1
|
Kimura M, Fujiwara S, Kuroda H, Kanamori M, Kawamoto M. Choroid plexitis caused by Burkholderia cepacia complex after COVID-19. Int J Infect Dis 2024; 147:107201. [PMID: 39103011 DOI: 10.1016/j.ijid.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
Burkholderia cepacia complex (BCC) encompasses opportunistic pathogen with various clinical manifestations ranging from no symptoms to severe respiratory infections and septicemia. Central nervous system infections caused by BCC are rare. To the best of our knowledge, we present the first reported case of choroid plexitis caused by BCC after severe COVID-19. A 67-year-old woman who had been previously diagnosed with COVID-19 presented with a mild fever and headache. Gadolinium-enhanced T1-weighted brain magnetic resonance imaging showed contrast effects in the right choroid plexus and encapsulated abscess. Gram staining of cerebrospinal fluid revealed the presence of gram-negative rods. Broad-range polymerase chain reaction amplification of 16S ribosomal RNA from the cerebrospinal fluid, followed by sequence analysis, identified BCC; thus, choroid plexitis caused by BCC was diagnosed. After prolonged antimicrobial treatment with a multiantibiotic regimen, the patient recovered completely. This case highlights the importance of long-term therapy with a carefully selected multiantibiotic regimen to achieve complete recovery after BCC infection.
Collapse
Affiliation(s)
- Masamune Kimura
- Kobe City Medical Center General Hospital, Department of Neurology, Kobe, Japan; Kobe University Graduate School of Medicine, Division of Neurology, Kobe, Japan.
| | - Satoru Fujiwara
- Kobe City Medical Center General Hospital, Department of Neurology, Kobe, Japan
| | - Hirokazu Kuroda
- Kobe City Medical Center General Hospital, Department of Infectious Diseases, Kobe, Japan
| | - Maki Kanamori
- Kobe City Medical Center General Hospital, Department of General Internal Medicine, Kobe, Japan
| | - Michi Kawamoto
- Kobe City Medical Center General Hospital, Department of Neurology, Kobe, Japan
| |
Collapse
|
2
|
Nguyen QH, Nguyen CL, Nguyen TS, Do BN, Tran TTT, Le TTH, Bui TT, Le HS, Quyen DV, Hayer J, Bañuls AL, Bui TS. Genomic insights into an extensively drug-resistant and hypervirulent Burkholderia dolosa N149 isolate of a novel sequence type (ST2237) from a Vietnamese patient hospitalised for stroke. J Glob Antimicrob Resist 2024; 37:44-47. [PMID: 38408562 DOI: 10.1016/j.jgar.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
OBJECTIVES Burkholderia dolosa is a clinically important opportunistic pathogen in inpatients. Here we characterised an extensively drug-resistant and hypervirulent B. dolosa isolate from a patient hospitalised for stroke. METHODS Resistance to 41 antibiotics was tested with the agar disc diffusion, minimum inhibitory concentration, or broth microdilution method. The complete genome was assembled using short-reads and long-reads and the hybrid de novo assembly method. Allelic profiles obtained by multilocus sequence typing were analysed using the PubMLST database. Antibiotic-resistance and virulence genes were predicted in silico using public databases and the 'baargin' workflow. B. dolosa N149 phylogenetic relationships with all available B. dolosa strains and Burkholderia cepacia complex strains were analysed using the pangenome obtained with Roary. RESULTS B. dolosa N149 displayed extensive resistance to 31 antibiotics and intermediate resistance to 4 antibiotics. The complete genome included three circular chromosomes (6 338 630 bp in total) and one plasmid (167 591 bp). Genotypic analysis revealed various gene clusters (acr, amr, amp, emr, ade, bla and tet) associated with resistance to 35 antibiotic classes. The major intrinsic resistance mechanisms were multidrug efflux pump alterations, inactivation and reduced permeability of targeted antibiotics. Moreover, 91 virulence genes (encoding proteins involved in adherence, formation of capsule, biofilm and colony, motility, phagocytosis inhibition, secretion systems, protease secretion, transmission and quorum sensing) were identified. B. dolosa N149 was assigned to a novel sequence type (ST2237) and formed a mono-phylogenetic clade separated from other B. dolosa strains. CONCLUSIONS This study provided insights into the antimicrobial resistance and virulence mechanisms of B. dolosa.
Collapse
Affiliation(s)
- Quang Huy Nguyen
- LMI DRISA, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam.
| | - Cam Linh Nguyen
- LMI DRISA, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thai Son Nguyen
- LMI DRISA, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Bich Ngoc Do
- LMI DRISA, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi Thanh Tam Tran
- LMI DRISA, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi Thu Hang Le
- LMI DRISA, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thanh Thuyet Bui
- Department of Microbiology, 108 Military Central Hospital, Hanoi, Vietnam; Vietnamese-German Center for Medical Research, Hanoi, Vietnam
| | - Huu Song Le
- Department of Microbiology, 108 Military Central Hospital, Hanoi, Vietnam; Vietnamese-German Center for Medical Research, Hanoi, Vietnam
| | - Dong Van Quyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Juliette Hayer
- LMI DRISA, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam; UMR MIVEGEC (University of Montpellier- IRD-CNRS), Montpellier, France
| | - Anne-Laure Bañuls
- LMI DRISA, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam; UMR MIVEGEC (University of Montpellier- IRD-CNRS), Montpellier, France
| | - Tien Sy Bui
- Department of Microbiology, 108 Military Central Hospital, Hanoi, Vietnam; Vietnamese-German Center for Medical Research, Hanoi, Vietnam
| |
Collapse
|
3
|
Jia J, Lu SE. Comparative Genome Analyses Provide Insight into the Antimicrobial Activity of Endophytic Burkholderia. Microorganisms 2024; 12:100. [PMID: 38257926 PMCID: PMC10821513 DOI: 10.3390/microorganisms12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Endophytic bacteria are endosymbionts that colonize a portion of plants without harming the plant for at least a part of its life cycle. Bacterial endophytes play an essential role in promoting plant growth using multiple mechanisms. The genus Burkholderia is an important member among endophytes and encompasses bacterial species with high genetic versatility and adaptability. In this study, the endophytic characteristics of Burkholderia species are investigated via comparative genomic analyses of several endophytic Burkholderia strains with pathogenic Burkholderia strains. A group of bacterial genes was identified and predicted as the putative endophytic behavior genes of Burkholderia. Multiple antimicrobial biosynthesis genes were observed in these endophytic bacteria; however, certain important pathogenic and virulence genes were absent. The majority of resistome genes were distributed relatively evenly among the endophytic and pathogenic bacteria. All known types of secretion systems were found in the studied bacteria. This includes T3SS and T4SS, which were previously thought to be disproportionately represented in endophytes. Additionally, questionable CRISPR-Cas systems with an orphan CRISPR array were prevalent, suggesting that intact CRISPR-Cas systems may not exist in symbiotes of Burkholderia. This research not only sheds light on the antimicrobial activities that contribute to biocontrol but also expands our understanding of genomic variations in Burkholderia's endophytic and pathogenic bacteria.
Collapse
Affiliation(s)
| | - Shi-En Lu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA;
| |
Collapse
|
4
|
Bodilis J, Simenel O, Michalet S, Brothier E, Meyer T, Favre-Bonté S, Nazaret S. HME, NFE, and HAE-1 efflux pumps in Gram-negative bacteria: a comprehensive phylogenetic and ecological approach. ISME COMMUNICATIONS 2024; 4:ycad018. [PMID: 38371394 PMCID: PMC10872679 DOI: 10.1093/ismeco/ycad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 02/20/2024]
Abstract
The three primary resistance-nodulation-cell division (RND) efflux pump families (heavy metal efflux [HME], nodulation factor exporter [NFE], and hydrophobe/amphiphile efflux-1 [HAE-1]) are almost exclusively found in Gram-negative bacteria and play a major role in resistance against metals and bacterial biocides, including antibiotics. Despite their significant societal interest, their evolutionary history and environmental functions are poorly understood. Here, we conducted a comprehensive phylogenetic and ecological study of the RND permease, the subunit responsible for the substrate specificity of these efflux pumps. From 920 representative genomes of Gram-negative bacteria, we identified 6205 genes encoding RND permeases with an average of 6.7 genes per genome. The HME family, which is involved in metal resistance, corresponds to a single clade (21.8% of all RND pumps), but the HAE-1 and NFE families had overlapping distributions among clades. We propose to restrict the HAE-1 family to two phylogenetic sister clades, representing 41.8% of all RND pumps and grouping most of the RND pumps involved in multidrug resistance. Metadata associated with genomes, analyses of previously published metagenomes, and quantitative Polymerase Chain Reaction (qPCR) analyses confirmed a significant increase in genes encoding HME permeases in metal-contaminated environments. Interestingly, and possibly related to their role in root colonization, genes encoding HAE-1 permeases were particularly abundant in the rhizosphere. In addition, we found that the genes encoding these HAE-1 permeases are significantly less abundant in marine environments, whereas permeases of a new proposed HAE-4 family are predominant in the genomes of marine strains. These findings emphasize the critical role of the RND pumps in bacterial resistance and adaptation to diverse ecological niches.
Collapse
Affiliation(s)
- Josselin Bodilis
- Université Rouen Normandie, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan F-76821, France
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
| | - Olwen Simenel
- Université Rouen Normandie, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan F-76821, France
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
- Université Rouen Normandie, LMSM EA4312, Evreux F-27000, France
| | - Serge Michalet
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
| | - Elisabeth Brothier
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
| | - Thibault Meyer
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
| | - Sabine Favre-Bonté
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
| | - Sylvie Nazaret
- Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, Villeurbanne F-69622, France
| |
Collapse
|
5
|
Hassan SS, Shams R, Camps I, Basharat Z, Sohail S, Khan Y, Ullah A, Irfan M, Ali J, Bilal M, Morel CM. Subtractive sequence analysis aided druggable targets mining in Burkholderia cepacia complex and finding inhibitors through bioinformatics approach. Mol Divers 2023; 27:2823-2847. [PMID: 36567421 PMCID: PMC9790820 DOI: 10.1007/s11030-022-10584-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/05/2022] [Indexed: 12/27/2022]
Abstract
Burkholderia cepacia complex (BCC) is a group of gram-negative bacteria composed of at least 20 different species that cause diseases in plants, animals as well as humans (cystic fibrosis and airway infection). Here, we analyzed the proteomic data of 47 BCC strains by classifying them in three groups. Phylogenetic analyses were performed followed by individual core region identification for each group. Comparative analysis of the three individual core protein fractions resulted in 1766 ortholog/proteins. Non-human homologous proteins from the core region gave 1680 proteins. Essential protein analyses reduced the target list to 37 proteins, which were further compared to a closely related out-group, Burkholderia gladioli ATCC 10,248 strain, resulting in 21 proteins. 3D structure modeling, validation, and druggability step gave six targets that were subjected to further target prioritization parameters which ultimately resulted in two BCC targets. A library of 12,000 ZINC drug-like compounds was screened, where only the top hits were selected for docking orientations. These included ZINC01405842 (against Chorismate synthase aroC) and ZINC06055530 (against Bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/Glucosamine-1-phosphate acetyltransferase glmU). Finally, dynamics simulation (200 ns) was performed for each ligand-receptor complex, followed by ADMET profiling. Of these targets, details of their applicability as drug targets have not yet been elucidated experimentally, hence making our predictions novel and it is suggested that further wet-lab experimentations should be conducted to test the identified BCC targets and ZINC scaffolds to inhibit them.
Collapse
Affiliation(s)
- Syed Shah Hassan
- Jamil–ur–Rehman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270 Pakistan
- Centre for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Building “Expansão”, 8th Floor Room 814, Av. Brasil 4036, Manguinhos, Rio de Janeiro, RJ 21040-361 Brazil
- Department of Chemistry, Islamia College Peshawar, Peshawar, 25000 KP Pakistan
| | - Rida Shams
- Department of Chemistry, Islamia College Peshawar, Peshawar, 25000 KP Pakistan
| | - Ihosvany Camps
- Laboratório de Modelagem Computacional—LaModel, Instituto de Ciências Exatas—ICEx. Universidade Federal de Alfenas—UNIFAL-MG, Alfenas, Minas Gerais Brazil
- High Performance & Quantum Computing Labs, Waterloo, Canada
| | - Zarrin Basharat
- Jamil–ur–Rehman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270 Pakistan
| | - Saman Sohail
- Department of Chemistry, Islamia College Peshawar, Peshawar, 25000 KP Pakistan
| | - Yasmin Khan
- Jamil–ur–Rehman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270 Pakistan
| | - Asad Ullah
- Department of Chemistry, Islamia College Peshawar, Peshawar, 25000 KP Pakistan
| | - Muhammad Irfan
- Jamil–ur–Rehman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270 Pakistan
| | - Javed Ali
- Department of Chemistry, Kohat University of Science & Technology–KUST, Kohat, KP Pakistan
| | - Muhammad Bilal
- Department of Chemistry, Kohat University of Science & Technology–KUST, Kohat, KP Pakistan
| | - Carlos M. Morel
- Centre for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Building “Expansão”, 8th Floor Room 814, Av. Brasil 4036, Manguinhos, Rio de Janeiro, RJ 21040-361 Brazil
| |
Collapse
|
6
|
Karthikeyan R, Agri H, Yadav A, Jayakumar V, Kiranmayee B, Karikalan M, Chandra M, Lyngdoh V, Ghatak S, Sinha DK, Singh BR. A study on the occurrence of Burkholderia cepacia complex in ultrasound gels used in different veterinary clinical settings in India. Vet Res Commun 2023; 47:1413-1425. [PMID: 36914918 DOI: 10.1007/s11259-023-10091-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/26/2023] [Indexed: 03/14/2023]
Abstract
Burkholderia cepacia complex (Bcc) organisms are emerging multidrug-resistant pathogens. They are opportunistic and cause severe diseases in humans that may result in fatal outcomes. They are mainly reported as nosocomial pathogens, and transmission often occurs through contaminated pharmaceutical products. From 1993 to 2019, 14 Bcc outbreaks caused by contaminated ultrasound gels (USGs) have been reported in several countries, including India. We screened a total of 63 samples of USGs from various veterinary and human clinical care centers across 17 states of India and isolated 32 Bcc strains of Burkholderia cenocepacia (46.8%), B. cepacia (31.3%), B. pseudomultivorans (18.8%) and B. contaminans (3.1%) species. Some isolates were co-existent in a single ultrasound gel sample. The isolation from unopened gel bottles revealed the intrinsic contamination from manufacturing sites. The MALDI-TOF analysis to identify the Bcc at the species level was supported by the partial sequencing of the recA gene for accurate species identification. The phylogenetic analysis revealed that isolates shared clades with human clinical isolates, which is an important situation because of the possible infections of Bcc by USGs both in humans and animals. The pulsed field gel electrophoresis (PFGE) typing identified the genetic variation among the Bcc isolates present in the USGs. The findings indicated USGs as the potential source of Bcc species.
Collapse
Affiliation(s)
- Ravichandran Karthikeyan
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Himani Agri
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Akanksha Yadav
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Varsha Jayakumar
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Bhimavarapu Kiranmayee
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Mathesh Karikalan
- Center for wildlife Conservation Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Mudit Chandra
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Vanita Lyngdoh
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - Sandeep Ghatak
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - Dharmendra K Sinha
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Bhoj R Singh
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India.
| |
Collapse
|
7
|
Sun S, Wang M, Xiang J, Shao Y, Li L, Sedjoah RCAA, Wu G, Zhou J, Xin Z. BON domain-containing protein-mediated co-selection of antibiotic and heavy metal resistance in bacteria. Int J Biol Macromol 2023; 238:124062. [PMID: 36933600 DOI: 10.1016/j.ijbiomac.2023.124062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
The widespread antibiotic resistance of bacteria has become one of the most severe threats to public health. However, the mechanisms that allow microbial acquisition of resistance are still poorly understood. In the present study, a novel BON domain-containing protein was heterologously expressed in Escherichia coli. It functions as an efflux pump-like to confer resistance to various antibiotics, especially for ceftazidime, with a >32-fold increase in minimum inhibitory concentration (MIC). The fluorescence spectroscopy experiment indicated that BON protein could interact with several metal ions, such as copper and silver, which has been associated with the induced co-regulation of antibiotic and heavy metal resistance in bacteria. Furthermore, the BON protein was demonstrated to spontaneously self-assemble into a trimer and generate a central pore-like architecture for antibiotic transporting. A WXG motif as a molecular switch is essential for forming the transmembrane oligomeric pores and controls the interaction between BON protein and cell membrane. Based on these findings, a mechanism termed "one-in, one-out", was proposed for the first time. The present study provides new insights into the structure and function of BON protein and a previously unidentified antibiotic resistance mechanism, filling the knowledge gap in understanding BON protein-mediated intrinsic antibiotic resistance.
Collapse
Affiliation(s)
- Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mengxi Wang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiahui Xiang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuting Shao
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Longxiang Li
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Rita-Cindy Aye-Ayire Sedjoah
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guojun Wu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jingjie Zhou
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
8
|
Wu PH, Chen CH, Hsih WH, Chou CH, Chi CY, Ho MW, Lin YT, Lin HH, Tseng KH, Hsueh PR. Emergence of meropenem and levofloxacin resistance in Burkholderia pseudomallei in Taiwan. J Infect 2023; 86:e161-e163. [PMID: 37003522 PMCID: PMC10105584 DOI: 10.1016/j.jinf.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023]
Affiliation(s)
- Pin-Han Wu
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hao Chen
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Hsin Hsih
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Huei Chou
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yu Chi
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Mao-Wang Ho
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Tzu Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Hsiu-Hsien Lin
- Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
| | - Kun-Hao Tseng
- Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
| | - Po-Ren Hsueh
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
9
|
Saroha T, Patil PP, Rana R, Kumar R, Kumar S, Singhal L, Gautam V, Patil PB. Genomic features, antimicrobial susceptibility, and epidemiological insights into Burkholderia cenocepacia clonal complex 31 isolates from bloodstream infections in India. Front Cell Infect Microbiol 2023; 13:1151594. [PMID: 37153161 PMCID: PMC10155701 DOI: 10.3389/fcimb.2023.1151594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Burkholderia cepacia complex (Bcc) clonal complex (CC) 31, the predominant lineage causing devastating outbreaks globally, has been a growing concern of infections in non-cystic fibrosis (NCF) patients in India. B. cenocepacia is very challenging to treat owing to its virulence determinants and antibiotic resistance. Improving the management of these infections requires a better knowledge of their resistance patterns and mechanisms. Methods Whole-genome sequences of 35 CC31 isolates obtained from patient samples, were analyzed against available 210 CC31 genomes in the NCBI database to glean details of resistance, virulence, mobile elements, and phylogenetic markers to study genomic diversity and evolution of CC31 lineage in India. Results Genomic analysis revealed that 35 isolates belonging to CC31 were categorized into 11 sequence types (ST), of which five STs were reported exclusively from India. Phylogenetic analysis classified 245 CC31 isolates into eight distinct clades (I-VIII) and unveiled that NCF isolates are evolving independently from the global cystic fibrosis (CF) isolates forming a distinct clade. The detection rate of seven classes of antibiotic-related genes in 35 isolates was 35 (100%) for tetracyclines, aminoglycosides, and fluoroquinolones; 26 (74.2%) for sulphonamides and phenicols; 7 (20%) for beta-lactamases; and 1 (2.8%) for trimethoprim resistance genes. Additionally, 3 (8.5%) NCF isolates were resistant to disinfecting agents and antiseptics. Antimicrobial susceptibility testing revealed that majority of NCF isolates were resistant to chloramphenicol (77%) and levofloxacin (34%). NCF isolates have a comparable number of virulence genes to CF isolates. A well-studied pathogenicity island of B. cenocepacia, GI11 is present in ST628 and ST709 isolates from the Indian Bcc population. In contrast, genomic island GI15 (highly similar to the island found in B. pseudomallei strain EY1) is exclusively reported in ST839 and ST824 isolates from two different locations in India. Horizontal acquisition of lytic phage ST79 of pathogenic B. pseudomallei is demonstrated in ST628 isolates Bcc1463, Bcc29163, and BccR4654 amongst CC31 lineage. Discussion The study reveals a high diversity of CC31 lineages among B. cenocepacia isolates from India. The extensive information from this study will facilitate the development of rapid diagnostic and novel therapeutic approaches to manage B. cenocepacia infections.
Collapse
Affiliation(s)
- Tanu Saroha
- Bacterial Genomics and Evolution Laboratory, Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prashant P. Patil
- Bacterial Genomics and Evolution Laboratory, Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
| | - Rekha Rana
- Bacterial Genomics and Evolution Laboratory, Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Kumar
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjeet Kumar
- Bacterial Genomics and Evolution Laboratory, Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
| | - Lipika Singhal
- Department of Microbiology, Government Medical College and Hospital, Chandigarh, India
| | - Vikas Gautam
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
- *Correspondence: Prabhu B. Patil, ; Vikas Gautam,
| | - Prabhu B. Patil
- Bacterial Genomics and Evolution Laboratory, Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
- *Correspondence: Prabhu B. Patil, ; Vikas Gautam,
| |
Collapse
|
10
|
Rattanapanadda P, Kuo HC, Chang SK, Tell LA, Shia WY, Chou CC. Effect of Carbonyl Cyanide Chlorophenylhydrazone on Intrabacterial Concentration and Antimicrobial Activity of Amphenicols against Swine Resistant Actinobacillus pleuropneumoniae and Pasteurella multocida. Vet Res Commun 2022; 46:903-916. [PMID: 35322371 DOI: 10.1007/s11259-022-09917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/15/2022] [Indexed: 12/13/2022]
Abstract
Effects and mechanism of carbonyl cyanide chlorophenylhydrazone (CCCP) on antimicrobial activity of florfenicol (FF) and thiamphenicol (TAP) were investigated against amphenicol-resistant Actinobacillus pleuropneumoniae and Pasteurella multocida isolated from diseased swine. Broth microdilution and time-kill assays indicated that CCCP dose-dependently and substantially (4-32 fold MIC reduction) improved amphenicol antimicrobial activity. When combined with CCCP at the lowest literature reported dose (2-5 μg/mL), 85% FF resistant A. pleuropneumoniae and 92% resistant P. multocida showed significantly reduced FF MICs (≥ 4-fold). In contrast, none or few of the susceptible A. pleuropneumoniae and P. multocida had FF MICs reduction ≥ 4-fold. 90% FF resistant A. pleuropneumoniae and 96% resistant P. multocida carried the floR gene, indicating strong association with the FloR efflux pump. With CCCP, the intracellular FF concentration increased by 71% in floR+ resistant A. pleuropneumoniae and 156% in floR+ resistant P. multocida strains but not the susceptible strains. The degree of reduction in TAP MICs was found consistently in parallel to FF for both bacteria. Taken together, partially attributed to blockage of drug-efflux, the combination of FF or TAP with CCCP at sub-cytotoxic concentrations was demonstrated and showed feasibility to combat amphenicol-resistant A. pleuropneumoniae and P. multocida isolated from diseased swine.
Collapse
Affiliation(s)
- Porjai Rattanapanadda
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, 402.,Department of Livestock Development, Ministry of Agriculture and Cooperatives, Bangkok, 10400, Thailand
| | - Hung-Chih Kuo
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan, 600
| | - Shao-Kuang Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, 106
| | - Lisa Ann Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Wei-Yau Shia
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, 402
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, 402.
| |
Collapse
|
11
|
Evaluation of Antimicrobial Susceptibility Testing Methods for Burkholderia cenocepacia and Burkholderia multivorans Isolates from Cystic Fibrosis Patients. J Clin Microbiol 2021; 59:e0144721. [PMID: 34524889 DOI: 10.1128/jcm.01447-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Burkholderia cepacia complex (BCC) is known for causing serious lung infections in people with cystic fibrosis (CF). These infections can require lung transplantation, eligibility for which may be guided by antimicrobial susceptibility testing (AST). While the Clinical and Laboratory Standards Institute recommends AST for BCC, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) does not, due to poor method performance and correlation with clinical outcomes. Furthermore, limited data exist on the performance of automated AST methods for BCC. To address these issues, reproducibility and accuracy were evaluated for disk diffusion (DD), broth microdilution (BMD), and MicroScan WalkAway using 50 B. cenocepacia and 50 B. multivorans isolates collected from people with CF. The following drugs were evaluated in triplicate: chloramphenicol (CAM), ceftazidime (CAZ), meropenem (MEM), trimethoprim-sulfamethoxazole (TMP-SMX), minocycline (MIN), levofloxacin (LVX), ciprofloxacin (CIP), and piperacillin-tazobactam (PIP-TAZ). BMD reproducibility was ≥ 95% for MEM and MIN only, and MicroScan WalkAway reproducibility was similar to BMD. DD reproducibility was < 90% for all drugs tested when a 3 mm cut-off was applied. When comparing the accuracy of DD to BMD, only MEM met all acceptance criteria. TMP-SMX and LVX had high minor errors, CAZ had unacceptable very major errors (VME), and MIN, PIP-TAZ, and CIP had both unacceptable minor errors and VMEs. For MicroScan WalkAway, no drugs met acceptance criteria. Analyses also showed that errors were not attributed to one species. In general, our data agree with EUCAST recommendations.
Collapse
|
12
|
Comparative analysis of different methods used for molecular characterization of Burkholderia cepacia complex isolated from noncystic fibrosis conditions. Indian J Med Microbiol 2021; 40:74-80. [PMID: 34674874 DOI: 10.1016/j.ijmmb.2021.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/18/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022]
Abstract
PURPOSE Burkholderia is a Gram-negative opportunistic bacterium capable of causing severe nosocomial infections. The aim of this study was to characterize Burkholderia cepacia complex and to compare different molecular methods used in its characterization. METHODS In this study, 45 isolates of Burkholderia cepacia complex (Bcc) isolated from clinical cases were subjected to RAPD (Random amplified polymorphic DNA), recA-RFLP (Restriction fragment length polymorphism), 16SrDNA-RFLP, whole-cell protein analysis, recA DNA sequencing and biofilm assay. RESULTS Of the 45 isolates tested, 97.7% were sensitive to ceftazidime, 82.2% were sensitive to Cotrimoxazole, 73.3% were sensitive to meropenem, 55.5% were sensitive to minocycline and 42.2% were sensitive to levofloxacin. Majority of the isolates harbored all the tested virulence genes except bpeA and cblA. The RAPD generated 11 groups (R1-R11), recA-RFLP 10 groups (A1-A10), 16SrRNA-RFLP 5 groups (S1-S5) and SDS-PAGE (Sodium Dodecyl Sulphate-Polyacrylamide gel electrophoresis) whole cell protein analysis revealed 12 groups (C1-C12). recA sequencing revealed that most of the isolates belonging to the genomovar III Burkholderia cenocepacia. Though all the methods are found to be efficient in differentiating Burkholderia spp., recA-RFLP was highly discriminatory at 96% similarity value. The study also identified a new strain Burkholderia pseudomultivorans for the first time in the country. Further, recA sequencing could identify the strains to species level. Majority of the multidrug-resistant strains also showed moderate to strong biofilm-forming ability, which further contributes to the virulence characteristics of the pathogens. CONCLUSIONS The study highlights the importance of combination of molecular methods to characterize Burkholderia cepacia complex. Molecular typing of these human pathogens yields important information for the clinicians in order to initiate the most appropriate therapy in the case of severe infections and to implement preventive measures for the effective control of transmission of Burkholderia spp.
Collapse
|
13
|
Conservation of Resistance-Nodulation-Cell Division Efflux Pump-Mediated Antibiotic Resistance in Burkholderia cepacia Complex and Burkholderia pseudomallei Complex Species. Antimicrob Agents Chemother 2021; 65:e0092021. [PMID: 34181473 DOI: 10.1128/aac.00920-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) and Burkholderia pseudomallei complex (Bpc) species include pathogens that are typically multidrug resistant. Dominant intrinsic and acquired multidrug resistance mechanisms are efflux mediated by pumps of the resistance-nodulation-cell division (RND) family. From comparative bioinformatic and, in many instances, functional studies, we infer that RND pump-based resistance mechanisms are conserved in Burkholderia. We propose to use these findings as a foundation for adoption of a uniform RND efflux pump nomenclature.
Collapse
|
14
|
Yang TY, Kao HY, Lu PL, Chen PY, Wang SC, Wang LC, Hsieh YJ, Tseng SP. Evaluation of the Organotellurium Compound AS101 for Treating Colistin- and Carbapenem-Resistant Klebsiella pneumoniae. Pharmaceuticals (Basel) 2021; 14:ph14080795. [PMID: 34451891 PMCID: PMC8400984 DOI: 10.3390/ph14080795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 01/21/2023] Open
Abstract
Colistin- and carbapenem-resistant Enterobacteriaceae cases are increasing at alarming rates worldwide. Drug repurposing is receiving greater attention as an alternative approach in light of economic and technical barriers in antibiotics research. The immunomodulation agent ammonium trichloro(dioxoethylene-O,O’-)tellurate (AS101) was repurposed as an antimicrobial agent against colistin- and carbapenem-resistant Klebsiella pneumoniae (CRKP). 134 CRKP isolates were collected between 2012 and 2015 in Taiwan. The in vitro antibacterial activities of AS101 was observed through broth microdilution, time-kill assay, and electron microscopy. Pharmaceutical manipulation and RNA microarray were applied to investigate these antimicrobial mechanisms. Caenorhabditis elegans, a nematode animal model, and the Institute for Cancer Research (ICR) mouse model was employed for the evaluation of in vivo efficacy. The in vitro antibacterial results were found for AS101 against colistin- and CRKP isolates, with minimum inhibitory concentration (MIC) values ranging from <0.5 to 32 μg/mL. ROS-mediated antibacterial activity eliminated 99.9% of bacteria within 2–4 h. AS101 also extended the median survival time in a C. elegans animal model infected with a colistin-resistant CRKP isolate and rescued lethally infected animals in a separate mouse model of mono-bacterial sepsis by eliminating bacterial organ loads. These findings support the use of AS101 as an antimicrobial agent for addressing the colistin and carbapenem resistance crisis.
Collapse
Affiliation(s)
- Tsung-Ying Yang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-Y.Y.); (P.-Y.C.); (S.-C.W.)
| | - Hao-Yun Kao
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Po-Liang Lu
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pei-Yu Chen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-Y.Y.); (P.-Y.C.); (S.-C.W.)
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-Y.Y.); (P.-Y.C.); (S.-C.W.)
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Liang-Chun Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Ya-Ju Hsieh
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: (Y.-J.H.); (S.-P.T.); Tel.: +886-7-312-1101 (ext. 2350) (Y.-J.H.); +886-7-312-1101 (ext. 2356-22) (S.-P.T.)
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-Y.Y.); (P.-Y.C.); (S.-C.W.)
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 900391, Taiwan
- Correspondence: (Y.-J.H.); (S.-P.T.); Tel.: +886-7-312-1101 (ext. 2350) (Y.-J.H.); +886-7-312-1101 (ext. 2356-22) (S.-P.T.)
| |
Collapse
|
15
|
Sanz-García F, Gil-Gil T, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S. Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. Int J Mol Sci 2021; 22:8080. [PMID: 34360847 PMCID: PMC8347278 DOI: 10.3390/ijms22158080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view.
Collapse
Affiliation(s)
| | | | | | | | - José L. Martínez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (F.S.-G.); (T.G.-G.); (P.L.); (L.E.O.-S.); (S.H.-A.)
| | | |
Collapse
|
16
|
Scoffone VC, Trespidi G, Barbieri G, Irudal S, Perrin E, Buroni S. Role of RND Efflux Pumps in Drug Resistance of Cystic Fibrosis Pathogens. Antibiotics (Basel) 2021; 10:863. [PMID: 34356783 PMCID: PMC8300704 DOI: 10.3390/antibiotics10070863] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 01/21/2023] Open
Abstract
Drug resistance represents a great concern among people with cystic fibrosis (CF), due to the recurrent and prolonged antibiotic therapy they should often undergo. Among Multi Drug Resistance (MDR) determinants, Resistance-Nodulation-cell Division (RND) efflux pumps have been reported as the main contributors, due to their ability to extrude a wide variety of molecules out of the bacterial cell. In this review, we summarize the principal RND efflux pump families described in CF pathogens, focusing on the main Gram-negative bacterial species (Pseudomonas aeruginosa, Burkholderia cenocepacia, Achromobacter xylosoxidans, Stenotrophomonas maltophilia) for which a predominant role of RND pumps has been associated to MDR phenotypes.
Collapse
Affiliation(s)
- Viola Camilla Scoffone
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Gabriele Trespidi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Giulia Barbieri
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Samuele Irudal
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Elena Perrin
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| |
Collapse
|
17
|
Lauman P, Dennis JJ. Advances in Phage Therapy: Targeting the Burkholderia cepacia Complex. Viruses 2021; 13:1331. [PMID: 34372537 PMCID: PMC8310193 DOI: 10.3390/v13071331] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 01/16/2023] Open
Abstract
The increasing prevalence and worldwide distribution of multidrug-resistant bacterial pathogens is an imminent danger to public health and threatens virtually all aspects of modern medicine. Particularly concerning, yet insufficiently addressed, are the members of the Burkholderia cepacia complex (Bcc), a group of at least twenty opportunistic, hospital-transmitted, and notoriously drug-resistant species, which infect and cause morbidity in patients who are immunocompromised and those afflicted with chronic illnesses, including cystic fibrosis (CF) and chronic granulomatous disease (CGD). One potential solution to the antimicrobial resistance crisis is phage therapy-the use of phages for the treatment of bacterial infections. Although phage therapy has a long and somewhat checkered history, an impressive volume of modern research has been amassed in the past decades to show that when applied through specific, scientifically supported treatment strategies, phage therapy is highly efficacious and is a promising avenue against drug-resistant and difficult-to-treat pathogens, such as the Bcc. In this review, we discuss the clinical significance of the Bcc, the advantages of phage therapy, and the theoretical and clinical advancements made in phage therapy in general over the past decades, and apply these concepts specifically to the nascent, but growing and rapidly developing, field of Bcc phage therapy.
Collapse
Affiliation(s)
| | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| |
Collapse
|
18
|
Mamishi S, Shalchi Z, Mahmoudi S, Hosseinpour Sadeghi R, Haghi Ashtiani MT, Pourakbari B. Antimicrobial Resistance and Genotyping of Bacteria Isolated from Urinary Tract Infection in Children in an Iranian Referral Hospital. Infect Drug Resist 2020; 13:3317-3323. [PMID: 33061479 PMCID: PMC7535122 DOI: 10.2147/idr.s260359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/28/2020] [Indexed: 01/31/2023] Open
Abstract
Introduction Urinary tract infection (UTI) is one of the most common bacterial infections in childhood, and the increasing rate of antibiotic resistance to the commonly prescribed antimicrobial agents against it has become a major concern. The aim of this study was to determine the antibiotic resistance and genotyping of bacteria isolated from urine cultures in patients referred to the Children’s Medical Center, Tehran, Iran. Methods During the 1-year period, antimicrobial susceptibility profiles of strains isolated from patients with UTI were determined. Typing of the isolates causing nosocomial infections was performed by random amplified polymorphic DNA (RAPD) analysis, and the results were analyzed by Gelcompar II software. Results In this study, 203 children (130 girls and 73 boys) were included. The patients’ age ranged from 1 day to 16 years (IQR average=4 months to 4 years). The most frequent isolated organisms were Escherichia coli (118 isolates, 58%), followed by Klebsiella pneumoniae (30 isolates, 15%). Sixty-two strains (18 strains of E. coli, 13 strains of K. pneumoniae, 11 strains of Enterococcus faecium, and five strains of Burkholderia cepacia complex) had criteria of nosocomial infection. A high resistance rate to trimethoprim-sulfamethoxazole (69%) and cefotaxime (60%) was reported in E. coli and K. pneumoniae strains, respectively. Pseudomonas aeruginosa strains showed high sensitivity to amikacin (100%). All E. faecium strains were susceptible to trimethoprim-sulfamethoxazole (100%), and 23% of the strains were resistant to vancomycin. The analysis of RAPD-typing revealed the presence of three clusters in E. coli, two clusters in E. faecium, and one clone in K. pneumoniae. Besides, four out of five isolates of B. cepacia complex had more than 90% genetic similarity. Conclusion The most frequent isolated pathogen was E. coli, and an increasing rate of antibiotic resistance to the commonly prescribed antimicrobial agents such as trimethoprim/sulfamethoxazole and cephalosporins was observed. Moreover, the results of this study showed the presence of clones with ≥80% similarity in E. coli, K. pneumoniae, E. faecium, and B. cepacia complex isolates; therefore, the transmission of nosocomial infections from one patient to another or one ward to another is probable.
Collapse
Affiliation(s)
- Setareh Mamishi
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Shalchi
- Department of Pediatrics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shima Mahmoudi
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Babak Pourakbari
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Ye L, Meng F, Mao X, Zhang Y, Wang J, Liu Y, Zhu W, Gu B, Huang Q. Using next-generation sequencing to analyze Helicobacter pylori clones with different levofloxacin resistances from a patient with eradication failure. Medicine (Baltimore) 2020; 99:e20761. [PMID: 32769862 PMCID: PMC7593070 DOI: 10.1097/md.0000000000020761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The regimens containing levofloxacin (LVX) have been recommended as an alternate to standard triple therapy to treat Helicobacter pylori infections and H pylori mixed infection always lead to H pylori chronic infection. Although the molecular mechanism of LVX resistance with gyrA gene mutation has been clearly understood in H pylori, other genes involved in antibiotic resistance remain unclear. Efflux pump plays an important role in clinically relevant multidrug resistance. Furthermore, the relationship between the strains with different LVX level-resistances from individuals is also unknown.Helicobacter pylori monoclonal strains were isolated from patients with eradication failure. E test was used to detect the minimal inhibitory concentration of LVX. One lower-level LVX-resistant clone and 2 higher-level LVX-resistant clones from the same patient were selected to sequence the complete genomes. Single-nucleotide variants (SNVs) and mutations were extracted and analyzed from gryA and resistance-nodulation-division family efflux genes.Two clones with higher-level resistance had the mutation pattern of Asn87Lys and one lower-level LVX-resistant clone had an Asp91Asn mutation. Compared to clones with higher-level resistance, the higher genetic variations were found in genes belonging to the resistance-nodulation-division family in H pylori strains with lower-level resistance to LVX. There were significantly more SNVs of Hp0970 (hefE) and Hp1329 (hefI) in the lower-level LVX-resistant clone than those in the higher-level LVX-resistant clones (P = .044).The mutation pattern of the Asn87Lys of the gyrA gene confers a higher resistance to LVX than that of the Asp91Asn in H pylori. Increase in the number of SNVs of the Hp0970 (hefE) and Hp1329 (hefI) genes change the resistance to LVX. Twelve mutations verified by Sanger sequencing in Hp0970 (hefE) and Hp1329 (hefI) may decrease resistant levels to LVX.
Collapse
Affiliation(s)
- Liping Ye
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province
- Department of Gastroenterology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou
| | - Fei Meng
- Department of Research Service, Zhiyuan Inspection Medical Institute, Hangzhou, Zhejiang, China
| | - Xinli Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province
| | - Yu Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province
| | - Jun Wang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province
| | - Yunhui Liu
- Department of Research Service, Zhiyuan Inspection Medical Institute, Hangzhou, Zhejiang, China
| | - Wei Zhu
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province
| | - Binbin Gu
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province
| | - Qin Huang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province
| |
Collapse
|
20
|
Gautam V, Kumar S, Patil PP, Meletiadis J, Patil PB, Mouton JW, Sharma M, Daswal A, Singhal L, Ray P, Singh M. Exploring the Interplay of Resistance Nodulation Division Efflux Pumps, AmpC and OprD in Antimicrobial Resistance of Burkholderia cepacia Complex in Clinical Isolates. Microb Drug Resist 2020; 26:1144-1152. [PMID: 32354297 DOI: 10.1089/mdr.2019.0102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aim: This study aimed at investigating the association of gene expression of multidrug efflux pumps (MexA, MexC, MexE, and MexX), the outer membrane porin OprD, and the β-lactamase AmpC with the antimicrobial susceptibility among 44 clinical isolates of Burkholderia cepacia complex (Bcc). Results: Increased expression of ampC gene showed significant association with reduced susceptibility to chloramphenicol. In fact, reduced susceptibility to chloramphenicol was correlated with overexpression of most genes (ampC, mexC, mexE, and mexX) studied here in majority (>95%) of the Bcc isolates. Increased mexA expression showed significant association with reduced susceptibility to β-lactam antimicrobials (ceftazidime, piperacillin-tazobactam, and meropenem) and co-trimoxazole. Reduced susceptibility to meropenem also showed significant correlation with overexpression of mexC and mexX, whereas reduced susceptibility to ceftazidime was also associated with mexE overexpression. Reduced susceptibility to levofloxacin was significantly associated with overexpression of mexX. The involvement of the efflux pumps in levofloxacin and ceftazidime resistance was further inferred from the finding that the efflux pump inhibitor, carbonyl cyanide m-chlorophenylhydrazone reduced minimum inhibitory concentrations for both the antimicrobials. Conclusions: To conclude, this study explored the high-level expression of mexC, mexE, and mexX efflux pumps genes and ampC in the clinical isolates of Bcc, which can be targeted at treating infections caused by Bcc.
Collapse
Affiliation(s)
- Vikas Gautam
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Kumar
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prashant P Patil
- Laboratory of Bacterial Genomics and Evolution, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Prabhu B Patil
- Laboratory of Bacterial Genomics and Evolution, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Johan W Mouton
- Department of Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Megha Sharma
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anmol Daswal
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Lipika Singhal
- Department of Microbiology, Government Medical College and Hospital, Chandigarh, India
| | - Pallab Ray
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Meenu Singh
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
21
|
Ganesh PS, Vishnupriya S, Vadivelu J, Mariappan V, Vellasamy KM, Shankar EM. Intracellular survival and innate immune evasion of Burkholderia cepacia: Improved understanding of quorum sensing-controlled virulence factors, biofilm, and inhibitors. Microbiol Immunol 2020; 64:87-98. [PMID: 31769530 DOI: 10.1111/1348-0421.12762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 12/25/2022]
Abstract
Burkholderia cepacia complex (Bcc) are opportunistic pathogens implicated with nosocomial infections, and high rates of morbidity and mortality, especially in individuals with cystic fibrosis (CF). B. cepacia are naturally resistant to different classes of antibiotics, and can subvert the host innate immune responses by producing quorum sensing (QS) controlled virulence factors and biofilms. It still remains a conundrum as to how exactly the bacterium survives the intracellular environment within the host cells of CF patients and immunocompromised individuals although the bacterium can invade human lung epithelial cells, neutrophils, and murine macrophages. The mechanisms associated with intracellular survival in the airway epithelial cells and the role of QS and virulence factors in B. cepacia infections in cystic fibrosis remain largely unclear. The current review focuses on understanding the role of QS-controlled virulence factors and biofilms, and provides additional impetus to understanding the potentials of QS-inhibitory strategies against B. cepacia.
Collapse
Affiliation(s)
- Pitchaipillai Sankar Ganesh
- Division of Infection Biology & Medical Microbiology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Sivakumar Vishnupriya
- Division of Infection Biology & Medical Microbiology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vanitha Mariappan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kumutha M Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Esaki M Shankar
- Division of Infection Biology & Medical Microbiology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
22
|
Seth-Smith HMB, Casanova C, Sommerstein R, Meinel DM, Abdelbary MMH, Blanc DS, Droz S, Führer U, Lienhard R, Lang C, Dubuis O, Schlegel M, Widmer A, Keller PM, Marschall J, Egli A. Phenotypic and Genomic Analyses of Burkholderia stabilis Clinical Contamination, Switzerland. Emerg Infect Dis 2020; 25:1084-1092. [PMID: 31107229 PMCID: PMC6537712 DOI: 10.3201/eid2506.172119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A recent hospital outbreak related to premoistened gloves used to wash patients exposed the difficulties of defining Burkholderia species in clinical settings. The outbreak strain displayed key B. stabilis phenotypes, including the inability to grow at 42°C; we used whole-genome sequencing to confirm the pathogen was B. stabilis. The outbreak strain genome comprises 3 chromosomes and a plasmid, sharing an average nucleotide identity of 98.4% with B. stabilis ATCC27515 BAA-67, but with 13% novel coding sequences. The genome lacks identifiable virulence factors and has no apparent increase in encoded antimicrobial drug resistance, few insertion sequences, and few pseudogenes, suggesting this outbreak was an opportunistic infection by an environmental strain not adapted to human pathogenicity. The diversity among outbreak isolates (22 from patients and 16 from washing gloves) is only 6 single-nucleotide polymorphisms, although the genome remains plastic, with large elements stochastically lost from outbreak isolates.
Collapse
|
23
|
Seth-Smith HM, Casanova C, Sommerstein R, Meinel DM, Abdelbary MM, Blanc DS, Droz S, Führer U, Lienhard R, Lang C, Dubuis O, Schlegel M, Widmer A, Keller PM, Marschall J, Egli A. Phenotypic and Genomic Analyses of Burkholderia stabilisClinical Contamination, Switzerland. Emerg Infect Dis 2019. [DOI: 10.3201/eid2406.172119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
24
|
Devanga Ragupathi NK, Veeraraghavan B. Accurate identification and epidemiological characterization of Burkholderia cepacia complex: an update. Ann Clin Microbiol Antimicrob 2019; 18:7. [PMID: 30717798 PMCID: PMC6360774 DOI: 10.1186/s12941-019-0306-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria belonging to the Burkholderia cepacia complex (Bcc) are among the most important pathogens isolated from cystic fibrosis (CF) patients and in hospital acquired infections (HAI). Accurate identification of Bcc is questionable by conventional biochemical methods. Clonal typing of Burkholderia is also limited due to the problem with identification. Phenotypic identification methods such as VITEK2, protein signature identification methods like VITEK MS, Bruker Biotyper, and molecular targets such as 16S rRNA, recA, hisA and rpsU were reported with varying level of discrimination to identify Bcc. rpsU and/or 16S rRNA sequencing, VITEK2, VITEK MS and Bruker Biotyper could discriminate between Burkholderia spp. and non-Burkholderia spp. Whereas, Bcc complex level identification can be given by VITEK MS, Bruker Biotyper, and 16S rRNA/rpsU/recA/hisA sequencing. For species level identification within Bcc hisA or recA sequencing are reliable. Identification of Bcc is indispensable in CF patients and HAI to ensure appropriate antimicrobial therapy.
Collapse
Affiliation(s)
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, 632004, India.
| |
Collapse
|
25
|
Rastogi N, Khurana S, Veeraraghavan B, Yesurajan Inbanathan F, Rajamani Sekar SK, Gupta D, Goyal K, Bindra A, Sokhal N, Panda A, Malhotra R, Mathur P. Epidemiological investigation and successful management of a Burkholderia cepacia outbreak in a neurotrauma intensive care unit. Int J Infect Dis 2018; 79:4-11. [PMID: 30342249 DOI: 10.1016/j.ijid.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/25/2018] [Accepted: 10/12/2018] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE The detailed epidemiological and molecular characterization of an outbreak of Burkholderia cepacia at a neurotrauma intensive care unit of a level 1 trauma centre is described. The stringent infection control interventions taken to successfully curb this outbreak are emphasized. METHODS The clinical and microbiological data for those patients who had more than one blood culture that grew B. cepacia were reviewed. Bacterial identification and antimicrobial susceptibility testing was done using automated Vitek 2 systems. Prospective surveillance, environmental sampling, and multilocus sequence typing (MLST) were performed for extensive source tracking. Intensive infection control measures were taken to further control the hospital spread. RESULTS Out of a total 48 patients with B. cepacia bacteraemia, 15 (31%) had central line-associated blood stream infections. Two hundred and thirty-one environmental samples were collected and screened, and only two water samples grew B. cepacia with similar phenotypic characteristics. The clinical strains characterized by MLST typing were clonal. However, isolates from the water represented a novel strain type (ST-1289). Intensive terminal cleaning, disinfection of the water supply, and the augmentation of infection control activities were done to curb the outbreak. A subsequent reduction in bacteraemia cases was observed. CONCLUSION Early diagnosis and appropriate therapy, along with the rigorous implementation of essential hospital infection control practices is required for successful containment of this pathogen and to curb such an outbreak.
Collapse
Affiliation(s)
- Neha Rastogi
- Department of Microbiology and Medicine, All India Institute of Medical Sciences, New Delhi, India.
| | - Surbhi Khurana
- Department of Laboratory Medicine, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi 110029, India.
| | | | | | | | - Deepak Gupta
- Department of Neurosurgery, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India.
| | - Keshav Goyal
- Department of Neuroanaesthesiology, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India.
| | - Ashish Bindra
- Department of Neuroanaesthesiology, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India.
| | - Navdeep Sokhal
- Department of Neuroanaesthesiology, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India.
| | - Ashutosh Panda
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Rajesh Malhotra
- Department of Orthopaedics, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India.
| | - Purva Mathur
- Department of Laboratory Medicine, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
26
|
Sfeir MM. Burkholderia cepacia complex infections: More complex than the bacterium name suggest. J Infect 2018; 77:166-170. [DOI: 10.1016/j.jinf.2018.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 01/23/2023]
|
27
|
Bhavana MV, Joshi S, Adhikary R, Beena HB. Antibiotic susceptibility pattern of Burkholderia cepacia complex and Stenotrophomonas maltophilia: A 5-year analysis. Indian J Med Microbiol 2018; 35:318-319. [PMID: 28681835 DOI: 10.4103/ijmm.ijmm_16_236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Sangeeta Joshi
- Department of Laboratory Medicine - Microbiology, Manipal Hospital, Bengaluru, Karnataka, India
| | - Ranjeeta Adhikary
- Department of Laboratory Medicine - Microbiology, Manipal Hospital, Bengaluru, Karnataka, India
| | - Hosdurg Bhaskar Beena
- Department of Laboratory Medicine - Microbiology, Manipal Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
28
|
Kang SU, Choi JW, Chang JW, Kim KI, Kim YS, Park JK, Kim YE, Lee YS, Yang SS, Kim CH. N 2 non-thermal atmospheric pressure plasma promotes wound healing in vitro and in vivo: Potential modulation of adhesion molecules and matrix metalloproteinase-9. Exp Dermatol 2018; 26:163-170. [PMID: 27673439 DOI: 10.1111/exd.13229] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2016] [Indexed: 12/17/2022]
Abstract
Advances in physics and biology have made it possible to apply non-thermal atmospheric pressure plasma (NTP) in the biomedical field. Although accumulating evidence suggests that NTP has various medicinal effects, such as facilitating skin wound healing on exposed tissue while minimizing undesirable tissue damage, the underlying molecular mechanisms are not fully understood. In this study, NTP generated from N2 optimized wound healing in the scratch wound healing assay. In addition, matrix metalloproteinase (MMP)-9 expression and enzyme activity increased and the urokinase-type plasminogen activator (uPA) system was activated after NTP treatment. We also showed that NTP treatment increased Slug and TCF8/ZEB1 expression and decreased that of E-cadherin, suggesting induction of the epithelial-to-mesenchymal transition (EMT). The effect of N2 NTP was verified on rat wound model. Taken together, these results suggest that N2 NTP promotes wound healing by inducing the EMT and activating the MMP-9/uPA system. These findings show the therapeutic potential of NTP for skin wound healing.
Collapse
Affiliation(s)
- Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
| | - Jae Won Choi
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Kang Il Kim
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan, Korea
| | - Yeon Soo Kim
- Department of otorhinolaryngology, College of Medicine, Konyang University Hospital, Konyang University Myunggok Medical Research Institute, Daejeon, Korea
| | - Ju Kyeong Park
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Yang Eun Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Yun Sang Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
| | - Sang Sik Yang
- Department of Electrical and Computer Engineering, Ajou University, Suwon, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| |
Collapse
|
29
|
El Chakhtoura NG, Saade E, Iovleva A, Yasmin M, Wilson B, Perez F, Bonomo RA. Therapies for multidrug resistant and extensively drug-resistant non-fermenting gram-negative bacteria causing nosocomial infections: a perilous journey toward 'molecularly targeted' therapy. Expert Rev Anti Infect Ther 2018; 16:89-110. [PMID: 29310479 PMCID: PMC6093184 DOI: 10.1080/14787210.2018.1425139] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/04/2018] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Non-fermenting Gram-negative bacilli are at the center of the antimicrobial resistance epidemic. Acinetobacter baumannii and Pseudomonas aeruginosa are both designated with a threat level to human health of 'serious' by the Centers for Disease Control and Prevention. Two other major non-fermenting Gram-negative bacilli, Stenotrophomonas maltophilia and Burkholderia cepacia complex, while not as prevalent, have devastating effects on vulnerable populations, such as those with cystic fibrosis, as well as immunosuppressed or hospitalized patients. Areas covered: In this review, we summarize the clinical impact, presentations, and mechanisms of resistance of these four major groups of non-fermenting Gram-negative bacilli. We also describe available and promising novel therapeutic options and strategies, particularly combination antibiotic strategies, with a focus on multidrug resistant variants. Expert commentary: We finally advocate for a therapeutic approach that incorporates in vitro antibiotic susceptibility testing with molecular and genotypic characterization of mechanisms of resistance, as well as pharmacokinetics and pharmacodynamics (PK/PD) parameters. The goal is to begin to formulate a precision medicine approach to antimicrobial therapy: a clinical-decision making model that integrates bacterial phenotype, genotype and patient's PK/PD to arrive at rationally-optimized combination antibiotic chemotherapy regimens tailored to individual clinical scenarios.
Collapse
Affiliation(s)
- Nadim G. El Chakhtoura
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Elie Saade
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Medicine, University Hospitals Cleveland Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Alina Iovleva
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Mohamad Yasmin
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Medicine, University Hospitals Cleveland Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Brigid Wilson
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Federico Perez
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Robert A. Bonomo
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Medicine, University Hospitals Cleveland Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
- Departments of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
30
|
Lin L, Wang SF, Yang TY, Hung WC, Chan MY, Tseng SP. Antimicrobial resistance and genetic diversity in ceftazidime non-susceptible bacterial pathogens from ready-to-eat street foods in three Taiwanese cities. Sci Rep 2017; 7:15515. [PMID: 29138446 PMCID: PMC5686198 DOI: 10.1038/s41598-017-15627-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022] Open
Abstract
Bacterial contamination of ready-to-eat (RTE) street foods is a major concern worldwide. Dissemination of antibiotic resistant pathogens from food is an emerging public-health threat. To investigate the prevalence of antibiotic resistance genes and ceftazidime resistance-associated efflux pumps in foodborne pathogens, 270 RTE street foods samples were collected in three densely populated Taiwanese cities. Among 70 ceftazidime non-susceptible isolates, 21 Stenotrophomonas maltophilia, 12 Pseudomonas spp., 22 Acinetobacter spp., and 15 Enterobacteriaceae isolates were identified. Phylogenetic analyses revealed high levels of genetic diversity between all of the different strains. Multi-drug resistance was observed in 86.4% (19/22) of Acinetobacter spp., 100% (12/12) of Pseudomonas spp., 71.4% (15/21) of S. maltophilia, and 93.3% (14/15) of Enterobacteriaceae. Of 70 ceftazidime non-susceptible isolates, 13 contained ESBLs or plasmid-mediated ampC genes and 23 contained ceftazidime resistance-associated efflux pumps, with Acinetobacter spp. identified as predominant isolate (69.6%; 16/23). AdeIJK pump RNA expression in Acinetobacter isolates was 1.9- to 2-fold higher in active efflux strains. Nine clinically resistant genes were detected: catIII and cmlA (chloramphenicol); aacC1, aacC2, aacC3, and aacC4 (gentamicin); tet(A), tet(C), and tet(D) (tetracycline). The scope and abundance of multidrug-resistant bacteria described in this report underscores the need for ongoing and/or expanded RTE monitoring and control measures.
Collapse
Affiliation(s)
- Lin Lin
- Department of Culinary Art, I-Shou University, Kaohsiung, Taiwan
| | - Sheng-Fan Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Ying Yang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Min-Yu Chan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
31
|
Song JE, Kwak YG, Um TH, Cho CR, Kim S, Park IS, Hwang JH, Kim N, Oh GB. Outbreak of Burkholderia cepacia pseudobacteraemia caused by intrinsically contaminated commercial 0.5% chlorhexidine solution in neonatal intensive care units. J Hosp Infect 2017; 98:295-299. [PMID: 28935523 DOI: 10.1016/j.jhin.2017.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Burkholderia cepacia is intrinsically resistant to certain antiseptics. The authors noted a sudden increase in the frequency of isolation of B. cepacia from blood cultures in a neonatal intensive care unit (NICU) of a university-affiliated hospital. AIM To identify the source and intervene in the ongoing infections. METHODS The cases were defined as patients with positive blood cultures for B. cepacia in an NICU between November 2014 and January 2015. Medical records were reviewed and NICU healthcare workers were interviewed. Samples of suspected antiseptics, blood culture bottles, cotton balls, gauze and a needle used in the NICU were analysed microbiologically. FINDINGS During the outbreak period, B. cepacia was identified in 25 blood cultures obtained from 21 patients. The clinical features of the patients were suggestive of pseudobacteraemia. Regarding environmental samples, B. cepacia was cultured from 0.5% chlorhexidine gluconate (CHG) solution products that had been used as a skin antiseptic during blood drawing in the NICU. The clinical B. cepacia isolate and two strains obtained from 0.5% CHG exhibited identical pulsed-field gel electrophoresis patterns. After the CHG products were withdrawn, the outbreak was resolved. CONCLUSIONS The pseudobacteraemia cases were caused by contaminated 0.5% CHG produced by a single manufacturer. Stricter government regulation is needed to prevent contamination of disinfectants during manufacturing. In addition, microbial contamination of antiseptics and disinfectants should be suspected when a B. cepacia outbreak occurs in hospitalized patients.
Collapse
Affiliation(s)
- J E Song
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea; Infection Control Office, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea; Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Y G Kwak
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea; Infection Control Office, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea.
| | - T H Um
- Department of Laboratory Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - C R Cho
- Department of Laboratory Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea; Infection Control Office, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - S Kim
- Department of Laboratory Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - I S Park
- Department of Laboratory Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - J H Hwang
- Department of Paediatrics, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - N Kim
- Department of Paediatrics, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea; Infection Control Office, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - G-B Oh
- Infection Control Office, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| |
Collapse
|
32
|
Scoffone VC, Chiarelli LR, Trespidi G, Mentasti M, Riccardi G, Buroni S. Burkholderia cenocepacia Infections in Cystic Fibrosis Patients: Drug Resistance and Therapeutic Approaches. Front Microbiol 2017; 8:1592. [PMID: 28878751 PMCID: PMC5572248 DOI: 10.3389/fmicb.2017.01592] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen particularly dangerous for cystic fibrosis (CF) patients. It can cause a severe decline in CF lung function possibly developing into a life-threatening systemic infection known as cepacia syndrome. Antibiotic resistance and presence of numerous virulence determinants in the genome make B. cenocepacia extremely difficult to treat. Better understanding of its resistance profiles and mechanisms is crucial to improve management of these infections. Here, we present the clinical distribution of B. cenocepacia described in the last 6 years and methods for identification and classification of epidemic strains. We also detail new antibiotics, clinical trials, and alternative approaches reported in the literature in the last 5 years to tackle B. cenocepacia resistance issue. All together these findings point out the urgent need of new and alternative therapies to improve CF patients’ life expectancy.
Collapse
Affiliation(s)
- Viola C Scoffone
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | | | - Gabriele Trespidi
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | - Massimo Mentasti
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health EnglandLondon, United Kingdom.,Department of Microbiology, Royal Cornwall HospitalTruro, United Kingdom
| | - Giovanna Riccardi
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| |
Collapse
|
33
|
Crystal structures of the Burkholderia multivorans hopanoid transporter HpnN. Proc Natl Acad Sci U S A 2017; 114:6557-6562. [PMID: 28584102 DOI: 10.1073/pnas.1619660114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Strains of the Burkholderia cepacia complex (Bcc) are Gram-negative opportunisitic bacteria that are capable of causing serious diseases, mainly in immunocompromised individuals. Bcc pathogens are intrinsically resistant to multiple antibiotics, including β-lactams, aminoglycosides, fluoroquinolones, and polymyxins. They are major pathogens in patients with cystic fibrosis (CF) and can cause severe necrotizing pneumonia, which is often fatal. Hopanoid biosynthesis is one of the major mechanisms involved in multiple antimicrobial resistance of Bcc pathogens. The hpnN gene of B. multivorans encodes an integral membrane protein of the HpnN family of transporters, which is responsible for shuttling hopanoids to the outer membrane. Here, we report crystal structures of B. multivorans HpnN, revealing a dimeric molecule with an overall butterfly shape. Each subunit of the transporter contains 12 transmembrane helices and two periplasmic loops that suggest a plausible pathway for substrate transport. Further analyses indicate that HpnN is capable of shuttling hopanoid virulence factors from the outer leaflet of the inner membrane to the periplasm. Taken together, our data suggest that the HpnN transporter is critical for multidrug resistance and cell wall remodeling in Burkholderia.
Collapse
|
34
|
Ahn Y, Kim JM, Kweon O, Kim SJ, Jones RC, Woodling K, Gamboa da Costa G, LiPuma JJ, Hussong D, Marasa BS, Cerniglia CE. Intrinsic Resistance of Burkholderia cepacia Complex to Benzalkonium Chloride. mBio 2016; 7:e01716-16. [PMID: 27879334 PMCID: PMC5120141 DOI: 10.1128/mbio.01716-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022] Open
Abstract
Pharmaceutical products that are contaminated with Burkholderia cepacia complex (BCC) bacteria may pose serious consequences to vulnerable patients. Benzyldimethylalkylammonium chloride (BZK) cationic surfactants are extensively used in medical applications and have been implicated in the coselection of antimicrobial resistance. The ability of BCC to degrade BZK, tetradecyldimethylbenzylammonium chloride (C14BDMA-Cl), dodecyldimethylbenzylammonium chloride (C12BDMA-Cl), decyldimethylbenzylammonium chloride (C10BDMA-Cl), hexyldimethylbenzylammonium chloride, and benzyltrimethylammonium chloride was determined by incubation in 1/10-diluted tryptic soy broth (TSB) to determine if BCC bacteria have the ability to survive and inactivate these disinfectants. With BZK, C14BDMA-Cl, and C12BDMA-Cl, inhibition of the growth of 20 BCC strains was observed in disinfectant solutions that ranged from 64 to 256 µg/ml. The efflux pump inhibitor carbonyl cyanide m-chlorophenylhydrazone increased the sensitivity of bacteria to 64 µg/ml BZK. The 20 BCC strains grew well in 1/10-diluted TSB medium with BZK, C12BDMA-Cl, and C10BDMA-Cl; they absorbed and degraded the compounds in 7 days. Formation of benzyldimethylamine and benzylmethylamine as the initial metabolites suggested that the cleavage of the C alkyl-N bond occurred as the first step of BZK degradation by BCC bacteria. Proteomic data confirmed the observed efflux activity and metabolic inactivation via biodegradation in terms of BZK resistance of BCC bacteria, which suggests that the two main resistance mechanisms are intrinsic and widespread. IMPORTANCE Benzyldimethylalkylammonium chloride is commonly used as an antiseptic in the United States. Several recent microbial outbreaks were linked to antiseptics that were found to contain strains of the Burkholderia cepacia complex. Burkholderia species survived in antiseptics, possibly because of the degradation of antiseptic molecules or regulation of relevant gene expression. In this study, we assessed the efflux pump and the potential of B. cepacia complex bacteria to degrade benzyldimethylalkylammonium chloride and improved our understanding of the resistance mechanisms, by using proteomic and metabolic information. To our knowledge, this is the first systematic report of the intrinsic mechanisms of B. cepacia complex strain resistance to benzyldimethylalkylammonium chloride, based on the metabolic and proteomic evidence for efflux pumps and the complete biodegradation of benzyldimethylalkylammonium chloride.
Collapse
Affiliation(s)
- Youngbeom Ahn
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Jeong Myeong Kim
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Seong-Jae Kim
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Kellie Woodling
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Gonçalo Gamboa da Costa
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - John J LiPuma
- Department of Pediatrics & Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - David Hussong
- Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Bernard S Marasa
- Division of Microbiology Assessment, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
35
|
Activity of Cysteamine against the Cystic Fibrosis Pathogen Burkholderia cepacia Complex. Antimicrob Agents Chemother 2016; 60:6200-6. [PMID: 27503654 PMCID: PMC5038277 DOI: 10.1128/aac.01198-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/17/2016] [Indexed: 11/20/2022] Open
Abstract
There are no wholly successful chemotherapeutic strategies against Burkholderia cepacia complex (BCC) colonization in cystic fibrosis (CF). We assessed the impact of cysteamine (Lynovex) in combination with standard-of-care CF antibiotics in vitro against BCC CF isolates by the concentration at which 100% of bacteria were killed (MIC100) and checkerboard assays under CLSI standard conditions. Cysteamine facilitated the aminoglycoside-, fluoroquinolone- and folate pathway inhibitor-mediated killing of BCC organisms that were otherwise resistant or intermediately sensitive to these antibiotic classes. Slow-growing BCC strains are often recalcitrant to treatment and form biofilms. In assessing the impact of cysteamine on biofilms, we demonstrated inhibition of BCC biofilm formation at sub-MIC100s of cysteamine.
Collapse
|
36
|
Abstract
The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Katherine A Rhodes
- Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute and Institute for Therapeutic Innovation, University of Florida, Gainesville, FL, USA; Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Herbert P Schweizer
- Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute and Institute for Therapeutic Innovation, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
37
|
Van Acker H, Coenye T. The Role of Efflux and Physiological Adaptation in Biofilm Tolerance and Resistance. J Biol Chem 2016; 291:12565-12572. [PMID: 27129224 DOI: 10.1074/jbc.r115.707257] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Microbial biofilms demonstrate a decreased susceptibility to antimicrobial agents. Various mechanisms have been proposed to be involved in this recalcitrance. We focus on two of these factors. Firstly, the ability of sessile cells to actively mediate efflux of antimicrobial compounds has a profound impact on resistance and tolerance, and several studies point to the existence of biofilm-specific efflux systems. Secondly, biofilm-specific stress responses have a marked influence on cellular physiology, and contribute to the occurrence of persister cells. We provide an overview of the data that demonstrate that both processes are important for survival following exposure to antimicrobial agents.
Collapse
Affiliation(s)
- Heleen Van Acker
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium.
| |
Collapse
|
38
|
Podnecky NL, Rhodes KA, Schweizer HP. Efflux pump-mediated drug resistance in Burkholderia. Front Microbiol 2015; 6:305. [PMID: 25926825 PMCID: PMC4396416 DOI: 10.3389/fmicb.2015.00305] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/27/2015] [Indexed: 12/17/2022] Open
Abstract
Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in Burkholderia cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND) family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA, and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.
Collapse
Affiliation(s)
- Nicole L Podnecky
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biological Sciences, Colorado State University Fort Collins, CO, USA
| | - Katherine A Rhodes
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biological Sciences, Colorado State University Fort Collins, CO, USA ; Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, Institute for Therapeutic Innovation, University of Florida Gainesville, FL, USA
| | - Herbert P Schweizer
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biological Sciences, Colorado State University Fort Collins, CO, USA ; Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, Institute for Therapeutic Innovation, University of Florida Gainesville, FL, USA
| |
Collapse
|
39
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 961] [Impact Index Per Article: 96.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
40
|
Gautam V, Shafiq N, Singh M, Ray P, Singhal L, Jaiswal NP, Prasad A, Singh S, Agarwal A. Clinical and in vitro evidence for the antimicrobial therapy in Burkholderia cepacia complex infections. Expert Rev Anti Infect Ther 2015; 13:629-63. [PMID: 25772031 DOI: 10.1586/14787210.2015.1025056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Treatment of infections caused by Burkholderia cepacia complex (Bcc) in cystic fibrosis (CF) patients poses a complex problem. Bcc is multidrug-resistant due to innate and acquired mechanisms of resistance. As CF patients receive multiple courses of antibiotics, susceptibility patterns of strains from CF patients may differ from those noted in strains from non-CF patients. Thus, there was a need for assessing in vitro and clinical data to guide antimicrobial therapy in these patients. A systematic search of literature, followed by extraction and analysis of available information from human and in vitro studies was done. The results of the analysis are used to address various aspects like use of antimicrobials for pulmonary and non-pulmonary infections, use of combination versus monotherapy, early eradication, duration of therapy, route of administration, management of biofilms, development of resistance during therapy, pharmacokinetics-pharmacodynamics correlations, therapy in post-transplant patients and newer drugs in Bcc-infected CF patients.
Collapse
Affiliation(s)
- Vikas Gautam
- Deparatment of Medical Microbiology, PGIMER, Chandigarh 160022, India
| | | | | | | | | | | | | | | | | |
Collapse
|