1
|
Roweth HG, Becker IC, Malloy MW, Clarke EM, Munn SA, Kumar PL, Aivasovsky I, Tray K, Schmaier AA, Battinelli EM. Platelet Angiopoietin-1 Protects Against Murine Models of Tumor Metastasis. Arterioscler Thromb Vasc Biol 2024; 44:2024-2037. [PMID: 39051116 PMCID: PMC11335083 DOI: 10.1161/atvbaha.124.321189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND In addition to their fundamental roles in preserving vascular integrity, platelets also contribute to tumor angiogenesis and metastasis. However, despite being a reservoir for angiogenic and metastatic cytokines, platelets also harbor negative regulators of tumor progression. Angpt1 (angiopoietin-1) is a cytokine essential for developmental angiogenesis that also protects against tumor cell metastasis through an undefined mechanism. Although activated platelets release Angpt1 from α-granules into circulation, the contributions of platelet Angpt1 to tumor growth, angiogenesis, and metastasis have not been investigated. METHODS Using cytokine arrays and ELISAs, we first compared platelet Angpt1 levels in breast and melanoma mouse tumor models to tumor-free controls. We then assessed tumor growth and metastasis in mice lacking megakaryocyte and platelet Angpt1 (Angpt1Plt KO). The spontaneous metastasis of mammary-injected tumor cells to the lungs was quantified using RT-PCR (reverse transcription-polymerase chain reaction). The lung colonization of intravenously injected tumor cells and tumor cell extravasation were determined using fluorescent microscopy and flow cytometry. RESULTS Platelet Angpt1 is selectively upregulated in the PyMT (polyoma middle tumor antigen) breast cancer mouse model, and platelets are the principal source of Angpt1 in blood circulation. While primary tumor growth and angiogenesis were unaffected, Angpt1Plt KO mice had both increased spontaneous lung metastasis and tumor cell lung colonization following mammary or intravenous injection, respectively. Although platelet Angpt1 did not affect initial tumor cell entrapment in the lungs, Angpt1Plt KO mice had increased tumor cell retention and extravasation. Serum from Angpt1Plt KO mice increased endothelial permeability and reduced VE (vascular endothelial)-cadherin expression at endothelial junctions compared with serum from control mice (Angpt1WT). CONCLUSIONS Platelets provide an intravascular source of Angpt1 that restrains tumor metastasis by preserving the lung microvasculature to limit tumor cell extravasation.
Collapse
MESH Headings
- Animals
- Angiopoietin-1/genetics
- Angiopoietin-1/metabolism
- Angiopoietin-1/blood
- Blood Platelets/metabolism
- Blood Platelets/pathology
- Female
- Lung Neoplasms/secondary
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/blood
- Lung Neoplasms/metabolism
- Lung Neoplasms/prevention & control
- Mice, Knockout
- Neovascularization, Pathologic
- Mice, Inbred C57BL
- Melanoma, Experimental/pathology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/blood
- Melanoma, Experimental/secondary
- Melanoma, Experimental/genetics
- Cell Line, Tumor
- Mice
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/blood
- Tumor Burden
- Disease Models, Animal
Collapse
Affiliation(s)
- Harvey G. Roweth
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (H.G.R., M.W.M., E.M.C., S.A.M., P.L.K., E.M.B.)
- Harvard Medical School, Boston, MA (H.G.R., I.C.B., P.L.K., I.A., A.A.S., E.M.B.)
| | - Isabelle C. Becker
- Harvard Medical School, Boston, MA (H.G.R., I.C.B., P.L.K., I.A., A.A.S., E.M.B.)
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, MA (I.C.B.)
| | - Michael W. Malloy
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (H.G.R., M.W.M., E.M.C., S.A.M., P.L.K., E.M.B.)
| | - Emily M. Clarke
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (H.G.R., M.W.M., E.M.C., S.A.M., P.L.K., E.M.B.)
| | - Sophie A. Munn
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (H.G.R., M.W.M., E.M.C., S.A.M., P.L.K., E.M.B.)
| | - Priya L. Kumar
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (H.G.R., M.W.M., E.M.C., S.A.M., P.L.K., E.M.B.)
- Harvard Medical School, Boston, MA (H.G.R., I.C.B., P.L.K., I.A., A.A.S., E.M.B.)
| | - Ivan Aivasovsky
- Harvard Medical School, Boston, MA (H.G.R., I.C.B., P.L.K., I.A., A.A.S., E.M.B.)
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA (I.A., K.T., A.A.S.)
| | - Kobe Tray
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA (I.A., K.T., A.A.S.)
| | - Alec A. Schmaier
- Harvard Medical School, Boston, MA (H.G.R., I.C.B., P.L.K., I.A., A.A.S., E.M.B.)
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA (I.A., K.T., A.A.S.)
| | - Elisabeth M. Battinelli
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (H.G.R., M.W.M., E.M.C., S.A.M., P.L.K., E.M.B.)
- Harvard Medical School, Boston, MA (H.G.R., I.C.B., P.L.K., I.A., A.A.S., E.M.B.)
| |
Collapse
|
2
|
Tsoupras A, Gkika DA, Siadimas I, Christodoulopoulos I, Efthymiopoulos P, Kyzas GZ. The Multifaceted Effects of Non-Steroidal and Non-Opioid Anti-Inflammatory and Analgesic Drugs on Platelets: Current Knowledge, Limitations, and Future Perspectives. Pharmaceuticals (Basel) 2024; 17:627. [PMID: 38794197 PMCID: PMC11124379 DOI: 10.3390/ph17050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely utilized pharmaceuticals worldwide. Besides their recognized anti-inflammatory effects, these drugs exhibit various other pleiotropic effects in several cells, including platelets. Within this article, the multifaceted properties of NSAIDs on platelet functions, activation and viability, as well as their interaction(s) with established antiplatelet medications, by hindering several platelet agonists' pathways and receptors, are thoroughly reviewed. The efficacy and safety of NSAIDs as adjunctive therapies for conditions involving inflammation and platelet activation are also discussed. Emphasis is given to the antiplatelet potential of commonly administered NSAIDs medications, such as ibuprofen, diclofenac, naproxen and ketoprofen, alongside non-opioid analgesic and antipyretic medications like paracetamol. This article delves into their mechanisms of action against different pathways of platelet activation, aggregation and overall platelet functions, highlighting additional health-promoting properties of these anti-inflammatory and analgesic agents, without neglecting the induced by these drugs' side-effects on platelets' functionality and thrombocytopenia. Environmental issues emerging from the ever-increased subscription of these drugs are also discussed, along with the need for novel water treatment methodologies for their appropriate elimination from water and wastewater samples. Despite being efficiently eliminated during wastewater treatment processes on occasion, NSAIDs remain prevalent and are found at significant concentrations in water bodies that receive effluents from wastewater treatment plants (WWTPs), since there is no one-size-fits-all solution for removing all contaminants from wastewater, depending on the specific characteristics of the wastewater. Several novel methods have been studied, with adsorption being proposed as a cost-effective and environmentally friendly method for wastewater purification from such drugs. This article also presents limitations and future prospects regarding the observed antiplatelet effects of NSAIDs, as well as the potential of novel derivatives of these compounds, with benefits in other important platelet functions.
Collapse
Affiliation(s)
- Alexandros Tsoupras
- Hephaestus Laboratory, Department of Chemistry, School of Science, Democritus University of Thrace, GR 65404 Kavala, Greece; (D.A.G.); (P.E.); (G.Z.K.)
| | | | | | | | | | | |
Collapse
|
3
|
Carolo A, Melotti L, Zivelonghi G, Sacchetto R, Akyürek EE, Martinello T, Venerando A, Iacopetti I, Sugni M, Martinelli G, Roncoroni M, Marzorati S, Barbon S, Contran M, Incendi D, Perozzo F, Porzionato A, Vindigni V, Patruno M. Mutable Collagenous Tissue Isolated from Echinoderms Leads to the Production of a Dermal Template That Is Biocompatible and Effective for Wound Healing in Rats. Mar Drugs 2023; 21:506. [PMID: 37888441 PMCID: PMC10608188 DOI: 10.3390/md21100506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
The mutable collagenous tissue (MCT) of echinoderms possesses biological peculiarities that facilitate native collagen extraction and employment for biomedical applications such as regenerative purposes for the treatment of skin wounds. Strategies for skin regeneration have been developed and dermal substitutes have been used to cover the lesion to facilitate cell proliferation, although very little is known about the application of novel matrix obtained from marine collagen. From food waste we isolated eco-friendly collagen, naturally enriched with glycosaminoglycans, to produce an innovative marine-derived biomaterial assembled as a novel bi-layered skin substitute (Marine Collagen Dermal Template or MCDT). The present work carried out a preliminary experimental in vivo comparative analysis between the MCDT and Integra, one of the most widely used dermal templates for wound management, in a rat model of full-thickness skin wounds. Clinical, histological, and molecular evaluations showed that the MCDT might be a valuable tool in promoting and supporting skin wound healing: it is biocompatible, as no adverse reactions were observed, along with stimulating angiogenesis and the deposition of mature collagen. Therefore, the two dermal templates used in this study displayed similar biocompatibility and outcome with focus on full-thickness skin wounds, although a peculiar cellular behavior involving the angiogenesis process was observed for the MCDT.
Collapse
Affiliation(s)
- Anna Carolo
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.C.); (G.Z.); (R.S.); (E.E.A.)
| | - Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.C.); (G.Z.); (R.S.); (E.E.A.)
| | - Giulia Zivelonghi
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.C.); (G.Z.); (R.S.); (E.E.A.)
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.C.); (G.Z.); (R.S.); (E.E.A.)
| | - Eylem Emek Akyürek
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.C.); (G.Z.); (R.S.); (E.E.A.)
| | - Tiziana Martinello
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy;
| | - Andrea Venerando
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| | - Ilaria Iacopetti
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy;
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.S.); (G.M.); (M.R.); (S.M.)
| | - Giordana Martinelli
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.S.); (G.M.); (M.R.); (S.M.)
| | - Margherita Roncoroni
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.S.); (G.M.); (M.R.); (S.M.)
| | - Stefania Marzorati
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.S.); (G.M.); (M.R.); (S.M.)
| | - Silvia Barbon
- Department of Neuroscience, University of Padua, 35121 Padova, Italy; (S.B.); (M.C.); (D.I.); (A.P.); (V.V.)
| | - Martina Contran
- Department of Neuroscience, University of Padua, 35121 Padova, Italy; (S.B.); (M.C.); (D.I.); (A.P.); (V.V.)
| | - Damiana Incendi
- Department of Neuroscience, University of Padua, 35121 Padova, Italy; (S.B.); (M.C.); (D.I.); (A.P.); (V.V.)
| | - Filippo Perozzo
- Plastic and Reconstructive Surgery Unit, Padova University Hospital, 35128 Padova, Italy;
| | - Andrea Porzionato
- Department of Neuroscience, University of Padua, 35121 Padova, Italy; (S.B.); (M.C.); (D.I.); (A.P.); (V.V.)
| | - Vincenzo Vindigni
- Department of Neuroscience, University of Padua, 35121 Padova, Italy; (S.B.); (M.C.); (D.I.); (A.P.); (V.V.)
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.C.); (G.Z.); (R.S.); (E.E.A.)
| |
Collapse
|
4
|
Chiu A, Sharma D, Zhao F. Tissue Engineering-Based Strategies for Diabetic Foot Ulcer Management. Adv Wound Care (New Rochelle) 2023; 12:145-167. [PMID: 34939837 PMCID: PMC9810358 DOI: 10.1089/wound.2021.0081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023] Open
Abstract
Significance: Diabetic foot ulcers (DFU) are a mounting problem with the increasingly frail population. Injuries that would otherwise heal are kept open by risk factors such as diabetes, obesity, and age-related conditions, which interferes with the natural wound healing processes. Recent Advances: This review summarizes recent advancements in the field of tissue engineering for the treatment of DFUs. FDA-approved approaches, including signaling-based therapies, stem cell therapies, and skin substitutes are summarized and cutting-edge experimental technologies that have the potential to manage chronic wounds, such as skin printing, skin organogenesis, skin self-assembly, and prevascularization, are discussed. Critical Issues: The standard of care for chronic wounds involves wound debridement, wound dressings, and resolving the underlying cause such as lowering the glycemic index and reducing wound pressure. Current DFU treatments are limited by low wound closure rates and poor regrown skin quality. New adjuvant therapies that facilitate wound closure in place of or in conjunction with standard care are critically needed. Future Directions: Tissue engineering strategies are limited by the plasticity of adult human cells. In addition to traditional techniques, genetic modification, although currently an emerging technology, has the potential to unlock human regeneration and can be incorporated in future therapeutics.
Collapse
Affiliation(s)
- Alvis Chiu
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Dhavan Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Pennings GJ, Reddel CJ, Chen VM, Gnanenthiran SR, Kritharides L. Perspective: Collagen induced platelet activation via the GPVI receptor as a primary target of colchicine in cardiovascular disease. Front Cardiovasc Med 2023; 9:1104744. [PMID: 36741844 PMCID: PMC9892722 DOI: 10.3389/fcvm.2022.1104744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Colchicine has been demonstrated to reduce cardiovascular death, myocardial infarction (MI), ischemic stroke, and ischemia-driven coronary revascularization in people with coronary artery disease (CAD). These reductions were observed even in patients already taking antiplatelet therapy. As well as having anti-inflammatory effects, colchicine demonstrates antiplatelet effects. We propose that colchicine's antiplatelet effects primarily target collagen-induced platelet activation via the collagen receptor, glycoprotein (GP)VI, which is critical for arterial thrombosis formation. In settings such as stroke and MI, GPVI signaling is upregulated. We have demonstrated in vitro that therapeutic concentrations of colchicine lead to a decrease in collagen-induced platelet aggregation and alter GPVI signaling. Clinical studies of colchicine given for 6 months lead to a significant reduction in serum GPVI levels in CAD patients, which may ameliorate thrombotic risk. Future evaluation of the effects of colchicine in clinical trials should include assessment of its effects on collagen-mediated platelet activation, and consideration be given to quantifying the contribution of such antiplatelet effects additional to the known anti-inflammatory effects of colchicine.
Collapse
Affiliation(s)
- Gabrielle J. Pennings
- Vascular Biology Group, ANZAC Research Institute, The University of Sydney, Concord, NSW, Australia,Department of Cardiology, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Caroline J. Reddel
- Vascular Biology Group, ANZAC Research Institute, The University of Sydney, Concord, NSW, Australia
| | - Vivien M. Chen
- Department of Haematology, Concord Repatriation General Hospital, Concord, NSW, Australia,Platelet, Thrombosis Research Laboratory, ANZAC Research Institute, The University of Sydney, Concord, NSW, Australia
| | - Sonali R. Gnanenthiran
- Vascular Biology Group, ANZAC Research Institute, The University of Sydney, Concord, NSW, Australia,Department of Cardiology, Concord Repatriation General Hospital, Concord, NSW, Australia,The George Institute for Global Health, University of New South Wales, Newtown, NSW, Australia
| | - Leonard Kritharides
- Vascular Biology Group, ANZAC Research Institute, The University of Sydney, Concord, NSW, Australia,Department of Cardiology, Concord Repatriation General Hospital, Concord, NSW, Australia,*Correspondence: Leonard Kritharides ✉
| |
Collapse
|
6
|
Xulu KR, Augustine TN. Targeting Platelet Activation Pathways to Limit Tumour Progression: Current State of Affairs. Pharmaceuticals (Basel) 2022; 15:1532. [PMID: 36558983 PMCID: PMC9784118 DOI: 10.3390/ph15121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The association between cancer and a hypercoagulatory environment is well described. Thrombotic complications serve not only as a major mortality risk but the underlying molecular structure and function play significant roles in enhancing tumour progression, which is defined as the tumour's capacity to survive, invade and metastasise, amongst other hallmarks of the disease. The use of anticoagulant or antiplatelet drugs in cardiovascular disease lessens thrombotic effects, but the consequences on tumour progression require interrogation. Therefore, this review considered developments in the management of platelet activation pathways (thromboxane, ADP and thrombin), focusing on the use of Aspirin, Clopidogrel and Atopaxar, and their potential impacts on tumour progression. Published data suggested a cautionary tale in ensuring we adequately investigate not only drug-drug interactions but also those unforeseen reciprocal interactions between drugs and their targets within the tumour microenvironment that may act as selective pressures, enhancing tumour survival and progression.
Collapse
Affiliation(s)
- Kutlwano R. Xulu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Tanya N. Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
7
|
Roka-Moiia Y, Walawalkar V, Liu Y, Italiano JE, Slepian MJ, Taylor RE. DNA Origami-Platelet Adducts: Nanoconstruct Binding without Platelet Activation. Bioconjug Chem 2022; 33:1295-1310. [PMID: 35731951 DOI: 10.1021/acs.bioconjchem.2c00197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Objective. Platelets are small, mechanosensitive blood cells responsible for maintaining vascular integrity and activatable on demand to limit bleeding and facilitate thrombosis. While circulating in the blood, platelets are exposed to a range of mechanical and chemical stimuli, with the platelet membrane being the primary interface and transducer of outside-in signaling. Sensing and modulating these interface signals would be useful to study mechanochemical interactions; yet, to date, no methods have been defined to attach adducts for sensor fabrication to platelets without triggering platelet activation. We hypothesized that DNA origami, and methods for its attachment, could be optimized to enable nonactivating instrumentation of the platelet membrane. Approach and Results. We designed and fabricated multivalent DNA origami nanotile constructs to investigate nanotile hybridization to membrane-embedded single-stranded DNA-tetraethylene glycol cholesteryl linkers. Two hybridization protocols were developed and validated (Methods I and II) for rendering high-density binding of DNA origami nanotiles to human platelets. Using quantitative flow cytometry, we showed that DNA origami binding efficacy was significantly improved when the number of binding overhangs was increased from two to six. However, no additional binding benefit was observed when increasing the number of nanotile overhangs further to 12. Using flow cytometry and transmission electron microscopy, we verified that hybridization with DNA origami constructs did not cause alterations in the platelet morphology, activation, aggregation, or generation of platelet-derived microparticles. Conclusions. Herein, we demonstrate that platelets can be successfully instrumented with DNA origami constructs with no or minimal effect on the platelet morphology and function. Our protocol allows for efficient high-density binding of DNA origami to platelets using low quantities of the DNA material to label a large number of platelets in a timely manner. Nonactivating platelet-nanotile adducts afford a path for advancing the development of DNA origami nanoconstructs for cell-adherent mechanosensing and therapeutic agent delivery.
Collapse
Affiliation(s)
- Yana Roka-Moiia
- Department of Medicine, Sarver Heart Center, University of Arizona Health Sciences Center,University of Arizona, Tucson, Arizona 85721, United States
| | - Vismaya Walawalkar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ying Liu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Joseph E Italiano
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Marvin J Slepian
- Department of Medicine, Sarver Heart Center, University of Arizona Health Sciences Center,University of Arizona, Tucson, Arizona 85721, United States.,Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Rebecca E Taylor
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Departments of Biomedical Engineering and Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
Spurgeon BEJ, Frelinger AL. Comprehensive phenotyping of human platelets by single-cell cytometry. Cytometry A 2022; 101:290-297. [PMID: 34997669 DOI: 10.1002/cyto.a.24531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/07/2022]
Abstract
Platelets are small anucleate blood cells that contribute to hemostasis, immunity, and inflammation. Circulating platelets are heterogeneous in size, age, receptor expression, and reactivity. They inherit many features from megakaryocytes and are further modified on exposure to bioactive substances in the bloodstream. Among these substances, prothrombotic agonists, vasodilators, and bloodborne pathogens modulate platelet phenotypes via distinct signaling cascades. The ability of platelets to respond to (patho)physiologic signals is incompletely understood but likely depends on their repertoire of surface receptors, which may partition them into discrete subsets with specialized functions and divergent abilities. The single-cell resolution of flow and mass cytometry is ideal for immunophenotyping and allows the identification of platelet subsets in remarkable detail. In this report, we describe the surface markers and gating strategies needed for the comprehensive characterization of platelets.
Collapse
Affiliation(s)
- Benjamin E J Spurgeon
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew L Frelinger
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Fang J, Sun X, Liu S, Yang P, Lin J, Feng J, Cruz MA, Dong JF, Fang Y, Wu J. Shear Stress Accumulation Enhances von Willebrand Factor-Induced Platelet P-Selectin Translocation in a PI3K/Akt Pathway-Dependent Manner. Front Cell Dev Biol 2021; 9:642108. [PMID: 34141704 PMCID: PMC8204100 DOI: 10.3389/fcell.2021.642108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/21/2021] [Indexed: 01/03/2023] Open
Abstract
Platelet adhesion and activation through the interaction of von Willebrand factor (VWF) with platelet glycoprotein (GP) Ibα are the early key events in hemostasis and thrombosis especially under high blood shear stress. P-selectin translocation from α granule to the cell surface is a typical platelet function phenotype, which makes the platelet-induced inflammatory response of flowing leukocytes possible and can be induced by either chemical agonists (thrombin, ADP, etc.) or high blood shear stress, but regulations of VWF mutation and blood shear stress on VWF-induced P-selectin translocation remain unclear. With flow cytometry, parallel plate flow chamber, and immunofluorescence staining techniques, we examined the P-selectin translocation of platelets on immobilized wild-type (WT) VWF-A1 domain and its two mutants, the gain-of-function (GOF) mutant R1308L and the loss-of-function (LOF) mutant G1324S, respectively. The results showed that the VWF-A1-induced platelet P-selectin translocation was triggered, accelerated, and enhanced by fluid shear stress and could be correlated with shear stress accumulation (SSA, the product of fluid shear stress and mechanical stimulus time), and the PI3K/Akt axis was involved in the platelet P-selectin translocation. The force-triggered P-selectin translocation occurred quickly on partial platelet surface first and then extended gradually to the whole platelet surface as SSA increased. The P-selectin translocation process would be promoted by the GOF mutation (R1308L) but slowed down by the LOF mutation (G1324S). These findings demonstrated a force-enhanced regulation mechanism for the VWF-induced platelet P-selectin translocation through the PI3K/Akt pathway and provided a novel insight into the mechano-chemical regulation mechanism for the key events, such as platelet activation and functional phenotype change in hemostasis and thrombosis.
Collapse
Affiliation(s)
- Jinhua Fang
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoxi Sun
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Silu Liu
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Pu Yang
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jiangguo Lin
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jingjing Feng
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Miguel A Cruz
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine/Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States
| | - Jing-Fei Dong
- Bloodworks Research Institute and Hematology Division, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Ying Fang
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jianhua Wu
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Ho-Tin-Noé B, Le Chapelain O, Camerer E. Platelets maintain vascular barrier function in the absence of injury or inflammation. J Thromb Haemost 2021; 19:1145-1148. [PMID: 33595179 DOI: 10.1111/jth.15240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Benoit Ho-Tin-Noé
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM, Université de Paris, Paris, France
| | - Ophélie Le Chapelain
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM, Université de Paris, Paris, France
| | - Eric Camerer
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| |
Collapse
|
11
|
Melotti L, Martinello T, Perazzi A, Iacopetti I, Ferrario C, Sugni M, Sacchetto R, Patruno M. A Prototype Skin Substitute, Made of Recycled Marine Collagen, Improves the Skin Regeneration of Sheep. Animals (Basel) 2021; 11:ani11051219. [PMID: 33922557 PMCID: PMC8145883 DOI: 10.3390/ani11051219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Marine ecosystems are a huge source of unexplored “blue” materials for different applications. The edible part of sea urchin is limited, and the vast majority of the product ends up as waste. Our studies intend to fully recycle wastes from the food industry and reconvert them in high added-value products, as innovative biocompatible skin substitutes for tissue regeneration. The aim of the present work is to apply the pioneering skin substitute in in vivo experimental wounds to test its regenerative potential and compare it, in a future study, to the available commercial membranes produced with collagen of bovine, porcine, and equine origin. Results are encouraging since the skin substitute made with marine collagen reduced inflammation, promoted the deposition of granulation tissue, and enhanced a proper re-epithelialization with the adequate development of skin appendages. In summary, our findings might be of great interest for processing industries and biotech companies which transform waste materials in high-valuable and innovative products for Veterinary advanced applications. Abstract Skin wound healing is a complex and dynamic process that aims to restore lesioned tissues. Collagen-based skin substitutes are a promising treatment to promote wound healing by mimicking the native skin structure. Recently, collagen from marine organisms has gained interest as a source for producing biomaterials for skin regenerative strategies. This preliminary study aimed to describe the application of a collagen-based skin-like scaffold (CBSS), manufactured with collagen extracted from sea urchin food waste, to treat experimental skin wounds in a large animal. The wound-healing process was assessed over different time points by the means of clinical, histopathological, and molecular analysis. The CBSS treatment improved wound re-epithelialization along with cell proliferation, gene expression of growth factors (VEGF-A), and development of skin adnexa throughout the healing process. Furthermore, it regulated the gene expression of collagen type I and III, thus enhancing the maturation of the granulation tissue into a mature dermis without any signs of scarring as observed in untreated wounds. The observed results (reduced inflammation, better re-epithelialization, proper development of mature dermis and skin adnexa) suggest that sea urchin-derived CBSS is a promising biomaterial for skin wound healing in a “blue biotechnologies” perspective for animals of Veterinary interest.
Collapse
Affiliation(s)
- Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy; (L.M.); (R.S.)
| | - Tiziana Martinello
- Department of Veterinary Medicine, University of Bari, SP. Casamassima Km.3, Valenzano, 70010 Bari, Italy;
| | - Anna Perazzi
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy;
| | - Ilaria Iacopetti
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy;
- Correspondence: (I.I.); (M.S.); (M.P.)
| | - Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria, 16, 20133 Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria, 16, 20133 Milan, Italy
- Correspondence: (I.I.); (M.S.); (M.P.)
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy; (L.M.); (R.S.)
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy; (L.M.); (R.S.)
- Correspondence: (I.I.); (M.S.); (M.P.)
| |
Collapse
|
12
|
Dickhout A, Tullemans BME, Heemskerk JWM, Thijssen VLJL, Kuijpers MJE, Koenen RR. Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. PLoS One 2021; 16:e0244736. [PMID: 33411760 PMCID: PMC7790394 DOI: 10.1371/journal.pone.0244736] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
Galectin-1 (gal-1) is a carbohydrate-binding lectin with important functions in angiogenesis, immune response, hemostasis and inflammation. Comparable functions are exerted by platelet factor 4 (CXCL4), a chemokine stored in the α-granules of platelets. Previously, gal-1 was found to activate platelets through integrin αIIbβ3. Both gal-1 and CXCL4 have high affinities for polysaccharides, and thus may mutually influence their functions. The aim of this study was to investigate a possible synergism of gal-1 and CXCL4 in platelet activation. Platelets were treated with increasing concentrations of gal-1, CXCL4 or both, and aggregation, integrin activation, P-selectin and phosphatidyl serine (PS) exposure were determined by light transmission aggregometry and by flow cytometry. To investigate the influence of cell surface sialic acid, platelets were treated with neuraminidase prior to stimulation. Gal-1 and CXCL4 were found to colocalize on the platelet surface. Stimulation with gal-1 led to integrin αIIbβ3 activation and to robust platelet aggregation, while CXCL4 weakly triggered aggregation and primarily induced P-selectin expression. Co-incubation of gal-1 and CXCL4 potentiated platelet aggregation compared with gal-1 alone. Whereas neither gal-1 and CXCL4 induced PS-exposure on platelets, prior removal of surface sialic acid strongly potentiated PS exposure. In addition, neuraminidase treatment increased the binding of gal-1 to platelets and lowered the activation threshold for gal-1. However, CXCL4 did not affect binding of gal-1 to platelets. Taken together, stimulation of platelets with gal-1 and CXCL4 led to distinct and complementary activation profiles, with additive rather than synergistic effects.
Collapse
Affiliation(s)
- Annemiek Dickhout
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Bibian M. E. Tullemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Victor L. J. L. Thijssen
- Amsterdam UMC, location VUmc, Medical Oncology & Radiation Oncology, Amsterdam, The Netherlands
- * E-mail: (RRK); (VLJLT)
| | - Marijke J. E. Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Rory R. Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- * E-mail: (RRK); (VLJLT)
| |
Collapse
|
13
|
Anderson R, Theron AJ, Steel HC, Nel JG, Tintinger GR. ADP-Mediated Upregulation of Expression of CD62P on Human Platelets Is Critically Dependent on Co-Activation of P2Y1 and P2Y12 Receptors. Pharmaceuticals (Basel) 2020; 13:ph13120420. [PMID: 33255391 PMCID: PMC7760858 DOI: 10.3390/ph13120420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
This study probed the differential utilization of P2Y1 and P2Y12 receptors in mobilizing CD62P (P-selectin) from intracellular granules following activation of human platelets with adenosine 5′-diphosphate (ADP, 100 µmol·L−1) Platelet-rich plasma (PRP) was prepared from the blood of adult humans. CD62P was measured by flow cytometry following activation of PRP with ADP in the absence and presence of the selective antagonists of P2Y1 and P2Y12 receptors, MRS2500 and PSB0739 (both 0.155–10 µmol·L−1), respectively. Effects of the test agents on ADP-activated, CD62P-dependent formation of neutrophil:platelet (NP) aggregates were also measured by flow cytometry, while phosphatidylinositol 3-kinase (PI3K) activity was measured according to Akt1 phosphorylation in platelet lysates. Treatment with MRS2500 or PSB0739 at 10 µmol·L−1 almost completely attenuated (94.6% and 86% inhibition, respectively) ADP-activated expression of CD62P and also inhibited NP aggregate formation. To probe the mechanisms involved in P2Y1/P2Y12 receptor-mediated expression of CD62P, PRP was pre-treated with U73122 (phospholipase C (PLC) inhibitor), 2-aminoethoxy-diphenyl borate (2-APB, inositol triphosphate receptor antagonist), calmidazolium chloride (calmodulin inhibitor), or wortmannin (PI3K inhibitor). U73122, 2-APB, and wortmannin caused almost complete inhibition of ADP-activated expression of CD62P, while calmidazolium chloride caused statistically significant, partial inhibition. PSB0739, but not MRS2500, caused potent inhibition of PI3K-mediated phosphorylation of Akt1. Optimal mobilization of CD62P by ADP-stimulated platelets is critically dependent on the co-activation of platelet P2Y1 and P2Y12 receptors. P2Y12 receptor activation is the key event in activation of PI3K, while activation of the P2Y1 receptor appears to create a high cytosolic Ca2+ environment conducive to optimum PI3K activity.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (A.J.T.); (H.C.S.)
- Correspondence: ; Tel.: +27-12-318-2425; Fax: +27-12-323-0732
| | - Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (A.J.T.); (H.C.S.)
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (A.J.T.); (H.C.S.)
| | - Jan G. Nel
- Department of Haematology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
- Tshwane Academic Division of the National Laboratory Health Service of South Africa, Pretoria 0001, South Africa
| | - Gregory R. Tintinger
- Department of Internal Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| |
Collapse
|
14
|
Abstract
There is increasing awareness that platelets play a significant role in creating a hypercoagulable environment that mediates tumor progression, beyond their classical hemostatic function. Platelets have heterogenic responses to agonists, and differential release and uptake of bioactive molecules may be manipulated via reciprocal cross-talk with cells of the tumor microenvironment. Platelets thus promote tumor progression by enhancing tumor growth, promoting the development of tumor-associated vasculature and encouraging invasion. In the metastatic process, platelets form the shield that protects tumor cells from high-velocity forces and immunosurveillance, while ensuring the establishment of the pre-metastatic niche. This review presents the complexity of these concepts, considering platelets as biomarkers for diagnosis, prognosis and potentially as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Tanya N Augustine
- School of Anatomical Sciences, Faculty of the Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
15
|
Suzuki‐Inoue K, Tsukiji N. Platelet CLEC-2 and lung development. Res Pract Thromb Haemost 2020; 4:481-490. [PMID: 32548549 PMCID: PMC7292670 DOI: 10.1002/rth2.12338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 01/23/2023] Open
Abstract
In this article, the State of the Art lecture "Platelet CLEC-2 and Lung Development" presented at the ISTH congress 2019 is reviewed. During embryonic development, blood cells are often considered as porters of nutrition and oxygen but not as active influencers of cell differentiation. However, recent studies revealed that platelets actively facilitate cell differentiation by releasing biological substances during development. C-type lectin-like receptor 2 (CLEC-2) has been identified as a receptor for the platelet-activating snake venom rhodocytin. An endogenous ligand of CLEC-2 is the membrane protein podoplanin (PDPN), which is expressed on the surface of certain types of tumor cells and lymphatic endothelial cells (LECs). Deletion of CLEC-2 from platelets in mice results in death just after birth due to lung malformation and blood/lymphatic vessel separation. During development, lymphatic vessels are derived from cardinal veins. At this stage, platelets are activated by binding of CLEC-2 to LEC PDPN and release trandforming growth factor-β (TGF-β). This cytokine inhibits LEC migration and proliferation, facilitating blood/lymphatic vessel separation. TGF-β released upon platelet-expressed CLEC-2/LEC PDPN also facilitates differentiation of lung mesothelial cells into alveolar duct myofibroblasts (adMYFs) in the developing lung. AdMYFs generate elastic fibers inside the lung, so that the lung can be properly inflated. Thus, platelets act as an ultimate natural drug delivery system that enables biological substances to be specifically delivered to the target at high concentrations by receptor/ligand interactions during development.
Collapse
Affiliation(s)
- Katsue Suzuki‐Inoue
- Department of Clinical and Laboratory MedicineFaculty of MedicineUniversity of YamanashiChuoJapan
| | - Nagaharu Tsukiji
- Department of Clinical and Laboratory MedicineFaculty of MedicineUniversity of YamanashiChuoJapan
| |
Collapse
|
16
|
Refined fabrication of mechano-stimulating micro-platform for on-chip analyses of complex platelet behavior. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Tykhomyrov AA, Zhernosekov DD, Grinenko TV. Plasminogen modulates formation and release of platelet angiogenic regulators. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.01.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
18
|
Individual variations in platelet reactivity towards ADP, epinephrine, collagen and nitric oxide, and the association to arterial function in young, healthy adults. Thromb Res 2018; 174:5-12. [PMID: 30543988 DOI: 10.1016/j.thromres.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/13/2018] [Accepted: 12/05/2018] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Platelet aggregation and secretion can be induced by a large number of endogenous activators, such as collagen, adenosine diphosphate (ADP) and epinephrine. Conversely, the blood vessel endothelium constitutively release platelet inhibitors including nitric oxide (NO) and prostacyclin. NO and prostacyclin are also well-known vasodilators and contribute to alterations in local blood flow and systemic blood pressure. MATERIALS AND METHODS In this study we investigated individual variations in platelet reactivity and arterial functions including blood pressure and flow-mediated vasodilation (FMD) in 43 young, healthy individuals participating in the Lifestyle, Biomarkers and Atherosclerosis (LBA) study. Platelet aggregation and dense granule secretion were measured simultaneously by light transmission and luminescence. FMD was measured with ultrasound. RESULTS The platelet function assay showed inter-individual differences in platelet reactivity. Specifically, a sub-group of individuals had platelets with an increased response to low concentrations of ADP and epinephrine, but not collagen. When the NO-donor S-nitroso-N-acetyl-DL-penicillamine (SNAP) was combined with high doses of these platelet activators, the results indicated for sub-groups of NO-sensitive and NO-insensitive platelets. The individuals with NO-sensitive platelets in response to SNAP in combination with collagen had a higher capacity of FMD of the arteria brachialis. CONCLUSIONS Platelet reactivity towards ADP, epinephrine and NO differs between young, healthy individuals. Some individuals have a more effective response towards NO, both in the aspect of platelet inhibition ex vivo, as well as vasodilation in vivo.
Collapse
|
19
|
Cardenas EI, Breaux K, Da Q, Flores JR, Ramos MA, Tuvim MJ, Burns AR, Rumbaut RE, Adachi R. Platelet Munc13-4 regulates hemostasis, thrombosis and airway inflammation. Haematologica 2018; 103:1235-1244. [PMID: 29674495 PMCID: PMC6029531 DOI: 10.3324/haematol.2017.185637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/12/2018] [Indexed: 01/15/2023] Open
Abstract
Platelet degranulation is crucial for hemostasis and may participate in inflammation. Exocytosis in platelets is mediated by SNARE proteins and should be controlled by Munc13 proteins. We found that platelets express Munc13-2 and -4. We assessed platelet granule exocytosis in Munc13-2 and -4 global and conditional knockout (KO) mice, and observed that deletion of Munc13-4 ablates dense granule release and indirectly impairs alpha granule exocytosis. We found no exocytic role for Munc13-2 in platelets, not even in the absence of Munc13-4. In vitro, Munc13-4-deficient platelets exhibited defective aggregation at low doses of collagen. In a flow chamber assay, we observed that Munc13-4 acted as a rate-limiting factor in the formation of thrombi. In vivo, we observed a dose-dependency between Munc13-4 expression in platelets and both venous bleeding time and time to arterial thrombosis. Finally, in a model of allergic airway inflammation, we found that platelet-specific Munc13-4 KO mice had a reduction in airway hyper-responsiveness and eosinophilic inflammation. Taken together, our results indicate that Munc13-4-dependent platelet dense granule release plays essential roles in hemostasis, thrombosis and allergic inflammation.
Collapse
Affiliation(s)
- Eduardo I Cardenas
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Mexico
| | - Keegan Breaux
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Da
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jose R Flores
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marco A Ramos
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Tuvim
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alan R Burns
- College of Optometry, University of Houston, TX, USA
| | - Rolando E Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Roberto Adachi
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
20
|
Boulaftali Y, Mawhin M, Jandrot‐Perrus M, Ho‐Tin‐Noé B. Glycoprotein VI in securing vascular integrity in inflamed vessels. Res Pract Thromb Haemost 2018; 2:228-239. [PMID: 30046725 PMCID: PMC5974920 DOI: 10.1002/rth2.12092] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
Glycoprotein VI (GPVI), the main platelet receptor for collagen, has been shown to play a central role in various models of thrombosis, and to be a minor actor of hemostasis at sites of trauma. These observations have made of GPVI a novel target for antithrombotic therapy, as its inhibition would ideally combine efficacy with safety. Nevertheless, recent studies have indicated that GPVI could play an important role in preventing bleeding caused by neutrophils in the inflamed skin and lungs. Remarkably, there is evidence that the GPVI-dependent hemostatic function of platelets at the acute phase of inflammation in these organs does not involve aggregation. From a therapeutic perspective, the vasculoprotective action of GPVI in inflammation suggests that blocking of GPVI might bear some risks of bleeding at sites of neutrophil infiltration. In this review, we summarize recent findings on GPVI functions in inflammation and discuss their possible clinical implications and applications.
Collapse
Affiliation(s)
- Yacine Boulaftali
- Laboratory of Vascular Translational ScienceSorbonne Paris CitéInstitut National de la Santé et de la Recherche Médicale (INSERM)Université Paris DiderotParisFrance
| | - Marie‐Anne Mawhin
- Laboratory of Vascular Translational ScienceSorbonne Paris CitéInstitut National de la Santé et de la Recherche Médicale (INSERM)Université Paris DiderotParisFrance
| | - Martine Jandrot‐Perrus
- Laboratory of Vascular Translational ScienceSorbonne Paris CitéInstitut National de la Santé et de la Recherche Médicale (INSERM)Université Paris DiderotParisFrance
| | - Benoît Ho‐Tin‐Noé
- Laboratory of Vascular Translational ScienceSorbonne Paris CitéInstitut National de la Santé et de la Recherche Médicale (INSERM)Université Paris DiderotParisFrance
| |
Collapse
|
21
|
Scopel-Guerra A, Olivera-Severo D, Staniscuaski F, Uberti AF, Callai-Silva N, Jaeger N, Porto BN, Carlini CR. The Impact of Helicobacter pylori Urease upon Platelets and Consequent Contributions to Inflammation. Front Microbiol 2017; 8:2447. [PMID: 29312166 PMCID: PMC5733092 DOI: 10.3389/fmicb.2017.02447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/24/2017] [Indexed: 12/22/2022] Open
Abstract
Gastric infection by Helicobacter pylori is considered a risk factor for gastric and duodenal cancer, and extragastric diseases. Previous data have shown that, in a non-enzymatic way, H. pylori urease (HPU) activates neutrophils to produce ROS and also induces platelet aggregation, requiring ADP secretion modulated by the 12-lipoxygenase pathway, a signaling cascade also triggered by the physiological agonist collagen. Here we investigated further the effects on platelets of recombinant versions of the holoenzyme HPU, and of its two subunits (HpUreA and HpUreB). Although HpUreA had no aggregating activity on platelets, it partially inhibited collagen-induced aggregation. HpUreB induced platelet aggregation in the nanomolar range, and also interfered dose-dependently on both collagen- and ADP-induced platelet aggregation. HPU-induced platelet aggregation was inhibited by antibodies against glycoprotein VI (GPVI), the main collagen receptor in platelets. Flow cytometry analysis revealed exposure of P-selectin in HPU-activated platelets. Anti-glycoprotein IIbIIIa (GPIIbIIIa) antibodies increased the binding of FITC-labeled HPU to activated platelets, whereas anti-GPVI did not. Evaluation of post-transcriptional events in HPU-activated platelets revealed modifications in the pre-mRNA processing of pro-inflammatory proteins, with increased levels of mRNAs encoding IL-1β and CD14. We concluded that HPU activates platelets probably through its HpUreB subunit. Activation of platelets by HPU turns these cells into a pro-inflammatory phenotype. Altogether, our data suggest that H. pylori urease, besides allowing bacterial survival within the gastric mucosa, may have an important, and so far overlooked, role in gastric inflammation mediated by urease-activated neutrophils and platelets.
Collapse
Affiliation(s)
- Adriele Scopel-Guerra
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Deiber Olivera-Severo
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Biology, Universidade Regional Integrada do Alto Uruguai e das Missões, São Luiz Gonzaga, Brazil
| | - Fernanda Staniscuaski
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Molecular Biology and Biotechnology, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Augusto F Uberti
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Institute of Biology, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Natália Callai-Silva
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natália Jaeger
- Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bárbara N Porto
- Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Celia R Carlini
- Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
22
|
Platelets and vascular integrity: how platelets prevent bleeding in inflammation. Blood 2017; 131:277-288. [PMID: 29191915 DOI: 10.1182/blood-2017-06-742676] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023] Open
Abstract
Platelets play a central role in primary hemostasis by forming aggregates that plug holes in injured vessels. Half a century ago, detailed studies of the microvasculature by electron microscopy revealed that under inflammatory conditions that do not induce major disruption to vascular structure, individual platelets are mobilized to the vessel wall, where they interact with leukocytes and appear to seal gaps that arise between endothelial cells. Recent developments in genetic engineering and intravital microscopy have allowed further molecular and temporal characterization of these events. Surprisingly, it turns out that platelets support the recruitment of leukocytes to sites of inflammation. In parallel, however, they exercise their hemostatic function by securing the integrity of inflamed blood vessels to prevent bleeding from sites of leukocyte infiltration. It thus appears that platelets not only serve in concert as building blocks of the hemostatic plug but also act individually as gatekeepers of the vascular wall to help preserve vascular integrity while coordinating host defense. Variants of this recently appreciated hemostatic function of platelets that we refer to as "inflammation-associated hemostasis" are engaged in different contexts in which the endothelium is challenged or dysfunctional. Although the distinguishing characteristics of these variants and the underlying mechanisms of inflammation-associated hemostasis remain to be fully elucidated, they can differ notably from those supporting thrombosis, thus presenting therapeutic opportunities.
Collapse
|
23
|
Hellen IA, Steffen M, Stocker T, Christian S. Small but mighty: Platelets as central effectors of host defense. Thromb Haemost 2017; 117:651-661. [DOI: 10.1160/th16-12-0921] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/19/2017] [Indexed: 12/23/2022]
Abstract
SummaryPlatelets actively participate in inflammatory processes and drive diseases such as atherosclerosis, rheumatoid arthritis and cancer metastasis. However, platelets also have anti-inflammatory and anti-infective properties, which have received less consideration in the past. In this review, we highlight recent findings on the role of platelets in host defense and describe regulatory pathways modulating immuneresponses. Furthermore, we discuss the role of platelets for the resolution of inflammation and tissue repair. These conceptual changes contribute to our understanding of platelet biology in disease.
Collapse
|
24
|
Platelet populations and priming in hematological diseases. Blood Rev 2017; 31:389-399. [PMID: 28756877 DOI: 10.1016/j.blre.2017.07.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/26/2017] [Accepted: 07/18/2017] [Indexed: 01/01/2023]
Abstract
In healthy subjects and patients with hematological diseases, platelet populations can be distinguished with different response spectra in hemostatic and vascular processes. These populations partly overlap, and are less distinct than those of leukocytes. The platelet heterogeneity is linked to structural properties, and is enforced by inequalities in the environment. Contributing factors are variability between megakaryocytes, platelet ageing, and positive or negative priming of platelets during their time in circulation. Within a hemostatic plug or thrombus, platelet heterogeneity is enhanced by unequal exposure to agonists, with populations of contracted platelets in the thrombus core, discoid platelets at the thrombus surface, patches of ballooned and procoagulant platelets forming thrombin, and coated platelets binding fibrin. Several pathophysiological hematological conditions can positively or negatively prime the responsiveness of platelet populations. As a consequence, in vivo and in vitro markers of platelet activation can differ in thrombotic and hematological disorders.
Collapse
|
25
|
Maloney JP, Narasimhan J, Biller J. Decreased TGF-β1 and VEGF Release in Cystic Fibrosis Platelets: Further Evidence for Platelet Defects in Cystic Fibrosis. Lung 2016; 194:791-8. [PMID: 27423781 DOI: 10.1007/s00408-016-9925-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE Cystic fibrosis (CF) patients suffer from chronic lung inflammation. This inflammation may activate platelets. There are limited data on the role of platelet-secreted cytokines in CF. Platelet cytokines with inflammatory effects include vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1). As levels of these cytokines are tenfold greater in serum than plasma due to platelet release, serum levels may be one index of platelet content, but a more specific index is release during the aggregation of isolated platelets. We postulated that altered release of these platelet cytokines occurs in CF. METHODS We obtained sera and plasma from CF outpatients (n = 21) and from healthy controls (n = 20), measured VEGF and TGF-β1, assessed for correlations with platelet number, analyzed cytokine release during platelet aggregation to collagen, and analyzed differences in maximal platelet aggregation. RESULTS Platelet number and maximal aggregation levels were higher in CF. Plasma and serum levels of TGF-β1 and VEGF were higher in CF, but these levels were similar after adjusting for platelet number (serum cytokines correlated with platelet count). The release of VEGF and TGF-β1 during aggregation was decreased in CF platelets (by 52 and 29 %, respectively). CONCLUSION Platelet release is not a source of the elevated blood proinflammatory cytokines TGF-β1 and VEGF in CF, as platelets from CF patients actually release less of these cytokines. These data provide further evidence for platelet defects in CF.
Collapse
Affiliation(s)
- James P Maloney
- Divisions of Pulmonary and Critical Care Medicine, University of Colorado, Denver, 12700 East 19th Avenue, C-272, Aurora, Denver, CO, 80045, USA.
| | | | - Julie Biller
- The Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
26
|
Musa FI, Harper AGS, Yang Y. A Real-Time Monitoring System to Assess the Platelet Aggregatory Capacity of Components of a Tissue-Engineered Blood Vessel Wall. Tissue Eng Part C Methods 2016; 22:691-9. [PMID: 27260694 PMCID: PMC4943470 DOI: 10.1089/ten.tec.2015.0582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Native blood vessels contain both an antiaggregatory intimal layer, which prevents platelet activation in the intact vessel, and a proaggregatory medial layer, which stimulates platelet aggregation upon vascular damage. Yet, current techniques for assessing the functional properties of tissue-engineered blood vessels may not be able to assess the relative effectiveness of both these pro- and antiaggregatory properties of the vessel construct. In this study, we present a novel technique for quantitatively assessing the pro- and antiaggregatory properties of different three-dimensional blood vessel constructs made using a layered fabrication method. This technique utilizes real-time measurements of cytosolic Ca2+ signaling to assess platelet activation in fluorescently labeled human platelet suspensions using fluorescence spectrofluorimetry, while also permitting examination of thrombus formation upon the surface of the construct using fluorescent imaging of DiOC6-labeled platelets. Experiments using this method demonstrated that type I collagen hydrogels, commonly used as scaffolds for vascular tissue engineering, were unable to support significant platelet activation, while type I and III neo-collagen secreted from human coronary artery smooth muscle cells cultured within these hydrogels as the medial layer were able to support thrombus formation. The incorporation of an intimal layer consisting of human umbilical vein endothelial cells on top of the medial layer inhibited platelet activation and aggregation. These data demonstrate that the methodology presented here is able to quantitatively compare the capacity of different constructs to trigger or prevent platelet activation. As such, this technique may provide a useful tool for standardizing the assessment of the functional properties of tissue-engineered blood vessel constructs developed using different culturing techniques.
Collapse
Affiliation(s)
- Faiza Idris Musa
- Institute for Science and Technology in Medicine, School of Medicine, Keele University , Stoke-on-Trent, United Kingdom
| | - Alan G S Harper
- Institute for Science and Technology in Medicine, School of Medicine, Keele University , Stoke-on-Trent, United Kingdom
| | - Ying Yang
- Institute for Science and Technology in Medicine, School of Medicine, Keele University , Stoke-on-Trent, United Kingdom
| |
Collapse
|
27
|
Scherlinger M, Schaeverbeke T, Blanco P, Richez C. A unilateral erosive arthritis in a patient with systemic lupus erythematosus. Joint Bone Spine 2016; 84:245-246. [PMID: 27269652 DOI: 10.1016/j.jbspin.2016.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/09/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Marc Scherlinger
- Service de Rhumatologie, Hôpital Pellegrin, CHU de Bordeaux, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, 146, rue Léo-Saignat, 33076 Bordeaux, France.
| | - Thierry Schaeverbeke
- Service de Rhumatologie, Hôpital Pellegrin, CHU de Bordeaux, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, 146, rue Léo-Saignat, 33076 Bordeaux, France
| | - Patrick Blanco
- Université de Bordeaux, 146, rue Léo-Saignat, 33076 Bordeaux, France; ALYSAI, CNRS-UMR 5164, 146, rue Léo-Saignat, 33076 Bordeaux, France
| | - Christophe Richez
- Service de Rhumatologie, Hôpital Pellegrin, CHU de Bordeaux, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, 146, rue Léo-Saignat, 33076 Bordeaux, France; ALYSAI, CNRS-UMR 5164, 146, rue Léo-Saignat, 33076 Bordeaux, France
| |
Collapse
|
28
|
Bark DL, Vahabi H, Bui H, Movafaghi S, Moore B, Kota AK, Popat K, Dasi LP. Hemodynamic Performance and Thrombogenic Properties of a Superhydrophobic Bileaflet Mechanical Heart Valve. Ann Biomed Eng 2016; 45:452-463. [PMID: 27098219 DOI: 10.1007/s10439-016-1618-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
In this study, we explore how blood-material interactions and hemodynamics are impacted by rendering a clinical quality 25 mm St. Jude Medical Bileaflet mechanical heart valve (BMHV) superhydrophobic (SH) with the aim of reducing thrombo-embolic complications associated with BMHVs. Basic cell adhesion is evaluated to assess blood-material interactions, while hemodynamic performance is analyzed with and without the SH coating. Results show that a SH coating with a receding contact angle (CA) of 160° strikingly eliminates platelet and leukocyte adhesion to the surface. Alternatively, many platelets attach to and activate on pyrolytic carbon (receding CA = 47), the base material for BMHVs. We further show that the performance index increases by 2.5% for coated valve relative to an uncoated valve, with a maximum possible improved performance of 5%. Both valves exhibit instantaneous shear stress below 10 N/m2 and Reynolds Shear Stress below 100 N/m2. Therefore, a SH BMHV has the potential to relax the requirement for antiplatelet and anticoagulant drug regimens typically required for patients receiving MHVs by minimizing blood-material interactions, while having a minimal impact on hemodynamics. We show for the first time that SH-coated surfaces may be a promising direction to minimize thrombotic complications in complex devices such as heart valves.
Collapse
Affiliation(s)
- David L Bark
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.,School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Hamed Vahabi
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Hieu Bui
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Sanli Movafaghi
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Brandon Moore
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Arun K Kota
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.,School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Ketul Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.,School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Lakshmi P Dasi
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA. .,School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA. .,Department of Biomedical Engineering, Dorothy Davis Heart and Lung Research Institute, 473 W 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
29
|
Kim TH, Lee KM, Hong ND, Jung YS. Anti-platelet and anti-thrombotic effect of a traditional herbal medicine Kyung-Ok-Ko. JOURNAL OF ETHNOPHARMACOLOGY 2016; 178:172-179. [PMID: 26657497 DOI: 10.1016/j.jep.2015.11.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/25/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kyung-Ok-Ko (KOK), a traditional herbal prescription, contains six main ingredients; Rehmannia glutinosa var. purpurae, Lycium chinense, Aquillaria agallocha, Poria cocos, Panax ginseng, and honey. KOK has been widely taken as a traditional oriental medicine for improving blood circulation or age-related symptoms, such as dementia and stroke. However, the effect of KOK on platelet activity has not been clarified. MATERIALS AND METHODS To evaluate the effect of KOK on platelet function, we evaluated its effect on functional markers of platelet activation such as aggregation and shape change. As a mechanism study for the effect of KOK, we examined its effect on granule secretion, intracellular Ca(2+) increase, and PLCγ and Akt activation. To investigate the effect of orally administered KOK (0.5, 1, 2 g/kg), we examined its ex vivo effect on platelet aggregation in rat, and its in vivo anti-thrombotic effect in mice thromboembolism model. Furthermore, the effect of KOK on bleeding time was examined to estimate its potential side effect. RESULTS KOK (0.3, 1, 3, 10 mg/ml) inhibited collagen-induced platelet aggregation and shape change in rat platelets in a concentration-dependent manner. The mechanism for the anti-platelet effect of KOK seems to involve the inhibition of ATP release, intracellular Ca(2+) elevation, and the phosphorylation of PLCγ and Akt. In rat ex vivo study, KOK (2 g/kg, p.o. for 1 day, and 0.5, 1, 2 g/kg, p.o. for 7 days) also had significant inhibitory effects on collagen-induced platelet aggregation. In addition, KOK showed a significant protective effect against thrombosis attack in mice. The prolongation of bleeding time by KOK was much less than that by ASA, suggesting a beneficial potential of KOK than ASA in view of side effect. CONCLUSIONS These findings suggest that KOK elicits remarkable anti-platelet and anti-thrombotic effects with less side effect of bleeding, and therefore, it may have a therapeutic potential for the prevention of platelet-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Tae-Ho Kim
- College of Pharmacy, Ajou University, Suwon 443-749, Republic of Korea
| | - Kyoung Mee Lee
- R&D Center, Kwang Dong Pharmaceutical Co., Ltd., 621-1 Jangdang-dong, Pyongtaek-si, Kyonggi-do 459-020, Republic of Korea
| | - Nam Doo Hong
- R&D Center, Kwang Dong Pharmaceutical Co., Ltd., 621-1 Jangdang-dong, Pyongtaek-si, Kyonggi-do 459-020, Republic of Korea
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 443-749, Republic of Korea; College of Pharmacy, Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 443-749, Republic of Korea.
| |
Collapse
|
30
|
Single platelets seal neutrophil-induced vascular breaches via GPVI during immune-complex-mediated inflammation in mice. Blood 2015; 126:1017-26. [PMID: 26036804 DOI: 10.1182/blood-2014-12-617159] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/20/2015] [Indexed: 11/20/2022] Open
Abstract
Platelets protect vascular integrity during inflammation. Recent evidence suggests that this action is independent of thrombus formation and requires the engagement of glycoprotein VI (GPVI), but it remains unclear how platelets prevent inflammatory bleeding. We investigated whether platelets and GPVI act primarily by preventing detrimental effects of neutrophils using models of immune complex (IC)-mediated inflammation in mice immunodepleted in platelets and/or neutrophils or deficient in GPVI. Depletion of neutrophils prevented bleeding in thrombocytopenic and GPVI(-/-) mice during IC-mediated dermatitis. GPVI deficiency did not modify neutrophil recruitment, which was reduced by thrombocytopenia. Neutrophil cytotoxic activities were reduced in thrombocytopenic and GPVI(-/-) mice during IC-mediated inflammation. Intravital microscopy revealed that in this setting, intravascular binding sites for platelets were exposed by neutrophils, and GPVI supported the recruitment of individual platelets to these spots. Furthermore, the platelet secretory response accompanying IC-mediated inflammation was partly mediated by GPVI, and blocking of GPVI signaling impaired the vasculoprotective action of platelets. Together, our results show that GPVI plays a dual role in inflammation by enhancing neutrophil-damaging activities while supporting the activation and hemostatic adhesion of single platelets to neutrophil-induced vascular breaches.
Collapse
|
31
|
Feys HB, Coene J, Devloo R, Van Aelst B, Pottel H, Vandekerckhove P, Compernolle V. Persistent aggregates in apheresis platelet concentrates. Vox Sang 2015; 108:368-77. [DOI: 10.1111/vox.12243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 01/17/2023]
Affiliation(s)
- H. B. Feys
- Transfusion Research Center; Belgian Red Cross-Flanders; Ghent Belgium
| | - J. Coene
- Blood Service of the Belgian Red Cross-Flanders; Mechelen Belgium
| | - R. Devloo
- Transfusion Research Center; Belgian Red Cross-Flanders; Ghent Belgium
| | - B. Van Aelst
- Transfusion Research Center; Belgian Red Cross-Flanders; Ghent Belgium
| | - H. Pottel
- Department of Public Health and Primary Care; Catholic University of Leuven KULAK; Kortrijk Belgium
| | - P. Vandekerckhove
- Blood Service of the Belgian Red Cross-Flanders; Mechelen Belgium
- Department of Public Health and Primary Care; Catholic University of Leuven; Leuven Belgium
- Faculty of Medicine and Health Sciences; University of Ghent; Ghent Belgium
| | - V. Compernolle
- Transfusion Research Center; Belgian Red Cross-Flanders; Ghent Belgium
- Blood Service of the Belgian Red Cross-Flanders; Mechelen Belgium
- Faculty of Medicine and Health Sciences; University of Ghent; Ghent Belgium
| |
Collapse
|
32
|
Gros A, Ollivier V, Ho-Tin-Noé B. Platelets in inflammation: regulation of leukocyte activities and vascular repair. Front Immunol 2015; 5:678. [PMID: 25610439 PMCID: PMC4285099 DOI: 10.3389/fimmu.2014.00678] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/16/2014] [Indexed: 12/29/2022] Open
Abstract
There is now a large body of evidence that platelets are central actors of inflammatory reactions. Indeed, platelets play a significant role in a variety of inflammatory diseases. These diseases include conditions as varied as atherosclerosis, arthritis, dermatitis, glomerulonephritis, or acute lung injury. In this context, one can note that inflammation is a convenient but imprecise catch-all term that is used to cover a wide range of situations. Therefore, when discussing the role of platelets in inflammation, it is important to clearly define the pathophysiological context and the exact stage of the reaction. Inflammatory reactions are indeed multistep processes that can be either acute or chronic, and their sequence can vary greatly depending on the situation and organ concerned. Here, we focus on how platelets contribute to inflammatory reactions involving recruitment of neutrophils and/or macrophages. Specifically, we review past and recent data showing that platelets intervene at various stages of these reactions to regulate parameters such as endothelial permeability, the recruitment of neutrophils and macrophages and their effector functions, as well as inflammatory bleeding. The mechanisms underlying these various modulating effect of platelets are also discussed.
Collapse
Affiliation(s)
- Angèle Gros
- Université Paris Diderot, Sorbonne Paris Cité , Paris , France ; Unit 1148, Laboratory for Vascular Translational Science, INSERM , Paris , France
| | - Véronique Ollivier
- Université Paris Diderot, Sorbonne Paris Cité , Paris , France ; Unit 1148, Laboratory for Vascular Translational Science, INSERM , Paris , France
| | - Benoît Ho-Tin-Noé
- Université Paris Diderot, Sorbonne Paris Cité , Paris , France ; Unit 1148, Laboratory for Vascular Translational Science, INSERM , Paris , France
| |
Collapse
|
33
|
Mestres CA. Atrial thrombosis in advanced mitral stenosis with atrial fibrillation: what should we expect? J Thorac Cardiovasc Surg 2014; 148:1976-7. [PMID: 25262172 DOI: 10.1016/j.jtcvs.2014.08.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Carlos-A Mestres
- Cardiovascular and Thoracic Surgery, Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|