1
|
Fister AM, Horn A, Lasarev M, Huttenlocher A. Damage-induced basal epithelial cell migration modulates the spatial organization of redox signaling and sensory neuron regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.14.532628. [PMID: 36993176 PMCID: PMC10055054 DOI: 10.1101/2023.03.14.532628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Epithelial damage leads to early reactive oxygen species (ROS) signaling, which regulates sensory neuron regeneration and tissue repair. How the initial type of tissue injury influences early damage signaling and regenerative growth of sensory axons remains unclear. Previously we reported that thermal injury triggers distinct early tissue responses in larval zebrafish. Here, we found that thermal but not mechanical injury impairs sensory axon regeneration and function. Real-time imaging revealed an immediate tissue response to thermal injury characterized by the rapid Arp2/3-dependent migration of keratinocytes, which was associated with tissue-scale ROS production and sustained sensory axon damage. Isotonic treatment was sufficient to limit keratinocyte movement, spatially restrict ROS production and rescue sensory neuron function. These results suggest that early keratinocyte dynamics regulate the spatial and temporal pattern of long-term signaling in the wound microenvironment during tissue repair.
Collapse
|
2
|
Choe CP, Choi SY, Kee Y, Kim MJ, Kim SH, Lee Y, Park HC, Ro H. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim Res 2021; 37:26. [PMID: 34496973 PMCID: PMC8424172 DOI: 10.1186/s42826-021-00103-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Hyung Kim
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, 15355, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
3
|
Lai S, Kumari A, Liu J, Zhang Y, Zhang W, Yen K, Xu J. Chemical screening reveals Ronidazole is a superior prodrug to Metronidazole for nitroreductase-induced cell ablation system in zebrafish larvae. J Genet Genomics 2021; 48:1081-1090. [PMID: 34411714 DOI: 10.1016/j.jgg.2021.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The Metronidazole (MTZ)/nitroreductase (NTR)-mediated cell ablation system is the most commonly used chemical-genetic cell ablation method in zebrafish. This system can specifically ablate target cells under spatial and temporal control. The MTZ/NTR system has become a widely used cell ablation system in biological, developmental, and functional studies. However, the inadequate cell-ablation ability of some cell types and the side effects of high concentration MTZ impede extensive applications of the MTZ/NTR system. In the present study, the US drug collection library was searched to extend the NTR system. Six MTZ analogs were found, and the cell-ablation ability of these analogs was tested in zebrafish larvae. The results revealed that two of the NTR substrates, Furazolidone and Ronidazole, ablated target cells more efficiently than MTZ at lower concentrations. Furthermore, the working concentration of Ronidazole, but not Furazolidone and MTZ, did not affect axonal bridge formation during spinal cord regeneration. Our results, taken together, indicate that Ronidazole is a superior prodrug to MTZ for the NTR system, especially for the study of neuron regeneration in zebrafish larvae.
Collapse
Affiliation(s)
- Siting Lai
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ankita Kumari
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jixiang Liu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Kuangyu Yen
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Var SR, Byrd-Jacobs CA. Role of Macrophages and Microglia in Zebrafish Regeneration. Int J Mol Sci 2020; 21:E4768. [PMID: 32635596 PMCID: PMC7369716 DOI: 10.3390/ijms21134768] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Currently, there is no treatment for recovery of human nerve function after damage to the central nervous system (CNS), and there are limited regenerative capabilities in the peripheral nervous system. Since fish are known for their regenerative abilities, understanding how these species modulate inflammatory processes following injury has potential translational importance for recovery from damage and disease. Many diseases and injuries involve the activation of innate immune cells to clear damaged cells. The resident immune cells of the CNS are microglia, the primary cells that respond to infection and injury, and their peripheral counterparts, macrophages. These cells serve as key modulators of development and plasticity and have been shown to be important in the repair and regeneration of structure and function after injury. Zebrafish are an emerging model for studying macrophages in regeneration after injury and microglia in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. These fish possess a high degree of neuroanatomical, neurochemical, and emotional/social behavioral resemblance with humans, serving as an ideal simulator for many pathologies. This review explores literature on macrophage and microglial involvement in facilitating regeneration. Understanding innate immune cell behavior following damage may help to develop novel methods for treating toxic and chronic inflammatory processes that are seen in trauma and disease.
Collapse
|
5
|
Martins RR, Ellis PS, MacDonald RB, Richardson RJ, Henriques CM. Resident Immunity in Tissue Repair and Maintenance: The Zebrafish Model Coming of Age. Front Cell Dev Biol 2019; 7:12. [PMID: 30805338 PMCID: PMC6370978 DOI: 10.3389/fcell.2019.00012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/18/2019] [Indexed: 12/21/2022] Open
Abstract
The zebrafish has emerged as an exciting vertebrate model to study different aspects of immune system development, particularly due to its transparent embryonic development, the availability of multiple fluorescent reporter lines, efficient genetic tools and live imaging capabilities. However, the study of immunity in zebrafish has largely been limited to early larval stages due to an incomplete knowledge of the full repertoire of immune cells and their specific markers, in particular, a lack of cell surface antibodies to detect and isolate such cells in living tissues. Here we focus on tissue resident or associated immunity beyond development, in the adult zebrafish. It is our view that, with our increasing knowledge and the development of improved tools and protocols, the adult zebrafish will be increasingly appreciated for offering valuable insights into the role of immunity in tissue repair and maintenance, in both health and disease throughout the lifecourse.
Collapse
Affiliation(s)
- Raquel Rua Martins
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom.,Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Pam S Ellis
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom.,Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Ryan B MacDonald
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Rebecca J Richardson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Catarina Martins Henriques
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom.,Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
6
|
Hinder LM, Murdock BJ, Park M, Bender DE, O'Brien PD, Rumora AE, Hur J, Feldman EL. Transcriptional networks of progressive diabetic peripheral neuropathy in the db/db mouse model of type 2 diabetes: An inflammatory story. Exp Neurol 2018; 305:33-43. [PMID: 29550371 DOI: 10.1016/j.expneurol.2018.03.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/14/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022]
Abstract
Diabetic peripheral neuropathy is the most common complication of diabetes and a source of considerable morbidity. Numerous molecular pathways are linked to neuropathic progression, but it is unclear whether these pathways are altered throughout the course of disease. Moreover, the methods by which these molecular pathways are analyzed can produce significantly different results; as such it is often unclear whether previously published pathways are viable targets for novel therapeutic approaches. In the current study we examine changes in gene expression patterns in the sciatic nerve (SCN) and dorsal root ganglia (DRG) of db/db diabetic mice at 8, 16, and 24 weeks of age using microarray analysis. Following the collection and verification of gene expression data, we utilized both self-organizing map (SOM) analysis and differentially expressed gene (DEG) analysis to detect pathways that were altered at all time points. Though there was some variability between SOM and DEG analyses, we consistently detected altered immune pathways in both the SCN and DRG over the course of disease. To support these results, we further used multiplex analysis to assess protein changes in the SCN of diabetic mice; we found that multiple immune molecules were upregulated at both early and later stages of disease. In particular, we found that matrix metalloproteinase-12 was highly upregulated in microarray and multiplex data sets suggesting it may play a role in disease progression.
Collapse
Affiliation(s)
- Lucy M Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Benjamin J Murdock
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Meeyoung Park
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Diane E Bender
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Phillipe D O'Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
7
|
Allen JR, Bhattacharyya KD, Asante E, Almadi B, Schafer K, Davis J, Cox J, Voigt M, Viator JA, Chandrasekhar A. Role of branchiomotor neurons in controlling food intake of zebrafish larvae. J Neurogenet 2017; 31:128-137. [PMID: 28812416 PMCID: PMC5942883 DOI: 10.1080/01677063.2017.1358270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
Abstract
The physical act of eating or feeding involves the coordinated action of several organs like eyes and jaws, and associated neural networks. Moreover, the activity of the neural networks controlling jaw movements (branchiomotor circuits) is regulated by the visual, olfactory, gustatory and hypothalamic systems, which are largely well characterized at the physiological level. By contrast, the behavioral output of the branchiomotor circuits and the functional consequences of disruption of these circuits by abnormal neural development are poorly understood. To begin to address these questions, we sought to evaluate the feeding ability of zebrafish larvae, a direct output of the branchiomotor circuits, and developed a qualitative assay for measuring food intake in zebrafish larvae at 7 days post-fertilization. We validated the assay by examining the effects of ablating the branchiomotor neurons. Metronidazole-mediated ablation of nitroreductase-expressing branchiomotor neurons resulted in a predictable reduction in food intake without significantly affecting swimming ability, indicating that the assay is robust. Laser-mediated ablation of trigeminal motor neurons resulted in a significant decrease in food intake, indicating that the assay is sensitive. Importantly, in larvae of a genetic mutant with severe loss of branchiomotor neurons, food intake was abolished. These studies establish a foundation for dissecting the neural circuits driving a motor behavior essential for survival.
Collapse
Affiliation(s)
- James R. Allen
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Kiran D. Bhattacharyya
- Department of Biological Engineering, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Emilia Asante
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Badr Almadi
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Kyle Schafer
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jeremy Davis
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jane Cox
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Mark Voigt
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - John A. Viator
- Department of Biological Engineering, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Biomedical Engineering Program, Duquesne University, Pittsburgh, PA 15282, USA
| | - Anand Chandrasekhar
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
8
|
Learning to swim, again: Axon regeneration in fish. Exp Neurol 2017; 287:318-330. [DOI: 10.1016/j.expneurol.2016.02.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 01/10/2023]
|
9
|
Transcriptome Analysis of Chemically-Induced Sensory Neuron Ablation in Zebrafish. PLoS One 2016; 11:e0148726. [PMID: 26863206 PMCID: PMC4749159 DOI: 10.1371/journal.pone.0148726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/22/2016] [Indexed: 12/31/2022] Open
Abstract
Peripheral glia are known to have a critical role in the initial response to axon damage and degeneration. However, little is known about the cellular responses of non-myelinating glia to nerve injury. In this study, we analyzed the transcriptomes of wild-type and mutant (lacking peripheral glia) zebrafish larvae that were treated with metronidazole. This treatment allowed us to conditionally and selectively ablate cranial sensory neurons whose axons are ensheathed only by non-myelinating glia. While transcripts representing over 27,000 genes were detected by RNAseq, only a small fraction (~1% of genes) were found to be differentially expressed in response to neuronal degeneration in either line at either 2 hrs or 5 hrs of metronidazole treatment. Analysis revealed that most expression changes (332 out of the total of 458 differentially expressed genes) occurred over a continuous period (from 2 to 5 hrs of metronidazole exposure), with a small number of genes showing changes limited to only the 2 hr (55 genes) or 5 hr (71 genes) time points. For genes with continuous alterations in expression, some of the most meaningful sets of enriched categories in the wild-type line were those involving the inflammatory TNF-alpha and IL6 signaling pathways, oxidoreductase activities and response to stress. Intriguingly, these changes were not observed in the mutant line. Indeed, cluster analysis indicated that the effects of metronidazole treatment on gene expression was heavily influenced by the presence or absence of glia, indicating that the peripheral non-myelinating glia play a significant role in the transcriptional response to sensory neuron degeneration. This is the first transcriptome study of metronidazole-induced neuronal death in zebrafish and the response of non-myelinating glia to sensory neuron degeneration. We believe this study provides important insight into the mechanisms by which non-myelinating glia react to neuronal death and degeneration in sensory circuits.
Collapse
|
10
|
Murdock BJ, Bender DE, Segal BM, Feldman EL. The dual roles of immunity in ALS: Injury overrides protection. Neurobiol Dis 2015; 77:1-12. [DOI: 10.1016/j.nbd.2015.02.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/09/2015] [Accepted: 02/13/2015] [Indexed: 02/06/2023] Open
|
11
|
Oosterhof N, Boddeke E, van Ham TJ. Immune cell dynamics in the CNS: Learning from the zebrafish. Glia 2014; 63:719-35. [PMID: 25557007 DOI: 10.1002/glia.22780] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/10/2014] [Indexed: 12/22/2022]
Abstract
A major question in research on immune responses in the brain is how the timing and nature of these responses influence physiology, pathogenesis or recovery from pathogenic processes. Proper understanding of the immune regulation of the human brain requires a detailed description of the function and activities of the immune cells in the brain. Zebrafish larvae allow long-term, noninvasive imaging inside the brain at high-spatiotemporal resolution using fluorescent transgenic reporters labeling specific cell populations. Together with recent additional technical advances this allows an unprecedented versatility and scope of future studies. Modeling of human physiology and pathology in zebrafish has already yielded relevant insights into cellular dynamics and function that can be translated to the human clinical situation. For instance, in vivo studies in the zebrafish have provided new insight into immune cell dynamics in granuloma formation in tuberculosis and the mechanisms involving treatment resistance. In this review, we highlight recent findings and novel tools paving the way for basic neuroimmunology research in the zebrafish. GLIA 2015;63:719-735.
Collapse
Affiliation(s)
- Nynke Oosterhof
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|