1
|
Kato H, Ishihara Y, Ohata Y, Irie K, Watanabe S, Kimura S, Hoshino Y, Hidaka N, Kinoshita Y, Taniguchi Y, Kobayashi H, Braddock DT, Kubota T, Ozono K, Nangaku M, Makita N, Ito N. Effect of Mutation Type on Ectopic Ossification Among Adult Patients With X-Linked Hypophosphatemia. J Endocr Soc 2024; 8:bvae184. [PMID: 39498416 PMCID: PMC11532897 DOI: 10.1210/jendso/bvae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Indexed: 11/07/2024] Open
Abstract
Context Causative factors for ectopic ossifications in X-linked hypophosphatemia (XLH) remain to be elucidated. Objective This work aimed to investigate the genotype-phenotype correlations between the phosphate-regulating endopeptidase homologue, X-linked gene (PHEX) and ectopic ossifications in XLH. Methods Biochemical data, spinal computed tomography scans, and x-rays of hip/knee joints were retrospectively reviewed. Genetic analysis and the measurement of plasma inorganic pyrophosphate (PPi)-a potent inhibitor of tissue calcification-were performed. The effect of PHEX mutations on protein function was predicted using nonsense-mediated decay (NMD) and 3-dimensional structure modeling. The index of ossification of the anterior/posterior longitudinal ligament and yellow ligament (OA/OP/OY index) and the sum of the OA/OP/OY index (OS index) were used to quantify the severity of spinal ligament ossification. The severity of the hip/knee osteoarthritis was evaluated by the Kellgren-Lawrence classification. Results We examined 24 distinct pathogenic PHEX variants in 28 patients from a study population of 33 individuals in 27 unrelated, nonconsanguineous families. Among the 31 patients whose plasma samples were analyzed for PPi, 14 patients (45%) showed decreased plasma PPi concentrations; however, PPi concentrations did not correlate with mutation type or ectopic ossification. Fibroblast growth factor 23 levels in women with NMD-insensitive mutations trended lower than in men with NMD-sensitive mutations but failed to reach statistical significance. Both models revealed no correlations between PHEX pathogenic variant and ectopic ossification. Conclusion Neither modeling found correlates between PHEX pathogenic variants and ectopic ossification. The effects of PPi on ectopic ossifications in adults with XLH revealed trends that should be investigated with a large sample size.
Collapse
Affiliation(s)
- Hajime Kato
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Yasuki Ishihara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- The 1st Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Koki Irie
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - So Watanabe
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
- Department of Geriatric Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Soichiro Kimura
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Yoshitomo Hoshino
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Naoko Hidaka
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Yuka Kinoshita
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Yuki Taniguchi
- Department of Orthopedic Surgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hiroshi Kobayashi
- Department of Orthopedic Surgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | | | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Noriko Makita
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Nobuaki Ito
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
- Division of Therapeutic Development for Intractable Bone Diseases, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Mizutani S, Mizutani H, Mizutani E, Arita H, Kajiyama H. The Fate of Angiotensin II in Placental Tissue and Blood. Horm Metab Res 2024; 56:477-481. [PMID: 37913823 DOI: 10.1055/a-2202-3894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The existence of a non-canonical pathway of renin-angiotensin system in the blood pressure control system has been highlighted over the past three decades. The enzymes involved in this pathway include a series of angiotensinases such as neprilysin (NEP), aminopeptidase A (APA), carboxypeptidase, and angiotensin converting enzyme 2. The physiological roles of these peptidases have been reconsidered in this study, based on the publications of other research groups and the results from our previous study, regarding the liberation of constituent amino acids from angiotensin II by placenta tissue and blood serum, respectively.
Collapse
Affiliation(s)
| | - Hidesuke Mizutani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine Faculty of Medicine, Nagoya, Japan
| | | | - Harumasa Arita
- IP & License Strategy Division, Rohto Pharmaceutical Co.,Ltd., Osaka, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine Faculty of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Żukowska J, Moss SJ, Subramanian V, Acharya KR. Molecular basis of selective amyloid-β degrading enzymes in Alzheimer's disease. FEBS J 2024; 291:2999-3029. [PMID: 37622248 DOI: 10.1111/febs.16939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
The accumulation of the small 42-residue long peptide amyloid-β (Aβ) has been proposed as a major trigger for the development of Alzheimer's disease (AD). Within the brain, the concentration of Aβ peptide is tightly controlled through production and clearance mechanisms. Substantial experimental evidence now shows that reduced levels of Aβ clearance are present in individuals living with AD. This accumulation of Aβ can lead to the formation of large aggregated amyloid plaques-one of two detectable hallmarks of the disease. Aβ-degrading enzymes (ADEs) are major players in the clearance of Aβ. Stimulating ADE activity or expression, in order to compensate for the decreased clearance in the AD phenotype, provides a promising therapeutic target. It has been reported in mice that upregulation of ADEs can reduce the levels of Aβ peptide and amyloid plaques-in some cases, this led to improved cognitive function. Among several known ADEs, neprilysin (NEP), endothelin-converting enzyme-1 (ECE-1), insulin degrading enzyme (IDE) and angiotensin-1 converting enzyme (ACE) from the zinc metalloprotease family have been identified as important. These ADEs have the capacity to digest soluble Aβ which, in turn, cannot form the toxic oligomeric species. While they are known for their amyloid degradation, they exhibit complexity through promiscuous nature and a broad range of substrates that they can degrade. This review highlights current structural and functional understanding of these key ADEs, giving some insight into the molecular interactions that leads to the hydrolysis of peptide substrates, the crucial tasks performed by them and the potential for therapeutic use in the future.
Collapse
|
4
|
Thakur S, Sinhari A, Gaikwad AB, Jadhav HR. A structure-based pharmacophore modelling approach to identify and design new neprilysin (NEP) inhibitors: An in silico-based investigation. Arch Biochem Biophys 2024; 756:110019. [PMID: 38688397 DOI: 10.1016/j.abb.2024.110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/23/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Neutral endopeptidase or neprilysin (NEP) cleaves the natriuretic peptides, bradykinin, endothelin, angiotensin II, amyloid β protein, substance P, etc., thus modulating their effects on heart, kidney, and other organs. NEP has a proven role in hypertension, heart disease, renal disease, Alzheimer's, diabetes, and some cancers. NEP inhibitor development has been in focus since the US FDA approved a combination therapy of angiotensin II type 1 receptor inhibitor (valsartan) and NEP inhibitor (sacubitril) for use in heart failure. Considering the importance of NEP inhibitors the present work focuses on the designing of a potential lead for NEP inhibition. A structure-based pharmacophore modelling approach was employed to identify NEP inhibitors from the pool of 1140 chemical entities obtained from the ZINC database. Based on the docking score and pivotal interactions, ten molecules were selected and subjected to binding free energy calculations and ADMET predictions. The top two compounds were studied further by molecular dynamics simulations to determine the stability of the ligand-receptor complex. ZINC0000004684268, a phenylalanine derivative, showed affinity and complex stability comparable to sacubitril. However, in silico studies indicated that it may have poor pharmacokinetic parameters. Therefore, the molecule was optimized using bioisosteric replacements, keeping the phenylalanine moiety intact, to obtain five potential lead molecules with an acceptable pharmacokinetic profile. The works thus open up the scope to further corroborate the present in silico findings with the biological analysis.
Collapse
Affiliation(s)
- Shikha Thakur
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, RJ, India
| | - Apurba Sinhari
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, RJ, India
| | - Anil Bhanudas Gaikwad
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, RJ, India
| | - Hemant R Jadhav
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, RJ, India.
| |
Collapse
|
5
|
Thomas J, Wilson S. Molecular and Therapeutic Targets for Amyloid-beta Plaques in Alzheimer's Disease: A Review Study. Basic Clin Neurosci 2024; 15:1-26. [PMID: 39291090 PMCID: PMC11403107 DOI: 10.32598/bcn.2021.3522.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/06/2021] [Accepted: 09/06/2021] [Indexed: 09/19/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive loss of cognition and a gradual decrease in memory. Although AD is considered the most persistent form of dementia and a global concern, no complete cure or agents that can completely halt the progression of AD have been found. In the past years, significant progress has been made in understanding the cellular and molecular changes associated with AD, and numerous drug targets have been identified for the development of drugs for this disease. Amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFT) are the major attributes of AD. Symptomatic relief is the only possible treatment available at present and a disease-modifying drug is of utmost importance. The development of drugs that can inhibit different targets responsible for the formation of plaques is a potential area in AD research. This review is not a complete list of all possible targets for AD but serves to highlight the targets related to Aβ pathology and pathways concerned with the formation of Aβ fragments. This shall serve as a prospect in the identification of Aβ plaque inhibitors and pave the strategies for newer drug treatments. Nevertheless, substantial research is done in this area but to bridle, the clinical difficulty remains a concern.
Collapse
Affiliation(s)
- Jaya Thomas
- Department of Pharmacology, School of Pharmacy University of Amrita Vishwavidyapeetham, Guntur, India
| | - Samson Wilson
- University of Amrita Vishwavidyapeetham, Coimbatore, India
| |
Collapse
|
6
|
Rofo F, Metzendorf NG, Saubi C, Suominen L, Godec A, Sehlin D, Syvänen S, Hultqvist G. Blood-brain barrier penetrating neprilysin degrades monomeric amyloid-beta in a mouse model of Alzheimer's disease. Alzheimers Res Ther 2022; 14:180. [PMID: 36471433 PMCID: PMC9720954 DOI: 10.1186/s13195-022-01132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Aggregation of the amyloid-β (Aβ) peptide in the brain is one of the key pathological events in Alzheimer's disease (AD). Reducing Aβ levels in the brain by enhancing its degradation is one possible strategy to develop new therapies for AD. Neprilysin (NEP) is a membrane-bound metallopeptidase and one of the major Aβ-degrading enzymes. The secreted soluble form of NEP (sNEP) has been previously suggested as a potential protein-therapy degrading Aβ in AD. However, similar to other large molecules, peripherally administered sNEP is unable to reach the brain due to the presence of the blood-brain barrier (BBB). METHODS To provide transcytosis across the BBB, we recombinantly fused the TfR binding moiety (scFv8D3) to either sNEP or a previously described variant of NEP (muNEP) suggested to have higher degradation efficiency of Aβ compared to other NEP substrates, but not per se to degrade Aβ more efficiently. To provide long blood half-life, an Fc-based antibody fragment (scFc) was added to the designs, forming sNEP-scFc-scFv8D3 and muNEP-scFc-scFv8D3. The ability of the mentioned recombinant proteins to degrade Aβ was first evaluated in vitro using synthetic Aβ peptides followed by sandwich ELISA. For the in vivo studies, a single injection of 125-iodine-labelled sNEP-scFc-scFv8D3 and muNEP-scFc-scFv8D3 was intravenously administered to a tg-ArcSwe mouse model of AD, using scFc-scFv8D3 protein that lacks NEP as a negative control. Different ELISA setups were applied to quantify Aβ concentration of different conformations, both in brain tissues and blood samples. RESULTS When tested in vitro, sNEP-scFc-scFv8D3 retained sNEP enzymatic activity in degrading Aβ and both constructs efficiently degraded arctic Aβ. When intravenously injected, sNEP-scFc-scFv8D3 demonstrated 20 times higher brain uptake compared to sNEP. Both scFv8D3-fused NEP proteins significantly reduced aggregated Aβ levels in the blood of tg-ArcSwe mice, a transgenic mouse model of AD, following a single intravenous injection. In the brain, monomeric and oligomeric Aβ were significantly reduced. Both scFv8D3-fused NEP proteins displayed a fast clearance from the brain. CONCLUSION A one-time injection of a BBB-penetrating NEP shows the potential to reduce, the likely most toxic, Aβ oligomers in the brain in addition to monomers. Also, Aβ aggregates in the blood were reduced.
Collapse
Affiliation(s)
- Fadi Rofo
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 751 24, Uppsala, Sweden
| | - Nicole G Metzendorf
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 751 24, Uppsala, Sweden
| | - Cristina Saubi
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 751 24, Uppsala, Sweden
| | - Laura Suominen
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 751 24, Uppsala, Sweden
| | - Ana Godec
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 751 24, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Greta Hultqvist
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 751 24, Uppsala, Sweden.
| |
Collapse
|
7
|
Nakagawa H, Saito Y. Roles of Natriuretic Peptides and the Significance of Neprilysin in Cardiovascular Diseases. BIOLOGY 2022; 11:1017. [PMID: 36101398 PMCID: PMC9312343 DOI: 10.3390/biology11071017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) activate the guanylyl cyclase A receptor (GC-A), which synthesizes the second messenger cGMP in a wide variety of tissues and cells. C-type natriuretic peptide (CNP) activates the cGMP-producing guanylyl cyclase B receptor (GC-B) in chondrocytes, endothelial cells, and possibly smooth muscle cells, cardiomyocytes, and cardiac fibroblasts. The development of genetically modified mice has helped elucidate the physiological roles of natriuretic peptides via GC-A or GC-B. These include the hormonal effects of ANP/BNP in the vasculature, autocrine effects of ANP/BNP in cardiomyocytes, and paracrine effects of CNP in the vasculature and cardiomyocytes. Neprilysin (NEP) is a transmembrane neutral endopeptidase that degrades the three natriuretic peptides. Recently, mice overexpressing NEP, specifically in cardiomyocytes, revealed that local cardiac NEP plays a vital role in regulating natriuretic peptides in the heart tissue. Since NEP inhibition is a clinically accepted approach for heart failure treatment, the physiological roles of natriuretic peptides have regained attention. This article focuses on the physiological roles of natriuretic peptides elucidated in mice with GC-A or GC-B deletion, the significance of NEP in natriuretic peptide metabolism, and the long-term effects of angiotensin receptor-neprilysin inhibitor (ARNI) on cardiovascular diseases.
Collapse
Affiliation(s)
- Hitoshi Nakagawa
- Cardiovascular Medicine, Nara Medical University, Kashihara 634-8522, Nara, Japan;
| | - Yoshihiko Saito
- Nara Prefecture Seiwa Medical Center, Mimuro 636-0802, Nara, Japan
| |
Collapse
|
8
|
Li DQ, Jiang F, Zhang HS, Zheng LJ, Wang QJ, Fu R, Liu XG, Gao PY. Network pharmacology-based approach to investigate the mechanisms of Zingiber officinale Roscoe in the treatment of neurodegenerative diseases. J Food Biochem 2022; 46:e14068. [PMID: 35128682 DOI: 10.1111/jfbc.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
Neurodegenerative diseases (NDDs) are chronic neurological disorders associated with cognitive or motor dysfunction. As a common spice, Zingiber officinale Roscoe has been used as a medicine to treat a variety of NDDs. However, at the molecular level, the mechanisms of Z. officinale in treating of NDDs have not been deeply investigated. In this study, network pharmacology method, molecular docking, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to predict the mechanisms of Z. officinale in the treatment of NDDs. After a series of biological information analyses, five core targets were obtained, including heme oxygenase 1 (HMOX1), acetylcholinesterase (AChE), nitric oxide synthase (NOS), catechol-O-methyl-transferase (COMT), and metabotropic glutamate receptor 5 (mGluR5). Compounds 75, 68, 46, 67, 69, 49, 66, 50, 34, and 64 were identified as the main components of Z. officinale in the treatment of NDDs. The crucial pathways mainly include neuroactive ligand-receptor signaling pathways, cyclic adenosine monophosphate signaling pathways, dopamine synaptic signaling pathways, and so on. Besides, in vitro experiments by AChE inhibitory activities assay and neuroprotective activities against H2 O2 -induced injury in human neuroblastoma SH-SY5Y cells validated the reliability of the results of network analysis. PRACTICAL APPLICATIONS: Zingiber officinale Roscoe is widely used as a traditional spice and herbal medicine. It contains a number of active ingredients, which have shown activities on anti-neurodegenerative diseases (NDDs). In this paper, the potential mechanism of Z. officinale in the treatment of NDDs is explored through network pharmacology, and it was verified by in vitro experiments. The mechanism was not only clarified at the system level but also proved to be effective at the biological level. The results can be used as a reference for Z. officinale in the treating of NDDs.
Collapse
Affiliation(s)
- Dan-Qi Li
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, PR China
- Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Fan Jiang
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Han-Shuo Zhang
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Lian-Jun Zheng
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Qing-Jie Wang
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Ran Fu
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Xue-Gui Liu
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, PR China
- National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Pin-Yi Gao
- Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang University of Chemical Technology, Shenyang, PR China
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| |
Collapse
|
9
|
Hennigan JN, Lynch MD. The past, present, and future of enzyme-based therapies. Drug Discov Today 2022; 27:117-133. [PMID: 34537332 PMCID: PMC8714691 DOI: 10.1016/j.drudis.2021.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023]
Abstract
Enzyme-based therapeutics (EBTs) have the potential to tap into an almost unmeasurable amount of enzyme biodiversity and treat myriad conditions. Although EBTs were some of the first biologics used clinically, the rate of development of newer EBTs has lagged behind that of other biologics. Here, we review the history of EBTs, and discuss the state of each class of EBT, their potential clinical advantages, and the unique challenges to their development. Additionally, we discuss key remaining technical barriers that, if addressed, could increase the diversity and rate of the development of EBTs.
Collapse
Affiliation(s)
| | - Michael D Lynch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
10
|
Schreiner TG, Popescu BO. Amyloid Beta Dynamics in Biological Fluids-Therapeutic Impact. J Clin Med 2021; 10:5986. [PMID: 34945282 PMCID: PMC8706225 DOI: 10.3390/jcm10245986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Despite the significant impact of Alzheimer's disease (AD) at individual and socioeconomic levels and the numerous research studies carried out on this topic over the last decades, the treatments available in daily clinical practice remain less than satisfactory. Among the accepted etiopathogenic hypotheses, the amyloidogenic pathway theory, although intensively studied and even sometimes controversial, is still providing relevant theoretical elements for understanding the etiology of AD and for the further development of possible therapeutic tools. In this sense, this review aims to offer new insights related to beta amyloid (Aβ), an essential biomarker in AD. First the structure and function of Aβ in normal and pathological conditions are presented in detail, followed by a discussion on the dynamics of Aβ at the level of different biological compartments. There is focus on Aβ elimination modalities at central nervous system (CNS) level, and clearance via the blood-brain barrier seems to play a crucial/dominant role. Finally, different theoretical and already-applied therapeutic approaches for CNS Aβ elimination are presented, including the recent "peripheral sink therapeutic strategy" and "cerebrospinal fluid sinks therapeutic strategy". These data outline the need for a multidisciplinary approach designed to deliver a solution to stimulate Aβ clearance in more direct ways, including from the cerebrospinal fluid level.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- Neurology Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
11
|
Ishihara Y, Ohata Y, Takeyari S, Kitaoka T, Fujiwara M, Nakano Y, Yamamoto K, Yamada C, Yamamoto K, Michigami T, Mabe H, Yamaguchi T, Matsui K, Tamada I, Namba N, Yamamoto A, Etoh J, Kawaguchi A, Kosugi R, Ozono K, Kubota T. Genotype-phenotype analysis, and assessment of the importance of the zinc-binding site in PHEX in Japanese patients with X-linked hypophosphatemic rickets using 3D structure modeling. Bone 2021; 153:116135. [PMID: 34333162 DOI: 10.1016/j.bone.2021.116135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022]
Abstract
X-linked hypophosphatemic rickets (XLH) is an inheritable type of rickets caused by inactivating variants in the phosphate regulating endopeptidase homolog X-linked (PHEX) gene, which results in the overproduction of fibroblast growth factor 23 (FGF23). The mechanism by which PHEX impairment leads to FGF23 overproduction is unknown. Because little is known regarding the genotype-phenotype correlation in Japanese XLH, we summarized the available clinical and genetic data and analyzed the genotype-phenotype relationships using 3-dimensional (3D) structure modeling to clarify the XLH pathophysiology. We retrospectively reviewed the clinical features and performed genetic analysis of 39 Japanese patients with XLH from 28 unrelated pedigrees carrying any known or novel PHEX variant. To predict changes in the 3D structure of mutant PHEX, we constructed a putative 3D model of each mutant and evaluated the effect of structural alteration by genotype-phenotype correlation analysis. Genetic analysis revealed 23 PHEX variants, including eight novel variants. They were associated with high i-FGF23 levels, hypophosphatemia, phosphaturia, high alkaline phosphatase levels, and short stature. No gene dosage effect or genotype-phenotype correlation was observed when truncating and non-truncating variants were compared. However, the conservation of the zinc-binding site and cavity in PHEX had an impact on the elevation of i-FGF23 levels. Via genotype-phenotype relationship analysis using 3D modeling, we showed that the zinc-binding site and cavity in PHEX can play a critical role in its function. These findings provide new genetic clues for investigating the function of PHEX and the pathogenesis of XLH.
Collapse
Affiliation(s)
- Yasuki Ishihara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan; The 1st. Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan; Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinji Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan; The 1st. Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yukako Nakano
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenichi Yamamoto
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chieko Yamada
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Katsusuke Yamamoto
- Department of Pediatric Nephrology and Metabolism, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Hiroyo Mabe
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| | - Takeshi Yamaguchi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Katsuyuki Matsui
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Izumi Tamada
- Department of Pediatrics, Imakiire General Hospital, Kagoshima, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan; Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Akiko Yamamoto
- Department of Pediatrics, Kumamoto Chuo Hospital, Kumamoto, Japan
| | - Junya Etoh
- Department of Pediatrics, Saga-Ken Medical Centre Koseikan, Saga, Japan
| | - Azusa Kawaguchi
- Department of Pediatrics, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Rieko Kosugi
- Department of Diabetes and Endocrinology, Shizuoka General Hospital, Shizuoka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
12
|
Leite JP, Lete MG, Fowler SB, Gimeno A, Rocha JF, Sousa SF, Webster CI, Jiménez-Bar̀bero JJ, Gales L. Aβ 31-35 Decreases Neprilysin-Mediated Alzheimer's Amyloid-β Peptide Degradation. ACS Chem Neurosci 2021; 12:3708-3718. [PMID: 34505762 DOI: 10.1021/acschemneuro.1c00432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease is associated with the deposition of extracellular senile plaques, made primarily of amyloid-β (Aβ), particularly peptides Aβ1-42 and Aβ1-40. Neprilysin, or neutral endopeptidase (NEP), catalyzes proteolysis of the amyloid peptides (Aβ) and is recognized as one of the major regulators of the levels of these peptides in the brain, preventing Aβ accumulation and plaque formation. Here, we used a combination of techniques to elucidate the mechanism of Aβ binding and cleavage by NEP. Our findings indicate that the Aβ31-X cleavage products remain bound to the neprilysin active site, reducing proteolytic activity. Interestingly, it was already shown that this Aβ31-35 sequence is also critical for recognition of Aβ peptides by other targets, such as the serpin-enzyme complex receptor in neuronal cells.
Collapse
Affiliation(s)
- José P. Leite
- i3S—Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marta G. Lete
- CIC bioGUNE, Bizkaia Technology Park, Building 801A, Derio 48170, Spain
| | - Susan B. Fowler
- Antibody Discovery & Protein Engineering R&D, AstraZeneca, Cambridge CB21 6GH, U.K
| | - Ana Gimeno
- CIC bioGUNE, Bizkaia Technology Park, Building 801A, Derio 48170, Spain
| | - Juliana F. Rocha
- UCIBIO/REQUIMTE, BioSIM-Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE, BioSIM-Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| | - Carl I. Webster
- Antibody Discovery & Protein Engineering R&D, AstraZeneca, Cambridge CB21 6GH, U.K
| | - Jesús J. Jiménez-Bar̀bero
- CIC bioGUNE, Bizkaia Technology Park, Building 801A, Derio 48170, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
- Department of Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940 Leioa, Spain
| | - Luís Gales
- i3S—Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
13
|
Yu Y, Li W, Mao L, Peng W, Long D, Li D, Zhou R, Dang X. Genetically engineered exosomes display RVG peptide and selectively enrich a neprilysin variant: a potential formulation for the treatment of Alzheimer's disease. J Drug Target 2021; 29:1128-1138. [PMID: 34182845 DOI: 10.1080/1061186x.2021.1929257] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exosome is a promising next generation nano-based drug delivery vehicle. However, the unknown molecular mechanisms underlying its natural tissue tropism and the relatively low quantity of naturally enriched molecules of therapeutic value hamper exosome's clinical application. The aim of the research was to create a targeted and highly efficacious exosome formulation for the treatment of Alzheimer's disease (AD). Genetic engineering techniques combined with co-transfection of parental cells were employed to create an exosome formulation that displays RVG peptide on its surface targeting α7-nAChR and simultaneously enriches a neprilysin variant with increased specificity and efficacy in degrading β amyloid peptide (Aβ). The exosome formulation was preferentially internalised into cell lines in an α7-nAChR expression level-dependent manner. When incubated with Aβ-producing N2a cells, it significantly decreased intracellular and secreted Aβ40 levels, a potency that is superior to exosomes derived from adipose-derived stem cell. When systemically administered into mice, the exosome formulation was preferentially targeted to the hippocampus region of the brain and significantly decreased the expression of proinflammatory genes, IL1α, TNFα and NF-κB, and simultaneously increased the expression of anti-inflammatory gene, IL10. Our exosome formulation may be explored as an over-the-counter treatment for AD.
Collapse
Affiliation(s)
- Yonghe Yu
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Luzhou, China
| | - Wei Li
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Luzhou, China
| | - Liang Mao
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Luzhou, China
| | - Wanling Peng
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Luzhou, China
| | - Dandan Long
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Luzhou, China
| | - Dongmei Li
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Luzhou, China
| | - Rui Zhou
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Luzhou, China.,Department of Cardiology, Shaanxi Institute for Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xitong Dang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Luzhou, China.,Department of Cardiovascular Medicine, The 1st Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| |
Collapse
|
14
|
Bucur B, Purcarea C, Andreescu S, Vasilescu A. Addressing the Selectivity of Enzyme Biosensors: Solutions and Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:3038. [PMID: 33926034 PMCID: PMC8123588 DOI: 10.3390/s21093038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022]
Abstract
Enzymatic biosensors enjoy commercial success and are the subject of continued research efforts to widen their range of practical application. For these biosensors to reach their full potential, their selectivity challenges need to be addressed by comprehensive, solid approaches. This review discusses the status of enzymatic biosensors in achieving accurate and selective measurements via direct biocatalytic and inhibition-based detection, with a focus on electrochemical enzyme biosensors. Examples of practical solutions for tackling the activity and selectivity problems and preventing interferences from co-existing electroactive compounds in the samples are provided such as the use of permselective membranes, sentinel sensors and coupled multi-enzyme systems. The effect of activators, inhibitors or enzymatic substrates are also addressed by coupled enzymatic reactions and multi-sensor arrays combined with data interpretation via chemometrics. In addition to these more traditional approaches, the review discusses some ingenious recent approaches, detailing also on possible solutions involving the use of nanomaterials to ensuring the biosensors' selectivity. Overall, the examples presented illustrate the various tools available when developing enzyme biosensors for new applications and stress the necessity to more comprehensively investigate their selectivity and validate the biosensors versus standard analytical methods.
Collapse
Affiliation(s)
- Bogdan Bucur
- National Institute for Research and Development in Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Cristina Purcarea
- Institute of Biology, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13676, USA;
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
15
|
Nakagawa H, Kumazawa T, Onoue K, Nakada Y, Nakano T, Ishihara S, Minamino N, Hosoda H, Iwata N, Ueda T, Seno A, Nishida T, Soeda T, Okayama S, Watanabe M, Kawakami R, Saito Y. Local Action of Neprilysin Exacerbates Pressure Overload Induced Cardiac Remodeling. Hypertension 2021; 77:1931-1939. [PMID: 33840200 DOI: 10.1161/hypertensionaha.120.16445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hitoshi Nakagawa
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Takuya Kumazawa
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Kenji Onoue
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Yasuki Nakada
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Tomoya Nakano
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Satomi Ishihara
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Naoto Minamino
- Omics Research Center (N.M.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hiroshi Hosoda
- Departments of Regenerative Medicine and Tissue Engineering (H.H.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Nobuhisa Iwata
- Department of Genome-based Drug Discovery, Nagasaki University, Japan (N.I.)
| | - Tomoya Ueda
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Ayako Seno
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Taku Nishida
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Tsunenari Soeda
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Satoshi Okayama
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Makoto Watanabe
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Rika Kawakami
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| | - Yoshihiko Saito
- Cardiovascular Medicine, Nara Medical University, Nara, Japan (H.N., T.K., K.O., Y.N., T. Nakano, S.I., T.U., A.S., T. Nishida, T.S., S.O., M.W., R.K., Y.S.)
| |
Collapse
|
16
|
Chrysant SG, Chrysant GS. New and emerging cardiovascular and antihypertensive drugs. Expert Opin Drug Saf 2020; 19:1315-1327. [DOI: 10.1080/14740338.2020.1810232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Steven G. Chrysant
- Department of Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - George S. Chrysant
- Department of Cardiology, INTEGRIS Baptist Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
17
|
Ali M, Ishqi HM, Husain Q. Enzyme engineering: Reshaping the biocatalytic functions. Biotechnol Bioeng 2020; 117:1877-1894. [DOI: 10.1002/bit.27329] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/13/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Misha Ali
- Department of Biochemistry, Faculty of Life SciencesAligarh Muslim University Aligarh Uttar Pradesh India
| | | | - Qayyum Husain
- Department of Biochemistry, Faculty of Life SciencesAligarh Muslim University Aligarh Uttar Pradesh India
| |
Collapse
|
18
|
Revuelta-López E, Núñez J, Gastelurrutia P, Cediel G, Januzzi JL, Ibrahim NE, Emdin M, VanKimmenade R, Pascual-Figal D, Núñez E, Gommans F, Lupón J, Bayés-Genís A. Neprilysin inhibition, endorphin dynamics, and early symptomatic improvement in heart failure: a pilot study. ESC Heart Fail 2020; 7:559-566. [PMID: 32045114 PMCID: PMC7160502 DOI: 10.1002/ehf2.12607] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Aim Sacubitril/valsartan is a first‐in‐class angiotensin receptor‐neprilysin inhibitor developed for the treatment of heart failure with reduced ejection fraction. Its benefits are achieved through the inhibition of neprilysin (NEP) and the specific blockade of the angiotensin receptor AT1. The many peptides metabolized by NEP suggest multifaceted potential consequences of its inhibition. We sought to evaluate the short‐term changes in serum endorphin (EP) values and their relation with patients' physical functioning after initiation of sacubitril/valsartan treatment. Methods and results A total of 105 patients with heart failure with reduced ejection fraction, who were candidates for sacubitril/valsartan treatment, were included in this prospective, observational, multicentre, and international study. In a first visit, and in agreement with current guidelines, treatment with angiotensin‐converting enzyme inhibitors or angiotensin receptor blocker was replaced by sacubitril/valsartan because of clinical indication by the responsible physician. By protocol, patients were reevaluated at 30 days after the start of sacubitril/valsartan. Serum levels of α‐ (α‐EP), γ‐Endorphin (γ‐EP), and soluble NEP (sNEP) were measured using enzyme‐linked immunoassays. New York Heart Association (NYHA) functional class was used as an indicator of patient's functional status. Baseline median levels of circulating α‐EP, γ‐EP, and sNEP were 582 (160–772), 101 (37–287), and 222 pg/mL (124–820), respectively. There was not a significant increase in α‐EP nor γ‐EP serum values after sacubitril/valsartan treatment (P value = 0.194 and 0.102, respectively). There were no significant differences in sNEP values between 30 days and baseline (P value = 0.103). Medians (IQR) of Δα‐EP, Δγ‐EP, and ΔsNEP between 30 days and baseline were 9.3 (−34 − 44), −3.0 (−46.0 − 18.9), and 0 units (−16.4 − 157.0), respectively. In a pre–post sacubitril/valsartan treatment comparison, there was a significant improvement in NYHA class, with 36 (34.3%) patients experiencing improvement by at least one NYHA class category. Δα‐EP and ΔsNEP showed to be significantly associated with NYHA class after 30 days of treatment (P = 0.014 and P < 0.001, respectively). Δα‐EP was linear and significantly associated with NYHA class improvement after 30 days of sacubitril/valsartan treatment. Conclusions These preliminary data suggest that beyond the haemodynamic benefits achieved with sacubitril/valsartan, the altered cleavage of endorphin peptides by NEP inhibition may participate in patients' symptoms improvement.
Collapse
Affiliation(s)
- Elena Revuelta-López
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovaculares, (CIBERCV,), Madrid, Spain
| | - Julio Núñez
- Centro de Investigación Biomédica en Red Enfermedades Cardiovaculares, (CIBERCV,), Madrid, Spain.,Cardiology Department, Hospital Clínico Universitario, Universitat de València, INCLIVA, Valencia, Spain; INCLIVA; Universitat de València, Valencia, Spain
| | - Paloma Gastelurrutia
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovaculares, (CIBERCV,), Madrid, Spain
| | - Germán Cediel
- Cardiology Service and Heart Failure Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - James L Januzzi
- Division of Cardiology, Massachusetts General Hospital and Cardiometabolic Trials, Baim Institute for Clinical Research, Boston, Massachusetts, MA, USA
| | - Nasrien E Ibrahim
- Division of Cardiology, Massachusetts General Hospital and Cardiometabolic Trials, Baim Institute for Clinical Research, Boston, Massachusetts, MA, USA
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Fondazione Toscana Gabriele Monasterio, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Roland VanKimmenade
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Domingo Pascual-Figal
- Centro de Investigación Biomédica en Red Enfermedades Cardiovaculares, (CIBERCV,), Madrid, Spain.,Cardiology Department, Hospital Virgen de la Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Eduardo Núñez
- Cardiology Department, Hospital Clínico Universitario, Universitat de València, INCLIVA, Valencia, Spain; INCLIVA; Universitat de València, Valencia, Spain
| | - Frank Gommans
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Josep Lupón
- Centro de Investigación Biomédica en Red Enfermedades Cardiovaculares, (CIBERCV,), Madrid, Spain.,Cardiology Service and Heart Failure Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Antoni Bayés-Genís
- Centro de Investigación Biomédica en Red Enfermedades Cardiovaculares, (CIBERCV,), Madrid, Spain.,Cardiology Service and Heart Failure Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Izadpanah M, Dargahi L, Ai J, Asgari Taei A, Ebrahimi Barough S, Mowla SJ, TavoosiDana G, Farahmandfar M. Extracellular Vesicles as a Neprilysin Delivery System Memory Improvement in Alzheimer's Disease. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:45-60. [PMID: 33224210 PMCID: PMC7667544 DOI: 10.22037/ijpr.2020.112062.13508] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative brain disorder which has no effective treatment yet due to the blood barrier in the brain that limits the drugs with the potential of disease improvement. Extracellular vesicles (EVs) are biocompatible nanoparticles with a lipid membrane. These vesicles are secreted from various cells such as mesenchymal stem cells (MSCs) and can pass through biological barriers for transfer of information such as signals or be used as carriers for various proteins like Neprilysin (NEP). NEP is an active enzyme in the clearance of abnormal aggregated beta-amyloid sheets in the brain. In the present study, we used EVs to carry NEP for memory improvement in Alzheimer's disease. For this purpose, bone marrow MSCs were isolated from rat femur. Stemness evaluation of established cells was characterized by differentiation potency and specific markers with flowcytometry. EVs were isolated from MSCs supernatant by ultracentrifugation and analyzed by scanning electron microscopy (SEM), dynamic light scattering (DLS) and western blotting. EVs were loaded with NEP by freeze-thaw cycle and then administrated intranasally in a rat model of the AD for 14 days. Our findings showed EV-loaded NEP caused a decrease in IL-1beta and also BAX but an increase in BCL2 expression level in the rat brain. Altogether, these data showed that EV-loaded NEP can improve brain-related behavioural function which may be mediated through the regulation of inflammation and apoptosis. These findings suggest that EV-loaded NEP can be considered as a potential drug delivery system for the improvement of AD.
Collapse
Affiliation(s)
- Mehrnaz Izadpanah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afsaneh Asgari Taei
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Somayeh Ebrahimi Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Javad Mowla
- Department of Genetics, Faculty of Basic Sciences, Tarbiat Modarres University, Tehran, Iran.
| | - Gholamreza TavoosiDana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Labiuk SL, Sygusch J, Grochulski P. Structures of soluble rabbit neprilysin complexed with phosphoramidon or thiorphan. Acta Crystallogr F Struct Biol Commun 2019; 75:405-411. [PMID: 31204686 PMCID: PMC6572095 DOI: 10.1107/s2053230x19006046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Neutral endopeptidase (neprilysin; NEP) is a proteinase that cleaves a wide variety of peptides and has been implicated in Alzheimer's disease, cardiovascular conditions, arthritis and other inflammatory diseases. The structure of the soluble extracellular domain (residues 55-750) of rabbit neprilysin was solved both in its native form at 2.1 Å resolution, and bound to the inhibitors phosphoramidon and thiorphan at 2.8 and 3.0 Å resolution, respectively. Consistent with the extracellular domain of human neprilysin, the structure reveals a large central cavity which contains the active site and the location for inhibitor binding.
Collapse
Affiliation(s)
- Shaunivan L. Labiuk
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Jurgen Sygusch
- Biochimie et Médecine Moléculaire, Université de Montréal, CP 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Pawel Grochulski
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
21
|
Strategies for the production of long-acting therapeutics and efficient drug delivery for cancer treatment. Biomed Pharmacother 2019; 113:108750. [DOI: 10.1016/j.biopha.2019.108750] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 11/21/2022] Open
|
22
|
Ramirez AK, Dankel S, Cai W, Sakaguchi M, Kasif S, Kahn CR. Membrane metallo-endopeptidase (Neprilysin) regulates inflammatory response and insulin signaling in white preadipocytes. Mol Metab 2019; 22:21-36. [PMID: 30795914 PMCID: PMC6437599 DOI: 10.1016/j.molmet.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/04/2019] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Accumulation of visceral white adipose tissue (WAT) associates with insulin resistance, adipose tissue inflammation, and metabolic syndrome, whereas accumulation of subcutaneous WAT may be protective. We aimed to identify molecular mechanisms that might provide mechanistic insights underlying the phenotypic differences in these tissues. Membrane Metallo-Endopeptidase (MME/Neprislyin) is an extracellular, membrane-bound protease enriched in subcutaneous WAT that can target degradation of a variety of peptides, including insulin, IL6, and β-amyloids. We hypothesized that MME contributes to adipose depot-specific metabolic properties. METHODS We performed RNA sequencing on human subcutaneous and visceral preadipocytes and array gene expression profiling in murine subcutaneous and visceral preadipocytes. We conducted several insulin signaling and inflammatory response experiments on different cellular states of MME expression. RESULTS MME in white preadipocytes is expressed at a higher level in subcutaneous compared to visceral WAT and favors insulin signaling and a low inflammatory response. Thus, knockdown of MME in subcutaneous preadipocytes increased the inflammatory response to substance P and amyloid β aggregates. This associated with increased basal insulin signaling and decreased insulin-stimulated signaling. Moreover, MME differentially regulates the internalization and turnover of the α/β subunits of the insulin receptor. CONCLUSION MME is a novel regulator of the insulin receptor in adipose tissue. Given the clinical significance of both chronic inflammation and insulin sensitivity in metabolic disease, these results show a potentially new target to increase insulin sensitivity and decrease inflammatory susceptibility.
Collapse
Affiliation(s)
- Alfred K Ramirez
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Simon Dankel
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Hormone Laboratory, Haukeland University Hospital, 5020 Bergen, Norway
| | - Weikang Cai
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Masaji Sakaguchi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Simon Kasif
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
23
|
X-Ray Crystallography in Structure-Function Characterization of Therapeutic Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:81-103. [DOI: 10.1007/978-981-13-7709-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Ma Q, Zhao Z, Sagare AP, Wu Y, Wang M, Owens NC, Verghese PB, Herz J, Holtzman DM, Zlokovic BV. Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent apolipoprotein E isoform-specific mechanism. Mol Neurodegener 2018; 13:57. [PMID: 30340601 PMCID: PMC6194676 DOI: 10.1186/s13024-018-0286-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/01/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Clearance at the blood-brain barrier (BBB) plays an important role in removal of Alzheimer's amyloid-β (Aβ) toxin from brain both in humans and animal models. Apolipoprotein E (apoE), the major genetic risk factor for AD, disrupts Aβ clearance at the BBB. The cellular and molecular mechanisms, however, still remain unclear, particularly whether the BBB-associated brain capillary pericytes can contribute to removal of aggregated Aβ from brain capillaries, and whether removal of Aβ aggregates by pericytes requires apoE, and if so, is Aβ clearance on pericytes apoE isoform-specific. METHODS We performed immunostaining for Aβ and pericyte biomarkers on brain capillaries (< 6 μm in diameter) on tissue sections derived from AD patients and age-matched controls, and APPSwe/0 mice and littermate controls. Human Cy3-Aβ42 uptake by pericytes was studied on freshly isolated brain slices from control mice, pericyte LRP1-deficient mice (Lrplox/lox;Cspg4-Cre) and littermate controls. Clearance of aggregated Aβ42 by mouse pericytes was studied on multi-spot glass slides under different experimental conditions including pharmacologic and/or genetic inhibition of the low density lipoprotein receptor related protein 1 (LRP1), an apoE receptor, and/or silencing mouse endogenous Apoe in the presence and absence of human astrocyte-derived lipidated apoE3 or apoE4. Student's t-test and one-way ANOVA followed by Bonferroni's post-hoc test were used for statistical analysis. RESULTS First, we found that 35% and 60% of brain capillary pericytes accumulate Aβ in AD patients and 8.5-month-old APPSw/0 mice, respectively, compared to negligible uptake in controls. Cy3-Aβ42 species were abundantly taken up by pericytes on cultured mouse brain slices via LRP1, as shown by both pharmacologic and genetic inhibition of LRP1 in pericytes. Mouse pericytes vigorously cleared aggregated Cy3-Aβ42 from multi-spot glass slides via LRP1, which was inhibited by pharmacologic and/or genetic knockdown of mouse endogenous apoE. Human astrocyte-derived lipidated apoE3, but not apoE4, normalized Aβ42 clearance by mouse pericytes with silenced mouse apoE. CONCLUSIONS Our data suggest that BBB-associated pericytes clear Aβ aggregates via an LRP1/apoE isoform-specific mechanism. These data support the role of LRP1/apoE interactions on pericytes as a potential therapeutic target for controlling Aβ clearance in AD.
Collapse
Affiliation(s)
- Qingyi Ma
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 USA
- Lawrence D. Longo, MD Center for Neonatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350 USA
| | - Zhen Zhao
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 USA
| | - Abhay P Sagare
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 USA
| | - Yingxi Wu
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 USA
| | - Min Wang
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 USA
| | - Nelly Chuqui Owens
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 USA
| | | | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX USA
- Department of Neurology and Neurotherapeutics and Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO 63110 USA
| | - Berislav V Zlokovic
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 USA
| |
Collapse
|
25
|
High resolution crystal structure of substrate-free human neprilysin. J Struct Biol 2018; 204:19-25. [PMID: 29906506 DOI: 10.1016/j.jsb.2018.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 11/23/2022]
Abstract
Neprilysin is a transmembrane M13 zinc metalloprotease responsible for the degradation of several biologically active peptides including insulin, enkephalin, substance P, bradykinin, endothelin-1, neurotensin and amyloid-β. The protein has received attention for its role in modulating blood pressure responses with its inhibition producing an antihypertensive response. To date, several inhibitor bound crystal structures of the human neprilysin extracellular domain have been determined, but, a structure free of bound inhibitor or substrate has yet to be reported. Here, we report the first crystal structure free of substrate or inhibitor for the extracellular catalytic domain of human neprilysin at 1.9 Å resolution. This structure will provide a reference point for comparisons to future inhibitor or substrate bound structures. The neprilysin structure also reveals that a closed protein conformation can be adopted in protein crystals absent of bound substrate or inhibitor.
Collapse
|
26
|
Shah NN, Dogar MU, Shah PN, Ishtiaq S, Mathew S, Shah P, Ishtiaq A, Vittorio TJ. Impact of prolonged utilization of neprilysin inhibition on the cognitive function of heart failure patients. Ther Adv Cardiovasc Dis 2018. [PMID: 29529959 DOI: 10.1177/1753944718756563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Niel N Shah
- Smt. N.H.L. Municipal Medical College, Ahmedabad, Gujarat, India
| | | | - Parin N Shah
- B.J. Medical College, Civil Hospital, Ahmedabad, Gujarat, India
| | | | - Shawn Mathew
- New York Institute of Technology, Old Westbury, NY, USA
| | | | - Alia Ishtiaq
- SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Timothy J Vittorio
- Bronx-Lebanon Hospital Center, Department of Medicine/Division of Cardiology, 1650 Grand Concourse, Bronx, NY 10457, USA
| |
Collapse
|
27
|
Patel N, Gluck J. Is Entresto good for the brain? World J Cardiol 2017; 9:594-599. [PMID: 28824789 PMCID: PMC5545143 DOI: 10.4330/wjc.v9.i7.594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/16/2017] [Accepted: 05/24/2017] [Indexed: 02/07/2023] Open
Abstract
The main stay pharmacotherapy for heart failure (HF) is targeted towards rennin-angiotensin-aldosterone (RAAS) and neprilysin pathways (NP). Both therapeutic strategies decreases morbidity and mortality but also carry considerable adverse effects. This review of the literature highlights the new generation of HF drug, sacubitril-valsartan (SV), trade name Entresto (researched as LCZ696, Novartis) which simultaneously blocks RAAS and NP. This dual action of angiotensin receptors blocker and neprilysin inhibitor (NPi) has improved HF prognosis and it is an evolution in the management of HF. Although the initial follow-up of patients treated with SV has yielded promising results, there are concerns regarding potential side effects especially an increase in the risk of Alzheimer’s disease (AD) and young onset of AD. NPi interferes with the breakdown and clearing of beta-amyloid peptides, the plaques seen in AD, raising concern for AD in SV patients. On the other hand, hypertension and cardiovascular diseases are established risk factors for AD which can be decreased by SV therapy. It is therefore essential that SV treated patients are followed up over an extended period of time to detect any adverse cognitive changes.
Collapse
|
28
|
Hua Y, Wang I, Liu B, Kelly DJ, Reid C, Liew D, Zhou Y, Wang BH. Angiotensin receptor neprilysin inhibitor LCZ696: pharmacology, pharmacokinetics and clinical development. Future Cardiol 2017; 13:103-115. [DOI: 10.2217/fca-2016-0057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Heart failure still has a significant disease burden with poor outcomes worldwide despite advances in therapy. The standard therapies have been focused on blockade of renin–angiotensin–aldosterone system with angiotensin-converting enzyme inhibitors, angiotensin receptor blockers and mineralocorticoid antagonists and the sympathetic nervous system with β-blockers. The natriuretic peptide system is a potential counter-regulatory system that promotes vasodilatation and natriuresis. Angiotensin receptor neprilysin inhibitors are a new class drug capable of blocking the renin–angiotensin–aldosterone system and enhancing the natriuretic peptide system to improve neurohormonal balance. The success of the PARADIGM-HF trial with LCZ696 and its approval for heart failure treatment is likely to generate a paradigm shift. This review summarises the current knowledge of LCZ696 with a focus on pharmacology, pharmacokinetics and pharmacodynamics, mechanisms of action, clinical efficacy and safety.
Collapse
Affiliation(s)
- Yue Hua
- Centre of Cardiovascular Research & Education in Therapeutics, School of Public Health & Preventive Medicine, Monash University, Melbourne, Australia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ian Wang
- Centre of Cardiovascular Research & Education in Therapeutics, School of Public Health & Preventive Medicine, Monash University, Melbourne, Australia
| | - Bin Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Darren J Kelly
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Melbourne, Australia
| | - Christopher Reid
- Centre of Cardiovascular Research & Education in Therapeutics, School of Public Health & Preventive Medicine, Monash University, Melbourne, Australia
- NHMRC Cardiovascular Centre of Research Excellence, School of Public Health, Curtin University, Perth, Australia
| | - Danny Liew
- Centre of Cardiovascular Research & Education in Therapeutics, School of Public Health & Preventive Medicine, Monash University, Melbourne, Australia
| | - Yingchun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Bing H Wang
- Centre of Cardiovascular Research & Education in Therapeutics, School of Public Health & Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
29
|
Lutz S, Williams E, Muthu P. Engineering Therapeutic Enzymes. DIRECTED ENZYME EVOLUTION: ADVANCES AND APPLICATIONS 2017:17-67. [DOI: 10.1007/978-3-319-50413-1_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
30
|
Kurochkin IV, Guarnera E, Wong JH, Eisenhaber F, Berezovsky IN. Toward Allosterically Increased Catalytic Activity of Insulin-Degrading Enzyme against Amyloid Peptides. Biochemistry 2016; 56:228-239. [PMID: 27982586 DOI: 10.1021/acs.biochem.6b00783] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The physiological role of insulin-degrading enzyme (IDE) in the intracytosolic clearance of amyloid β (Aβ) and other amyloid-like peptides supports a hypothesis that human IDE hyperactivation could be therapeutically beneficial for the treatment of late-onset Alzheimer's disease (AD). The major challenge standing in the way of this goal is increasing the specific catalytic activity of IDE against the Aβ substrate. There were previous indications that the allosteric mode of IDE activity regulation could potentially provide a highly specific path toward degradation of amyloid-like peptides, while not dramatically affecting activity against other substrates. Recently developed theoretical concepts are used here to explore potential allosteric modulation of the IDE activity as a result of single-residue mutations. Five candidates are selected for experimental follow-up and allosteric free energy calculations: Ser137Ala, Lys396Ala, Asp426Ala, Phe807Ala, and Lys898Ala. Our experiments show that three mutations (Ser137Ala, Phe807Ala, and Lys898Ala) decrease the Km of the Aβ substrate. Mutation Lys898Ala results in increased catalytic activity of IDE; on the other hand, Lys364Ala does not change the activity and Asp426Ala diminishes it. Quantifying effects of mutations in terms of allosteric free energy, we show that favorable mutations lead to stabilization of the catalytic sites and other function-relevant distal sites as well as increased dynamics of the IDE-N and IDE-C halves that allow efficient substrate entrance and cleavage. A possibility for intramolecular upregulation of IDE activity against amyloid peptides via allosteric mutations calls for further investigations in this direction. Ultimately, we are hopeful it will lead to the development of IDE-based drugs for the treatment of the late-onset form of AD characterized by an overall impairment of Aβ clearance.
Collapse
Affiliation(s)
- Igor V Kurochkin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR) , 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR) , 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Jin H Wong
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR) , 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR) , 30 Biopolis Street, #07-01, Matrix, Singapore 138671.,Department of Biological Sciences (DBS), National University of Singapore (NUS) , 8 Medical Drive, Singapore 117579.,School of Computer Engineering (SCE), Nanyang Technological University (NTU) , 50 Nanyang Drive, Singapore 637553
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR) , 30 Biopolis Street, #07-01, Matrix, Singapore 138671.,Department of Biological Sciences (DBS), National University of Singapore (NUS) , 8 Medical Drive, Singapore 117579
| |
Collapse
|
31
|
Guerrero JL, Daugherty PS, O'Malley MA. Emerging technologies for protease engineering: New tools to clear out disease. Biotechnol Bioeng 2016; 114:33-38. [PMID: 27497426 DOI: 10.1002/bit.26066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022]
Abstract
Proteases regulate many biological processes through their ability to activate or inactive their target substrates. Because proteases catalytically turnover proteins and peptides, they present unique opportunities for use in biotechnological and therapeutic applications. However, many proteases are capable of cleaving multiple physiological substrates. Therefore their activity, expression, and localization are tightly controlled to prevent unwanted proteolysis. Currently, the use of protease therapeutics has been limited to a handful of proteases with narrow substrate specificities, which naturally limits their toxicity. Wider application of proteases is contingent upon the development of methods for engineering protease selectivity, activity, and stability. Recent advances in the development of high-throughput, bacterial and yeast-based methods for protease redesign have yielded protease variants with novel specificities, reduced toxicity, and increased resistance to inhibitors. Here, we highlight new tools for protease engineering, including methods suitable for the redesign of human secreted proteases, and future opportunities to exploit the catalytic activity of proteases for therapeutic benefit. Biotechnol. Bioeng. 2017;114: 33-38. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer L Guerrero
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106
| | - Patrick S Daugherty
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106
| |
Collapse
|
32
|
Bayes-Genis A, Barallat J, Richards AM. A Test in Context: Neprilysin. J Am Coll Cardiol 2016; 68:639-653. [DOI: 10.1016/j.jacc.2016.04.060] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/19/2016] [Indexed: 11/27/2022]
|
33
|
Burrell M, Henderson SJ, Ravnefjord A, Schweikart F, Fowler SB, Witt S, Hansson KM, Webster CI. Neprilysin Inhibits Coagulation through Proteolytic Inactivation of Fibrinogen. PLoS One 2016; 11:e0158114. [PMID: 27437944 PMCID: PMC4954676 DOI: 10.1371/journal.pone.0158114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/12/2016] [Indexed: 12/11/2022] Open
Abstract
Neprilysin (NEP) is an endogenous protease that degrades a wide range of peptides including amyloid beta (Aβ), the main pathological component of Alzheimer's disease (AD). We have engineered NEP as a potential therapeutic for AD but found in pre-clinical safety testing that this variant increased prothrombin time (PT) and activated partial thromboplastin time (APTT). The objective of the current study was to investigate the effect of wild type NEP and the engineered variant on coagulation and define the mechanism by which this effect is mediated. PT and APTT were measured in cynomolgus monkeys and rats dosed with a human serum albumin fusion with an engineered variant of NEP (HSA-NEPv) as well as in control plasma spiked with wild type or variant enzyme. The coagulation factor targeted by NEP was determined using in vitro prothrombinase, calibrated automated thrombogram (CAT) and fibrin formation assays as well as N-terminal sequencing of fibrinogen treated with the enzyme. We demonstrate that HSA-NEP wild type and HSA-NEPv unexpectedly impaired coagulation, increasing PT and APTT in plasma samples and abolishing fibrin formation from fibrinogen. This effect was mediated through cleavage of the N-termini of the Aα- and Bβ-chains of fibrinogen thereby significantly impairing initiation of fibrin formation by thrombin. Fibrinogen has therefore been identified for the first time as a substrate for NEP wild type suggesting that the enzyme may have a role in regulating fibrin formation. Reductions in NEP levels observed in AD and cerebral amyloid angiopathy may contribute to neurovascular degeneration observed in these conditions.
Collapse
Affiliation(s)
- Matthew Burrell
- Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge, United Kingdom
| | - Simon J. Henderson
- Biologics Safety Assessment, MedImmune, Aaron Klug Building, Granta Park, Cambridge, United Kingdom
| | - Anna Ravnefjord
- Cardiovascular and Metabolic Disease iMed, AstraZeneca R&D, SE-431 83 Mölndal, Sweden
| | - Fritz Schweikart
- Pharmaceutical Development, AstraZeneca R&D, SE-431 83 Mölndal, Sweden
| | - Susan B. Fowler
- Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge, United Kingdom
| | - Susanne Witt
- Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge, United Kingdom
| | - Kenny M. Hansson
- Cardiovascular and Metabolic Disease iMed, AstraZeneca R&D, SE-431 83 Mölndal, Sweden
| | - Carl I. Webster
- Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Hill ME, MacPherson DJ, Wu P, Julien O, Wells JA, Hardy JA. Reprogramming Caspase-7 Specificity by Regio-Specific Mutations and Selection Provides Alternate Solutions for Substrate Recognition. ACS Chem Biol 2016; 11:1603-12. [PMID: 27032039 DOI: 10.1021/acschembio.5b00971] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ability to routinely engineer protease specificity can allow us to better understand and modulate their biology for expanded therapeutic and industrial applications. Here, we report a new approach based on a caged green fluorescent protein (CA-GFP) reporter that allows for flow-cytometry-based selection in bacteria or other cell types enabling selection of intracellular protease specificity, regardless of the compositional complexity of the protease. Here, we apply this approach to introduce the specificity of caspase-6 into caspase-7, an intracellular cysteine protease important in cellular remodeling and cell death. We found that substitution of substrate-contacting residues from caspase-6 into caspase-7 was ineffective, yielding an inactive enzyme, whereas saturation mutagenesis at these positions and selection by directed evolution produced active caspases. The process produced a number of nonobvious mutations that enabled conversion of the caspase-7 specificity to match caspase-6. The structures of the evolved-specificity caspase-7 (esCasp-7) revealed alternate binding modes for the substrate, including reorganization of an active site loop. Profiling the entire human proteome of esCasp-7 by N-terminomics demonstrated that the global specificity toward natural protein substrates is remarkably similar to that of caspase-6. Because the esCasp-7 maintained the core of caspase-7, we were able to identify a caspase-6 substrate, lamin C, that we predict relies on an exosite for substrate recognition. These reprogrammed proteases may be the first tool built with the express intent of distinguishing exosite dependent or independent substrates. This approach to specificity reprogramming should also be generalizable across a wide range of proteases.
Collapse
Affiliation(s)
- Maureen E. Hill
- Department
of Chemistry, 104 LGRT,
710 N. Pleasant St., University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Derek J. MacPherson
- Department
of Chemistry, 104 LGRT,
710 N. Pleasant St., University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Peng Wu
- Department
of Chemistry, 104 LGRT,
710 N. Pleasant St., University of Massachusetts, Amherst, Massachusetts 01003, United States
| | | | | | - Jeanne A. Hardy
- Department
of Chemistry, 104 LGRT,
710 N. Pleasant St., University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
35
|
Guerrero JL, O’Malley MA, Daugherty PS. Intracellular FRET-based Screen for Redesigning the Specificity of Secreted Proteases. ACS Chem Biol 2016; 11:961-70. [PMID: 26730612 DOI: 10.1021/acschembio.5b01051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteases are attractive as therapeutics given their ability to catalytically activate or inactivate their targets. However, therapeutic use of proteases is limited by insufficient substrate specificity, since off-target activity can induce undesired side-effects. In addition, few methods exist to enhance the activity and specificity of human proteases, analogous to methods for antibody engineering. Given this need, a general methodology termed protease evolution via cleavage of an intracellular substrate (PrECISE) was developed to enable engineering of human protease activity and specificity toward an arbitrary peptide target. PrECISE relies on coexpression of a protease and a peptide substrate exhibiting Förster resonance energy transfer (FRET) within the endoplasmic reticulum of yeast. Use of the FRET reporter substrate enabled screening large protease libraries using fluorescence activated cell sorting for the activity of interest. To evolve a human protease that selectively cleaves within the central hydrophobic core (KLVF↓F↓AED) of the amyloid beta (Aβ) peptide, PrECISE was applied to human kallikrein 7, a protease with Aβ cleavage activity but broad selectivity, with a strong preference for tyrosine (Y) at P1. This method yielded a protease variant which displayed up to 30-fold improvements in Aβ selectivity mediated by a reduction in activity toward substrates containing tyrosine. Additionally, the increased selectivity of the variant led to reduced toxicity toward PC12 neuronal-like cells and 16-1000-fold improved resistance to wild-type inhibitors. PrECISE thus provides a powerful high-throughput capability to redesign human proteases for therapeutic use.
Collapse
Affiliation(s)
- Jennifer L. Guerrero
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Michelle A. O’Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Patrick S. Daugherty
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
36
|
Daschil N, Humpel C. Green-Fluorescent Protein(+) Astrocytes Attach to Beta-Amyloid Plaques in an Alzheimer Mouse Model and Are Sensitive for Clasmatodendrosis. Front Aging Neurosci 2016; 8:75. [PMID: 27092076 PMCID: PMC4825400 DOI: 10.3389/fnagi.2016.00075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/28/2016] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is pathologically characterized by beta-amyloid (Aβ) plaques and Tau pathology. It is well-established that Aβ plaques are surrounded by reactive astrocytes, highly expressing glial fibrillary acidic protein (GFAP). In order to study the cellular interaction of reactive astrocytes with Aβ plaques, we crossbred mice overexpressing amyloid precursor protein (APP) with the Swedish-Dutch-Iowa mutations (APP-SweDI) with mice expressing green fluorescent protein (GFP) under the GFAP-promotor. Three-dimensional confocal microscopy revealed a tight association and intense sprouting of astrocytic finely branched processes towards Aβ plaques in 12 month old mice. In order to study phagocytosis, 110 μm thick brain slices from 12 month old crossbred mice were cultured overnight, however, we found that the GFP fluorescence faded, distal processes degenerated and a complete loss of astrocytic morphology was seen (clasmatodendrosis). In summary, our data show that GFP(+) reactive astrocytes make intense contact with Aβ plaques but these cells are highly vulnerable for degeneration.
Collapse
Affiliation(s)
- Nina Daschil
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry, Psychosomatics and Psychotherapy, Medical University of Innsbruck Innsbruck, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry, Psychosomatics and Psychotherapy, Medical University of Innsbruck Innsbruck, Austria
| |
Collapse
|
37
|
Hubin E, Cioffi F, Rozenski J, van Nuland NAJ, Broersen K. Characterization of insulin-degrading enzyme-mediated cleavage of Aβ in distinct aggregation states. Biochim Biophys Acta Gen Subj 2016; 1860:1281-90. [PMID: 26968463 DOI: 10.1016/j.bbagen.2016.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 12/15/2022]
Abstract
To enhance our understanding of the potential therapeutic utility of insulin-degrading enzyme (IDE) in Alzheimer's disease (AD), we studied in vitro IDE-mediated degradation of different amyloid-beta (Aβ) peptide aggregation states. Our findings show that IDE activity is driven by the dynamic equilibrium between Aβ monomers and higher ordered aggregates. We identify Met(35)-Val(36) as a novel IDE cleavage site in the Aβ sequence and show that Aβ fragments resulting from IDE cleavage form non-toxic amorphous aggregates. These findings need to be taken into account in therapeutic strategies designed to increase Aβ clearance in AD patients by modulating IDE activity.
Collapse
Affiliation(s)
- Ellen Hubin
- Nanobiophysics Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, Universiteit Twente, Enschede, The Netherlands; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Federica Cioffi
- Nanobiophysics Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, Universiteit Twente, Enschede, The Netherlands
| | - Jef Rozenski
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Nico A J van Nuland
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Kerensa Broersen
- Nanobiophysics Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, Universiteit Twente, Enschede, The Netherlands.
| |
Collapse
|
38
|
Montoliu-Gaya L, Villegas S. Protein structures in Alzheimer's disease: The basis for rationale therapeutic design. Arch Biochem Biophys 2015; 588:1-14. [DOI: 10.1016/j.abb.2015.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/24/2015] [Accepted: 10/09/2015] [Indexed: 01/06/2023]
|
39
|
Jha NK, Jha SK, Kumar D, Kejriwal N, Sharma R, Ambasta RK, Kumar P. Impact of Insulin Degrading Enzyme and Neprilysin in Alzheimer’s Disease Biology: Characterization of Putative Cognates for Therapeutic Applications. J Alzheimers Dis 2015; 48:891-917. [DOI: 10.3233/jad-150379] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Niraj Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Saurabh Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Noopur Kejriwal
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Renu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Rashmi K. Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
- Department of Neurology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
40
|
Balabanova L, Golotin V, Podvolotskaya A, Rasskazov V. Genetically modified proteins: functional improvement and chimeragenesis. Bioengineered 2015. [PMID: 26211369 DOI: 10.1080/21655979.2015.1075674] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
This review focuses on the emerging role of site-specific mutagenesis and chimeragenesis for the functional improvement of proteins in areas where traditional protein engineering methods have been extensively used and practically exhausted. The novel path for the creation of the novel proteins has been created on the farther development of the new structure and sequence optimization algorithms for generating and designing the accurate structure models in result of x-ray crystallography studies of a lot of proteins and their mutant forms. Artificial genetic modifications aim to expand nature's repertoire of biomolecules. One of the most exciting potential results of mutagenesis or chimeragenesis finding could be design of effective diagnostics, bio-therapeutics and biocatalysts. A sampling of recent examples is listed below for the in vivo and in vitro genetically improvement of various binding protein and enzyme functions, with references for more in-depth study provided for the reader's benefit.
Collapse
Affiliation(s)
- Larissa Balabanova
- a G.B. Elyakov Pacific Institute of Bioorganic Chemistry; Far Eastern Branch; Russian Academy of Science ; Vladivostok , Russia.,b Far Eastern Federal University ; Vladivostok , Russia
| | - Vasily Golotin
- a G.B. Elyakov Pacific Institute of Bioorganic Chemistry; Far Eastern Branch; Russian Academy of Science ; Vladivostok , Russia.,b Far Eastern Federal University ; Vladivostok , Russia
| | | | - Valery Rasskazov
- a G.B. Elyakov Pacific Institute of Bioorganic Chemistry; Far Eastern Branch; Russian Academy of Science ; Vladivostok , Russia
| |
Collapse
|
41
|
Krohn M, Bracke A, Avchalumov Y, Schumacher T, Hofrichter J, Paarmann K, Fröhlich C, Lange C, Brüning T, von Bohlen und Halbach O, Pahnke J. Accumulation of murine amyloid-β mimics early Alzheimer’s disease. Brain 2015; 138:2370-82. [DOI: 10.1093/brain/awv137] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 03/27/2015] [Indexed: 11/13/2022] Open
|
42
|
Vodovar N, Paquet C, Mebazaa A, Launay JM, Hugon J, Cohen-Solal A. Neprilysin, cardiovascular, and Alzheimer's diseases: the therapeutic split? Eur Heart J 2015; 36:902-5. [PMID: 25636748 DOI: 10.1093/eurheartj/ehv015] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/13/2015] [Indexed: 12/15/2022] Open
Affiliation(s)
| | - Claire Paquet
- UMRS 942 Inserm, 75010 Paris, France Clinical and Research Memory Center, Lariboisière Hospital, Paris, France
| | - Alexandre Mebazaa
- UMRS 942 Inserm, 75010 Paris, France Department of Anesthesiology and Intensive Care, Lariboisière Hospital, Paris, France Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Jean-Marie Launay
- UMRS 942 Inserm, 75010 Paris, France Department of Biochemistry, Lariboisière Hospital, Paris, France Centre for Biological Resources, Lariboisière Hospital, Paris, France
| | - Jacques Hugon
- UMRS 942 Inserm, 75010 Paris, France Clinical and Research Memory Center, Lariboisière Hospital, Paris, France Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Alain Cohen-Solal
- UMRS 942 Inserm, 75010 Paris, France Paris Diderot University, Sorbonne Paris Cité, Paris, France Department of Cardiology, Lariboisière Hospital, 2, Rue Ambroise Paré, 75475 Paris Cedex 10, France
| |
Collapse
|
43
|
Nalivaeva NN, Belyaev ND, Kerridge C, Turner AJ. Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimer's disease. Front Aging Neurosci 2014; 6:235. [PMID: 25278875 PMCID: PMC4166351 DOI: 10.3389/fnagi.2014.00235] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022] Open
Abstract
Abnormal elevation of amyloid β-peptide (Aβ) levels in the brain is the primary trigger for neuronal cell death specific to Alzheimer’s disease (AD). It is now evident that Aβ levels in the brain are manipulable due to a dynamic equilibrium between its production from the amyloid precursor protein (APP) and removal by amyloid clearance proteins. Clearance can be either enzymic or non-enzymic (binding/transport proteins). Intriguingly several of the main amyloid-degrading enzymes (ADEs) are members of the M13 peptidase family (neprilysin (NEP), NEP2 and the endothelin converting enzymes (ECE-1 and -2)). A distinct metallopeptidase, insulin-degrading enzyme (IDE), also contributes to Aβ degradation in the brain. The ADE family currently embraces more than 20 members, both membrane-bound and soluble, and of differing cellular locations. NEP plays an important role in brain function terminating neuropeptide signals. Its decrease in specific brain areas with age or after hypoxia, ischaemia or stroke contribute significantly to the development of AD pathology. The recently discovered mechanism of epigenetic regulation of NEP (and other genes) by the APP intracellular domain (AICD) and its dependence on the cell type and APP isoform expression suggest possibilities for selective manipulation of NEP gene expression in neuronal cells. We have also observed that another amyloid-clearing protein, namely transthyretin (TTR), is also regulated in the neuronal cell by a mechanism similar to NEP. Dependence of amyloid clearance proteins on histone deacetylases and the ability of HDAC inhibitors to up-regulate their expression in the brain opens new avenues for developing preventive strategies in AD.
Collapse
Affiliation(s)
- Natalia N Nalivaeva
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK ; I.M.Sechenov Institute of Evolutionary Physiology and Biochemistry St. Petersburg, Russia
| | - Nikolai D Belyaev
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK
| | - Caroline Kerridge
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK ; Neurodegeneration DHT, Lilly, Erl Wood Manor Windlesham, Surrey, UK
| | - Anthony J Turner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK
| |
Collapse
|