morocco.
- Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research, CNRST, Angle Avenue Allal El Fassi, Avenue des FAR, Quartier Er-Ryad, 8027, Rabat, Morocco.
| | - Marouane Melloul
- Genomic Center for Human Pathologies (GENOPATH), Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Av. Mohamed Belarbi El Alaoui, 6203, Rabat, Morocco
- Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research, CNRST, Angle Avenue Allal El Fassi, Avenue des FAR, Quartier Er-Ryad, 8027, Rabat, Morocco
| | - Moulay Abdelaziz El Alaoui
- Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research, CNRST, Angle Avenue Allal El Fassi, Avenue des FAR, Quartier Er-Ryad, 8027, Rabat, Morocco
- Virology Laboratory, Research Team in Molecular Virology and Onco Biology (ERVMOB), Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Av. Mohamed Belarbi El Alaoui, 6203, Rabat, Morocco
| | - Hassan Boulahyaoui
- Genomic Center for Human Pathologies (GENOPATH), Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Av. Mohamed Belarbi El Alaoui, 6203, Rabat, Morocco
| | - Chafiqa Loutfi
- Département de Virologie, Société de Productions Biologiques et Pharmaceutiques Vétérinaires, Km 2, Route de Casablanca, B.P. 4569, Rabat, Morocco
| | - Nadia Touil
- Genomic Center for Human Pathologies (GENOPATH), Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Av. Mohamed Belarbi El Alaoui, 6203, Rabat, Morocco
- Research and Biosafety Laboratory, Med V Military Teaching Hospital in Rabat, 10045, Hay Ryad, Morocco
| | - Elmostafa El Fahime
- Genomic Center for Human Pathologies (GENOPATH), Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Av. Mohamed Belarbi El Alaoui, 6203, Rabat, Morocco
- Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research, CNRST, Angle Avenue Allal El Fassi, Avenue des FAR, Quartier Er-Ryad, 8027, Rabat, Morocco
| |
Collapse
|
19
|
Shoeib A, Velasquez Portocarrero DE, Wang Y, Jiang B. First isolation and whole-genome characterization of a G9P[14] rotavirus strain from a diarrheic child in Egypt. J Gen Virol 2020; 101:896-901. [PMID: 32552988 DOI: 10.1099/jgv.0.001455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An unusual group A rotavirus (RVA) strain (RVA/Human-tc/EGY/AS997/2012/G9[14]) was isolated for the first time in a faecal sample from a 6-month-old child who was hospitalized for treatment of acute gastroenteritis in Egypt in 2012. Whole-genome analysis showed that the strain AS997 had a unique genotype constellation: G9-P[14]-I2-R2-C2-M2-A11-N2-T1-E2-H1. Phylogenetic analysis indicated that the strain AS997 had the consensus P[14] genotype constellation with the G9, T1 and H1 reassortment. This suggests either a mixed gene configuration originated from a human Wa-like strain and a P[14]-containing animal virus, or that this P[14] could have been acquired via reassortment of human strains only. The study shows the possible roles of interspecies transmission and multiple reassortment events leading to the generation of novel rotavirus genotypes and underlines the importance of whole-genome characterization of rotavirus strains in surveillance studies.
Collapse
Affiliation(s)
- Ashraf Shoeib
- Environmental Research Division, National Research Center, 12311 Dokki, Egypt
- Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA 30329, USA
| | | | - Yuhuan Wang
- Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA 30329, USA
| | - Baoming Jiang
- Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
20
|
Nyaga MM, Sabiu S, Ndze VN, Dennis FE, Jere KC. Report of the 1st African Enteric Viruses Genome Initiative (AEVGI) Data and Bioinformatics Workshop on whole-genome analysis of some African rotavirus strains held in Bloemfontein, South Africa. Vaccine 2020; 38:5402-5407. [PMID: 32561119 DOI: 10.1016/j.vaccine.2020.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
The University of the Free State - Next Generation Sequencing (NGS) Unit, Bloemfontein, South Africa, hosted a data and bioinformatics workshop from 19 to 22 June 2018. The workshop was coordinated by the African Enteric Viruses Genome Initiative (AEVGI) with support from the Bill & Melinda Gates Foundation. The event introduced technologies in NGS and data analysis with focus on the rotavirus (RV) genome. The workshop fostered interactions and networking between professionals, scientific experts, technicians and students. The courses provided an overview of RV diarrhoea and its burden in Africa, while highlighting the key resources and methodologies in NGS and advanced bioinformatics in deciphering vaccine impact. It was concluded that, despite the reported significant decline in RV associated-diarrhoea mortality and morbidity in Africa due to RV vaccine impact, the need for continuous surveillance and genomic characterization to better understand the ever-changing dynamics of RV strains is imperative.
Collapse
Affiliation(s)
- Martin M Nyaga
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Saheed Sabiu
- Biotechnology and Food Technology Department, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Valantine N Ndze
- Faculty of Health Sciences, University of Buea, P.O. Box 63, Buea, Cameroon; USAID-IDDS Project Cameroon, ASLM, Cameroon
| | - Francis E Dennis
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences, University of Ghana, Legon, Ghana
| | - Khuzwayo C Jere
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, L69 7BE, UK; Malawi-Liverpool-Wellcome Trust Clinical Research Programme/Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Blantyre, Malawi
| |
Collapse
|
21
|
Fukuda S, Tacharoenmuang R, Guntapong R, Upachai S, Singchai P, Ide T, Hatazawa R, Sutthiwarakom K, Kongjorn S, Onvimala N, Ruchusatsawast K, Rungnopakun P, Mekmallika J, Kawamura Y, Motomura K, Tatsumi M, Takeda N, Murata T, Yoshikawa T, Uppapong B, Taniguchi K, Komoto S. Full genome characterization of novel DS-1-like G9P[8] rotavirus strains that have emerged in Thailand. PLoS One 2020; 15:e0231099. [PMID: 32320419 PMCID: PMC7176146 DOI: 10.1371/journal.pone.0231099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/16/2020] [Indexed: 01/05/2023] Open
Abstract
The emergence and rapid spread of unusual DS-1-like intergenogroup reassortant rotaviruses having G1/3/8 genotypes have been recently reported from major parts of the world (Africa, Asia, Australia, Europe, and the Americas). During rotavirus surveillance in Thailand, three novel intergenogroup reassortant strains possessing the G9P[8] genotype (DBM2017-016, DBM2017-203, and DBM2018-291) were identified in three stool specimens from diarrheic children. In the present study, we determined and analyzed the full genomes of these three strains. On full-genomic analysis, all three strains were found to share a unique genotype constellation comprising both genogroup 1 and 2 genes: G9-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis demonstrated that each of the 11 genes of the three strains was closely related to that of emerging DS-1-like intergenogroup reassortant, human, and/or locally circulating human strains. Thus, the three strains were suggested to be multiple reassortants that had acquired the G9-VP7 genes from co-circulating Wa-like G9P[8] rotaviruses in the genetic background of DS-1-like intergenogroup reassortant (likely equine-like G3P[8]) strains. To our knowledge, this is the first description of emerging DS-1-like intergenogroup reassortant strains having the G9P[8] genotype. Our observations will add to the growing insights into the dynamic evolution of emerging DS-1-like intergenogroup reassortant rotaviruses through reassortment.
Collapse
Affiliation(s)
- Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ratana Tacharoenmuang
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ratigorn Guntapong
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Sompong Upachai
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Phakapun Singchai
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Center for Research Promotion and Support, Joint Research Support Promotion Facility, Fujita Health University, Toyoake, Aichi, Japan
| | - Riona Hatazawa
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Karun Sutthiwarakom
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Santip Kongjorn
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Napa Onvimala
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | | | | | | | - Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kazushi Motomura
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
- Osaka Institute of Public Health, Osaka, Japan
| | - Masashi Tatsumi
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | - Naokazu Takeda
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ballang Uppapong
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- * E-mail:
| |
Collapse
|
22
|
Amarasiri M, Utagawa E, Sano D, Katayama K. Identification of novel norovirus polymerase genotypes from pediatric fecal samples collected between the year 1997 and 2000 in Japan. INFECTION GENETICS AND EVOLUTION 2020; 82:104313. [PMID: 32259662 DOI: 10.1016/j.meegid.2020.104313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/12/2020] [Accepted: 04/01/2020] [Indexed: 11/24/2022]
Abstract
We analyzed 46 pediatric fecal samples collected between the years 1997 and 2000 to retrospectively evaluate the norovirus strains circulating during that era and to identify possible re-emergence patterns. From the tested fecal samples, we detected GII.1, GII.3, GII.4 (95/96-US) and GII.6 strains. Most importantly, two novel polymerase genotypes (GI.PNA4 and GII.PNA7) were detected during the study. Two possible recombinant strains (GII.6[P7] and GII.3[P29]) were identified and SimPlot analysis confirmed that GII.6[P7] is a recombinant strain. The study emphasizes the importance of retrospective evaluation of human fecal samples in obtaining a better understanding of norovirus circulation, re-emergence and evolution.
Collapse
Affiliation(s)
- Mohan Amarasiri
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Etsuko Utagawa
- National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan.
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
23
|
Damanka SA, Dennis FE, Lartey BL, Nyarko KM, Agbemabiese CA, Armah GE. Next-generation sequencing of a human-animal reassortant G6P[14] rotavirus A strain from a child hospitalized with diarrhoea. Arch Virol 2020; 165:1003-1005. [PMID: 32037490 DOI: 10.1007/s00705-020-04543-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/07/2020] [Indexed: 11/30/2022]
Abstract
We previously reported the VP4 and the VP7 genotypes of the first G6P[14] rotavirus strain (RVA/Human-wt/GHA/M0084/2010/G6P[14]) from the stool of an infant with diarrhoea in Ghana. In the current study, we obtained the complete genome sequences using Illumina MiSeq next-generation sequencing to enable us to determine the host species origin of the genes by phylogenetic analysis. The genotype constellation was G6-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3. Phylogenetic analysis showed that M0084 was a reassortant strain from RVAs of both artiodactyl and human host species origin. The level of sequence identity of the individual genes of M0084 to other sequences in the GenBank ranged from 95.2 to 99.5%; however, there was no single strain from the GenBank database with a complete genome sequence that was highly similar to that of M0084. To help trace the source of such unique gene pools being introduced into human RVAs, it will be useful to examine RVA sequences from potential reservoirs such as sheep and goats, which are common domestic animals in this locality.
Collapse
Affiliation(s)
- Susan Afua Damanka
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Francis Ekow Dennis
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Belinda Larteley Lartey
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Kofi Mensah Nyarko
- School of Public Health, Faculty of Health Sciences, University of Namibia, Windhoek, Namibia
| | - Chantal Ama Agbemabiese
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - George Enyimah Armah
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
24
|
Fujii Y, Oda M, Somura Y, Shinkai T. Molecular Characteristics of Novel Mono-Reassortant G9P[8] Rotavirus A Strains Possessing the NSP4 Gene of the E2 Genotype Detected in Tokyo, Japan. Jpn J Infect Dis 2019; 73:26-35. [PMID: 31564695 DOI: 10.7883/yoken.jjid.2019.211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rotavirus A (RVA) has been detected in patients with gastroenteritis even after vaccine introduction in Japan. To investigate circulating RVA strains, RVA-positive stool specimens obtained in Tokyo in 2017 and 2018 were analyzed using next-generation sequencing. A total of 50 and 21 RVA samples were obtained in 2017 and 2018, respectively. In 2017, G2P[4] (40.0%) was the most prevalent strain, followed by G3P[8] (DS-1-like) (28.0%), G8P[8] (10.0%), G3P[8] (Wa-like) (8.0%), G9P[8]-E1 (8.0%), and mixed infection (6.0%). In 2018, G3P[8] (DS-1-like) (28.6%) and G9P[8]-E2 (28.6%) were the most prevalent strains, followed by G9P[8]-E1 (19.0%), G2P[4] (9.5%), G8P[8] (9.5%), and mixed infection (4.8%). Six G9P[8]-E2 strains detected in 2018 showed an atypical genotype constellation (G9P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1), which had not been reported previously. Phylogenetic analyses suggested that the RVA virus was generated by inter-genogroup reassortment between commonly circulating G9P[8] and G2P[4] strains in Japan. The G9P[8] strain seemed to be reassorted with only the NSP4 gene of the E2 genotype of the G2P[4] strain. Since this newly-emerged G9P[8]-E2 virus was detected in different locations in Tokyo, the virus appears to have already begun to spread to a wider area.
Collapse
Affiliation(s)
- Yoshiki Fujii
- Department of Virology II, National Institute of Infectious Diseases
| | - Mayuko Oda
- Division of Virology, Department of Microbiology, Tokyo Metropolitan Institute of Public Health
| | - Yoshiko Somura
- Division of Virology, Department of Microbiology, Tokyo Metropolitan Institute of Public Health
| | - Takayuki Shinkai
- Division of Virology, Department of Microbiology, Tokyo Metropolitan Institute of Public Health
| |
Collapse
|
25
|
Matsushima Y, Mizukoshi F, Sakon N, Doan YH, Ueki Y, Ogawa Y, Motoya T, Tsukagoshi H, Nakamura N, Shigemoto N, Yoshitomi H, Okamoto-Nakagawa R, Suzuki R, Tsutsui R, Terasoma F, Takahashi T, Sadamasu K, Shimizu H, Okabe N, Nagasawa K, Aso J, Ishii H, Kuroda M, Ryo A, Katayama K, Kimura H. Evolutionary Analysis of the VP1 and RNA-Dependent RNA Polymerase Regions of Human Norovirus GII.P17-GII.17 in 2013-2017. Front Microbiol 2019; 10:2189. [PMID: 31611853 PMCID: PMC6777354 DOI: 10.3389/fmicb.2019.02189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023] Open
Abstract
Human norovirus (HuNoV) GII.P17-GII.17 (Kawasaki2014 variant) reportedly emerged in 2014 and caused gastroenteritis outbreaks worldwide. To clarify the evolution of both VP1 and RNA-dependent RNA polymerase (RdRp) regions of GII.P17-GII.17, we analyzed both global and novel Japanese strains detected during 2013-2017. Time-scaled phylogenetic trees revealed that the ancestral GII.17 VP1 region diverged around 1949, while the ancestral GII.P17 RdRp region diverged around 2010. The evolutionary rates of the VP1 and RdRp regions were estimated at ~2.7 × 10-3 and ~2.3 × 10-3 substitutions/site/year, respectively. The phylogenetic distances of the VP1 region exhibited no overlaps between intra-cluster and inter-cluster peaks in the GII.17 strains, whereas those of the RdRp region exhibited a unimodal distribution in the GII.P17 strains. Conformational epitope positions in the VP1 protein of the GII.P17-GII.17 strains were similar, although some substitutions, insertions and deletions had occurred. Strains belonging to the same cluster also harbored substitutions around the binding sites for the histo-blood group antigens of the VP1 protein. Moreover, some amino acid substitutions were estimated to be near the interface between monomers and the active site of the RdRp protein. These results suggest that the GII.P17-GII.17 virus has produced variants with the potential to alter viral antigenicity, host-binding capability, and replication property over the past 10 years.
Collapse
Affiliation(s)
- Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Fuminori Mizukoshi
- Department of Microbiology, Tochigi Prefectural Institute of Public Health and Environmental Science, Utsunomiya, Japan
| | - Naomi Sakon
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Yen Hai Doan
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Yo Ueki
- Department of Microbiology, Miyagi Prefectural Institute of Public Health and Environment, Sendai, Japan
| | - Yasutaka Ogawa
- Division of Virology, Saitama Institute of Public Health, Saitama, Japan
| | - Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Mito, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi, Japan
| | | | - Naoki Shigemoto
- Hiroshima Prefectural Technology Research Institute Public Health and Environment Center, Hiroshima, Japan
| | - Hideaki Yoshitomi
- Fukuoka Institute of Health and Environmental Sciences, Dazaifu, Japan
| | | | - Rieko Suzuki
- Kanagawa Prefectural Institute of Public Health, Chigasaki, Japan
| | - Rika Tsutsui
- Aomori Prefecture Public Health and Environment Center, Aomori, Japan
| | - Fumio Terasoma
- Wakayama Prefectural Research Center of Environment and Public Health, Wakayama, Japan
| | - Tomoko Takahashi
- Iwate Prefectural Research Institute for Environmental Sciences and Public Health, Morioka, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku, Japan
| | - Hideaki Shimizu
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Nobuhiko Okabe
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | | | - Jumpei Aso
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Kitasato University, Minato, Japan
| | - Hirokazu Kimura
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan
- Department of Microbiology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
26
|
Nirwati H, Donato CM, Ikram A, Aman AT, Wibawa T, Kirkwood CD, Soenarto Y, Pan Q, Hakim MS. Phylogenetic and immunoinformatic analysis of VP4, VP7, and NSP4 genes of rotavirus strains circulating in children with acute gastroenteritis in Indonesia. J Med Virol 2019; 91:1776-1787. [PMID: 31243786 DOI: 10.1002/jmv.25527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/20/2019] [Indexed: 02/02/2023]
Abstract
Rotavirus is a major cause of diarrhea in Indonesian children. However, rotavirus vaccines have not been introduced in the national immunization program of Indonesia. Understanding the genetic diversity and conserved antigenic regions of circulating strains are therefore essential to assess the potential efficacy of rotavirus vaccines. We collected fecal samples from hospitalized children less than 5 years of age with acute diarrhea. Rotavirus genotyping was performed by reverse transcriptase polymerase chain reaction, followed by sequencing of the VP4, VP7, and NSP4 genes of representative strains. Phylogenetic analysis was performed to investigate their relationship with globally circulating strains. Conservational analysis, immunoinformatics, and epitope mapping in comparison to vaccine strains were also performed. The sequence analyses showed that differences of multiple amino acid residues existed between the VP4, VP7, and NSP4 antigenic regions of the vaccine strains and the Indonesian isolates. However, many predicted conserved epitopes with higher antigenicity were observed in the vaccine and Indonesian strains, conferring the importance of these epitopes. The identified epitopes showed a higher potential of rotavirus vaccine to be employed in Indonesia. It could also be helpful to inform the design of a peptide vaccine based on the conserved regions and epitopes in the viral proteins.
Collapse
Affiliation(s)
- Hera Nirwati
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Celeste M Donato
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Enteric Diseases Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Aqsa Ikram
- Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.,Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Abu T Aman
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Carl D Kirkwood
- Enteric Diseases Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Yati Soenarto
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Dr. Sardjito Hospital, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Qiuwei Pan
- Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Mohamad S Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Postgraduate School Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
27
|
Damanka SA, Kwofie S, Dennis FE, Lartey BL, Agbemabiese CA, Doan YH, Adiku TK, Katayama K, Enweronu-Laryea CC, Armah GE. Whole genome characterization and evolutionary analysis of OP354-like P[8] Rotavirus A strains isolated from Ghanaian children with diarrhoea. PLoS One 2019; 14:e0218348. [PMID: 31199823 PMCID: PMC6570025 DOI: 10.1371/journal.pone.0218348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/30/2019] [Indexed: 11/22/2022] Open
Abstract
In 2010, the rare OP354-like P[8]b rotavirus subtype was detected in children less than 2 years old in Ghana. In this follow-up study, to provide insight into the evolutionary history of the genome of Ghanaian P[8]b strains RVA/Human-wt/GHA/GHDC949/2010/G9P[8] and RVA/Human-wt/GHA/GHM0094/2010/G9P[8] detected in an infant and a 7-month old child hospitalised for acute gastroenteritis, we sequenced the complete genome using both Sanger sequencing and Illumina MiSeq technology followed by phylogenetic analysis of the near-full length sequences. Both strains possessed the Wa-like/genotype 1 constellation G9P[8]b-I1-R1-C1-M1-A1-N1-T1-E1-H1. Sequence comparison and phylogenetic inference showed that both strains were identical at the lineage level throughout the 11 genome segments. Their VP7 sequences belonged to the major sub-lineage of the G9-lineage III whereas their VP4 sequences belonged to P[8]b cluster I. The VP7 and VP4 genes of the study strains were closely related to a Senegalese G9P[8]b strain detected in 2009. In the remaining nine genome segments, both strains consistently clustered together with Wa-like RVA strains possessing either P[8]a or P[8]b mostly of African RVA origin. The introduction of a P[8]b subtype VP4 gene into the stable Wa-like strain backbone may result in strains that might propagate easily in the human population, with a potential to become an important public health concern, especially because it is not certain if the monovalent rotavirus vaccine (Rotarix) used in Ghana will be efficacious against such strains. Our analysis of the full genomes of GHM0094 and GHDC949 adds to knowledge of the genetic make-up and evolutionary dynamics of P[8]b rotavirus strains.
Collapse
Affiliation(s)
- Susan Afua Damanka
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
- * E-mail:
| | - Sabina Kwofie
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
- Department of Microbiology, School of Biomedical and Allied Health Science, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Francis Ekow Dennis
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Belinda Larteley Lartey
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Chantal Ama Agbemabiese
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Yen Hai Doan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Theophilus Korku Adiku
- School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Minato, Tokyo, Japan
| | | | - George Enyimah Armah
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
28
|
Full-length genome analysis of the first human G8P[14] rotavirus strain from Morocco suggests evidence of zoonotic transmission. Virus Genes 2019; 55:465-478. [PMID: 31197545 DOI: 10.1007/s11262-019-01677-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
An unusual group A rotavirus (RVA) strain MAR/ma31/2011/G8P[14] was detected for the first time in Morocco in a stool sample from hospitalized child aged 18 months suffering from acute gastroenteritis and fever in 2011. Complete genome sequencing of the ma31 strain was done using the capillary sequencing technology. The analysis revealed the G8-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3 constellation and the backbone genes: I2-R2-C2-M2-A11-N2-T6-E2-H3 are commonly found in RVA strains from artiodactyls such as cattle. The constellation was shared with another Italian zoonotic G8P[14] strains (BA01 and BA02), two Hungarian human strains (182-02 and BP1062) and a sheep RVA strain OVR762. Phylogenetic analysis of each genome segment of ma31 revealed a mixed gene configuration originated from animals and human. Comparison of the antigenic regions of VP7 and VP4 amino acid sequences between ma31 strain and selected animal and human strains bearing G8 and or P[14], showed a high level of conservation, while many substitutions was observed in comparison with RotaTeq™ and Rotarix™ vaccine strains. In contrast, alignment analysis of the four antigenic sites of VP6 revealed a high degree of conservation. These findings reveal a typical zoonotic origin of the strain and confirm a high potential for RVA zoonotic transmission between bovine and humans, allowing the generation of novel rotavirus genotypes.
Collapse
|
29
|
Sub-genotype phylogeny of the non-G, non-P genes of genotype 2 Rotavirus A strains. PLoS One 2019; 14:e0217422. [PMID: 31150425 PMCID: PMC6544246 DOI: 10.1371/journal.pone.0217422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022] Open
Abstract
Recent increase in the detection of unusual G1P[8], G3P[8], G8P[8], and G9P[4] Rotavirus A (RVA) strains bearing the DS-1-like constellation of the non-G, non-P genes (hereafter referred to as the genotype 2 backbone) requires better understanding of their evolutionary relationship. However, within a genotype, there is lack of a consensus lineage designation framework and a set of common sequences that can serve as references. Phylogenetic analyses were carried out on over 8,500 RVA genotype 2 genes systematically retrieved from the rotavirus database within the NCBI Virus Variation Resource. In line with previous designations, using pairwise comparison of cogent nucleotide sequences and stringent bootstrap support, reference lineages were defined. This study proposes a lineage framework and provides a dataset ranging from 34 to 145 sequences for each genotype 2 gene for orderly lineage designation of global genotype 2 genes of RVAs detected in human and animals. The framework identified five to 31 lineages depending on the gene. The least number of lineages (five to seven) were observed in genotypes A2 (NSP1), T2 (NSP3) and H2 (NSP5) which are limited to human RVA whereas the most number of lineages (31) was observed in genotype E2 (NSP4). Sharing of the same lineage constellations of the genotype 2 backbone genes between recently-emerging, unusual G1P[8], G3P[8], G8P[8] and G9P[4] reassortants and many contemporary G2P[4] strains provided strong support to the hypothesis that unusual genotype 2 strains originated primarily from reassortment events in the recent past involving contemporary G2P[4] strains as one parent and ordinary genotype 1 strains or animal RVA strains as the other. The lineage framework with selected reference sequences will help researchers to identify the lineage to which a given genotype 2 strain belongs, and trace the evolutionary history of common and unusual genotype 2 strains in circulation.
Collapse
|
30
|
Strydom A, Motanyane L, Nyaga MM, João ED, Cuamba A, Mandomando I, Cassocera M, de Deus N, O'Neill H. Whole-genome characterization of G12 rotavirus strains detected in Mozambique reveals a co-infection with a GXP[14] strain of possible animal origin. J Gen Virol 2019; 100:932-937. [PMID: 31140967 DOI: 10.1099/jgv.0.001270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A high prevalence of G12 rotavirus strains has previously been reported in southern Mozambique. In this study, the full genomes of five Mozambican G12 strains were determined directly from stool using an Illumina Miseq platform. One sample (0060) contained an intergenogroup co-infection of a G12P[8] Wa-like strain and a GXP[14] DS-1-like strain. The sequences of seven genome segments, detected for the GXP[14] strain, clustered with a diverse group of mostly animal strains, suggesting co-infection with a strain of possible animal origin. The stool samples contained G12P[6] rotavirus strains with Wa-like backbones. Phylogenetic analyses of the VP4 and VP7 encoding segments of the G12P[6] strains suggested that they were reassortants containing backbones that are similar to that of the G12P[8] strain. The study confirms previous observations of interspecies transmission and emphasizes the importance of whole-genome sequencing in order to evaluate rotavirus co-infections and reassortants.
Collapse
Affiliation(s)
- Amy Strydom
- 1 Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Lithabiso Motanyane
- 1 Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Martin M Nyaga
- 2 Next Generation Sequencing Unit, Department of Medical Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Eva Dora João
- 3 Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.,4 Institute of Hygiene and Tropical Medicine, Lisbon, Portugal
| | - Assa Cuamba
- 5 Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Inácio Mandomando
- 3 Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.,6 Instituto Nacional de Saúde, Maputo, Mozambique
| | - Marta Cassocera
- 3 Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | | | - Hester O'Neill
- 1 Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
31
|
Generation of Infectious Recombinant Human Rotaviruses from Just 11 Cloned cDNAs Encoding the Rotavirus Genome. J Virol 2019; 93:JVI.02207-18. [PMID: 30728265 DOI: 10.1128/jvi.02207-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/28/2019] [Indexed: 12/26/2022] Open
Abstract
The generation of recombinant group A rotaviruses (RVAs) entirely from cloned cDNAs has been described only for a single animal RVA strain, simian SA11-L2. We recently developed an optimized RVA reverse genetics system based on only RVA cDNAs (11-plasmid system), in which the concentration of cDNA plasmids containing the NSP2 and NSP5 genes is 3- or 5-fold increased in relation to that of the other plasmids. Based on this approach, we generated a recombinant human RVA (HuRVA)-based monoreassortant virus containing the VP4 gene of the simian SA11-L2 virus using the 11-plasmid system. In addition to this monoreassortant virus, authentic HuRVA (strain KU) was also generated with the 11-plasmid system with some modifications. Our results demonstrate that the 11-plasmid system involving just RVA cDNAs can be used for the generation of recombinant HuRVA and recombinant HuRVA-based reassortant viruses.IMPORTANCE Human group A rotavirus (HuRVA) is a leading pathogen causing severe diarrhea in young children worldwide. In this paper, we describe the generation of recombinant HuRVA (strain KU) from only 11 cloned cDNAs encoding the HuRVA genome by reverse genetics. The growth properties of the recombinant HuRVA were similar to those of the parental RVA, providing a powerful tool for better understanding of HuRVA replication and pathogenesis. Furthermore, the ability to manipulate the genome of HuRVAs "to order" will be useful for next-generation vaccine production for this medically important virus and for the engineering of clinical vectors expressing any foreign genes.
Collapse
|
32
|
Kamiya H, Tacharoenmuang R, Ide T, Negoro M, Tanaka T, Asada K, Nakamura H, Sugiura K, Umemoto M, Kuroki H, Ito H, Tanaka S, Ito M, Fukuda S, Hatazawa R, Hara Y, Guntapong R, Murata T, Taniguchi K, Suga S, Nakano T, Taniguchi K, Komoto S. Characterization of an Unusual DS-1-Like G8P[8] Rotavirus Strain from Japan in 2017: Evolution of Emerging DS-1-Like G8P[8] Strains through Reassortment. Jpn J Infect Dis 2019; 72:256-260. [PMID: 30814461 DOI: 10.7883/yoken.jjid.2018.484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The emergence of unusual DS-1-like intergenogroup reassortant rotaviruses with a bovine-like G8 genotype (DS-1-like G8P[8] strains) has been reported in several Asian countries. During the rotavirus surveillance program in Japan in 2017, a DS-1-like G8P[8] strain (RVA/Human-wt/JPN/SO1162/2017/G8P[8]) was identified in 43 rotavirus-positive stool samples. Strain SO1162 was shown to have a unique genotype constellation, including genes from both genogroup 1 and 2: G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that the VP1 gene of strain SO1162 appeared to have originated from DS-1-like G1P[8] strains from Thailand and Vietnam, while the remaining 10 genes were closely related to those of previously reported DS-1-like G8P[8] strains. Thus, SO1162 was suggested to be a reassortant strain that acquired the VP1 gene from Southeast Asian DS-1-like G1P[8] strains on the genetic background of co-circulating DS-1-like G8P[8] strains. Our findings provide important insights into the evolutionary dynamics of emerging DS-1-like G8P[8] strains.
Collapse
Affiliation(s)
- Hajime Kamiya
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases
| | - Ratana Tacharoenmuang
- Department of Virology and Parasitology, Fujita Health University School of Medicine.,National Institute of Health, Department of Medical Sciences
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine
| | - Manami Negoro
- Institute for Clinical Research, National Mie Hospital
| | | | | | | | | | | | | | - Hiroaki Ito
- Department of Pediatrics, Kameda Medical Center
| | | | - Mitsue Ito
- Department of Pediatrics, Japanese Red Cross Ise Hospital
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine
| | - Riona Hatazawa
- Department of Virology and Parasitology, Fujita Health University School of Medicine
| | - Yuya Hara
- Department of Virology and Parasitology, Fujita Health University School of Medicine
| | | | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine
| | | | | | | | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine
| |
Collapse
|
33
|
Fujii Y, Doan YH, Suzuki Y, Nakagomi T, Nakagomi O, Katayama K. Study of Complete Genome Sequences of Rotavirus A Epidemics and Evolution in Japan in 2012-2014. Front Microbiol 2019; 10:38. [PMID: 30766516 PMCID: PMC6365416 DOI: 10.3389/fmicb.2019.00038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/10/2019] [Indexed: 11/13/2022] Open
Abstract
A comprehensive molecular epidemiological study using next-generation sequencing technology was conducted on 333 rotavirus A (RVA)-positive specimens collected from six sentinel hospitals across Japan over three consecutive seasons (2012–2014). The majority of the RVA isolates were grouped into five genotype constellations: Wa-like G1P[8], DS-1-like G1P[8], G2P[4], G3P[8] and G9P[8]. Phylogenetic analysis showed that the distribution of strains varied by geographical locations and epidemic seasons. The VP7 genes of different G types were estimated to evolve at 7.26 × 10-4–1.04 × 10-3 nucleotide substitutions per site per year. The Bayesian time-scaled tree of VP7 showed that the time to the most recent common ancestor of epidemic strains within a region was 1–3 years, whereas that of the epidemic strains across the country was 2–6 years. This study provided, for the first time, the timeframe during which an epidemic strain spread locally and within the country and baseline information needed to predict how rapidly RVAs spread.
Collapse
Affiliation(s)
- Yoshiki Fujii
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yen Hai Doan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiyuki Suzuki
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Nagasaki University, Nagasaki, Japan
| | - Osamu Nakagomi
- Department of Hygiene and Molecular Epidemiology, Nagasaki University, Nagasaki, Japan
| | - Kazuhiko Katayama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Laboratory of Viral Infection I, Kitasato University, Tokyo, Japan
| |
Collapse
|
34
|
Wandera EA, Komoto S, Mohammad S, Ide T, Bundi M, Nyangao J, Kathiiko C, Odoyo E, Galata A, Miring'u G, Fukuda S, Hatazawa R, Murata T, Taniguchi K, Ichinose Y. Genomic characterization of uncommon human G3P[6] rotavirus strains that have emerged in Kenya after rotavirus vaccine introduction, and pre-vaccine human G8P[4] rotavirus strains. INFECTION GENETICS AND EVOLUTION 2018; 68:231-248. [PMID: 30543939 DOI: 10.1016/j.meegid.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
A monovalent rotavirus vaccine (RV1) was introduced to the national immunization program in Kenya in July 2014. There was increased detection of uncommon G3P[6] strains that coincided temporally with the timing of this vaccine introduction. Here, we sequenced and characterized the full genomes of two post-vaccine G3P[6] strains, RVA/Human-wt/KEN/KDH1951/2014/G3P[6] and RVA/Human-wt/KEN/KDH1968/2014/G3P[6], as representatives of these uncommon strains. On full-genomic analysis, both strains exhibited a DS-1-like genotype constellation: G3-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that all 11 genes of strains KDH1951 and KDH1968 were very closely related to those of human G3P[6] strains isolated in Uganda in 2012-2013, indicating the derivation of these G3P[6] strains from a common ancestor. Because the uncommon G3P[6] strains that emerged in Kenya are fully heterotypic as to the introduced vaccine strain regarding the genotype constellation, vaccine effectiveness against these G3P[6] strains needs to be closely monitored.
Collapse
Affiliation(s)
- Ernest Apondi Wandera
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| | - Shah Mohammad
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Martin Bundi
- National Biosafety Authority, Nairobi 00100, Kenya
| | - James Nyangao
- Center for Virus Research, KEMRI, Nairobi 54840-00200, Kenya
| | - Cyrus Kathiiko
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Erick Odoyo
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Amina Galata
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Gabriel Miring'u
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Riona Hatazawa
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Yoshio Ichinose
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| |
Collapse
|
35
|
A Multiplex PCR/LDR Assay for Viral Agents of Diarrhea with the Capacity to Genotype Rotavirus. Sci Rep 2018; 8:13215. [PMID: 30181651 PMCID: PMC6123451 DOI: 10.1038/s41598-018-30301-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
Rotavirus and noroviruses are major causes of diarrhea. Variable rotavirus vaccination efficacy in Africa and Asia is multifactorial, including the diversity of circulating strains and viral co-infection. We describe a multiplexed assay that detects and genotypes viruses from stool specimens. It includes a one-step reverse transcriptase PCR reaction, a ligase detection reaction (LDR), then hybridization of fluorescent products to micro-beads. In clinical samples it detects rotavirus, caliciviruses (sapovirus and norovirus), mixed infections, and genotypes or genogroups of rotaviruses and noroviruses, respectively. The assay also has the capacity to detect hepatitis A. The assay was validated on reference isolates and 296 stool specimens from the US and Ghana. The assay was 97% sensitive and 100% specific. The genogroup was concordant in 100% of norovirus, and the genotype in 91% and 89% of rotavirus G- and P-types, respectively. Two rare rotavirus strains, G6P[6] and G6P[8], were detected in stool specimens from Ghana. The high-throughput assay is sensitive, specific, and may be of utility in the epidemiological surveillance for rare and emerging viral strains post-rotavirus vaccine implementation.
Collapse
|
36
|
Characterization of a G10P[14] rotavirus strain from a diarrheic child in Thailand: Evidence for bovine-to-human zoonotic transmission. INFECTION GENETICS AND EVOLUTION 2018; 63:43-57. [DOI: 10.1016/j.meegid.2018.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 11/21/2022]
|
37
|
Nyaga MM, Tan Y, Seheri ML, Halpin RA, Akopov A, Stucker KM, Fedorova NB, Shrivastava S, Duncan Steele A, Mwenda JM, Pickett BE, Das SR, Jeffrey Mphahlele M. Whole-genome sequencing and analyses identify high genetic heterogeneity, diversity and endemicity of rotavirus genotype P[6] strains circulating in Africa. INFECTION GENETICS AND EVOLUTION 2018; 63:79-88. [PMID: 29782933 DOI: 10.1016/j.meegid.2018.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
Abstract
Rotavirus A (RVA) exhibits a wide genotype diversity globally. Little is known about the genetic composition of genotype P[6] from Africa. This study investigated possible evolutionary mechanisms leading to genetic diversity of genotype P[6] VP4 sequences. Phylogenetic analyses on 167 P[6] VP4 full-length sequences were conducted, which included six porcine-origin sequences. Of the 167 sequences, 57 were newly acquired through whole genome sequencing as part of this study. The other 110 sequences were all publicly-available global P[6] VP4 full-length sequences downloaded from GenBank. The strength of association between the phenotypic features and the phylogeny was also determined. A number of reassortment and mixed infections of RVA genotype P[6] strains were observed in this study. Phylogenetic analyses demostrated the extensive genetic diversity that exists among human P[6] strains, porcine-like strains, their concomitant clades/subclades and estimated that P[6] VP4 gene has a higher substitution rate with the mean of 1.05E-3 substitutions/site/year. Further, the phylogenetic analyses indicated that genotype P[6] strains were endemic in Africa, characterised by an extensive genetic diversity and long-time local evolution of the viruses. This was also supported by phylogeographic clustering and G-genotype clustering of the P[6] strains when Bayesian Tip-association Significance testing (BaTS) was applied, clearly supporting that the viruses evolved locally in Africa instead of spatial mixing among different regions. Overall, the results demonstrated that multiple mechanisms such as reassortment events, various mutations and possibly interspecies transmission account for the enormous diversity of genotype P[6] strains in Africa. These findings highlight the need for continued global surveillance of rotavirus diversity.
Collapse
Affiliation(s)
- Martin M Nyaga
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa; Next Generation Sequencing Unit, Department of Medical Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Yi Tan
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mapaseka L Seheri
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa
| | - Rebecca A Halpin
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Asmik Akopov
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Karla M Stucker
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Nadia B Fedorova
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | | | - A Duncan Steele
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa; Enteric and Diarrhoeal Diseases Programme, Global Health Program, Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Jason M Mwenda
- World Health Organization, Regional Office for Africa, Brazzaville, People's Republic of Congo
| | - Brett E Pickett
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Suman R Das
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Jeffrey Mphahlele
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa.
| |
Collapse
|
38
|
Agbemabiese CA, Nakagomi T, Nguyen MQ, Gauchan P, Nakagomi O. Reassortant DS-1-like G1P[4] Rotavirus A strains generated from co-circulating strains in Vietnam, 2012/2013. Microbiol Immunol 2018; 61:328-336. [PMID: 28696017 DOI: 10.1111/1348-0421.12501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/02/2017] [Accepted: 07/05/2017] [Indexed: 12/23/2022]
Abstract
One major mechanism by which Rotavirus A (RVA) evolves is genetic reassortment between strains with different genotype constellations. However, the parental strains of the reassortants generated have seldom been identified. Here, the whole genome of two suspected reassortants, RVA/Human-wt/VNM/SP127/2013/G1P[4] and RVA/Human-wt/VNM/SP193/2013/G1P[4], with short RNA electropherotypes were examined by Illumina MiSeq sequencing and their ancestral phylogenies reconstructed. Their genotype constellation, G1-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2, indicated that they were G1 VP7 mono-reassortants possessing DS-1-like genetic backbones. The two strains were ≧99.7% identical across the genome. While their VP7 genes were ≧99.7 identical to that of a Wa-like strain RVA/Human-wt/VNM/SP110/2012/G1P[8] which co-circulated during the 2012/2013 season, 10 genes were ≧99.8% identical to that of the DS-1-like strains RVA/Human-wt/VNM/SP015/2012/G2P[4] (and SP108) that co-circulated during the season. The identities were consistent with the phylogenetic relationships observed between the genes of the reassortants and those of the afore-mentioned strains. Consequently, the G1P[4] strains appear to have been generated by genetic reassortment between SP110-like and SP015-like strains. In conclusion, this study provides robust molecular evidence for the first time that G1P[4] strains detected in Hanoi Vietnam were generated by inter-genogroup reassortment between co-circulating G1P[8] and G2P[4] strains within the same place and season.
Collapse
Affiliation(s)
- Chantal Ama Agbemabiese
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Toyoko Nakagomi
- Department of Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Minh Quang Nguyen
- Department of Epidemiology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Punita Gauchan
- Department of Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Osamu Nakagomi
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
39
|
Komoto S, Ide T, Negoro M, Tanaka T, Asada K, Umemoto M, Kuroki H, Ito H, Tanaka S, Ito M, Fukuda S, Suga S, Kamiya H, Nakano T, Taniguchi K. Characterization of unusual DS-1-like G3P[8] rotavirus strains in children with diarrhea in Japan. J Med Virol 2018; 90:890-898. [PMID: 29315643 DOI: 10.1002/jmv.25016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022]
Abstract
The emergence and rapid spread of novel DS-1-like intergenogroup reassortant rotaviruses having the equine-like G3 genotype (DS-1-like G3P[8] strains) have been recently reported from several countries. During rotavirus surveillance in Japan in 2015-2016, three DS-1-like G3P[8] strains were identified from children with severe diarrhea. In the present study, we sequenced and characterized the full genomes of these three strains. On full-genomic analysis, all three strains showed a unique genotype constellation including both genogroup 1 and 2 genes: G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that each of the 11 genes of the three strains was closely related to that of Japanese DS-1-like G1P[8] and/or Japanese equine-like G3P[4] human strains. Thus, the three study strains were suggested to be reassortants that acquired the G3-VP7 gene from equine G3 rotaviruses on the genetic background of DS-1-like G1P[8] strains. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G3P[8] strains.
Collapse
Affiliation(s)
- Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Manami Negoro
- Institute for Clinical Research, National Mie Hospital, Tsu, Mie, Japan
| | - Takaaki Tanaka
- Department of Pediatrics, Kawasaki Medical School, Okayama, Okayama, Japan
| | - Kazutoyo Asada
- Department of Pediatrics, National Mie Hospital, Tsu, Mie, Japan
| | | | | | - Hiroaki Ito
- Sotobo Children's Clinic, Isumi, Chiba, Japan
| | - Shigeki Tanaka
- Department of Pediatrics, Mie Chuo Medical Center, Tsu, Mie, Japan
| | - Mitsue Ito
- Department of Pediatrics, Japanese Red Cross Ise Hospital, Ise, Mie, Japan
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Shigeru Suga
- Department of Pediatrics, National Mie Hospital, Tsu, Mie, Japan
| | - Hajime Kamiya
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Takashi Nakano
- Department of Pediatrics, Kawasaki Medical School, Okayama, Okayama, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
40
|
Doan YH, Suzuki Y, Fujii Y, Haga K, Fujimoto A, Takai-Todaka R, Someya Y, Nayak MK, Mukherjee A, Imamura D, Shinoda S, Chawla-Sarkar M, Katayama K. Complex reassortment events of unusual G9P[4] rotavirus strains in India between 2011 and 2013. INFECTION GENETICS AND EVOLUTION 2017; 54:417-428. [PMID: 28750901 DOI: 10.1016/j.meegid.2017.07.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 11/16/2022]
Abstract
Rotavirus A (RVA) is the predominant etiological agent of acute gastroenteritis in young children worldwide. Recently, unusual G9P[4] rotavirus strains emerged with high prevalence in many countries. Such intergenogroup reassortant strains highlight the ongoing spread of unusual rotavirus strains throughout Asia. This study was undertaken to determine the whole genome of eleven unusual G9P[4] strains detected in India during 2011-2013, and to compare them with other human and animal global RVAs to understand the exact origin of unusual G9P[4] circulating in India and other countries worldwide. Of these 11 RVAs, four G9P[4] strains were double-reassortants with the G9-VP7 and E6-NSP4 genes on a DS-1-like genetic backbone (G9-P[4]-I2-R2-C2-M2-A2-N2-T2-E6-H2). The other strains showed a complex genetic constellation, likely derived from triple reassortment event with the G9-VP7, N1-NSP2 and E6-NSP4 on a DS-1-like genetic backbone (G9-P[4]-I2-R2-C2-M2-A2-N1-T2-E6-H2). Presumably, these unusual G9P[4] strains were generated after several reassortment events between the contemporary co-circulating human rotavirus strains. Moreover, the point mutation S291L at the interaction site between inner and outer capsid proteins of VP6 gene may be important in the rapid spread of this unusual strain. The complex reassortment events within the G9[4] strains may be related to the high prevalence of mixed infections in India as reported in this study and other previous studies.
Collapse
Affiliation(s)
- Yen Hai Doan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Japan
| | - Yoshiyuki Suzuki
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yoshiki Fujii
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kei Haga
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Japan
| | - Akira Fujimoto
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Japan
| | - Reiko Takai-Todaka
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Japan
| | - Yuichi Someya
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mukti K Nayak
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Anupam Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Daisuke Imamura
- Collaborative Research Center of Okayama University for Infectious Diseases, India
| | - Sumio Shinoda
- Collaborative Research Center of Okayama University for Infectious Diseases, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Kazuhiko Katayama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Japan.
| |
Collapse
|
41
|
Bwogi J, Jere KC, Karamagi C, Byarugaba DK, Namuwulya P, Baliraine FN, Desselberger U, Iturriza-Gomara M. Whole genome analysis of selected human and animal rotaviruses identified in Uganda from 2012 to 2014 reveals complex genome reassortment events between human, bovine, caprine and porcine strains. PLoS One 2017. [PMID: 28640820 PMCID: PMC5480867 DOI: 10.1371/journal.pone.0178855] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rotaviruses of species A (RVA) are a common cause of diarrhoea in children and the young of various other mammals and birds worldwide. To investigate possible interspecies transmission of RVAs, whole genomes of 18 human and 6 domestic animal RVA strains identified in Uganda between 2012 and 2014 were sequenced using the Illumina HiSeq platform. The backbone of the human RVA strains had either a Wa- or a DS-1-like genetic constellation. One human strain was a Wa-like mono-reassortant containing a DS-1-like VP2 gene of possible animal origin. All eleven genes of one bovine RVA strain were closely related to those of human RVAs. One caprine strain had a mixed genotype backbone, suggesting that it emerged from multiple reassortment events involving different host species. The porcine RVA strains had mixed genotype backbones with possible multiple reassortant events with strains of human and bovine origin.Overall, whole genome characterisation of rotaviruses found in domestic animals in Uganda strongly suggested the presence of human-to animal RVA transmission, with concomitant circulation of multi-reassortant strains potentially derived from complex interspecies transmission events. However, whole genome data from the human RVA strains causing moderate and severe diarrhoea in under-fives in Uganda indicated that they were primarily transmitted from person-to-person.
Collapse
Affiliation(s)
- Josephine Bwogi
- EPI laboratory, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
- * E-mail:
| | - Khuzwayo C. Jere
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme / Department of Medical Laboratory Sciences, University of Malawi, College of Medicine, Blantyre, Malawi
| | - Charles Karamagi
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Denis K. Byarugaba
- Department of Microbiology, College of Veterinary Medicine and Biosecurity, Makerere University, Kampala, Uganda
| | - Prossy Namuwulya
- EPI laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | - Frederick N. Baliraine
- Department of Biology and Kinesiology, LeTourneau University, Longview, Texas, United States of America
| | | | - Miren Iturriza-Gomara
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
42
|
Komoto S, Tacharoenmuang R, Guntapong R, Ide T, Sinchai P, Upachai S, Fukuda S, Yoshikawa T, Tharmaphornpilas P, Sangkitporn S, Taniguchi K. Identification and characterization of a human G9P[23] rotavirus strain from a child with diarrhoea in Thailand: evidence for porcine-to-human interspecies transmission. J Gen Virol 2017; 98:532-538. [PMID: 28382902 DOI: 10.1099/jgv.0.000722] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An unusual rotavirus strain with the G9P[23] genotype (RVA/Human-wt/THA/KKL-117/2014/G9P[23]) was identified in a stool specimen from a 10-month-old child hospitalized with severe diarrhoea. In this study, we sequenced and characterized the complete genome of strain KKL-117. On full-genomic analysis, strain KKL-117 was found to have the following genotype constellation: G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1. The non-G/P genotype constellation of this strain (I5-R1-C1-M1-A8-N1-T1-E1-H1) is commonly shared with rotavirus strains from pigs. Furthermore, phylogenetic analysis indicated that each of the 11 genes of strain KKL-117 appeared to be of porcine origin. Our observations provide important insights into the dynamic interactions between human and porcine rotavirus strains.
Collapse
Affiliation(s)
- Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Ratana Tacharoenmuang
- Department of Medical Sciences, National Institute of Health, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Ratigorn Guntapong
- Department of Medical Sciences, National Institute of Health, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Phakapun Sinchai
- Department of Medical Sciences, National Institute of Health, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Sompong Upachai
- Department of Medical Sciences, National Institute of Health, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | | | - Somchai Sangkitporn
- Department of Medical Sciences, National Institute of Health, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
43
|
Abstract
Bluetongue virus (BTV) is the type species of genus Orbivirus within family Reoviridae. Bluetongue virus is transmitted between its ruminant hosts by the bite of Culicoides spp. midges. Severe BT cases are characterized by symptoms including hemorrhagic fever, particularly in sheep, loss of productivity, and death. To date, 27 BTV serotypes have been documented. These include novel isolates of atypical BTV, which have been almost fully characterized using deep sequencing technologies and do not rely on Culicoides vectors for their transmission among hosts. Due to its high economic impact, BT is an Office International des Epizooties (OIE) listed disease that is strictly controlled in international commercial exchanges. During the 20th century, BTV has been endemic in subtropical regions. In the last 15 years, novel strains of nine "typical" BTV serotypes (1, 2, 4, 6, 8, 9, 11, 14, and 16) invaded Europe, some of which caused disease in naive sheep and unexpectedly in bovine herds (particularly serotype 8). Over the past few years, three novel "atypical" serotypes (25-27) were characterized during sequencing studies of animal samples from Switzerland, Kuwait, and France, respectively. Classical serotype-specific inactivated vaccines, although expensive, were very successful in controlling outbreaks as shown with the northern European BTV-8 outbreak which started in the summer of 2006. Technological jumps in deep sequencing methodologies made rapid full characterizations of BTV genome from isolates/tissues feasible. Next-generation sequencing (NGS) approaches are powerful tools to study the variability of BTV genomes on a fine scale. This paper provides information on how NGS impacted our knowledge of the BTV genome.
Collapse
|
44
|
Tacharoenmuang R, Komoto S, Guntapong R, Ide T, Sinchai P, Upachai S, Yoshikawa T, Tharmaphornpilas P, Sangkitporn S, Taniguchi K. Full Genome Characterization of Novel DS-1-Like G8P[8] Rotavirus Strains that Have Emerged in Thailand: Reassortment of Bovine and Human Rotavirus Gene Segments in Emerging DS-1-Like Intergenogroup Reassortant Strains. PLoS One 2016; 11:e0165826. [PMID: 27802339 PMCID: PMC5089778 DOI: 10.1371/journal.pone.0165826] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022] Open
Abstract
The emergence and rapid spread of unusual DS-1-like intergenogroup reassortant rotavirus strains have been recently reported in Asia, Australia, and Europe. During rotavirus surveillance in Thailand in 2013-2014, novel DS-1-like intergenogroup reassortant strains having G8P[8] genotypes (i.e., strains KKL-17, PCB-79, PCB-84, PCB-85, PCB-103, SKT-107, SWL-12, NP-130, PCB-656, SKT-457, SSKT-269, and SSL-55) were identified in stool samples from hospitalized children with severe diarrhea. In this study, we determined and characterized the complete genomes of these 12 strains (seven strains, KKL-17, PCB-79, PCB-84, PCB-85, PCB-103, SKT-107, and SWL-12, found in 2013 (2013 strains), and five, NP-130, PCB-656, SKT-457, SSKT-269, and SSL-55, in 2014 (2014 strains)). On full genomic analysis, all 12 strains showed a unique genotype constellation comprising a mixture of genogroup 1 and 2 genes: G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. With the exception of the G genotype, the unique genotype constellation of the 12 strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) was found to be shared with DS-1-like intergenogroup reassortant strains. On phylogenetic analysis, six of the 11 genes of the 2013 strains (VP4, VP2, VP3, NSP1, NSP3, and NSP5) appeared to have originated from DS-1-like intergenogroup reassortant strains, while the remaining four (VP7, VP6, VP1, and NSP2) and one (NSP4) gene appeared to be of bovine and human origin, respectively. Thus, the 2013 strains appeared to be reassortant strains as to DS-1-like intergenogroup reassortant, bovine, bovine-like human, and/or human rotaviruses. On the other hand, five of the 11 genes of the 2014 strains (VP4, VP2, VP3, NSP1, and NSP3) appeared to have originated from DS-1-like intergenogroup reassortant strains, while three (VP7, VP1, and NSP2) and one (NSP4) were assumed to be of bovine and human origin, respectively. Notably, the remaining two genes, VP6 and NSP5, of the 2014 strains appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses. Thus, the 2014 strains were assumed to be multiple reassortment strains as to DS-1-like intergenogroup reassortant, bovine, bovine-like human, human, and/or locally circulating DS-1-like G2P[4] human rotaviruses. Overall, the great genomic diversity among the DS-1-like intergenogroup reassortant strains seemed to have been generated through additional reassortment events involving animal and human strains. Moreover, all the 11 genes of three of the 2014 strains, NP-130, PCB-656, and SSL-55, were very closely related to those of Vietnamese DS-1-like G8P[8] strains that emerged in 2014-2015, indicating the derivation of these DS-1-like G8P[8] strains from a common ancestor. To our knowledge, this is the first report on full genome-based characterization of DS-1-like G8P[8] strains that have emerged in Thailand. Our observations will add to our growing understanding of the evolutionary patterns of emerging DS-1-like intergenogroup reassortant strains.
Collapse
Affiliation(s)
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ratigorn Guntapong
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Phakapun Sinchai
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Sompong Upachai
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | | | - Somchai Sangkitporn
- National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
45
|
Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells. Proc Natl Acad Sci U S A 2016; 113:E6248-E6255. [PMID: 27681626 DOI: 10.1073/pnas.1605575113] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Norovirus is the leading cause of acute gastroenteritis worldwide. Since the discovery of human norovirus (HuNoV), an efficient and reproducible norovirus replication system has not been established in cultured cells. Although limited amounts of virus particles can be produced when the HuNoV genome is directly transfected into cells, the HuNoV cycle of infection has not been successfully reproduced in any currently available cell-culture system. Those results imply that the identification of a functional cell-surface receptor for norovirus might be the key to establishing a norovirus culture system. Using a genome-wide CRISPR/Cas9 guide RNA library, we identified murine CD300lf and CD300ld as functional receptors for murine norovirus (MNV). The treatment of susceptible cells with polyclonal antibody against CD300lf significantly reduced the production of viral progeny. Additionally, ectopic CD300lf expression in nonsusceptible cell lines derived from other animal species enabled MNV infection and progeny production, suggesting that CD300lf has potential for dictating MNV host tropism. Furthermore, CD300ld, which has an amino acid sequence in the N-terminal region of its extracellular domain that is highly homologous to that of CD300lf, also functions as a receptor for MNV. Our results indicate that direct interaction of MNV with two cell-surface molecules, CD300lf and CD300ld, dictates permissive noroviral infection.
Collapse
|
46
|
Komoto S, Adah MI, Ide T, Yoshikawa T, Taniguchi K. Whole genomic analysis of human and bovine G8P[1] rotavirus strains isolated in Nigeria provides evidence for direct bovine-to-human interspecies transmission. INFECTION GENETICS AND EVOLUTION 2016; 43:424-33. [DOI: 10.1016/j.meegid.2016.06.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
|
47
|
Agbemabiese CA, Nakagomi T, Doan YH, Do LP, Damanka S, Armah GE, Nakagomi O. Genomic constellation and evolution of Ghanaian G2P[4] rotavirus strains from a global perspective. INFECTION GENETICS AND EVOLUTION 2016; 45:122-131. [PMID: 27569866 DOI: 10.1016/j.meegid.2016.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/03/2016] [Accepted: 08/20/2016] [Indexed: 10/21/2022]
Abstract
Understanding of the genetic diversity and evolution of Rotavirus A (RVA) strains, a common cause of severe diarrhoea in children, needs to be based on the analysis at the whole genome level in the vaccine era. This study sequenced the whole genomes of six representative G2P[4] strains detected in Ghana from 2008 to 2013, and analysed them phylogenetically with a global collection of G2P[4] strains and African non-G2P[4] DS-1-like strains. The genotype constellation of the study strains was G2-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Strains from the same season were highly identical across the whole genome while strains from different seasons were more divergent from each other. The VP7, VP4, VP2, NSP1, and NSP5 genes belonged to lineage IVa; the VP6, VP1, NSP2, and NSP3 genes belonged to lineage V, and all these genes evolved in the same fashion as the global strains. In the NSP4 gene, lineages V (2008) and X (2009) were replaced by VI (2012/2013) whereas in the VP3 gene, lineage V (2008/2009) was replaced by VII (2012/2013) and these replacements coincided with the vaccine introduction period (2012). The evolutionary rate of the NSP4 gene was 1.2×10-3 substitutions/site/year and was rather comparable to that of the remaining 10 genes. The multiple NSP4 lineages were explained by intra-genotype reassortment with co-circulating African human DS-1-like strains bearing G2[6], G3P[6], G6[6] and G8. There was no explicit evidence of the contribution of animal RVA strains to the genome of the Ghanaian G2P[4] strains. In summary, this study revealed the dynamic evolution of the G2P[4] strains through intra-genotype reassortment events leading to African specific lineages such IX and X in the NSP4 gene. So far, there was no evidence of a recent direct involvement of animal RVA genes in the genome diversity of African G2P[4] strains.
Collapse
Affiliation(s)
- Chantal Ama Agbemabiese
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yen Hai Doan
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Loan Phuong Do
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Susan Damanka
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - George E Armah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Osamu Nakagomi
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
48
|
Heylen E, Zeller M, Ciarlet M, Lawrence J, Steele D, Van Ranst M, Matthijnssens J. Human P[6] Rotaviruses From Sub-Saharan Africa and Southeast Asia Are Closely Related to Those of Human P[4] and P[8] Rotaviruses Circulating Worldwide. J Infect Dis 2016; 214:1039-49. [PMID: 27471320 DOI: 10.1093/infdis/jiw247] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/06/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND P[6] rotaviruses have been circulating with a high prevalence in African and, to a more limited extent, Asian countries, but they have not been highly prevalent in other parts of the world. METHODS To investigate the genomic relationship between African and Asian human P[6] rotaviruses and P[4] and P[8] rotaviruses circulating worldwide, we sequenced 39 P[6] strains, collected in Ghana, Mali, Kenya and Bangladesh, providing the largest data set of P[6] rotavirus genomes isolated in low-income countries or anywhere else in the world that has been published thus far. RESULTS Overall, the data indicate that the genetic backbone of human P[6] strains from the low-income countries are similar to those of P[4] or P[8] strains circulating worldwide. CONCLUSIONS The observation that gene segment 4 is the main differentiator between human P[6] and non-P[6] strains suggests that the VP4 spike protein is most likely one of the main reasons preventing the rapid spread of P[6] strains to the rest of the world despite multiple introductions. These observations reinforce previous findings about the receptor specificity of P[6] rotavirus strains.
Collapse
Affiliation(s)
- Elisabeth Heylen
- Department of Microbiology and Immunology, Laboratory of Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Rega Institute for Medical Research, Belgium
| | - Mark Zeller
- Department of Microbiology and Immunology, Laboratory of Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Rega Institute for Medical Research, Belgium
| | - Max Ciarlet
- Vaccines-Clinical Research Department, Merck, Kenilworth, New Jersey
| | - Jody Lawrence
- Vaccines-Clinical Research Department, Merck, Kenilworth, New Jersey
| | - Duncan Steele
- Vaccines and Immunization, PATH, Seattle, Washington
| | - Marc Van Ranst
- Department of Microbiology and Immunology, Laboratory of Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Rega Institute for Medical Research, Belgium
| | - Jelle Matthijnssens
- Department of Microbiology and Immunology, Laboratory of Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Rega Institute for Medical Research, Belgium
| |
Collapse
|
49
|
Mandal P, Mullick S, Nayak MK, Mukherjee A, Ganguly N, Niyogi P, Panda S, Chawla-Sarkar M. Complete genotyping of unusual species A rotavirus G12P[11] and G10P[14] isolates and evidence of frequent in vivo reassortment among the rotaviruses detected in children with diarrhea in Kolkata, India, during 2014. Arch Virol 2016; 161:2773-85. [PMID: 27447463 DOI: 10.1007/s00705-016-2969-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022]
Abstract
Species A rotaviruses (RVA) are the most important cause of acute gastroenteritis in the young of humans and many animal species globally. G1P[8], G2P[4], G3P[8], G4P[8], G9P[6/8] and G12P[6/8] are the predominantly isolated genotypes throughout the world including India. Unusual genotypes from different host species such as G5, G6, G8, G10 and G11 have also been reported in humans with low frequency. In the present study, among >650 RVA positive stool samples collected from children with diarrhea in Kolkata, India, during 2014, two isolates each of the genotype G12P[11] and G10P[14] were obtained and their genomes completely sequenced. The full genotype constellations were G12-P[11]-I1-R1-C1-M2-A1-N1-T2-E1-H1 and G12-P[11]-I1-R1-C1-M1-A5-N1-T1-E1-H1 for G12P[11] viruses, suggesting several reassortments between Wa- and DS-1-like human RVA strains, including possible reassortment of a simian NSP1 gene. The G10P[14] viruses (G10-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3) were found to contain multiple genes closely related to RVAs of artiodactyl origin, highlighting the role of inter-host species transmissions of RVAs. From the G/P constellation of all RVA isolates, it could be concluded that approximately one quarter had likely arisen from reassortment events in vivo among RVAs of 'usual' genotypes.
Collapse
Affiliation(s)
- Paulami Mandal
- National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Satarupa Mullick
- National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Mukti Kant Nayak
- National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Anupam Mukherjee
- National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | | | | | - Samiran Panda
- National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33 C.I.T. Road, Scheme XM, Beliaghata, Kolkata, 700010, West Bengal, India.
| |
Collapse
|
50
|
Delogu R, Ianiro G, Morea A, Chironna M, Fiore L, Ruggeri FM. Molecular characterization of two rare human G8P[14] rotavirus strains, detected in Italy in 2012. INFECTION GENETICS AND EVOLUTION 2016; 44:303-312. [PMID: 27449953 DOI: 10.1016/j.meegid.2016.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/30/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
Since 2007, the Italian Rotavirus Surveillance Program (RotaNet-Italy) has monitored the diversity and distribution of genotypes identified in children hospitalized with rotavirus acute gastroenteritis. We report the genomic characterization of two rare human G8P[14] rotavirus strains, identified in two children hospitalized with acute gastroenteritis in the southern Italian region of Apulia during rotavirus strain surveillance in 2012. Both strains showed a G8-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genomic constellation (DS-1-like genomic background). Phylogenetic analysis of each genome segment revealed a mixed configuration of genes of animal and zoonotic human origin, indicating that genetic reassortment events generated these unusual human strains. Eight out of 11 genes (VP1, VP2, VP3, VP6, VP7, NSP3, NSP4 and NSP5) of the Italian G8P[14] strains exhibited close identity with a Spanish sheep strain, whereas the remaining genes (VP4, NSP1 and NSP2) were more closely related to human strains. The amino acid sequences of the antigenic regions of outer capsid proteins VP4 and VP7 were compared with vaccine and field strains, showing high conservation between the amino acid sequences of Apulia G8P[14] strains and human and animal strains bearing G8 and/or P[14] proteins, and revealing many substitutions with respect to the RotaTeq™ and Rotarix™ vaccine strains. Conversely, the amino acid analysis of the four antigenic sites of VP6 revealed a high degree of conservation between the two Apulia strains and the human and animal strains analyzed. These results reinforce the potential role of interspecies transmission and reassortment in generating novel rotavirus strains that might not be fully contrasted by current vaccines.
Collapse
Affiliation(s)
- Roberto Delogu
- National Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Ianiro
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Morea
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Chironna
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Lucia Fiore
- National Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Franco M Ruggeri
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|