1
|
Ghonaim AH, Yi G, Lei M, Xie D, Ma H, Yang Z, Usama U, Wu H, Jiang Y, Li W, He Q. Isolation, characterization and whole-genome analysis of G9 group a rotaviruses in China: Evidence for possible Porcine-Human interspecies transmission. Virology 2024; 597:110129. [PMID: 38908046 DOI: 10.1016/j.virol.2024.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/24/2024]
Abstract
Group A rotaviruses (RVAs) are major causes of severe gastroenteritis in infants and young animals. To enhance our understanding of the relationship between human and animals RVAs, complete genome data are necessary. We screened 92 intestinal and stool samples from diarrheic piglets by RT‒PCR targeting the VP6 gene, revealing a prevalence of 10.9%. RVA was confirmed in two out of 5 calf samples. We successfully isolated two porcine samples using MA104 cell line. The full-length genetic constellation of the two isolates were determined to be G9-P[23]-I5-R1-C1-M1-A8-N1-T7-E1-H1, with close similarity to human Wa-like and porcine strains. Sequence analysis revealed the majority of genes were closely related to porcine and human RVAs. Phylogenetic analysis revealed that these isolates might have their ancestral origin from pigs, although some of their gene segments were related to human strains. This study reveals evidence of reassortment and possible interspecies transmission between pigs and humans in China.
Collapse
Affiliation(s)
- Ahmed H Ghonaim
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China; Desert Research Centre, Cairo, Egypt
| | - GuangYuan Yi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Mingkai Lei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Dongqi Xie
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Hailong Ma
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Zhengxin Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Usama Usama
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Hao Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Yunbo Jiang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; The Animal Disease Diagnostic Centre of Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China; The Animal Disease Diagnostic Centre of Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
2
|
Dellis C, Tatsi EB, Koukou DM, Filippatos F, Vetouli EE, Zoumakis E, Michos A, Syriopoulou V. Genotyping and Molecular Characterization of VP6 and NSP4 Genes of Unusual Rotavirus Group A Isolated from Children with Acute Gastroenteritis. Adv Virol 2024; 2024:3263228. [PMID: 38993264 PMCID: PMC11239230 DOI: 10.1155/2024/3263228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 07/13/2024] Open
Abstract
Group A rotavirus (RVA), which causes acute gastroenteritis (AGE) in children worldwide, is categorized mainly based on VP7 (genotype G) and VP4 (genotype P) genes. Genotypes that circulate at <1% are considered unusual. Important genes also include VP6 (genotype I) and NSP4 (genotype E). VP6 establishes the group and affects immunogenicity, while NSP4, as an enterotoxin, is responsible for the clinical symptoms. The aim of this study was to genotype the VP6 and NSP4 genes and molecularly characterize the NSP4 and VP6 genes of unusual RVA. Unusual RVA strains extracted from fecal samples of children ≤16 years with AGE were genotyped in VP6 and NSP4 genes with Sanger sequencing. In a 15-year period (2007-2021), 54.8% (34/62) of unusual RVA were successfully I and E genotyped. Three different I and E genotypes were identified; I2 (73.5%, 25/34) and E2 (35.3%, 12/34) were the most common. E3 genotype was detected from 2017 onwards. The uncommon combination of I2-E3 was found in 26.5% (9/34) of the strains and G3-P[9]-I2-E3 remained the most frequent G-P-I-E combination (20.6%, 7/34). Children infected with RVA E2 strains had a statistically higher frequency of dehydration (50%) than those infected with RVA E3 strains (p = 0.019). Multiple substitutions were detected in NSP4, but their functional effect remains unknown. The result indicates the genetic diversity of RVA strains. Continuous surveillance of the RVA based on the whole genome will provide better knowledge of its evolution.
Collapse
Affiliation(s)
- Charilaos Dellis
- First Department of Pediatrics Infectious Diseases and Chemotherapy Research Laboratory Medical School National and Kapodistrian University of Athens "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Elizabeth-Barbara Tatsi
- First Department of Pediatrics Infectious Diseases and Chemotherapy Research Laboratory Medical School National and Kapodistrian University of Athens "Aghia Sophia" Children's Hospital, Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, Athens, Greece
| | - Dimitra-Maria Koukou
- First Department of Pediatrics Infectious Diseases and Chemotherapy Research Laboratory Medical School National and Kapodistrian University of Athens "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Filippos Filippatos
- First Department of Pediatrics Infectious Diseases and Chemotherapy Research Laboratory Medical School National and Kapodistrian University of Athens "Aghia Sophia" Children's Hospital, Athens, Greece
| | | | - Emmanouil Zoumakis
- First Department of Pediatrics Infectious Diseases and Chemotherapy Research Laboratory Medical School National and Kapodistrian University of Athens "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Athanasios Michos
- First Department of Pediatrics Infectious Diseases and Chemotherapy Research Laboratory Medical School National and Kapodistrian University of Athens "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Vasiliki Syriopoulou
- First Department of Pediatrics Infectious Diseases and Chemotherapy Research Laboratory Medical School National and Kapodistrian University of Athens "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
3
|
Manzemu DG, Opara JPA, Kasai ET, Mumbere M, Kampunzu VM, Likele BB, Uvoya NA, Vanzwa HM, Bukaka GM, Dady FS, Dauly NN, Belec L, Tonen-Wolyec S. Rotavirus and adenovirus infections in children with acute gastroenteritis after introducing the Rotasiil® vaccine in Kisangani, Democratic Republic of the Congo. PLoS One 2024; 19:e0297219. [PMID: 38346035 PMCID: PMC10861064 DOI: 10.1371/journal.pone.0297219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/29/2023] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Although rotavirus vaccination has reduced the global burden of the virus, morbidity and mortality from rotavirus infection remain high in Sub-Saharan Africa. This study aimed to determine the prevalence of rotavirus and adenovirus infections in children under five years with acute gastroenteritis and to identify factors associated with rotavirus infection after the introduction of the Rotasiil® vaccine in 2019 in Kisangani, Democratic Republic of the Congo (DRC). METHODS This study consisted of a cross-sectional hospital-based survey conducted from May 2022 to April 2023 in four health facilities in Kisangani, using a fecal-based test (rapid antigenic immuno-chromatographic diagnostic test, BYOSYNEX adenovirus/rotavirus BSS, Biosynex SA, Illkirch-Graffenstaden, France) of rotavirus and adenovirus infections among children under five years of age with acute gastroenteritis. RESULTS A total of 320 children under five years of age with acute gastroenteritis were included. The prevalence of rotavirus infection was 34.4%, that of adenovirus was 6.3%, and that of both rotavirus and adenovirus coinfection was 1.3%. The prevalence of rotavirus was significantly higher in unvaccinated children than in vaccinated children (55.4% versus 23.1%; P < 0.001). This difference was observed only in children who received all three vaccine doses. Multivariate logistic regression analysis shows that the rate of rotavirus infection was significantly reduced in vaccinated children (adjusted OR: 0.31 [95% confidence intervals (CI): 0.19-0.56]; P < 0.001) and those whose mothers had an average (adjusted OR: 0.51 [95% CI: 0.25-0.91]; P = 0.018) or high level (adjusted OR: 0.34 [95% CI: 0.20-0.64]; P < 0.001) of knowledge about the rotavirus vaccine. CONCLUSIONS The prevalence of rotavirus infection remains high in Kisangani despite vaccination. However, the prevalence of adenovirus infections was low in our series. Complete vaccination with three doses and mothers' average and high level of knowledge about the rotavirus vaccine significantly reduces the rate of rotavirus infection. It is, therefore, essential to strengthen the mothers' health education, continue with the Rotasiil® vaccine, and ensure epidemiological surveillance of rotavirus infection.
Collapse
Affiliation(s)
- Didier Gbebangi Manzemu
- Department of Pediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Jean Pierre Alworong'a Opara
- Department of Pediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Emmanuel Tebandite Kasai
- Department of Pediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Mupenzi Mumbere
- Department of Pediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
- Department of Pediatrics, Faculty of Medicine, Catholic University of the Graben, Butembo, Democratic Republic of the Congo
| | - Véronique Muyobela Kampunzu
- Department of Pediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Bibi Batoko Likele
- Department of Pediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Naura Apio Uvoya
- Department of Pediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
- Department of Pediatrics, Faculty of Medicine, University of Bunia, Bunia, Democratic Republic of the Congo
| | - Hortense Malikidogo Vanzwa
- Department of Pediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Gaspard Mande Bukaka
- Department of Pediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Falay Sadiki Dady
- Department of Pediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Nestor Ngbonda Dauly
- Department of Pediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Laurent Belec
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, and University of Paris, Sorbonne Paris Cité, Paris, France
| | - Serge Tonen-Wolyec
- Department of Internal Medicine, Faculty of Medicine, University of Bunia, Bunia, Democratic Republic of the Congo
- Department of Internal Medicine, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| |
Collapse
|
4
|
Neira V, Melgarejo C, Urzúa-Encina C, Berrios F, Valdes V, Mor S, Brito-Rodriguez B, Ramirez-Toloza GA. Identification and characterization of porcine Rotavirus A in Chilean swine population. Front Vet Sci 2023; 10:1240346. [PMID: 38026647 PMCID: PMC10652281 DOI: 10.3389/fvets.2023.1240346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Rotavirus A (RVA) is a common cause of diarrhea in newborn pigs, leading to significant economic losses. RVA is considered a major public health concern due to genetic evolution, high prevalence, and pathogenicity in humans and animals. The objective of this study was to identify and characterize RVA in swine farms in Chile. A total of 154 samples (86 oral fluids and 68 fecal samples) were collected, from 22 swine farms. 58 (38%) samples belonging to 14 farms were found positive for RVA by real-time RT-PCR. The samples with low Ct values (21) and the two isolates were selected for whole genome sequencing. Nearly complete genomes were assembled from both isolates and partial genomes were assembled from five clinical samples. BLAST analysis confirmed that these sequences are related to human and swine-origin RVA. The genomic constellation was G5/G3-P[7]-I5-R1-C1-M1-A8-N1-T1-E1-H1. Phylogenetic analysis showed that VP4, VP1, VP2, NSP2, NSP3, NSP4, and NSP5 sequences were grouped in monophyletic clusters, suggesting a single introduction. The phylogenies for VP7, VP6, VP3, and NSP1 indicated two different origins of the Chilean sequences. The phylogenetic trees showed that most of the Chilean RVA sequences are closely related to human and swine-origin RVA detected across the world. The results highlight the potential zoonotic nature of RVA circulating in Chilean swine farms. Therefore, it is important to continue RVA whole genome sequencing globally to fully understand its complex epidemiology and early detection and characterization of zoonotic strains.
Collapse
Affiliation(s)
- Victor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Cristián Melgarejo
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Constanza Urzúa-Encina
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Felipe Berrios
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Valentina Valdes
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Sunil Mor
- Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| | | | - Galia Andrea Ramirez-Toloza
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Ndebe J, Harima H, Chambaro HM, Sasaki M, Yamagishi J, Kalonda A, Shawa M, Qiu Y, Kajihara M, Takada A, Sawa H, Saasa N, Simulundu E. Prevalence and Genomic Characterization of Rotavirus A from Domestic Pigs in Zambia: Evidence for Possible Porcine-Human Interspecies Transmission. Pathogens 2023; 12:1199. [PMID: 37887715 PMCID: PMC10609906 DOI: 10.3390/pathogens12101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Rotavirus is a major cause of diarrhea globally in animals and young children under 5 years old. Here, molecular detection and genetic characterization of porcine rotavirus in smallholder and commercial pig farms in the Lusaka Province of Zambia were conducted. Screening of 148 stool samples by RT-PCR targeting the VP6 gene revealed a prevalence of 22.9% (34/148). Further testing of VP6-positive samples with VP7-specific primers produced 12 positives, which were then Sanger-sequenced. BLASTn of the VP7 positives showed sequence similarity to porcine and human rotavirus strains with identities ranging from 87.5% to 97.1%. By next-generation sequencing, the full-length genetic constellation of the representative strains RVA/pig-wt/ZMB/LSK0137 and RVA/pig-wt/ZMB/LSK0147 were determined. Genotyping of these strains revealed a known Wa-like genetic backbone, and their genetic constellations were G4-P[6]-I5-R1-C1-M1-A8-N1-T1-E1-H1 and G9-P[13]-I5-R1-C1-M1-A8-N1-T1-E1-H1, respectively. Phylogenetic analysis revealed that these two viruses might have their ancestral origin from pigs, though some of their gene segments were related to human strains. The study shows evidence of reassortment and possible interspecies transmission between pigs and humans in Zambia. Therefore, the "One Health" surveillance approach for rotavirus A in animals and humans is recommended to inform the design of effective control measures.
Collapse
Affiliation(s)
- Joseph Ndebe
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (A.T.); (H.S.); (N.S.)
| | - Hayato Harima
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu, Tokyo 183-8509, Japan;
| | - Herman Moses Chambaro
- Central Veterinary Research Institute (CVRI), Ministry of Fisheries and Livestock, Lusaka 10101, Zambia;
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Sapporo 001-0020, Japan;
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Sapporo 001-0020, Japan;
| | - Annie Kalonda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia;
| | - Misheck Shawa
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (M.S.); (M.K.)
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Sapporo 001-0020, Japan
| | - Yongjin Qiu
- National Institute of Infectious Diseases, Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, Toyama 1-23-1, Tokyo 162-8640, Japan
- Department of Virology-I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Masahiro Kajihara
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (M.S.); (M.K.)
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Sapporo 001-0020, Japan
| | - Ayato Takada
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (A.T.); (H.S.); (N.S.)
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Sapporo 001-0020, Japan
- One Health Research Center, Hokkaido University, N18 W9, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (A.T.); (H.S.); (N.S.)
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
- One Health Research Center, Hokkaido University, N18 W9, Sapporo 001-0020, Japan
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), N21 W11, Sapporo 001-0020, Japan
- Global Virus Network, 725 W Lombard Street, Baltimore, MD 21201, USA
| | - Ngonda Saasa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (A.T.); (H.S.); (N.S.)
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (A.T.); (H.S.); (N.S.)
- Macha Research Trust, Choma 20100, Zambia
| |
Collapse
|
6
|
Gbebangi-Manzemu D, Kampunzu VM, Vanzwa HM, Mumbere M, Bukaka GM, Likele BB, Kasai ET, Mukinayi BM, Tonen-Wolyec S, Dauly NN, Alworong'a Opara JP. Clinical profile of children under 5 years of age with rotavirus diarrhoea in a hospital setting in Kisangani, DRC, after the introduction of the rotavirus vaccine, a cross-sectional study. BMC Pediatr 2023; 23:193. [PMID: 37095482 PMCID: PMC10123467 DOI: 10.1186/s12887-023-04022-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/18/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND The Democratic Republic of the Congo (DRC) is one of the countries with the highest rotavirus mortality rate in the world. The aim of this study was to describe the clinical features of rotavirus infection after the introduction of rotavirus vaccination of children in the city of Kisangani, DRC. METHODS We conducted a cross-sectional study of acute diarrhoea in children under 5 years of age admitted to 4 hospitals in Kisangani, DRC. Rotavirus was detected in children's stools by an immuno-chromatographic antigenic rapid diagnostic test. RESULTS A total of 165 children under 5 years of age were included in the study. We obtained 59 cases of rotavirus infection, or 36% CI95 [27, 45]. The majority of children with rotavirus infection were unvaccinated (36 cases) and had watery diarrhoea (47 cases), of high frequency per day/per admission 9.6 ± 3.4 and accompanied by severe dehydration (30 cases). A statistically significant difference in mean Vesikari score was observed between unvaccinated and vaccinated children (12.7 vs 10.7 p-value 0.024). CONCLUSION Rotavirus infection in hospitalized children under 5 years of age is characterized by a severe clinical manifestation. Epidemiological surveillance is needed to identify risk factors associated with the infection.
Collapse
Affiliation(s)
- Didier Gbebangi-Manzemu
- Department of Paediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo.
| | - Véronique Muyobela Kampunzu
- Department of Paediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Hortense Malikidogo Vanzwa
- Department of Paediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Mupenzi Mumbere
- Department of Paediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
- Department of Paediatrics, Faculty of Medicine, Catholic University of Graben, Butembo, Democratic Republic of the Congo
| | - Gaspard Mande Bukaka
- Department of Paediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Bibi Batoko Likele
- Department of Paediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Emmanuel Tebandite Kasai
- Department of Paediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Benoit Mbiya Mukinayi
- Department of Paediatrics, Faculty of Medicine, University of Mbujimayi, Mbuji-Mayi, Democratic Republic of the Congo
| | - Serge Tonen-Wolyec
- Department of Internal Medicine, Faculty of Medicine, University of Bunia, Bunia, Democratic Republic of the Congo
| | - Nestor Ngbonda Dauly
- Department of Paediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Jean Pierre Alworong'a Opara
- Department of Paediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| |
Collapse
|
7
|
Malakalinga JJ, Misinzo G, Msalya GM, Shayo MJ, Kazwala RR. Genetic diversity and Genomic analysis of G3P[6] and equine-like G3P[8] in Children Under-five from Southern Highlands and Eastern Tanzania. Acta Trop 2023; 242:106902. [PMID: 36948234 DOI: 10.1016/j.actatropica.2023.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/12/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Rotavirus group A genomic characterization is critical for understanding the mechanisms of rotavirus diversity, such as reassortment events and possible interspecies transmission. However, little is known about the genetic diversity and genomic relationship of the rotavirus group A strains circulating in Tanzania. The genetic and genomic relationship of RVA genotypes was investigated in children under the age of five. A total of 169 faecal samples were collected from under-five with diarrhea in Mbeya, Iringa and Morogoro regions of Tanzania. The RVA were screened in children under five with diarrhea using reverse transcription PCR for VP7 and VP4, and the G and P genotypes were determined using Sanger dideoxynucleotide cycle sequencing. Whole-genome sequencing was performed on selected genotypes. The overall RVA rate was 4.7% (8/169). The G genotypes were G3 (7/8) and G6 (1/8) among the 8 RVA positives, while the P genotypes were P[6] (4/8) and P[8] (2), and the other two were untypeable. G3P[6] and G3P[8] were the identified genotype combinations. The genomic analysis reveals that the circulating G3P[8] and G3P[6] isolates from children under the age of five with diarrhea had a DS-1-like genome configuration (I2-R2-C2-M2-Ax-N2-T2-E2-H2). The phylogenic analysis revealed that all 11 segments of G3P[6] were closely related to human G3P[6] identified in neighboring countries such as Uganda, Kenya, and other African countries, implying that G3P[6] strains descended from a common ancestor. Whereas, G3P[8] were closely related to previously identified equine-like G3P[P8] from Kenya, Japan, Thailand, Brazil, and Taiwan, implying that this strain was introduced rather than reassortment events. We discovered amino acid differences at antigenic epitopes and N-linked glycosylation sites between the wild type G3 and P[8] compared to vaccine strains, implying that further research into the impact of these differences on vaccine effectiveness is warranted. The phylogenic analysis of VP7 also identified a bovine-like G6. For the first time in Tanzania, we report the emergence of novel equine-like G3 and bovine-like G6 RVA strains, highlighting the importance of rotavirus genotype monitoring and genomic analysis of representative genotypes.
Collapse
Affiliation(s)
- Joseph J Malakalinga
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania; SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro, Tanzania; Food and Microbiology Laboratory, Tanzania Bureau of Standards, Ubungo Area, Morogoro Road/Sam Nujoma Road, P.O. Box 9524, Dar es Salaam, Tanzania.
| | - Gerald Misinzo
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro, Tanzania; Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - George M Msalya
- Department of Animal, Aquaculture and Range Sciences, College of Agriculture, Sokoine University of Agriculture, P.O. Box 3004, Morogoro, Tanzania
| | - Mariana J Shayo
- Muhimbili University of Health and Allied sciences, Department of Biological and Pre-clinical Studies, PO Box 65001, Dar es Salaam, Tanzania
| | - Rudovick R Kazwala
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania
| |
Collapse
|
8
|
Medeiros RS, França Y, Viana E, de Azevedo LS, Guiducci R, de Lima Neto DF, da Costa AC, Luchs A. Genomic Constellation of Human Rotavirus G8 Strains in Brazil over a 13-Year Period: Detection of the Novel Bovine-like G8P[8] Strains with the DS-1-like Backbone. Viruses 2023; 15:664. [PMID: 36992373 PMCID: PMC10056101 DOI: 10.3390/v15030664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Rotavirus (RVA) G8 is frequently detected in animals, but only occasionally in humans. G8 strains, however, are frequently documented in nations in Africa. Recently, an increase in G8 detection was observed outside Africa. The aims of the study were to monitor G8 infections in the Brazilian human population between 2007 and 2020, undertake the full-genotype characterization of the four G8P[4], six G8P[6] and two G8P[8] RVA strains and conduct phylogenetic analysis in order to understand their genetic diversity and evolution. A total of 12,978 specimens were screened for RVA using ELISA, PAGE, RT-PCR and Sanger sequencing. G8 genotype represented 0.6% (15/2434) of the entirely RVA-positive samples. G8P[4] comprised 33.3% (5/15), G8P[6] 46.7% (7/15) and G8P[8] 20% (3/15). All G8 strains showed a short RNA pattern. All twelve selected G8 strains displayed a DS-1-like genetic backbone. The whole-genotype analysis on a DS-1-like backbone identified four different genotype-linage constellations. According to VP7 analysis, the Brazilian G8P[8] strains with the DS-1-like backbone strains were derived from cattle and clustered with newly DS-1-like G1/G3/G9/G8P[8] strains and G2P[4] strains. Brazilian IAL-R193/2017/G8P[8] belonged to a VP1/R2.XI lineage and were grouped with bovine-like G8P[8] strains with the DS-1-like backbone strains detected in Asia. Otherwise, the Brazilian IAL-R558/2017/G8P[8] possess a "Distinct" VP1/R2 lineage never previously described and grouped apart from any of the DS-1-like reference strains. Collectively, our findings suggest that the Brazilian bovine-like G8P[8] strains with the DS-1-like backbone strains are continuously evolving and likely reassorting with local RVA strains rather than directly relating to imports from Asia. The Brazilian G8P[6]-DS-1-like strains have been reassorted with nearby co-circulating American strains of the same DS-1 genotype constellation. However, phylogenetic analyses revealed that these strains have some genetic origin from Africa. Finally, rather than being African-born, Brazilian G8P[4]-DS-1-like strains were likely imported from Europe. None of the Brazilian G8 strains examined here exhibited signs of recent zoonotic reassortment. G8 strains continued to be found in Brazil according to their intermittent and localized pattern, thus, does not suggest that a potential emergence is taking place in the country. Our research demonstrates the diversity of G8 RVA strains in Brazil and adds to the understanding of G8P[4]/P[6]/P[8] RVA genetic diversity and evolution on a global scale.
Collapse
Affiliation(s)
- Roberta Salzone Medeiros
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Yasmin França
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Ellen Viana
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Lais Sampaio de Azevedo
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Raquel Guiducci
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Daniel Ferreira de Lima Neto
- General Coordination of Public Health Laboratories, Department of Strategic Articulation in Epidemiology and Health Surveillance, Ministry of Health, Brasília 70068-900, Brazil
| | - Antonio Charlys da Costa
- Medical Parasitology Laboratory (LIM/46), São Paulo Tropical Medicine Institute, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Adriana Luchs
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| |
Collapse
|
9
|
Prevalence and genomic characterization of rotavirus group A genotypes in piglets from in southern highlands and eastern Tanzania. Heliyon 2022; 8:e11750. [DOI: 10.1016/j.heliyon.2022.e11750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
|
10
|
Wandera EA, Hatazawa R, Tsutsui N, Kurokawa N, Kathiiko C, Mumo M, Waithira E, Wachira M, Mwaura B, Nyangao J, Khamadi SA, Njau J, Fukuda S, Murata T, Taniguchi K, Ichinose Y, Kaneko S, Komoto S. Genomic characterization of an African G4P[6] human rotavirus strain identified in a diarrheic child in Kenya: Evidence for porcine-to-human interspecies transmission and reassortment. INFECTION GENETICS AND EVOLUTION 2021; 96:105133. [PMID: 34767977 DOI: 10.1016/j.meegid.2021.105133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023]
Abstract
Human rotavirus strains having the unconventional G4P[6] genotype have been sporadically identified in diarrheic patients in different parts of the world. However, the whole genome of only one human G4P[6] strain from Africa (central Africa) has been sequenced and analyzed, and thus the exact origin and evolutionary pattern of African G4P[6] strains remain to be elucidated. In this study, we characterized the full genome of an African G4P[6] strain (RVA/Human-wt/KEN/KCH148/2019/G4P[6]) identified in a stool specimen from a diarrheic child in Kenya. Full genome analysis of strain KCH148 revealed a unique Wa-like genogroup constellation: G4-P[6]-I1-R1-C1-M1-A1-N1-T7-E1-H1. NSP3 genotype T7 is commonly found in porcine rotavirus strains. Furthermore, phylogenetic analysis showed that 10 of the 11 genes of strain KCH148 (VP7, VP4, VP6, VP1-VP3, NSP1, and NSP3-NSP5) appeared to be of porcine origin, the remaining NSP2 gene appearing to be of human origin. Therefore, strain KCH148 was found to have a porcine rotavirus backbone and thus is likely to be of porcine origin. Furthermore, strain KCH148 is assumed to have been derived through interspecies transmission and reassortment events involving porcine and human rotavirus strains. To our knowledge, this is the first report on full genome-based characterization of a human G4P[6] strain from east Africa. Our observations demonstrated the diversity of human G4P[6] strains in Africa, and provide important insights into the origin and evolutionary pattern of zoonotic G4P[6] strains on the African continent.
Collapse
Affiliation(s)
- Ernest Apondi Wandera
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Riona Hatazawa
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Naohisa Tsutsui
- Department of Project Planning and Management, Mitsubishi Tanabe Pharma Corporation, Chuo-ku, Tokyo 103-8405, Japan
| | - Natsuki Kurokawa
- Department of Project Planning and Management, Mitsubishi Tanabe Pharma Corporation, Chuo-ku, Tokyo 103-8405, Japan
| | - Cyrus Kathiiko
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Maurine Mumo
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Eunice Waithira
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Mary Wachira
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Boniface Mwaura
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - James Nyangao
- Center for Virus Research, KEMRI, Nairobi 54840-00200, Kenya
| | | | - Joseph Njau
- Department of Pediatrics, Kiambu County Referral Hospital, Kiambu 39-00900, Kenya
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Yoshio Ichinose
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Satoshi Kaneko
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
11
|
Maringa WM, Simwaka J, Mwangi PN, Mpabalwani EM, Mwenda JM, Mphahlele MJ, Seheri ML, Nyaga MM. Whole Genome Analysis of Human Rotaviruses Reveals Single Gene Reassortant Rotavirus Strains in Zambia. Viruses 2021; 13:1872. [PMID: 34578453 PMCID: PMC8472975 DOI: 10.3390/v13091872] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
Rotarix® vaccine was implemented nationwide in Zambia in 2013. In this study, four unusual strains collected in the post-vaccine period were subjected to whole genome sequencing and analysis. The four strains possessed atypical genotype constellations, with at least one reassortant genome segment within the constellation. One of the strains (UFS-NGS-MRC-DPRU4749) was genetically and phylogenetically distinct in the VP4 and VP1 gene segments. Pairwise analyses demonstrated several amino acid disparities in the VP4 antigenic sites of this strain compared to that of Rotarix®. Although the impact of these amino acid disparities remains to be determined, this study adds to our understanding of the whole genomes of reassortant strains circulating in Zambia following Rotarix® vaccine introduction.
Collapse
Affiliation(s)
- Wairimu M. Maringa
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (W.M.M.); (P.N.M.)
| | - Julia Simwaka
- Virology Laboratory, Department of Pathology and Microbiology, University Teaching Hospital, Adult and Emergency Hospital, Lusaka 10101, Zambia;
| | - Peter N. Mwangi
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (W.M.M.); (P.N.M.)
| | - Evans M. Mpabalwani
- Department of Paediatrics and Child Health, School of Medicine, University of Zambia, Ridgeway, Lusaka RW50000, Zambia;
| | - Jason M. Mwenda
- World Health Organization, Regional Office for Africa, Brazzaville P.O. Box 06, Congo;
| | - M. Jeffrey Mphahlele
- Office of the Deputy Vice Chancellor for Research and Innovation, The North-West University, Potchefstroom 2351, South Africa;
| | - Mapaseka L. Seheri
- Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa;
| | - Martin M. Nyaga
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (W.M.M.); (P.N.M.)
| |
Collapse
|
12
|
Amit LN, Mori D, John JL, Chin AZ, Mosiun AK, Jeffree MS, Ahmed K. Emergence of equine-like G3 strains as the dominant rotavirus among children under five with diarrhea in Sabah, Malaysia during 2018-2019. PLoS One 2021; 16:e0254784. [PMID: 34320003 PMCID: PMC8318246 DOI: 10.1371/journal.pone.0254784] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022] Open
Abstract
Rotavirus infection is a dilemma for developing countries, including Malaysia. Although commercial rotavirus vaccines are available, these are not included in Malaysia's national immunization program. A scarcity of data about rotavirus genotype distribution could be partially to blame for this policy decision, because there are no data for rotavirus genotype distribution in Malaysia over the past 20 years. From January 2018 to March 2019, we conducted a study to elucidate the rotavirus burden and genotype distribution in the Kota Kinabalu and Kunak districts of the state of Sabah. Stool specimens were collected from children under 5 years of age, and rotavirus antigen in these samples was detected using commercially available kit. Electropherotypes were determined by polyacrylamide gel electrophoresis of genomic RNA. G and P genotypes were determined by RT-PCR using type specific primers. The nucleotide sequence of the amplicons was determined by Sanger sequencing and phylogenetic analysis was performed by neighbor-joining method. Rotavirus was identified in 43 (15.1%) children with watery diarrhea. The male:female ratio (1.9:1) of the rotavirus-infected children clearly showed that it affected predominantly boys, and children 12-23 months of age. The genotypes identified were G3P[8] (74% n = 31), followed by G1P[8] (14% n = 6), G12P[6](7% n = 3), G8P[8](3% n = 1), and GxP[8] (3% n = 1). The predominant rotavirus circulating among the children was the equine-like G3P[8] (59.5% n = 25) with a short electropherotype. Eleven electropherotypes were identified among 34 strains, indicating substantial diversity among the circulating strains. The circulating genotypes were also phylogenetically diverse and related to strains from several different countries. The antigenic epitopes present on VP7 and VP4 of Sabahan G3 and equine-like G3 differed considerably from that of the RotaTeq vaccine strain. Our results also indicate that considerable genetic exchange is occurring in Sabahan strains. Sabah is home to a number of different ethnic groups, some of which culturally are in close contact with animals, which might contribute to the evolution of diverse rotavirus strains. Sabah is also a popular tourist destination, and a large number of tourists from different countries possibly contributes to the diversity of circulating rotavirus genotypes. Considering all these factors which are contributing rotavirus genotype diversity, continuous surveillance of rotavirus strains is of utmost importance to monitor the pre- and post-vaccination efficacy of rotavirus vaccines in Sabah.
Collapse
Affiliation(s)
- Lia Natasha Amit
- Faculty of Medicine and Health Sciences, Department of Pathobiology and Medical Diagnostics, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Daisuke Mori
- Faculty of Medicine and Health Sciences, Department of Pathobiology and Medical Diagnostics, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jecelyn Leaslie John
- Faculty of Medicine and Health Sciences, Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Abraham Zefong Chin
- Faculty of Medicine and Health Sciences, Department of Community and Family Medicine, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Andau Konodan Mosiun
- Kunak District Health Office, Ministry of Health Malaysia, Kunak, Sabah, Malaysia
| | - Mohammad Saffree Jeffree
- Faculty of Medicine and Health Sciences, Department of Community and Family Medicine, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Kamruddin Ahmed
- Faculty of Medicine and Health Sciences, Department of Pathobiology and Medical Diagnostics, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Faculty of Medicine and Health Sciences, Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- * E-mail:
| |
Collapse
|
13
|
Hoxie I, Dennehy JJ. Rotavirus A Genome Segments Show Distinct Segregation and Codon Usage Patterns. Viruses 2021; 13:v13081460. [PMID: 34452326 PMCID: PMC8402926 DOI: 10.3390/v13081460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
Reassortment of the Rotavirus A (RVA) 11-segment dsRNA genome may generate new genome constellations that allow RVA to expand its host range or evade immune responses. Reassortment may also produce phylogenetic incongruities and weakly linked evolutionary histories across the 11 segments, obscuring reassortment-specific epistasis and changes in substitution rates. To determine the co-segregation patterns of RVA segments, we generated time-scaled phylogenetic trees for each of the 11 segments of 789 complete RVA genomes isolated from mammalian hosts and compared the segments’ geodesic distances. We found that segments 4 (VP4) and 9 (VP7) occupied significantly different tree spaces from each other and from the rest of the genome. By contrast, segments 10 and 11 (NSP4 and NSP5/6) occupied nearly indistinguishable tree spaces, suggesting strong co-segregation. Host-species barriers appeared to vary by segment, with segment 9 (VP7) presenting the weakest association with host species. Bayesian Skyride plots were generated for each segment to compare relative genetic diversity among segments over time. All segments showed a dramatic decrease in diversity around 2007 coinciding with the introduction of RVA vaccines. To assess selection pressures, codon adaptation indices and relative codon deoptimization indices were calculated with respect to different host genomes. Codon usage varied by segment with segment 11 (NSP5) exhibiting significantly higher adaptation to host genomes. Furthermore, RVA codon usage patterns appeared optimized for expression in humans and birds relative to the other hosts examined, suggesting that translational efficiency is not a barrier in RVA zoonosis.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
- Correspondence:
| | - John J. Dennehy
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
| |
Collapse
|
14
|
Tacharoenmuang R, Guntapong R, Upachai S, Singchai P, Fukuda S, Ide T, Hatazawa R, Sutthiwarakom K, Kongjorn S, Onvimala N, Luechakham T, Ruchusatsawast K, Kawamura Y, Sriwanthana B, Motomura K, Tatsumi M, Takeda N, Yoshikawa T, Murata T, Uppapong B, Taniguchi K, Komoto S. Full genome-based characterization of G4P[6] rotavirus strains from diarrheic patients in Thailand: Evidence for independent porcine-to-human interspecies transmission events. Virus Genes 2021; 57:338-357. [PMID: 34106412 DOI: 10.1007/s11262-021-01851-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/17/2021] [Indexed: 12/18/2022]
Abstract
The exact evolutionary patterns of human G4P[6] rotavirus strains remain to be elucidated. Such strains possess unique and strain-specific genotype constellations, raising the question of whether G4P[6] strains are primarily transmitted via independent interspecies transmission or human-to-human transmission after interspecies transmission. Two G4P[6] rotavirus strains were identified in fecal specimens from hospitalized patients with severe diarrhea in Thailand, namely, DU2014-259 (RVA/Human-wt/THA/DU2014-259/2014/G4P[6]) and PK2015-1-0001 (RVA/Human-wt/THA/PK2015-1-0001/2015/G4P[6]). Here, we analyzed the full genomes of the two human G4P[6] strains, which provided the opportunity to study and confirm their evolutionary origin. On whole genome analysis, both strains exhibited a unique Wa-like genotype constellation of G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1. The NSP1 genotype A8 is commonly found in porcine rotavirus strains. Furthermore, on phylogenetic analysis, each of the 11 genes of strains DU2014-259 and PK2015-1-0001 appeared to be of porcine origin. On the other hand, the two study strains consistently formed distinct clusters for nine of the 11 gene segments (VP4, VP6, VP1-VP3, and NSP2-NSP5), strongly indicating the occurrence of independent porcine-to-human interspecies transmission events. Our observations provide important insights into the origin of zoonotic G4P[6] strains, and into the dynamic interaction between porcine and human rotavirus strains.
Collapse
Affiliation(s)
- Ratana Tacharoenmuang
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Ratigorn Guntapong
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Sompong Upachai
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Phakapun Singchai
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Riona Hatazawa
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Karun Sutthiwarakom
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Santip Kongjorn
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Napa Onvimala
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Tipsuda Luechakham
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | | | - Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Busarawan Sriwanthana
- Medical Sciences Technical Office, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Kazushi Motomura
- Thailand-Japan Research Collaboration Center on Emerging and Re-Emerging Infections, Nonthaburi, 11000, Thailand
- Osaka Institute of Public Health, Osaka, 537-0025, Japan
| | - Masashi Tatsumi
- Thailand-Japan Research Collaboration Center on Emerging and Re-Emerging Infections, Nonthaburi, 11000, Thailand
| | - Naokazu Takeda
- Thailand-Japan Research Collaboration Center on Emerging and Re-Emerging Infections, Nonthaburi, 11000, Thailand
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Ballang Uppapong
- National Institute of Health, Department of Medical Sciences, Nonthaburi, 11000, Thailand
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
15
|
Acácio S, Nhampossa T, Quintò L, Vubil D, Garrine M, Bassat Q, Farag T, Panchalingam S, Nataro JP, Kotloff KL, Levine MM, Tennant SM, Alonso PL, Mandomando I. Rotavirus disease burden pre-vaccine introduction in young children in Rural Southern Mozambique, an area of high HIV prevalence. PLoS One 2021; 16:e0249714. [PMID: 33831068 PMCID: PMC8031087 DOI: 10.1371/journal.pone.0249714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/23/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Rotavirus vaccines have been adopted in African countries since 2009, including Mozambique (2015). Disease burden data are needed to evaluate the impact of rotavirus vaccine. We report the burden of rotavirus-associated diarrhea in Mozambique from the Global Enteric Multicenter Study (GEMS) before vaccine introduction. METHODS A case-control study (GEMS), was conducted in Manhiça district, recruiting children aged 0-59 months with moderate-to-severe diarrhea (MSD) and less-severe-diarrhea (LSD) between December 2007 and November 2012; including 1-3 matched (age, sex and neighborhood) healthy community controls. Clinical and epidemiological data and stool samples (for laboratory investigation) were collected. Association of rotavirus with MSD or LSD was determined by conditional logistic regression and adjusted attributable fractions (AF) calculated, and risk factors for rotavirus diarrhea assessed. RESULTS Overall 915 cases and 1,977 controls for MSD, and 431 cases and 430 controls for LSD were enrolled. Rotavirus positivity was 44% (217/495) for cases and 15% (160/1046) of controls, with AF = 34.9% (95% CI: 32.85-37.06) and adjusted Odds Ratio (aOR) of 6.4 p< 0.0001 in infants with MSD compared to 30% (46/155) in cases and 14% (22/154) in controls yielding AF = 18.7%, (95% CI: 12.02-25.39) and aOR = 2.8, p = 0.0011 in infants with LSD. The proportion of children with rotavirus was 32% (21/66) among HIV-positive children and 23% (128/566) among HIV-negative ones for MSD. Presence of animals in the compound (OR = 1.9; p = 0.0151) and giving stored water to the child (OR = 2.0, p = 0.0483) were risk factors for MSD; while animals in the compound (OR = 2.37, p = 0.007); not having routine access to water on a daily basis (OR = 1.53, p = 0.015) and washing hands before cooking (OR = 1.76, p = 0.0197) were risk factors for LSD. CONCLUSION The implementation of vaccination against rotavirus may likely result in a significant reduction of rotavirus-associated diarrhea, suggesting the need for monitoring of vaccine impact.
Collapse
Affiliation(s)
- Sozinho Acácio
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Llorenç Quintò
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Delfino Vubil
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Marcelino Garrine
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT, UNL), Lisbon, Portugal
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- ICREA, Barcelona, Spain
- Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Tamer Farag
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Sandra Panchalingam
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - James P. Nataro
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Karen L. Kotloff
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Myron M. Levine
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Pedro L. Alonso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- World Health Organization, Geneva, Switzerland
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
- * E-mail:
| |
Collapse
|
16
|
Rasebotsa S, Uwimana J, Mogotsi MT, Rakau K, Magagula NB, Seheri ML, Mwenda JM, Mphahlele MJ, Sabiu S, Mihigo R, Mutesa L, Nyaga MM. Whole-Genome Analyses Identifies Multiple Reassortant Rotavirus Strains in Rwanda Post-Vaccine Introduction. Viruses 2021; 13:v13010095. [PMID: 33445703 PMCID: PMC7828107 DOI: 10.3390/v13010095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/23/2022] Open
Abstract
Children in low-and middle-income countries, including Rwanda, experience a greater burden of rotavirus disease relative to developed countries. Evolutionary mechanisms leading to multiple reassortant rotavirus strains have been documented over time which influence the diversity and evolutionary dynamics of novel rotaviruses. Comprehensive rotavirus whole-genome analysis was conducted on 158 rotavirus group A (RVA) samples collected pre- and post-vaccine introduction in children less than five years in Rwanda. Of these RVA positive samples, five strains with the genotype constellations G4P[4]-I1-R2-C2-M2-A2-N2-T1-E1-H2 (n = 1), G9P[4]-I1-R2-C2-M2-A1-N1-T1-E1-H1 (n = 1), G12P[8]-I1-R2-C2-M1-A1-N2-T1-E2-H3 (n = 2) and G12P[8]-I1-R1-C1-M1-A2-N2-T2-E1-H1 (n = 1), with double and triple gene reassortant rotavirus strains were identified. Phylogenetic analysis revealed a close relationship between the Rwandan strains and cognate human RVA strains as well as the RotaTeq® vaccine strains in the VP1, VP2, NSP2, NSP4 and NSP5 gene segments. Pairwise analyses revealed multiple differences in amino acid residues of the VP7 and VP4 antigenic regions of the RotaTeq® vaccine strain and representative Rwandan study strains. Although the impact of such amino acid changes on the effectiveness of rotavirus vaccines has not been fully explored, this analysis underlines the potential of rotavirus whole-genome analysis by enhancing knowledge and understanding of intergenogroup reassortant strains circulating in Rwanda post vaccine introduction.
Collapse
Affiliation(s)
- Sebotsana Rasebotsa
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (S.R.); (M.T.M.); (S.S.)
| | - Jeannine Uwimana
- Department of Laboratory, Clinical Biology, Kigali University Teaching Hospital, P.O. Box 4285, Kigali, Rwanda;
| | - Milton T. Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (S.R.); (M.T.M.); (S.S.)
| | - Kebareng Rakau
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; (K.R.); (N.B.M.); (M.L.S.); (M.J.M.)
| | - Nonkululeko B. Magagula
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; (K.R.); (N.B.M.); (M.L.S.); (M.J.M.)
| | - Mapaseka L. Seheri
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; (K.R.); (N.B.M.); (M.L.S.); (M.J.M.)
| | - Jason M. Mwenda
- World Health Organization, Regional Office for Africa, P.O. Box 06, Brazzaville, Congo; (J.M.M.); (R.M.)
| | - M. Jeffrey Mphahlele
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; (K.R.); (N.B.M.); (M.L.S.); (M.J.M.)
- South African Medical Research Council, 1 Soutpansberg Road, Pretoria 0001, South Africa
| | - Saheed Sabiu
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (S.R.); (M.T.M.); (S.S.)
| | - Richard Mihigo
- World Health Organization, Regional Office for Africa, P.O. Box 06, Brazzaville, Congo; (J.M.M.); (R.M.)
| | - Leon Mutesa
- Centre for Human Genetics, University of Rwanda, College of Medicine and Health Sciences, P.O. Box 4285, Kigali, Rwanda;
| | - Martin M. Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (S.R.); (M.T.M.); (S.S.)
- Correspondence: ; Tel.: +27-51-401-9158
| |
Collapse
|
17
|
Mokoena F, Esona MD, Seheri LM, Nyaga MM, Magagula NB, Mukaratirwa A, Mulindwa A, Abebe A, Boula A, Tsolenyanu E, Simwaka J, Rakau KG, Peenze I, Mwenda JM, Mphahlele MJ, Steele AD. Whole Genome Analysis of African G12P[6] and G12P[8] Rotaviruses Provides Evidence of Porcine-Human Reassortment at NSP2, NSP3, and NSP4. Front Microbiol 2021; 11:604444. [PMID: 33510725 PMCID: PMC7835662 DOI: 10.3389/fmicb.2020.604444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/10/2020] [Indexed: 01/27/2023] Open
Abstract
Group A rotaviruses (RVA) represent the most common cause of pediatric gastroenteritis in children <5 years, worldwide. There has been an increase in global detection and reported cases of acute gastroenteritis caused by RVA genotype G12 strains, particularly in Africa. This study sought to characterize the genomic relationship between African G12 strains and determine the possible origin of these strains. Whole genome sequencing of 34 RVA G12P[6] and G12P[8] strains detected from the continent including southern (South Africa, Zambia, Zimbabwe), eastern (Ethiopia, Uganda), central (Cameroon), and western (Togo) African regions, were sequenced using the Ion Torrent PGM method. The majority of the strains possessed a Wa-like backbone with consensus genotype constellation of G12-P[6]/P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1, while a single strain from Ethiopia displayed a DS-1-like genetic constellation of G12-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2. In addition, three Ethiopian and one South African strains exhibited a genotype 2 reassortment of the NSP3 gene, with genetic constellation of G12-P[8]-I1-R1-C1-M1-A1-N1-T2-E1-H1. Overall, 10 gene segments (VP1–VP4, VP6, and NSP1–NSP5) of African G12 strains were determined to be genetically related to cognate gene sequences from globally circulating human Wa-like G12, G9, and G1 strains with nucleotide (amino acid) identities in the range of 94.1–99.9% (96.5–100%), 88.5–98.5% (93–99.1%), and 89.8–99.0% (88.7–100%), respectively. Phylogenetic analysis showed that the Ethiopian G12P[6] possessing a DS-1-like backbone consistently clustered with G2P[4] strains from Senegal and G3P[6] from Ethiopia with the VP1, VP2, VP6, and NSP1–NSP4 genes. Notably, the NSP2, NSP3, and NSP4 of most of the study strains exhibited the closest relationship with porcine strains suggesting the occurrence of reassortment between human and porcine strains. Our results add to the understanding of potential roles that interspecies transmission play in generating human rotavirus diversity through reassortment events and provide insights into the evolutionary dynamics of G12 strains spreading across selected sub-Saharan Africa regions.
Collapse
Affiliation(s)
- Fortunate Mokoena
- Department of Biochemistry, Faculty of Natural and Agricultural Science, North West University, Mmabatho, South Africa.,Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Mathew Dioh Esona
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Luyanda Mapaseka Seheri
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Martin Munene Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Nonkululelo Bonakele Magagula
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Arnold Mukaratirwa
- Department of Medical Microbiology, University of Zimbabwe-College of Health Sciences, Harare, Zimbabwe
| | | | - Almaz Abebe
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Angeline Boula
- Mother and Child Center, Chantal Biya Foundation, Yaoundé, Cameroon
| | - Enyonam Tsolenyanu
- Department of Paediatrics, Sylvanus Olympio Teaching Hospital of Lome, Lome, Togo
| | - Julia Simwaka
- Virology Laboratory, University Teaching Hospital, Lusaka, Zambia
| | - Kebareng Giliking Rakau
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Ina Peenze
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Jason Mathiu Mwenda
- African Rotavirus Surveillance Network, Immunization, Vaccines and Development Cluster, WHO African Regional Office, Brazzaville, Congo
| | - Maphahlaganye Jeffrey Mphahlele
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Andrew Duncan Steele
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria, South Africa.,Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, WA, United States
| | | |
Collapse
|
18
|
Molecular Characterisation of a Rare Reassortant Porcine-Like G5P[6] Rotavirus Strain Detected in an Unvaccinated Child in Kasama, Zambia. Pathogens 2020; 9:pathogens9080663. [PMID: 32824526 PMCID: PMC7460411 DOI: 10.3390/pathogens9080663] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 11/25/2022] Open
Abstract
A human-porcine reassortant strain, RVA/Human-wt/ZMB/UFS-NGS-MRC-DPRU4723/2014/G5P[6], was identified in a sample collected in 2014 from an unvaccinated 12 month old male hospitalised for gastroenteritis in Zambia. We sequenced and characterised the complete genome of this strain which presented the constellation: G5-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1. The genotype A8 is often observed in porcine strains. Phylogenetic analyses showed that VP6, VP7, NSP2, NSP4, and NSP5 genes were closely related to cognate gene sequences of porcine strains (e.g., RVA/Pig-wt/CHN/DZ-2/2013/G5P[X] for VP7) from the NCBI database, while VP1, VP3, VP4, and NSP3 were closely related to porcine-like human strains (e.g., RVA/Human-wt/CHN/E931/2008/G4P[6] for VP1, and VP3). On the other hand, the origin of the VP2 was not clear from our analyses, as it was not only close to both porcine (e.g., RVA/Pig-tc/CHN/SWU-1C/2018/G9P[13]) and porcine-like human strains (e.g., RVA/Human-wt/LKA/R1207/2009/G4P[6]) but also to three human strains (e.g., RVA/Human-wt/USA/1476/1974/G1P[8]). The VP7 gene was located in lineage II that comprised only porcine strains, which suggests the occurrence of independent porcine-to-human reassortment events. The study strain may have collectively been derived through interspecies transmission, or through reassortment event(s) involving strains of porcine and porcine-like human origin. The results of this study underline the importance of whole-genome characterisation of rotavirus strains and provide insights into interspecies transmissions from porcine to humans.
Collapse
|
19
|
Stubbs SCB, Quaye O, Acquah ME, Adadey SM, Kean IRL, Gupta S, Blacklaws BA. Full genomic characterization of a porcine rotavirus strain detected in an asymptomatic piglet in Accra, Ghana. BMC Vet Res 2020; 16:11. [PMID: 31924206 PMCID: PMC6954506 DOI: 10.1186/s12917-019-2226-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/25/2019] [Indexed: 12/03/2022] Open
Abstract
Background The introduction of rotavirus A vaccination across the developing world has not proved to be as efficacious as first hoped. One cause of vaccine failure may be infection by zoonotic rotaviruses that are very variable antigenically from the vaccine strain. However, there is a lack of genomic information about the circulating rotavirus A strains in farm animals in the developing world that may be a source of infection for humans. We therefore screened farms close to Accra, Ghana for animals sub-clinically infected with rotavirus A and then sequenced the virus found in one of these samples. Results 6.1% of clinically normal cows and pigs tested were found to be Rotavirus A virus antigen positive in the faeces. A subset of these (33.3%) were also positive for virus RNA. The most consistently positive pig sample was taken forward for metagenomic sequencing. This gave full sequence for all open reading frames except segment 5 (NSP1), which is missing a single base at the 5′ end. The virus infecting this pig had genome constellation G5-P[7]-I5-R1-C1-M1-A8-N1-T7-E1-H1, a known porcine genotype constellation. Conclusions Farm animals carry rotavirus A infection sub-clinically at low frequency. Although the rotavirus A genotype discovered here has a pig-like genome constellation, a number of the segments most closely resembled those isolated from humans in suspected cases of zoonotic transmission. Therefore, such viruses may be a source of variable gene segments for re-assortment with other viruses to cause vaccine breakdown. It is recommended that further human and pig strains are characterized in West Africa, to better understand this dynamic.
Collapse
Affiliation(s)
- Samuel C B Stubbs
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Volta Road, P. O. Box LG 54, Legon, Accra, Ghana.
| | - Maame Ekua Acquah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Volta Road, P. O. Box LG 54, Legon, Accra, Ghana
| | - Samuel Mawuli Adadey
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Volta Road, P. O. Box LG 54, Legon, Accra, Ghana
| | - Iain R L Kean
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Srishti Gupta
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
20
|
Fujii Y, Doan YH, Suzuki Y, Nakagomi T, Nakagomi O, Katayama K. Study of Complete Genome Sequences of Rotavirus A Epidemics and Evolution in Japan in 2012-2014. Front Microbiol 2019; 10:38. [PMID: 30766516 PMCID: PMC6365416 DOI: 10.3389/fmicb.2019.00038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/10/2019] [Indexed: 11/13/2022] Open
Abstract
A comprehensive molecular epidemiological study using next-generation sequencing technology was conducted on 333 rotavirus A (RVA)-positive specimens collected from six sentinel hospitals across Japan over three consecutive seasons (2012–2014). The majority of the RVA isolates were grouped into five genotype constellations: Wa-like G1P[8], DS-1-like G1P[8], G2P[4], G3P[8] and G9P[8]. Phylogenetic analysis showed that the distribution of strains varied by geographical locations and epidemic seasons. The VP7 genes of different G types were estimated to evolve at 7.26 × 10-4–1.04 × 10-3 nucleotide substitutions per site per year. The Bayesian time-scaled tree of VP7 showed that the time to the most recent common ancestor of epidemic strains within a region was 1–3 years, whereas that of the epidemic strains across the country was 2–6 years. This study provided, for the first time, the timeframe during which an epidemic strain spread locally and within the country and baseline information needed to predict how rapidly RVAs spread.
Collapse
Affiliation(s)
- Yoshiki Fujii
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yen Hai Doan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiyuki Suzuki
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Nagasaki University, Nagasaki, Japan
| | - Osamu Nakagomi
- Department of Hygiene and Molecular Epidemiology, Nagasaki University, Nagasaki, Japan
| | - Kazuhiko Katayama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Laboratory of Viral Infection I, Kitasato University, Tokyo, Japan
| |
Collapse
|
21
|
Sadiq A, Bostan N, Yinda KC, Naseem S, Sattar S. Rotavirus: Genetics, pathogenesis and vaccine advances. Rev Med Virol 2018; 28:e2003. [PMID: 30156344 DOI: 10.1002/rmv.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 01/27/2023]
Abstract
Since its discovery 40 years ago, rotavirus (RV) is considered to be a major cause of infant and childhood morbidity and mortality particularly in developing countries. Nearly every child in the world under 5 years of age is at the risk of RV infection. It is estimated that 90% of RV-associated mortalities occur in developing countries of Africa and Asia. Two live oral vaccines, RotaTeq (RV5, Merck) and Rotarix (RV1, GlaxoSmithKline) have been successfully deployed to scale down the disease burden in Europe and America, but they are less effective in Africa and Asia. In April 2009, the World Health Organization recommended the inclusion of RV vaccination in national immunization programs of all countries with great emphasis in developing countries. To date, 86 countries have included RV vaccines into their national immunization programs including 41 Global Alliance for Vaccines and Immunization eligible countries. The predominant RV genotypes circulating all over the world are G1P[8], G2P[4], G3P[8], G4P[8], and G9P[8], while G12[P6] and G12[P8] are emerging genotypes. On account of the segmented genome, RV shows an enormous genetic diversity that leads to the evolution of new genotypes that can influence the efficacy of current vaccines. The current need is for a global RV surveillance program to monitor the prevalence and antigenic variability of new genotypes to formulate future vaccine development planning. In this review, we will summarize the previous and recent insights into RV structure, classification, and epidemiology and current status of RV vaccination around the globe and will also cover the status of RV research and vaccine policy in Pakistan.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Kwe Claude Yinda
- Rega Institute, Laboratory of Clinical and Epidemiological Virology, University of Leuven, Leuven, Belgium
| | - Saadia Naseem
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sadia Sattar
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
22
|
Malasao R, Khamrin P, Kumthip K, Ushijima H, Maneekarn N. Complete genome sequence analysis of rare G4P[6] rotavirus strains from human and pig reveals the evidence for interspecies transmission. INFECTION GENETICS AND EVOLUTION 2018; 65:357-368. [PMID: 30144568 DOI: 10.1016/j.meegid.2018.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
Abstract
Two rare human rotavirus strains, RVA/Human-wt/THA/CMH-N016-10/2010/G4P[6] and RVA/Human-wt/THA/CMH-N014-11/2011/G4P[6], were detected during the surveillance of group A rotavirus (RVA) in Chiang Mai, Thailand. Complete genome sequences of both strains were analyzed in comparison with that of the representative porcine G4P[6] RVA strain (RVA/Pig-wt/THA/CMP-011-09/2009/G4P[6]) detected in the same geographical area. Human RVA strain CMH-N016-10 containing the genotype constellation of G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1 was identical to that of porcine RVA strain CMP-011-09. Another human RVA strain (CMH-N014-11) was also contained the genotype constellation of ten segments identical to those of CMH-N016-10 and of porcine RVA strain CMP-011-09 except for genotype I of VP6 gene which contained I5 instead of I1. The genotype constellation of CMH-N014-11, G4-P[6]-I5-R1-C1-M1-A8-N1-T1-E1-H1 was a novel genotype constellation that has not been reported previously in both human and pig. Phylogenetic analysis of all 11 genome segments revealed that both strains of human RVA were more closely related to porcine and porcine-like human than to human RVA reference strains, particularly those reported from Thailand and other Asian countries with very high nucleotide sequence identities ranging from 91.1-100% except for NSP4 gene from 86.1-92.2%. Based on complete genome constellation and overall phylogenetic analyses suggested that these two human G4P[6] strains may have probably originated from porcine RVA strains of independent ancestor. This study provided an evidence for direct interspecies transmission of porcine RVA from pig to human.
Collapse
Affiliation(s)
- Rungnapa Malasao
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
23
|
Grandi G, Menchetti M, Mori E. Vertical segregation by breeding ring-necked parakeets Psittacula krameri in northern Italy. Urban Ecosyst 2018. [DOI: 10.1007/s11252-018-0779-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Changotra H, Vij A. Rotavirus virus-like particles (RV-VLPs) vaccines: An update. Rev Med Virol 2017; 27. [DOI: 10.1002/rmv.1954] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Harish Changotra
- Department of Biotechnology and Bioinformatics; Jaypee University of Information Technology; Solan Himachal Pradesh India
| | - Avni Vij
- Department of Biotechnology and Bioinformatics; Jaypee University of Information Technology; Solan Himachal Pradesh India
| |
Collapse
|
25
|
Bwogi J, Jere KC, Karamagi C, Byarugaba DK, Namuwulya P, Baliraine FN, Desselberger U, Iturriza-Gomara M. Whole genome analysis of selected human and animal rotaviruses identified in Uganda from 2012 to 2014 reveals complex genome reassortment events between human, bovine, caprine and porcine strains. PLoS One 2017. [PMID: 28640820 PMCID: PMC5480867 DOI: 10.1371/journal.pone.0178855] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rotaviruses of species A (RVA) are a common cause of diarrhoea in children and the young of various other mammals and birds worldwide. To investigate possible interspecies transmission of RVAs, whole genomes of 18 human and 6 domestic animal RVA strains identified in Uganda between 2012 and 2014 were sequenced using the Illumina HiSeq platform. The backbone of the human RVA strains had either a Wa- or a DS-1-like genetic constellation. One human strain was a Wa-like mono-reassortant containing a DS-1-like VP2 gene of possible animal origin. All eleven genes of one bovine RVA strain were closely related to those of human RVAs. One caprine strain had a mixed genotype backbone, suggesting that it emerged from multiple reassortment events involving different host species. The porcine RVA strains had mixed genotype backbones with possible multiple reassortant events with strains of human and bovine origin.Overall, whole genome characterisation of rotaviruses found in domestic animals in Uganda strongly suggested the presence of human-to animal RVA transmission, with concomitant circulation of multi-reassortant strains potentially derived from complex interspecies transmission events. However, whole genome data from the human RVA strains causing moderate and severe diarrhoea in under-fives in Uganda indicated that they were primarily transmitted from person-to-person.
Collapse
Affiliation(s)
- Josephine Bwogi
- EPI laboratory, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
- * E-mail:
| | - Khuzwayo C. Jere
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme / Department of Medical Laboratory Sciences, University of Malawi, College of Medicine, Blantyre, Malawi
| | - Charles Karamagi
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Denis K. Byarugaba
- Department of Microbiology, College of Veterinary Medicine and Biosecurity, Makerere University, Kampala, Uganda
| | - Prossy Namuwulya
- EPI laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | - Frederick N. Baliraine
- Department of Biology and Kinesiology, LeTourneau University, Longview, Texas, United States of America
| | | | - Miren Iturriza-Gomara
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
26
|
Vlasova AN, Amimo JO, Saif LJ. Porcine Rotaviruses: Epidemiology, Immune Responses and Control Strategies. Viruses 2017; 9:v9030048. [PMID: 28335454 PMCID: PMC5371803 DOI: 10.3390/v9030048] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Rotaviruses (RVs) are a major cause of acute viral gastroenteritis in young animals and children worldwide. Immunocompetent adults of different species become resistant to clinical disease due to post-infection immunity, immune system maturation and gut physiological changes. Of the 9 RV genogroups (A–I), RV A, B, and C (RVA, RVB, and RVC, respectively) are associated with diarrhea in piglets. Although discovered decades ago, porcine genogroup E RVs (RVE) are uncommon and their pathogenesis is not studied well. The presence of porcine RV H (RVH), a newly defined distinct genogroup, was recently confirmed in diarrheic pigs in Japan, Brazil, and the US. The complex epidemiology, pathogenicity and high genetic diversity of porcine RVAs are widely recognized and well-studied. More recent data show a significant genetic diversity based on the VP7 gene analysis of RVB and C strains in pigs. In this review, we will summarize previous and recent research to provide insights on historic and current prevalence and genetic diversity of porcine RVs in different geographic regions and production systems. We will also provide a brief overview of immune responses to porcine RVs, available control strategies and zoonotic potential of different RV genotypes. An improved understanding of the above parameters may lead to the development of more optimal strategies to manage RV diarrheal disease in swine and humans.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | - Joshua O Amimo
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi 30197, Kenya.
- Bioscience of Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi 30709, Kenya.
| | - Linda J Saif
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
27
|
Zeller M, Nuyts V, Heylen E, De Coster S, Conceição-Neto N, Van Ranst M, Matthijnssens J. Emergence of human G2P[4] rotaviruses containing animal derived gene segments in the post-vaccine era. Sci Rep 2016; 6:36841. [PMID: 27841357 PMCID: PMC5107926 DOI: 10.1038/srep36841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/19/2016] [Indexed: 11/30/2022] Open
Abstract
The introduction of Rotarix into the Belgian immunization program in June 2006 coincided with an increase of the relative prevalence of G2P[4] strains. However, the genetic composition of these persistent G2P[4] strains has not been investigated. Therefore, we have investigated the NSP4 gene of 89 Belgian G2P[4] strains detected between 1999 and 2013, covering both pre- and post-vaccination periods. The NSP4 genes were divided over seven separate clusters of which six were more closely related to animal than to human strains. The NSP4 genes that clustered more closely to animal DS-1-like strains were isolated after 2004–2005 and were found throughout multiple seasons. Complete genome sequencing of 28 strains identified several other gene segments that clustered more closely to animal than to human DS-1-like strains. These findings suggest that frequent interspecies reassortments may have played a role in the spread of G2P[4] rotaviruses in the post-vaccination period in Belgium.
Collapse
Affiliation(s)
- Mark Zeller
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Leuven, Belgium
| | - Valerie Nuyts
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Leuven, Belgium
| | - Elisabeth Heylen
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Leuven, Belgium
| | - Sarah De Coster
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Leuven, Belgium
| | - Nádia Conceição-Neto
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Leuven, Belgium.,KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Institute for Medical Research, Leuven, Belgium
| | - Marc Van Ranst
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Leuven, Belgium.,KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
28
|
Agbemabiese CA, Nakagomi T, Doan YH, Do LP, Damanka S, Armah GE, Nakagomi O. Genomic constellation and evolution of Ghanaian G2P[4] rotavirus strains from a global perspective. INFECTION GENETICS AND EVOLUTION 2016; 45:122-131. [PMID: 27569866 DOI: 10.1016/j.meegid.2016.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/03/2016] [Accepted: 08/20/2016] [Indexed: 10/21/2022]
Abstract
Understanding of the genetic diversity and evolution of Rotavirus A (RVA) strains, a common cause of severe diarrhoea in children, needs to be based on the analysis at the whole genome level in the vaccine era. This study sequenced the whole genomes of six representative G2P[4] strains detected in Ghana from 2008 to 2013, and analysed them phylogenetically with a global collection of G2P[4] strains and African non-G2P[4] DS-1-like strains. The genotype constellation of the study strains was G2-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Strains from the same season were highly identical across the whole genome while strains from different seasons were more divergent from each other. The VP7, VP4, VP2, NSP1, and NSP5 genes belonged to lineage IVa; the VP6, VP1, NSP2, and NSP3 genes belonged to lineage V, and all these genes evolved in the same fashion as the global strains. In the NSP4 gene, lineages V (2008) and X (2009) were replaced by VI (2012/2013) whereas in the VP3 gene, lineage V (2008/2009) was replaced by VII (2012/2013) and these replacements coincided with the vaccine introduction period (2012). The evolutionary rate of the NSP4 gene was 1.2×10-3 substitutions/site/year and was rather comparable to that of the remaining 10 genes. The multiple NSP4 lineages were explained by intra-genotype reassortment with co-circulating African human DS-1-like strains bearing G2[6], G3P[6], G6[6] and G8. There was no explicit evidence of the contribution of animal RVA strains to the genome of the Ghanaian G2P[4] strains. In summary, this study revealed the dynamic evolution of the G2P[4] strains through intra-genotype reassortment events leading to African specific lineages such IX and X in the NSP4 gene. So far, there was no evidence of a recent direct involvement of animal RVA genes in the genome diversity of African G2P[4] strains.
Collapse
Affiliation(s)
- Chantal Ama Agbemabiese
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yen Hai Doan
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Loan Phuong Do
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Susan Damanka
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - George E Armah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Osamu Nakagomi
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
29
|
Saikruang W, Khamrin P, Malasao R, Kumthip K, Ushijima H, Maneekarn N. Complete genome analysis of a rare G12P[6] rotavirus isolated in Thailand in 2012 reveals a prototype strain of DS-1-like constellation. Virus Res 2016; 224:38-45. [PMID: 27565028 DOI: 10.1016/j.virusres.2016.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 12/22/2022]
Abstract
Species A rotaviruses (RVAs) are a major cause of severe diarrhea in children worldwide. G12 RVA detection is currently increasing and has been reported from many countries around the world. However, few studies have reported whole genome sequences of G12 RVAs. In the present study, the complete genome sequence of a G12P[6] RVA strain (RVA/Human-wt/THA/CMHN49-12/2012/G12P[6]) detected in a stool sample from a child with acute gastroenteritis in 2012 in Thailand was analyzed. In the CMHN49-12 strain, all genome segments had a DS-1-like backbone: G12-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2 indicates that it is most likely the prototype strain of G12P[6] with a DS-1-like genotype constellation. Based on a Bayesian evolutionary analysis of VP7 nucleotide sequence, G12 RVA strains reported previously from Thailand during the period of 2007-2012 could be divided into 3 clusters, indicating that they originated from at least 3 different ancestral G12 strains. The evolutionary rate of G12 calculated by Bayesian Markov Chain Monte Carlo analysis indicated that the nucleotide substitution rate of G12 was 1.11×10(-3) mutations/site/year. The finding of a G12P[6] RVA possessing a DS-1-like backbone provides insights into the evolution of global G12 RVAs.
Collapse
Affiliation(s)
- Wilaiporn Saikruang
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rungnapa Malasao
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
30
|
Heylen E, Zeller M, Ciarlet M, Lawrence J, Steele D, Van Ranst M, Matthijnssens J. Human P[6] Rotaviruses From Sub-Saharan Africa and Southeast Asia Are Closely Related to Those of Human P[4] and P[8] Rotaviruses Circulating Worldwide. J Infect Dis 2016; 214:1039-49. [PMID: 27471320 DOI: 10.1093/infdis/jiw247] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/06/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND P[6] rotaviruses have been circulating with a high prevalence in African and, to a more limited extent, Asian countries, but they have not been highly prevalent in other parts of the world. METHODS To investigate the genomic relationship between African and Asian human P[6] rotaviruses and P[4] and P[8] rotaviruses circulating worldwide, we sequenced 39 P[6] strains, collected in Ghana, Mali, Kenya and Bangladesh, providing the largest data set of P[6] rotavirus genomes isolated in low-income countries or anywhere else in the world that has been published thus far. RESULTS Overall, the data indicate that the genetic backbone of human P[6] strains from the low-income countries are similar to those of P[4] or P[8] strains circulating worldwide. CONCLUSIONS The observation that gene segment 4 is the main differentiator between human P[6] and non-P[6] strains suggests that the VP4 spike protein is most likely one of the main reasons preventing the rapid spread of P[6] strains to the rest of the world despite multiple introductions. These observations reinforce previous findings about the receptor specificity of P[6] rotavirus strains.
Collapse
Affiliation(s)
- Elisabeth Heylen
- Department of Microbiology and Immunology, Laboratory of Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Rega Institute for Medical Research, Belgium
| | - Mark Zeller
- Department of Microbiology and Immunology, Laboratory of Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Rega Institute for Medical Research, Belgium
| | - Max Ciarlet
- Vaccines-Clinical Research Department, Merck, Kenilworth, New Jersey
| | - Jody Lawrence
- Vaccines-Clinical Research Department, Merck, Kenilworth, New Jersey
| | - Duncan Steele
- Vaccines and Immunization, PATH, Seattle, Washington
| | - Marc Van Ranst
- Department of Microbiology and Immunology, Laboratory of Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Rega Institute for Medical Research, Belgium
| | - Jelle Matthijnssens
- Department of Microbiology and Immunology, Laboratory of Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Rega Institute for Medical Research, Belgium
| |
Collapse
|
31
|
Langa JS, Thompson R, Arnaldo P, Resque HR, Rose T, Enosse SM, Fialho A, de Assis RMS, da Silva MFM, Leite JPG. Epidemiology of rotavirus A diarrhea in Chókwè, Southern Mozambique, from February to September, 2011. J Med Virol 2016; 88:1751-8. [PMID: 27003797 DOI: 10.1002/jmv.24531] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2016] [Indexed: 11/12/2022]
Abstract
Acute diarrhea disease caused by Rotaviruses A (RVA) is still the leading cause of morbidity and mortality in children ≤5 years old in developing countries. An exploratory cross-sectional study was conducted between February and September, 2011 to determine the proportion of acute diarrhea caused by RVA. A total of 254 stool specimens were collected from children ≤5 years old with acute diarrhea, including outpatients (222 children) and inpatients (32 children), in three local health centers in Chókwè District, Gaza Province, South of Mozambique. RVA antigens were detected using enzyme immunoassay (EIA); the RVA G (VP7) and P (VP4) genotypes were determined by RT-PCR or analysis sequencing. Sixty (24%) out of 254 fecal specimens were positive for RVA by EIA; being 58 (97%) from children ≤2 years of age. RVA prevalence peaks in June and July (coldest and drier months) and the G[P] binary combination observed were G12P[8] (57%); G1P[8] (9%); G12P[6] (6%); and 2% for each of the following genotypes: G1P[6], G2P[6] G4P[6], and G9P[8]. Non-Typeable (NT) G and/or P genotypes were observed as follows: G12P [NT] (6%); G1P [NT], G3P[NT] and GNTP[NT] (4%). Considering the different GP combinations, G12 represented 67% of the genotypes. This is the first data showing the diversity of RVA genotypes in Mozambique highlighting the epidemiological importance of these viruses in acute diarrhea cases in children ≤2 years old. In addition, these findings will provide a baseline data before the introduction of the RVA monovalent (Rotarix(®) ) vaccine in the National Immunization Program in September 2015. J. Med. Virol. 88:1751-1758, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jerónimo S Langa
- Chokwe Health Research and Training Centre (CITSC), National Institute of Health, Maputo, Mozambique.,Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Ricardo Thompson
- Chokwe Health Research and Training Centre (CITSC), National Institute of Health, Maputo, Mozambique
| | - Paulo Arnaldo
- Chokwe Health Research and Training Centre (CITSC), National Institute of Health, Maputo, Mozambique
| | - Hugo Reis Resque
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil.,Virology Section, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Tatiana Rose
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Sonia M Enosse
- Chokwe Health Research and Training Centre (CITSC), National Institute of Health, Maputo, Mozambique
| | - Alexandre Fialho
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | - Marcelle Figueira Marques da Silva
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil.,Faculty of Biology, Laboratory of Virus Contaminants of Water and Food, University of Barcelona, Barcelona, Spain
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Bwogi J, Malamba S, Kigozi B, Namuwulya P, Tushabe P, Kiguli S, Byarugaba DK, Desselberger U, Iturriza-Gomara M, Karamagi C. The epidemiology of rotavirus disease in under-five-year-old children hospitalized with acute diarrhea in central Uganda, 2012-2013. Arch Virol 2016; 161:999-1003. [PMID: 26724820 PMCID: PMC4819735 DOI: 10.1007/s00705-015-2742-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/21/2015] [Indexed: 12/13/2022]
Abstract
A cross-sectional study was undertaken during 2012-2013 to determine the prevalence, strains and factors associated with rotavirus infection among under-5-year-old children hospitalized with acute diarrhea in Uganda. Rotaviruses were detected in 37 % (263/712) of the children. The most prevalent strains were G9P[8] (27 %, 55/204) and G12P[4] (18.6 %, 38/204). Mixed infections were detected in 22.5 % (46/204) of the children. The study suggests that consumption of raw vegetables (OR = 1.45, 95 % CI = 1.03-2.03) and family ownership of dogs (OR = 1.9, 95 % CI = 1.04-3.75) increases the risk of rotavirus infection. The study findings will be used to assess the impact of RV vaccination in Uganda.
Collapse
Affiliation(s)
- Josephine Bwogi
- Uganda Virus Research Institute, 51-59 Nakiwogo Road, P.O. BOX 49, Entebbe, Uganda. .,Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, P.O. BOX 7072, Kampala, Uganda.
| | - Samuel Malamba
- Uganda Virus Research Institute, 51-59 Nakiwogo Road, P.O. BOX 49, Entebbe, Uganda
| | - Brian Kigozi
- Uganda Virus Research Institute, 51-59 Nakiwogo Road, P.O. BOX 49, Entebbe, Uganda
| | - Prossy Namuwulya
- Uganda Virus Research Institute, 51-59 Nakiwogo Road, P.O. BOX 49, Entebbe, Uganda
| | - Phionah Tushabe
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, P.O. BOX 7072, Kampala, Uganda
| | - Sarah Kiguli
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, P.O. BOX 7072, Kampala, Uganda
| | - Denis Karuhize Byarugaba
- Department of Microbiology, College of Veterinary Medicine and Biosecurity, Makerere University, P.O. BOX 7072, Kampala, Uganda
| | | | - Miren Iturriza-Gomara
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Ronald Ross Building, West Derby Street, Liverpool, L69 7BE, UK
| | - Charles Karamagi
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, P.O. BOX 7072, Kampala, Uganda
| |
Collapse
|
33
|
Pitzer VE, Bilcke J, Heylen E, Crawford FW, Callens M, De Smet F, Van Ranst M, Zeller M, Matthijnssens J. Did Large-Scale Vaccination Drive Changes in the Circulating Rotavirus Population in Belgium? Sci Rep 2015; 5:18585. [PMID: 26687288 PMCID: PMC4685644 DOI: 10.1038/srep18585] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/20/2015] [Indexed: 12/13/2022] Open
Abstract
Vaccination can place selective pressures on viral populations, leading to changes in the distribution of strains as viruses evolve to escape immunity from the vaccine. Vaccine-driven strain replacement is a major concern after nationwide rotavirus vaccine introductions. However, the distribution of the predominant rotavirus genotypes varies from year to year in the absence of vaccination, making it difficult to determine what changes can be attributed to the vaccines. To gain insight in the underlying dynamics driving changes in the rotavirus population, we fitted a hierarchy of mathematical models to national and local genotype-specific hospitalization data from Belgium, where large-scale vaccination was introduced in 2006. We estimated that natural- and vaccine-derived immunity was strongest against completely homotypic strains and weakest against fully heterotypic strains, with an intermediate immunity amongst partially heterotypic strains. The predominance of G2P[4] infections in Belgium after vaccine introduction can be explained by a combination of natural genotype fluctuations and weaker natural and vaccine-induced immunity against infection with strains heterotypic to the vaccine, in the absence of significant variation in strain-specific vaccine effectiveness against disease. However, the incidence of rotavirus gastroenteritis is predicted to remain low despite vaccine-driven changes in the distribution of genotypes.
Collapse
Affiliation(s)
- Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America.,Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joke Bilcke
- Centre for Health Economics Research &Modeling of Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Elisabeth Heylen
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological virology, Rega Institute for Medical Research, Leuven, Belgium
| | - Forrest W Crawford
- Department of Biostatistics, Yale School of Public Health, and Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Michael Callens
- National Alliance of Christian Sickness Funds, Brussels, Belgium
| | - Frank De Smet
- National Alliance of Christian Sickness Funds, Brussels, Belgium.,KU Leuven - University of Leuven, Department of Public Health and Primary Care, Environment and Health, Leuven, Belgium
| | - Marc Van Ranst
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological virology, Rega Institute for Medical Research, Leuven, Belgium
| | - Mark Zeller
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological virology, Rega Institute for Medical Research, Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological virology, Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
34
|
Zeller M, Heylen E, Damanka S, Pietsch C, Donato C, Tamura T, Kulkarni R, Arora R, Cunliffe N, Maunula L, Potgieter C, Tamim S, Coster SD, Zhirakovskaya E, Bdour S, O'Shea H, Kirkwood CD, Seheri M, Nyaga MM, Mphahlele J, Chitambar SD, Dagan R, Armah G, Tikunova N, Van Ranst M, Matthijnssens J. Emerging OP354-Like P[8] Rotaviruses Have Rapidly Dispersed from Asia to Other Continents. Mol Biol Evol 2015; 32:2060-71. [PMID: 25858434 DOI: 10.1093/molbev/msv088] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The majority of human group A rotaviruses possess the P[8] VP4 genotype. Recently, a genetically distinct subtype of the P[8] genotype, also known as OP354-like P[8] or lineage P[8]-4, emerged in several countries. However, it is unclear for how long the OP354-like P[8] gene has been circulating in humans and how it has spread. In a global collaborative effort 98 (near-)complete OP354-like P[8] VP4 sequences were obtained and used for phylogeographic analysis to determine the viral migration patterns. During the sampling period, 1988-2012, we found that South and East Asia acted as a source from which strains with the OP354-like P[8] gene were seeded to Africa, Europe, and North America. The time to the most recent common ancestor (TMRCA) of all OP354-like P[8] genes was estimated at 1987. However, most OP354-like P[8] strains were found in three main clusters with TMRCAs estimated between 1996 and 2001. The VP7 gene segment of OP354-like P[8] strains showed evidence of frequent reassortment, even in localized epidemics, suggesting that OP354-like P[8] genes behave in a similar manner on the evolutionary level as other P[8] subtypes. The results of this study suggest that OP354-like P[8] strains have been able to disperse globally in a relatively short time period. This, in combination with a relatively large genetic distance to other P[8] subtypes, might result in a lower vaccine effectiveness, underscoring the need for a continued surveillance of OP354-like P[8] strains, especially in countries where rotavirus vaccination programs are in place.
Collapse
Affiliation(s)
- Mark Zeller
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Leuven, Belgium
| | - Elisabeth Heylen
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Leuven, Belgium
| | - Susan Damanka
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | | | - Celeste Donato
- Enteric Virus Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Tsutomu Tamura
- Department of Virology, Niigata Prefectural Institute of Public Health and Environmental Sciences, Niigata, Japan
| | - Ruta Kulkarni
- Enteric Viruses Group, National Institute of Virology, Pune, Maharashtra, India
| | - Ritu Arora
- Enteric Viruses Group, National Institute of Virology, Pune, Maharashtra, India
| | - Nigel Cunliffe
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Leena Maunula
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Christiaan Potgieter
- Department of Biochemistry, Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa Deltamune (Pty) Ltd, Lyttelton, Centurion, South Africa
| | - Sana Tamim
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sarah De Coster
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Leuven, Belgium
| | - Elena Zhirakovskaya
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Salwa Bdour
- Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman, Jordan
| | - Helen O'Shea
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Carl D Kirkwood
- Enteric Virus Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Mapaseka Seheri
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa
| | - Martin Monene Nyaga
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa
| | - Jeffrey Mphahlele
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa
| | - Shobha D Chitambar
- Enteric Viruses Group, National Institute of Virology, Pune, Maharashtra, India
| | - Ron Dagan
- Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of Negev, Beer Sheva, Israel
| | - George Armah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Nina Tikunova
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Marc Van Ranst
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
35
|
Nyaga MM, Jere KC, Esona MD, Seheri ML, Stucker KM, Halpin RA, Akopov A, Stockwell TB, Peenze I, Diop A, Ndiaye K, Boula A, Maphalala G, Berejena C, Mwenda JM, Steele AD, Wentworth DE, Mphahlele MJ. Whole genome detection of rotavirus mixed infections in human, porcine and bovine samples co-infected with various rotavirus strains collected from sub-Saharan Africa. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2015; 31:321-34. [PMID: 25701122 PMCID: PMC4361293 DOI: 10.1016/j.meegid.2015.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/27/2015] [Accepted: 02/10/2015] [Indexed: 01/13/2023]
Abstract
Group A rotaviruses (RVA) are among the main global causes of severe diarrhea in children under the age of 5years. Strain diversity, mixed infections and untypeable RVA strains are frequently reported in Africa. We analysed rotavirus-positive human stool samples (n=13) obtained from hospitalised children under the age of 5years who presented with acute gastroenteritis at sentinel hospital sites in six African countries, as well as bovine and porcine stool samples (n=1 each), to gain insights into rotavirus diversity and evolution. Polyacrylamide gel electrophoresis (PAGE) analysis and genotyping with G-(VP7) and P-specific (VP4) typing primers suggested that 13 of the 15 samples contained more than 11 segments and/or mixed G/P genotypes. Full-length amplicons for each segment were generated using RVA-specific primers and sequenced using the Ion Torrent and/or Illumina MiSeq next-generation sequencing platforms. Sequencing detected at least one segment in each sample for which duplicate sequences, often having distinct genotypes, existed. This supported and extended the PAGE and RT-PCR genotyping findings that suggested these samples were collected from individuals that had mixed rotavirus infections. The study reports the first porcine (MRC-DPRU1567) and bovine (MRC-DPRU3010) mixed infections. We also report a unique genome segment 9 (VP7), whose G9 genotype belongs to lineage VI and clusters with porcine reference strains. Previously, African G9 strains have all been in lineage III. Furthermore, additional RVA segments isolated from humans have a clear evolutionary relationship with porcine, bovine and ovine rotavirus sequences, indicating relatively recent interspecies transmission and reassortment. Thus, multiple RVA strains from sub-Saharan Africa are infecting mammalian hosts with unpredictable variations in their gene segment combinations. Whole-genome sequence analyses of mixed RVA strains underscore the considerable diversity of rotavirus sequences and genome segment combinations that result from a complex evolutionary history involving multiple host species.
Collapse
Affiliation(s)
- Martin M Nyaga
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa.
| | - Khuzwayo C Jere
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa; Institute of Infection and Global Health, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, United Kingdom.
| | - Mathew D Esona
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa; Gastroenteritis and Respiratory Viruses Laboratory Branch, Division of Viral Diseases, NCIRD, CDC, Atlanta, GA, USA.
| | - Mapaseka L Seheri
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa.
| | | | | | | | | | - Ina Peenze
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa.
| | - Amadou Diop
- Albert Royer National Paediatric Hospital Laboratory, Dakar, Senegal.
| | - Kader Ndiaye
- Unite de Virologie Medicale Institut Pasteur, Dakar, Senegal.
| | - Angeline Boula
- Mother and Child Center, Chantal Biya Foundation, Yaoundé, Cameroon.
| | - Gugu Maphalala
- The National Clinical Laboratory Service, Mbabane, Swaziland.
| | - Chipo Berejena
- University of Zimbabwe, Department of Medical Microbiology, Virology Section, Harare, Zimbabwe.
| | - Jason M Mwenda
- World Health Organization, Regional Office for Africa, Brazzaville, People's Republic of Congo.
| | - A Duncan Steele
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa; Enteric and Diarrhoeal Diseases Programme, Global Health Program, Bill and Melinda Gates Foundation, Seattle, WA, USA.
| | | | - M Jeffrey Mphahlele
- South African Medical Research Council/Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria, South Africa.
| |
Collapse
|
36
|
Bonica MB, Zeller M, Van Ranst M, Matthijnssens J, Heylen E. Complete genome analysis of a rabbit rotavirus causing gastroenteritis in a human infant. Viruses 2015; 7:844-56. [PMID: 25690801 PMCID: PMC4353919 DOI: 10.3390/v7020844] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 12/22/2022] Open
Abstract
Group A rotaviruses (RVA) are responsible for causing infantile diarrhea both in humans and animals. The molecular characteristics of lapine RVA strains are only studied to a limited extent and so far G3P[14] and G3P[22] were found to be the most common G/P-genotypes. During the 2012-2013 rotavirus season in Belgium, a G3P[14] RVA strain was isolated from stool collected from a two-year-old boy. We investigated whether RVA/Human-wt/BEL/BE5028/2012/G3P[14] is completely of lapine origin or the result of reassortment event(s). Phylogenetic analyses of all gene segments revealed the following genotype constellation: G3-P[14]-I2-R2-C2-M3-A9-N2-T6-E5-H3 and indicated that BE5028 probably represents a rabbit to human interspecies transmission able to cause disease in a human child. Interestingly, BE5028 showed a close evolutionary relationship to RVA/Human-wt/BEL/B4106/2000/G3P[14], another lapine-like strain isolated in a Belgian child in 2000. The phylogenetic analysis of the NSP3 segment suggests the introduction of a bovine(-like) NSP3 into the lapine RVA population in the past 12 years. Sequence analysis of NSP5 revealed a head-to-tail partial duplication, combined with two short insertions and a deletion, indicative of the continuous circulation of this RVA lineage within the rabbit population.
Collapse
Affiliation(s)
- Melisa Berenice Bonica
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, B-3000 Leuven, Belgium.
| | - Mark Zeller
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, B-3000 Leuven, Belgium.
| | - Marc Van Ranst
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, B-3000 Leuven, Belgium.
| | - Jelle Matthijnssens
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, B-3000 Leuven, Belgium.
| | - Elisabeth Heylen
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, B-3000 Leuven, Belgium.
| |
Collapse
|
37
|
Ndze VN, Esona MD, Achidi EA, Gonsu KH, Dóró R, Marton S, Farkas S, Ngeng MB, Ngu AF, Obama-Abena MT, Bányai K. Full genome characterization of human Rotavirus A strains isolated in Cameroon, 2010–2011: Diverse combinations of the G and P genes and lack of reassortment of the backbone genes. INFECTION GENETICS AND EVOLUTION 2014; 28:537-60. [DOI: 10.1016/j.meegid.2014.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/09/2014] [Accepted: 10/11/2014] [Indexed: 12/17/2022]
|
38
|
Su HP, Qian SH, Zhang L. Effects of lactose-free milk in adjunctive treatment of infants with rotavirus enteritis and lactose intolerance: An analysis 30 cases. Shijie Huaren Xiaohua Zazhi 2014; 22:4853-4857. [DOI: 10.11569/wcjd.v22.i31.4853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the effects of lactose-free milk in adjunctive treatment of infants with rotavirus enteritis and lactose intolerance (RV-SLI).
METHODS: Ninety patients with RV-SLI were randomly divided into three groups: a zinc gluconate group (n = 30), a lactose-free milk group (n = 30) and a combination group (n = 30). All the patients were treated with conventional oral rehydration solution, oral lactase, and bifid triple viable. On the basis of this treatment, the zinc gluconate group was treated with zinc gluconate, the lactose-free milk group was treated with lactose-free milk powder, and the combination group was treated with zinc gluconate and lactose-free milk powder. The clinical effects, total course, time to relief of clinical symptoms, and myocardial enzyme spectrum [aspartate aminotransferase (AST), lactic dehydrogenase (LDH), creatine kinase (CK), creatine kinase-MB (CK-MB)] were compared before and after treatment for the two groups.
RESULTS: The effective rates rate for the two monotherapy groups were significantly lower than that for the combination group (83.33%, 80.00% vs 96.67%, P < 0.05). The total course and time to relief of clinical symptoms were significantly longer in the two monotherapy groups than in the combination group (7.32 d ± 2.14 d, 7.41 d ± 2.03 d vs 5.52 d ± 1.81 d; 5.15 d ± 0.46 d, 5.23 d ± 0.44 d vs 3.18 d ± 0.77 d; P < 0.05). AST, LDH, CK and CK-MB levels were significantly lower after treatment than prior treatment in all the three groups (39.66 U/L ± 3.28 U/L vs 64.02 U/L ± 5.75 U/L, 108.25 U/L ± 10.18 U/L vs 161.08 U/L ± 12.17 U/L, 117.27 U/L ± 9.86 U/L vs 153.59 U/L ± 12.85 U/L, 32.55 U/L ± 3.50 U/L vs 57.45 U/L ± 6.77 U/L, 40.17 U/L ± 3.31 U/L vs 63.89 U/L ± 5.63 U/L, 112.27 U/L ± 11.08 U/L vs 160.12 U/L ± 12.49 U/L, 120.07 U/L ± 9.92 U/L vs 153.62 U/L ± 12.80 U/L, 33.06 U/L ± 3.52 U/L vs 57.68 U/L ± 6.73 U/L, 26.75 U/L ± 2.68 U/L vs 64.11 U/L ± 5.88 U/L, 86.88 U/L ± 6.30 U/L vs 159.62 U/L ± 12.30 U/L, 87.20 U/L ± 6.34 U/L vs 154.10 U/L ± 12.97 U/L, 24.11 U/L ± 2.62 U/L vs 57.56 U/L ± 6.39 U/L; P < 0.05). AST, LDH, CK and CK-MB after treatment were significantly higher in the two monotherapy groups than in the combination group (39.66 U/L ± 3.28 U/L, 40.17 U/L ± 3.31 U/L vs 26.75 U/L ± 2.68 U/L; 108.25 U/L ± 10.18 U/L, 112.27 U/L ± 11.08 U/L vs 86.88 U/L ± 6.30 U/L; 117.27 U/L ± 9.86 U/L, 120.07 U/L ± 9.92 U/L vs 87.20 U/L ± 6.34 U/L; 32.55 U/L ± 3.50 U/L, 33.06 U/L ± 3.52 U/L vs 24.11 U/L ± 2.62 U/L; P < 0.05).
CONCLUSION: Lactose-free mild has good effects in adjunctive treatment of infants with rotavirus enteritis and lactose intolerance, and it can shorten the total course and improve clinical symptoms and myocardial enzyme spectrum.
Collapse
|
39
|
Complete genome characterization of recent and ancient Belgian pig group A rotaviruses and assessment of their evolutionary relationship with human rotaviruses. J Virol 2014; 89:1043-57. [PMID: 25378486 DOI: 10.1128/jvi.02513-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Group A rotaviruses (RVAs) are an important cause of diarrhea in young pigs and children. An evolutionary relationship has been suggested to exist between pig and human RVAs. This hypothesis was further investigated by phylogenetic analysis of the complete genomes of six recent (G2P[27], G3P[6], G4P[7], G5P[7], G9P[13], and G9P[23]) and one historic (G1P[7]) Belgian pig RVA strains and of all completely characterized pig RVAs from around the globe. In contrast to the large diversity of genotypes found for the outer capsid proteins VP4 and VP7, a relatively conserved genotype constellation (I5-R1-C1-M1-A8-N1-T7-E1-H1) was found for the other 9 genes in most pig RVA strains. VP1, VP2, VP3, NSP2, NSP4, and NSP5 genes of porcine RVAs belonged to genotype 1, which is shared with human Wa-like RVAs. However, for most of these gene segments, pig strains clustered distantly from human Wa-like RVAs, indicating that viruses from both species have entered different evolutionary paths. However, VP1, VP2, and NSP3 genes of some archival human strains were moderately related to pig strains. Phylogenetic analysis of the VP6, NSP1, and NSP3 genes, as well as amino acid analysis of the antigenic regions of VP7, further confirmed this evolutionary segregation. The present results also indicate that the species barrier is less strict for pig P[6] strains but that chances for successful spread of these strains in the human population are hampered by the better adaptation of pig RVAs to pig enterocytes. However, future surveillance of pig and human RVA strains is warranted. IMPORTANCE Rotaviruses are an important cause of diarrhea in many species, including pigs and humans. Our understanding of the evolutionary relationship between rotaviruses from both species is limited by the lack of genomic data on pig strains. In this study, recent and ancient Belgian pig rotavirus isolates were sequenced, and their evolutionary relationship with human Wa-like strains was investigated. Our data show that Wa-like human and pig strains have entered different evolutionary paths. Our data indicate that pig P[6] strains form the most considerable risk for interspecies transmission to humans. However, efficient spread of pig strains in the human population is most likely hampered by the adaptation of some crucial viral proteins to the cellular machinery of pig enterocytes. These data allow a better understanding of the risk for direct interspecies transmission events and the emergence of pig rotaviruses or pig-human reassortants in the human population.
Collapse
|