1
|
Kim H. Juvenile Dermatomyositis: Updates in Pathogenesis and Biomarkers, Current Treatment, and Emerging Targeted Therapies. Paediatr Drugs 2024:10.1007/s40272-024-00658-2. [PMID: 39425894 DOI: 10.1007/s40272-024-00658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
Juvenile dermatomyositis is a rare systemic inflammatory autoimmune disease involving muscle, skin, and vessels. Most patients do not fully respond to initial therapy, instead having a chronic refractory or polycyclic disease course. Pathogenesis is not completely understood, but immune cell dysregulation, particularly of B cells, mitochondrial dysfunction, changes in neutrophils and neutrophil extracellular traps (NETs), and increased type I and type II interferon (IFN) signaling have been described. There are limited randomized controlled trials of drugs in juvenile dermatomyositis (JDM), and treatment is largely based on lower-quality data such as case series, retrospective studies, and open-label prospective studies. These data have been compiled into expert recommendations or consensus treatment plans, which help guide therapy. While initial therapy is more standard with most including corticosteroids (high-dose oral and/or pulse intravenous methylprednisolone) and methotrexate, for refractory patients, guidelines are more varied with multiple options or combinations, including biologic therapies. There is a clear need for more efficacious and personalized therapy in JDM. Emerging treatment options worthy of further study in JDM include targeting IFN-signaling (JAK, IFNAR1, IFN beta), B-cells (CD20, CD19, BAFF, TACI, CD38, BCMA) including Chimeric Antigen Receptor (CAR)-T cell therapy, mitochondrial dysfunction, and NETs.
Collapse
Affiliation(s)
- Hanna Kim
- National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Chen Y, Liu H, Luo Z, Zhang J, Dong M, Yin G, Xie Q. ASM is a therapeutic target in dermatomyositis by regulating the differentiation of naive CD4 + T cells into Th17 and Treg subsets. Skelet Muscle 2024; 14:16. [PMID: 39026344 PMCID: PMC11256435 DOI: 10.1186/s13395-024-00347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND This study aims to investigate the involvement of acid sphingomyelinase (ASM) in the pathology of dermatomyositis (DM), making it a potential therapeutic target for DM. METHODS Patients with DM and healthy controls (HCs) were included to assess the serum level and activity of ASM, and to explore the associations between ASM and clinical indicators. Subsequently, a myositis mouse model was established using ASM gene knockout and wild-type mice to study the significant role of ASM in the pathology and to assess the treatment effect of amitriptyline, an ASM inhibitor. Additionally, we investigated the potential treatment mechanism by targeting ASM both in vivo and in vitro. RESULTS A total of 58 DM patients along with 30 HCs were included. The ASM levels were found to be significantly higher in DM patients compared to HCs, with median (quartile) values of 2.63 (1.80-4.94) ng/mL and 1.64 (1.47-1.96) ng/mL respectively. The activity of ASM in the serum of DM patients was significantly higher than that in HCs. Furthermore, the serum levels of ASM showed correlations with disease activity and muscle enzyme levels. Knockout of ASM or treatment with amitriptyline improved the severity of the disease, rebalanced the CD4 T cell subsets Th17 and Treg, and reduced the production of their secreted cytokines. Subsequent investigations revealed that targeting ASM could regulate the expression of relevant transcription factors and key regulatory proteins. CONCLUSION ASM is involved in the pathology of DM by regulating the differentiation of naive CD4 + T cells and can be a potential treatment target.
Collapse
Affiliation(s)
- Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue lane, Chengdu, 610041, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue lane, Chengdu, 610041, China
| | - Zhongling Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue lane, Chengdu, 610041, China
| | - Jiaqian Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue lane, Chengdu, 610041, China
| | - Min Dong
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue lane, Chengdu, 610041, China
| | - Geng Yin
- Department of General Practice, West China Hospital, General Practice Medical Center, Sichuan University, 37 Guoxue lane, Chengdu, 610041, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue lane, Chengdu, 610041, China.
| |
Collapse
|
3
|
Rabadam G, Wibrand C, Flynn E, Hartoularos GC, Sun Y, Madubata C, Fragiadakis GK, Ye CJ, Kim S, Gartner ZJ, Sirota M, Neely J. Coordinated immune dysregulation in juvenile dermatomyositis revealed by single-cell genomics. JCI Insight 2024; 9:e176963. [PMID: 38743491 PMCID: PMC11383589 DOI: 10.1172/jci.insight.176963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Juvenile dermatomyositis (JDM) is one of several childhood-onset autoimmune disorders characterized by a type I IFN response and autoantibodies. Treatment options are limited due to an incomplete understanding of how the disease emerges from dysregulated cell states across the immune system. We therefore investigated the blood of patients with JDM at different stages of disease activity using single-cell transcriptomics paired with surface protein expression. By immunophenotyping peripheral blood mononuclear cells, we observed skewing of the B cell compartment toward an immature naive state as a hallmark of JDM at diagnosis. Furthermore, we find that these changes in B cells are paralleled by T cell signatures suggestive of Th2-mediated inflammation that persist despite disease quiescence. We applied network analysis to reveal that hyperactivation of the type I IFN response in all immune populations is coordinated with previously masked cell states including dysfunctional protein processing in CD4+ T cells and regulation of cell death programming in NK cells, CD8+ T cells, and γδ T cells. Together, these findings unveil the coordinated immune dysregulation underpinning JDM and provide insight into strategies for restoring balance in immune function.
Collapse
Affiliation(s)
- Gabrielle Rabadam
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, and
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
| | - Camilla Wibrand
- Aarhus University, Aarhus, Denmark
- Division of Pediatric Rheumatology, Department of Pediatrics
| | | | - George C Hartoularos
- Graduate Program in Biological and Medical Informatics
- Division of Rheumatology, Department of Medicine
- Institute for Human Genetics
| | - Yang Sun
- Division of Rheumatology, Department of Medicine
| | - Chioma Madubata
- Division of Pediatric Rheumatology, Department of Pediatrics
- CoLabs
| | | | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine
- Institute for Human Genetics
- Department of Epidemiology and Biostatistics, and
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Susan Kim
- Division of Pediatric Rheumatology, Department of Pediatrics
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jessica Neely
- Division of Pediatric Rheumatology, Department of Pediatrics
| |
Collapse
|
4
|
Rabadam G, Wibrand C, Flynn E, Hartoularos GC, Sun Y, Ye CJ, Kim S, Gartner Z, Sirota M, Neely J. Coordinated immune dysregulation in Juvenile Dermatomyositis revealed by single-cell genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566033. [PMID: 37986917 PMCID: PMC10659396 DOI: 10.1101/2023.11.07.566033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Juvenile Dermatomyositis (JDM) is one of several childhood-onset autoimmune disorders characterized by a type I interferon response and autoantibodies. Treatment options are limited due to incomplete understanding of how the disease emerges from dysregulated cell states across the immune system. We therefore investigated the blood of JDM patients at different stages of disease activity using single-cell transcriptomics paired with surface protein expression. By immunophenotyping peripheral blood mononuclear cells, we observed skewing of the B cell compartment towards an immature naive state as a hallmark of JDM. Furthermore, we find that these changes in B cells are paralleled by signatures of Th2-mediated inflammation. Additionally, our work identified SIGLEC-1 expression in monocytes as a composite measure of heterogeneous type I interferon activity in disease. We applied network analysis to reveal that hyperactivation of the type I interferon response in all immune populations is coordinated with dysfunctional protein processing and regulation of cell death programming. This analysis separated the ubiquitously expressed type I interferon response into a central hub and revealed previously masked cell states. Together, these findings reveal the coordinated immune dysregulation underpinning JDM and provide novel insight into strategies for restoring balance in immune function.
Collapse
Affiliation(s)
- Gabrielle Rabadam
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, UCSF, San Francisco, California, USA
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
| | - Camilla Wibrand
- Aarhus University, Aarhus, Denmark
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Emily Flynn
- CoLabs, UCSF, San Francisco, California, USA
| | - George C. Hartoularos
- Graduate Program in Biological and Medical Informatics, UCSF, San Francisco, California, USA
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
- Institute for Human Genetics, UCSF, San Francisco, California, USA
| | - Yang Sun
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
- Institute for Human Genetics, UCSF, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Susan Kim
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Zev Gartner
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jessica Neely
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| |
Collapse
|
5
|
Costin C, Khojah A, Ochfeld E, Morgan G, Subramanian S, Klein-Gitelman M, Tan XD, Pachman LM. B Cell Lymphocytosis in Juvenile Dermatomyositis. Diagnostics (Basel) 2023; 13:2626. [PMID: 37627885 PMCID: PMC10453137 DOI: 10.3390/diagnostics13162626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, we determined if B lymphocytosis may serve as a JDM biomarker for disease activity. Children with untreated JDM were divided into two groups based on age-adjusted B cell percentage (determined through flow cytometry): 90 JDM in the normal B cell group and 45 in the high B cell group. We compared through T-testing the age, sex, ethnicity, duration of untreated disease (DUD), disease activity scores for skin (sDAS), muscle (mDAS), total (tDAS), CMAS, and neopterin between these two groups. The patients in the high B cell group had a higher tDAS (p = 0.009), mDAS (p = 0.021), and neopterin (p = 0.0365). Secondary analyses included B cell values over time and BAFF levels in matched patients with JM (juvenile myositis) and concurrent interstitial lung disease (ILD); JM alone and healthy controls Patient B cell percentage and number was significantly higher after 3-6 months of therapy and then significantly lower on completion of therapy (p =< 0.0001). The JM groups had higher BAFF levels than controls 1304 vs. 692 ng/mL (p = 0.0124). This study supports B cell lymphocytosis as a JDM disease-activity biomarker and bolsters the basis for B cell-directed therapies in JDM.
Collapse
Affiliation(s)
- Christopher Costin
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Amer Khojah
- Department of Pediatrics, College of Medicine, Umm Al-Qura University, Makkah 24341-6660, Saudi Arabia
| | - Elisa Ochfeld
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gabrielle Morgan
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Saravanan Subramanian
- Department of Pediatrics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Marisa Klein-Gitelman
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Xiao-Di Tan
- Department of Pediatrics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lauren M. Pachman
- Division of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| |
Collapse
|
6
|
Chen Z, Lan H, Liao Z, Huang J, Jian X, Hu J, Liao H. Regulatory T cells-centered regulatory networks of skeletal muscle inflammation and regeneration. Cell Biosci 2022; 12:112. [PMID: 35869487 PMCID: PMC9308315 DOI: 10.1186/s13578-022-00847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
As the understanding of skeletal muscle inflammation is increasingly clarified, the role of Treg cells in the treatment of skeletal muscle diseases has attracted more attention in recent years. A consensus has been reached that the regulation of Treg cells is the key to completing the switch of inflammation and repair of skeletal muscle, whose presence directly determine the repairing quality of the injured skeletal muscle. However, the functioning process of Treg cells remains unreported, thereby making it necessary to summarize the current role of Treg cells in skeletal muscle. In this review, the characteristics, origins, and cellular kinetics of these Treg cells are firstly described; Then, the relationship between Treg cells and muscle satellite cells (MuSCs), conventional T cells (Tconv) is discussed (the former is involved in the entire repair and regeneration process, while the latter matters considerably in causing most skeletal muscle autoimmune diseases); Next, focus is placed on the control of Treg cells on the phenotypic switch of macrophages, which is the key to the switch of inflammation; Finally, factors regulating the functional process of Treg cells are analyzed, and a regulatory network centered on Treg cells is summarized. The present study summarizes the cell-mediated interactions in skeletal muscle repair over the past decade, and elucidates the central role of regulatory T cells in this process, so that other researchers can more quickly and comprehensively understand the development and direction of this very field. It is believed that the hereby proposed viewpoints and problems can provide fresh visions for the latecomers.
Collapse
|
7
|
Neely J, Hartoularos G, Bunis D, Sun Y, Lee D, Kim S, Ye CJ, Sirota M. Multi-Modal Single-Cell Sequencing Identifies Cellular Immunophenotypes Associated With Juvenile Dermatomyositis Disease Activity. Front Immunol 2022; 13:902232. [PMID: 35799782 PMCID: PMC9254730 DOI: 10.3389/fimmu.2022.902232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
Juvenile dermatomyositis (JDM) is a rare autoimmune condition with insufficient biomarkers and treatments, in part, due to incomplete knowledge of the cell types mediating disease. We investigated immunophenotypes and cell-specific genes associated with disease activity using multiplexed RNA and protein single-cell sequencing applied to PBMCs from 4 treatment-naïve JDM (TN-JDM) subjects at baseline, 2, 4, and 6 months post-treatment and 4 subjects with inactive disease on treatment. Analysis of 55,564 cells revealed separate clustering of TN-JDM cells within monocyte, NK, CD8+ effector T and naïve B populations. The proportion of CD16+ monocytes was reduced in TN-JDM, and naïve B cells and CD4+ Tregs were expanded. Cell-type differential gene expression analysis and hierarchical clustering identified a pan-cell-type IFN gene signature over-expressed in TN-JDM in all cell types and correlated with disease activity most strongly in cytotoxic cell types. TN-JDM CD16+ monocytes expressed the highest IFN gene score and were highly skewed toward an inflammatory and antigen-presenting phenotype at both the transcriptomic and proteomic levels. A transitional B cell population with a distinct transcriptomic signature was expanded in TN-JDM and characterized by higher CD24 and CD5 proteins and less CD39, an immunoregulatory protein. This data provides new insights into JDM immune dysregulation at cellular resolution and serves as a novel resource for myositis investigators.
Collapse
Affiliation(s)
- Jessica Neely
- Division of Pediatric Rheumatology, Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA, United States
| | - George Hartoularos
- Graduate Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, CA, United States
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, United States
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Daniel Bunis
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, United States
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, United States
| | - Yang Sun
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - David Lee
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, United States
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Susan Kim
- Division of Pediatric Rheumatology, Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA, United States
| | - Chun Jimmie Ye
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, United States
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, United States
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
8
|
Coles CA, Woodcock I, Pellicci DG, Houweling PJ. A Spotlight on T Lymphocytes in Duchenne Muscular Dystrophy-Not Just a Muscle Defect. Biomedicines 2022; 10:535. [PMID: 35327337 PMCID: PMC8945129 DOI: 10.3390/biomedicines10030535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
The lack of dystrophin in Duchenne muscular dystrophy (DMD) results in membrane fragility resulting in contraction-induced muscle damage and subsequent inflammation. The impact of inflammation is profound, resulting in fibrosis of skeletal muscle, the diaphragm and heart, which contributes to muscle weakness, reduced quality of life and premature death. To date, the innate immune system has been the major focus in individuals with DMD, and our understanding of the adaptive immune system, specifically T cells, is limited. Targeting the immune system has been the focus of multiple clinical trials for DMD and is considered a vital step in the development of better treatments. However, we must first have a complete picture of the involvement of the immune systems in dystrophic muscle disease to better understand how inflammation influences disease progression and severity. This review focuses on the role of T cells in DMD, highlighting the importance of looking beyond skeletal muscle when considering how the loss of dystrophin impacts disease progression. Finally, we propose that targeting T cells is a potential novel therapeutic in the treatment of DMD.
Collapse
Affiliation(s)
- Chantal A. Coles
- Murdoch Children’s Research Institute (MCRI), Melbourne, VIC 3052, Australia; (I.W.); (D.G.P.); (P.J.H.)
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3052, Australia
| | - Ian Woodcock
- Murdoch Children’s Research Institute (MCRI), Melbourne, VIC 3052, Australia; (I.W.); (D.G.P.); (P.J.H.)
- Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Daniel G. Pellicci
- Murdoch Children’s Research Institute (MCRI), Melbourne, VIC 3052, Australia; (I.W.); (D.G.P.); (P.J.H.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Peter J. Houweling
- Murdoch Children’s Research Institute (MCRI), Melbourne, VIC 3052, Australia; (I.W.); (D.G.P.); (P.J.H.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
9
|
Kim H, Huber AM, Kim S. Updates on Juvenile Dermatomyositis from the Last Decade: Classification to Outcomes. Rheum Dis Clin North Am 2021; 47:669-690. [PMID: 34635298 DOI: 10.1016/j.rdc.2021.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Juvenile dermatomyositis (JDM) is a heterogeneous disease with new classification criteria and updates in myositis-specific autoantibody and myositis-associated antibody groups. There are many validated assessment tools for assessing disease activity in JDM. Future studies will optimize these tools and improve feasibility in clinical and research contexts. Genetic and environmental risk factors, mechanisms of muscle pathology, role of interferon, vascular markers, and changes in immune cells provide insights to JDM pathogenesis. Outcomes have improved, but chronic disease, damage, and mortality highlight the need for better outcome predictors and treatments. Increased collaboration of stakeholders may help overcome research barriers and improve JDM treatment.
Collapse
Affiliation(s)
- Hanna Kim
- Juvenile Myositis Pathogenesis and Therapeutics Unit, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, Building 10, 12N-240, Bethesda, MD 20892, USA.
| | - Adam M Huber
- IWK Health Centre and Dalhousie University, Division of Pediatric Rheumatology, 5850 University Avenue, Halifax, Nova Scotia B3K 6R8, Canada
| | - Susan Kim
- University of California, San Francisco, 550 16th Street, San Francisco, CA 94158, USA
| |
Collapse
|
10
|
Ll Wilkinson MG, Deakin CT, Papadopoulou C, Eleftheriou D, Wedderburn LR. JAK inhibitors: a potential treatment for JDM in the context of the role of interferon-driven pathology. Pediatr Rheumatol Online J 2021; 19:146. [PMID: 34563217 PMCID: PMC8466894 DOI: 10.1186/s12969-021-00637-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/28/2021] [Indexed: 12/29/2022] Open
Abstract
Juvenile Idiopathic Inflammatory Myopathies (IIM) are a group of rare diseases that are heterogeneous in terms of pathology that can include proximal muscle weakness, associated skin changes and systemic involvement. Despite options for treatment, many patients continue to suffer resistant disease and lasting side-effects. Advances in the understanding of the immunopathology and genetics underlying IIM may specify new therapeutic targets, particularly where conventional treatment has not achieved a clinical response. An upregulated type I interferon signature is strongly associated with disease and could be a prime target for developing more specific therapeutics. There are multiple components of the IFN pathway that could be targeted for blockade therapy.Downstream of the cytokine receptor complexes are the Janus kinase-signal transducers and activators of transcription (JAK-STAT) pathway, which consists of JAK1-3, TYK2, and STAT1-6. Therapeutic inhibitors have been developed to target components of this pathway. Promising results have been observed in case studies reporting the use of the JAK inhibitors, Baricitinib, Tofacitinib and Ruxolitinib in the treatment of refractory Juvenile Dermatomyositis (JDM). There is still the question of safety and efficacy for the use of JAK inhibitors in JDM that need to be addressed by clinical trials. Here we review the future for the use of JAK inhibitors as a treatment for JDM.
Collapse
Affiliation(s)
- Meredyth G Ll Wilkinson
- Infection, Immunity and Inflammation Programme Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, University College London, London, UK.
- NIHR Biomedical Research Centre at GOSH, London, UK.
| | - Claire T Deakin
- Infection, Immunity and Inflammation Programme Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, University College London, London, UK
- NIHR Biomedical Research Centre at GOSH, London, UK
| | - Charalampia Papadopoulou
- Infection, Immunity and Inflammation Programme Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Rheumatology, Great Ormond Street Hospital, Great Ormond Street, London, UK
| | - Despina Eleftheriou
- Infection, Immunity and Inflammation Programme Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Rheumatology, Great Ormond Street Hospital, Great Ormond Street, London, UK
| | - Lucy R Wedderburn
- Infection, Immunity and Inflammation Programme Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, University College London, London, UK
- NIHR Biomedical Research Centre at GOSH, London, UK
- Rheumatology, Great Ormond Street Hospital, Great Ormond Street, London, UK
| |
Collapse
|
11
|
Yu Z, Cheng H, Liang Y, Ding T, Yan C, Gao C, Wen H. Decreased Serum 25-(OH)-D Level Associated With Muscle Enzyme and Myositis Specific Autoantibodies in Patients With Idiopathic Inflammatory Myopathy. Front Immunol 2021; 12:642070. [PMID: 33936057 PMCID: PMC8082096 DOI: 10.3389/fimmu.2021.642070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/29/2021] [Indexed: 01/06/2023] Open
Abstract
Objectives To determine whether there is serum vitamin D deficiency and the low levels of serum vitamin D are correlated with serological and immunological indexes in patients with idiopathic inflammatory myopathy (IIM). Methods A total of 63 newly diagnosed patients with IIM, and 55 age- and sex- matched healthy controls were enrolled. Serum levels of 25-(OH)-D were measured by enzyme-linked immunosorbent assay. The correlations of 25-(OH)-D levels with disease indicators and T cell subsets were analyzed. Result The levels of serum 25-(OH)-D in IIM were significantly lower than those in healthy controls (9.36 ± 5.56 vs 26.56 ± 5.37 ng/ml, p<0.001). The levels of serum liver enzyme ALT and AST and muscle enzyme CK, CKMB, LDH and HBDH were elevated as deficiency of vitamin D. In addition, the serum 25-(OH)-D levels were negatively correlated to ALT (r = -0.408, p = 0.001) and AST (r = -0.338, p = 0.007). The 25-(OH)-D levels in IIM patients in presence of anti-Jo-1 were significantly lower than those in patients without anti-Jo-1 (5.24 ± 3.17 vs 9.32 ± 5.60 ng/ml; p = 0.037). Similar results were found in patients with or without anti-Mi-2 antibody. The serum 25-(OH)-D levels were positively associated with total T (r = 0.203, p = 0.012) and Treg cells (r = 0.331, p = 0.013). The patients with deficient levels of vitamin D were more likely to have heliotrope, gastrointestinal and liver involvement. Conclusions Vitamin D deficiency existed in IIM patients, which was significantly correlated with muscle enzyme, presence of anti-Jo-1 and anti-Mi-2 antibody, and the absolute numbers of total T and Treg cells in IIM. It is suggested that vitamin D may play an important role in the immunological pathogenesis of IIM.
Collapse
Affiliation(s)
- Zhen Yu
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Hao Cheng
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Yuying Liang
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Tingting Ding
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Chenglan Yan
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hongyan Wen
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| |
Collapse
|
12
|
Zhao L, Wang Q, Zhou B, Zhang L, Zhu H. The Role of Immune Cells in the Pathogenesis of Idiopathic Inflammatory Myopathies. Aging Dis 2021; 12:247-260. [PMID: 33532139 PMCID: PMC7801271 DOI: 10.14336/ad.2020.0410] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are chronic autoimmune disorders involving multiple organs, such as the muscle, skin, lungs and joints. Although the detailed pathogenesis of IIMs remains unclear, immune mechanisms have long been recognised as of key importance. Immune cells contribute to many inflammatory processes via intercellular interactions and secretion of inflammatory factors, and many studies have demonstrated the participation of a variety of immune cells, such as T cells and B cells, in the development of IIMs. Here, we summarise the current knowledge regarding immune cells in IIM patients and discuss their potential roles in IIM pathogenesis.
Collapse
Affiliation(s)
- Lijuan Zhao
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Qi Wang
- Department of Radiology, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.
| | - Bin Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Lihua Zhang
- Department of Rheumatology, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Sag E, Kale G, Haliloglu G, Bilginer Y, Akcoren Z, Orhan D, Gucer S, Topaloglu H, Ozen S, Talim B. Inflammatory milieu of muscle biopsies in juvenile dermatomyositis. Rheumatol Int 2020; 41:77-85. [PMID: 33106894 DOI: 10.1007/s00296-020-04735-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/13/2020] [Indexed: 01/08/2023]
Abstract
Juvenile dermatomyositis (JDM) is an inflammatory myopathy which causes severe morbidity and high mortality if untreated. In this study, we aimed to define the T-helper cell profile in the muscle biopsies of JDM patients. Muscle biopsies of twenty-six patients (50% female) were included in the study. Immunohistochemical expression of CD3, CD20, CD138, CD68, IL-17, Foxp3, IFN-ɣ, IFN-alpha and IL-4 was studied and muscle biopsies were scored using the JDM muscle biopsy scoring tool. Inflammatory cells were in small clusters in perimysium and perivascular area or scattered throughout the endomysium in most biopsies; however in 2 biopsies, lymphoid follicle-like big clusters were observed, and in one, there was a very dense and diffuse inflammatory infiltration nearly destroying all the muscle architecture. Seventy-three per cent of the biopsies had T cells, 88% had B cells, 57% had plasma cells, and all had macrophages. As for T-helper cell subtypes, 80% of the biopsies were Th1 positive, 92% Th17 positive and 30% Treg positive. No IL-4 positive inflammatory cell was detected, and only 2 biopsies showed IFN-alpha positivity. The mean JDM biopsy score was 17.6, meaning moderate to severe muscular involvement. Visual analogue score of the pathologist was strongly correlated with histopathological features. B cells, macrophages, plasma cells and T cells constitute the inflammatory milieu of the JDM muscle biopsies. As for T cells, JDM is a disease mainly related with Th1 and Th17 T-helper cell subtypes and to some extend Treg. Th2 cells are not involved in the pathogenesis.
Collapse
Affiliation(s)
- Erdal Sag
- Division of Pediatric Rheumatology, Department of Pediatrics, Hacettepe University, Ankara, Turkey.
| | - Gulsev Kale
- Pediatric Pathology Unit, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Goknur Haliloglu
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yelda Bilginer
- Division of Pediatric Rheumatology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Zuhal Akcoren
- Pediatric Pathology Unit, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Diclehan Orhan
- Pediatric Pathology Unit, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Safak Gucer
- Pediatric Pathology Unit, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Haluk Topaloglu
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Seza Ozen
- Division of Pediatric Rheumatology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Beril Talim
- Pediatric Pathology Unit, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
14
|
Bonomo AC, Pinto-Mariz F, Riederer I, Benjamim CF, Butler-Browne G, Mouly V, Savino W. Crosstalk Between Innate and T Cell Adaptive Immunity With(in) the Muscle. Front Physiol 2020; 11:573347. [PMID: 33071827 PMCID: PMC7531250 DOI: 10.3389/fphys.2020.573347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Growing evidence demonstrates a continuous interaction between the immune system and the skeletal muscle in inflammatory diseases of different pathogenetic origins, in dystrophic conditions such as Duchenne Muscular Dystrophy as well as during normal muscle regeneration. Although one component of the innate immunity, the macrophage, has been extensively studied both in disease conditions and during cell or gene therapy strategies aiming at restoring muscular functions, much less is known about dendritic cells and their primary immunological targets, the T lymphocytes. This review will focus on the dendritic cells and T lymphocytes (including effector and regulatory T-cells), emphasizing the potential cross talk between these cell types and their influence on the structure and function of skeletal muscle.
Collapse
Affiliation(s)
- Adriana C Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fernanda Pinto-Mariz
- Marzagão Gesteira Institute of Pediatrics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ingo Riederer
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Claudia F Benjamim
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Program of Immunobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, U974, Center for Research in Myology, Paris, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, U974, Center for Research in Myology, Paris, France
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Yang SH, Chang C, Lian ZX. Polymyositis and dermatomyositis - challenges in diagnosis and management. J Transl Autoimmun 2019; 2:100018. [PMID: 32743506 PMCID: PMC7388349 DOI: 10.1016/j.jtauto.2019.100018] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023] Open
Abstract
Polymyositis (PM) and dermatomyositis (DM) are different disease subtypes of idiopathic inflammatory myopathies (IIMs). The main clinical features of PM and DM include progressive symmetric, predominantly proximal muscle weakness. Laboratory findings include elevated creatine kinase (CK), autoantibodies in serum, and inflammatory infiltrates in muscle biopsy. Dermatomyositis can also involve a characteristic skin rash. Both polymyositis and dermatomyositis can present with extramuscular involvement. The causative factor is agnogenic activation of immune system, leading to immunologic attacks on muscle fibers and endomysial capillaries. The treatment of choice is immunosuppression. PM and DM can be distinguished from other IIMs and myopathies by thorough history, physical examinations and laboratory evaluation and adherence to specific and up-to-date diagnosis criteria and classification standards. Treatment is based on correct diagnosis of these conditions. Challenges of diagnosis and management influences the clinical research and practice of Polymyositis and dermatomyositis. Diagnostic criteria have been updated and novel therapies have been developed in PM/DM. Pathogenesis investigation and diagnosis precision improvement may help to guide future treatment strategies.
Collapse
Key Words
- APC, antigen presenting cell
- AZA, Azathioprine
- CAM, cancer associated myositis
- CK, creatine kinase
- DM, dermatomyositis
- Dermatomyositis
- Diagnosis criteria
- EMG, electromyography
- HLA, human leukocyte antigen
- IIM, idiopathic inflammatory myopathies
- ILD, interstitial lung disease
- IV, intravenous
- Idiopathic inflammatory myopathy
- JDM, juvenile dermatomyositis
- MAA, myositis associated antibody
- MAC, membrane attack complex
- MHC, major histocompatibility complex
- MMF, mycophenolate mofetil
- MRI, magnetic resonance imaging
- MSA, myositis specific antibody
- MTX, methotrexate
- MUAP, motor unit action potential
- NAM, necrotizing autoimmune myopathy
- PM, polymyositis
- Polymyositis
- TNF, tumor necrosis factor
- Treatment
- Treg, regulatory T cell
- UVR, ultraviolet radiation
- sIBM, sporadic inclusion body myositis
Collapse
Affiliation(s)
- Shu-Han Yang
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, USA.,Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, USA
| | - Zhe-Xiong Lian
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
16
|
Miller FW, Lamb JA, Schmidt J, Nagaraju K. Risk factors and disease mechanisms in myositis. Nat Rev Rheumatol 2019; 14:255-268. [PMID: 29674613 DOI: 10.1038/nrrheum.2018.48] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases develop as a result of chronic inflammation owing to interactions between genes and the environment. However, the mechanisms by which autoimmune diseases evolve remain poorly understood. Newly discovered risk factors and pathogenic processes in the various idiopathic inflammatory myopathy (IIM) phenotypes (known collectively as myositis) have illuminated innovative approaches for understanding these diseases. The HLA 8.1 ancestral haplotype is a key risk factor for major IIM phenotypes in some populations, and several genetic variants associated with other autoimmune diseases have been identified as IIM risk factors. Environmental risk factors are less well studied than genetic factors but might include viruses, bacteria, ultraviolet radiation, smoking, occupational and perinatal exposures and a growing list of drugs (including biologic agents) and dietary supplements. Disease mechanisms vary by phenotype, with evidence of shared innate and adaptive immune and metabolic pathways in some phenotypes but unique pathways in others. The heterogeneity and rarity of the IIMs make advancements in diagnosis and treatment cumbersome. Novel approaches, better-defined phenotypes, and international, multidisciplinary consensus have contributed to progress, and it is hoped that these methods will eventually enable therapeutic intervention before the onset or major progression of disease. In the future, preemptive strategies for IIM management might be possible.
Collapse
Affiliation(s)
- Frederick W Miller
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Janine A Lamb
- Centre for Epidemiology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, UK
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Kanneboyina Nagaraju
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
17
|
Wakiguchi H. Multispecialty approach for improving outcomes in juvenile dermatomyositis. J Multidiscip Healthc 2019; 12:387-394. [PMID: 31213823 PMCID: PMC6549682 DOI: 10.2147/jmdh.s171095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/11/2019] [Indexed: 11/23/2022] Open
Abstract
Juvenile dermatomyositis (JDM) is a pediatric rheumatic disease characterized by inflammation of the muscle and skin. Prognosis of JDM in children has improved in general owing to medical progress; however, pathogenesis and management of JDM in children and prognosis in refractory JDM remain challenging. For elucidation of JDM pathophysiology and establishment of appropriate treatment for JDM, pediatric rheumatologists need to adopt a multispecialty approach that involves experts in genetics, immunology, pathology, musculoskeletal medicine, dermatology, pulmonology, cardiology, hematology, gastroenterology, endocrinology, ophthalmology, psychology, radiology, pharmacology, physiotherapy, surgery, preventive medicine, and adult rheumatology. Such collaborations will potentially lead to improved outcomes in children with JDM.
Collapse
Affiliation(s)
- Hiroyuki Wakiguchi
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
18
|
Mijnheer G, van Wijk F. T-Cell Compartmentalization and Functional Adaptation in Autoimmune Inflammation: Lessons From Pediatric Rheumatic Diseases. Front Immunol 2019; 10:940. [PMID: 31143175 PMCID: PMC6520654 DOI: 10.3389/fimmu.2019.00940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/11/2019] [Indexed: 12/30/2022] Open
Abstract
Chronic inflammatory diseases are characterized by a disturbed immune balance leading to recurring episodes of inflammation in specific target tissues, such as the joints in juvenile idiopathic arthritis. The tissue becomes infiltrated by multiple types of immune cell, including high numbers of CD4 and CD8 T-cells, which are mostly effector memory cells. Locally, these T-cells display an environment-adapted phenotype, induced by inflammation- and tissue-specific instructions. Some of the infiltrated T-cells may become tissue resident and play a role in relapses of inflammation. Adaptation to the environment may lead to functional (re)programming of cells and altered cellular interactions and responses. For example, specifically at the site of inflammation both CD4 and CD8 T-cells can become resistant to regulatory T-cell-mediated regulation. In addition, CD8 and CD4 T-cells show a unique profile with pro- and anti-inflammatory features coexisting in the same compartment. Also regulatory T-cells are neither homogeneous nor static in nature and show features of functional differentiation, and plasticity in inflammatory environments. Here we will discuss the recent insights in T-cell functional specialization, regulation, and clonal expansion in local (tissue) inflammation.
Collapse
Affiliation(s)
- Gerdien Mijnheer
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Femke van Wijk
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
19
|
Wienke J, Bellutti Enders F, Lim J, Mertens JS, van den Hoogen LL, Wijngaarde CA, Yeo JG, Meyer A, Otten HG, Fritsch-Stork RDE, Kamphuis SSM, Hoppenreijs EPAH, Armbrust W, van den Berg JM, Hissink Muller PCE, Tekstra J, Hoogendijk JE, Deakin CT, de Jager W, van Roon JAG, van der Pol WL, Nistala K, Pilkington C, de Visser M, Arkachaisri T, Radstake TRDJ, van der Kooi AJ, Nierkens S, Wedderburn LR, van Royen-Kerkhof A, van Wijk F. Galectin-9 and CXCL10 as Biomarkers for Disease Activity in Juvenile Dermatomyositis: A Longitudinal Cohort Study and Multicohort Validation. Arthritis Rheumatol 2019; 71:1377-1390. [PMID: 30861625 PMCID: PMC6973145 DOI: 10.1002/art.40881] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Objective Objective evaluation of disease activity is challenging in patients with juvenile dermatomyositis (DM) due to a lack of reliable biomarkers, but it is crucial to avoid both under‐ and overtreatment of patients. Recently, we identified 2 proteins, galectin‐9 and CXCL10, whose levels are highly correlated with the extent of juvenile DM disease activity. This study was undertaken to validate galectin‐9 and CXCL10 as biomarkers for disease activity in juvenile DM, and to assess their disease specificity and potency in predicting the occurrence of flares. Methods Levels of galectin‐9 and CXCL10 were measured by multiplex immunoassay in serum samples from 125 unique patients with juvenile DM in 3 international cross‐sectional cohorts and a local longitudinal cohort. The disease specificity of both proteins was examined in 50 adult patients with DM or nonspecific myositis (NSM) and 61 patients with other systemic autoimmune diseases. Results Both cross‐sectionally and longitudinally, galectin‐9 and CXCL10 outperformed the currently used laboratory marker, creatine kinase (CK), in distinguishing between juvenile DM patients with active disease and those in remission (area under the receiver operating characteristic curve [AUC] 0.86–0.90 for galectin‐9 and CXCL10; AUC 0.66–0.68 for CK). The sensitivity and specificity for active disease in juvenile DM was 0.84 and 0.92, respectively, for galectin‐9 and 0.87 and 1.00, respectively, for CXCL10. In 10 patients with juvenile DM who experienced a flare and were prospectively followed up, continuously elevated or rising biomarker levels suggested an imminent flare up to several months before the onset of symptoms, even in the absence of elevated CK levels. Galectin‐9 and CXCL10 distinguished between active disease and remission in adult patients with DM or NSM (P = 0.0126 for galectin‐9 and P < 0.0001 for CXCL10) and were suited for measurement in minimally invasive dried blood spots (healthy controls versus juvenile DM, P = 0.0040 for galectin‐9 and P < 0.0001 for CXCL10). Conclusion In this study, galectin‐9 and CXCL10 were validated as sensitive and reliable biomarkers for disease activity in juvenile DM. Implementation of these biomarkers into clinical practice as tools to monitor disease activity and guide treatment might facilitate personalized treatment strategies.
Collapse
Affiliation(s)
- Judith Wienke
- University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Felicitas Bellutti Enders
- Lausanne University Hospital, Lausanne, Switzerland, and University Hospital Basel, Basel, Switzerland
| | - Johan Lim
- Academic Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Jorre S Mertens
- University Medical Centre Utrecht, Utrecht, The Netherlands, and Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | - Joo Guan Yeo
- KK Women's and Children's Hospital, Duke-NUS Medical School, SingHealth Duke-NUS Academic Medical Center, Singapore
| | | | - Henny G Otten
- University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ruth D E Fritsch-Stork
- University Medical Centre Utrecht, Utrecht, The Netherlands, Sigmund Freud Private University, Vienna, Austria, and Hanusch Krankenhaus und Ludwig Boltzmann Institut für Osteologie, Vienna, Austria
| | - Sylvia S M Kamphuis
- Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | - Wineke Armbrust
- Beatrix Children's Hospital, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Petra C E Hissink Muller
- Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands, and Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | - Claire T Deakin
- University College London, University College London Hospital, the NIHR Biomedical Research Centre at Great Ormond Street Hospital, and Great Ormond Street Hospital, London, UK
| | - Wilco de Jager
- University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | - Thaschawee Arkachaisri
- KK Women's and Children's Hospital, Duke-NUS Medical School, SingHealth Duke-NUS Academic Medical Center, Singapore
| | | | | | | | - Lucy R Wedderburn
- University College London, University College London Hospital, the NIHR Biomedical Research Centre at Great Ormond Street Hospital, and Great Ormond Street Hospital, London, UK
| | | | - Femke van Wijk
- University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
20
|
Hoeppli RE, Pesenacker AM. Targeting Tregs in Juvenile Idiopathic Arthritis and Juvenile Dermatomyositis-Insights From Other Diseases. Front Immunol 2019; 10:46. [PMID: 30740105 PMCID: PMC6355674 DOI: 10.3389/fimmu.2019.00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/09/2019] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are believed to be dysfunctional in autoimmunity. Juvenile idiopathic arthritis (JIA) and juvenile dermatomyositis (JDM) result from a loss of normal immune regulation in specific tissues such as joints or muscle and skin, respectively. Here, we discuss recent findings in regard to Treg biology in oligo-/polyarticular JIA and JDM, as well as what we can learn about Treg-related disease mechanism, treatment and biomarkers in JIA/JDM from studies of other diseases. We explore the potential use of Treg immunoregulatory markers and gene signatures as biomarkers for disease course and/or treatment success. Further, we discuss how Tregs are affected by several treatment strategies already employed in the therapy of JIA and JDM and by alternative immunotherapies such as anti-cytokine or co-receptor targeting. Finally, we review recent successes in using Tregs as a treatment target with low-dose IL-2 or cellular immunotherapy. Thus, this mini review will highlight our current understanding and identify open questions in regard to Treg biology, and how recent findings may advance biomarkers and new therapies for JIA and JDM.
Collapse
Affiliation(s)
- Romy E Hoeppli
- Department of Surgery, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Anne M Pesenacker
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
21
|
Wienke J, Deakin CT, Wedderburn LR, van Wijk F, van Royen-Kerkhof A. Systemic and Tissue Inflammation in Juvenile Dermatomyositis: From Pathogenesis to the Quest for Monitoring Tools. Front Immunol 2018; 9:2951. [PMID: 30619311 PMCID: PMC6305419 DOI: 10.3389/fimmu.2018.02951] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
Juvenile Dermatomyositis (JDM) is a systemic immune-mediated disease of childhood, characterized by muscle weakness, and a typical skin rash. Other organ systems and tissues such as the lungs, heart, and intestines can be involved, but may be under-evaluated. The inflammatory process in JDM is characterized by an interferon signature and infiltration of immune cells such as T cells and plasmacytoid dendritic cells into the affected tissues. Vasculopathy due to loss and dysfunction of endothelial cells as a result of the inflammation is thought to underlie the symptoms in most organs and tissues. JDM is a heterogeneous disease, and several disease phenotypes, each with a varying combination of affected tissues and organs, are linked to the presence of myositis autoantibodies. These autoantibodies have therefore been extensively studied as biomarkers for the disease phenotype and its associated prognosis. Next to identifying the JDM phenotype, monitoring of disease activity and disease-inflicted damage not only in muscle and skin, but also in other organs and tissues, is an important part of clinical follow-up, as these are key determinants for the long-term outcomes of patients. Various monitoring tools are currently available, among which clinical assessment, histopathological investigation of muscle and skin biopsies, and laboratory testing of blood for specific biomarkers. These investigations also give novel insights into the underlying immunological processes that drive inflammation in JDM and suggest a strong link between the interferon signature and vasculopathy. New tools are being developed in the quest for minimally invasive, but sensitive and specific diagnostic methods that correlate well with clinical symptoms or reflect local, low-grade inflammation. In this review we will discuss the types of (extra)muscular tissue inflammation in JDM and their relation to vasculopathic changes, critically assess the available diagnostic methods including myositis autoantibodies and newly identified biomarkers, and reflect on the immunopathogenic implications of identified markers.
Collapse
Affiliation(s)
- Judith Wienke
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Claire T Deakin
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,NHR Biomedical Research Center at Great Ormond Hospital, London, United Kingdom.,Arthritis Research UK Center for Adolescent Rheumatology, UCL, UCLH and GOSH, London, United Kingdom
| | - Lucy R Wedderburn
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,NHR Biomedical Research Center at Great Ormond Hospital, London, United Kingdom.,Arthritis Research UK Center for Adolescent Rheumatology, UCL, UCLH and GOSH, London, United Kingdom
| | - Femke van Wijk
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annet van Royen-Kerkhof
- Pediatric Rheumatology and Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
22
|
Sasaki H, Takamura A, Kawahata K, Takashima T, Imai K, Morio T, Kohsaka H. Peripheral blood lymphocyte subset repertoires are biased and reflect clinical features in patients with dermatomyositis. Scand J Rheumatol 2018; 48:225-229. [DOI: 10.1080/03009742.2018.1530371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- H Sasaki
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - A Takamura
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - K Kawahata
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - T Takashima
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - K Imai
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - T Morio
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - H Kohsaka
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
23
|
Herbelet S, De Bleecker JL. Immune checkpoint failures in inflammatory myopathies: An overview. Autoimmun Rev 2018; 17:746-754. [PMID: 29885538 DOI: 10.1016/j.autrev.2018.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 12/21/2022]
Abstract
Dermatomyositis (DM), polymyositis (PM), inclusion body myositis (IBM), immune mediated necrotizing myopathy (IMNM) and overlap myositis (OM) are classified as inflammatory myopathies (IM) with involvement of autoimmune features such as autoreactive lymphocytes and autoantibodies. Autoimmunity can be defined as a loss in self-tolerance and attack of autoantigens by the immune system. Self-tolerance is achieved by a group of immune mechanisms occurring in central and periphal lymphoid organs and tissues, called immune checkpoints, that work in synergy to protect the body from harmful immune reactions. Autoimmune disorders appear when immune checkpoints fail. In this review, the different immune checkpoint failures are discussed in DM, PM, IBM and IMNM. Exploring research contribution in each of these immune checkpoints might help to highlight research perspectives in the field and obtain a more complete picture of IM disease pathology.
Collapse
Affiliation(s)
- Sandrine Herbelet
- Department of Neurology, Ghent University and Ghent University Hospital, C. Heymanslaan 10, 9000 Gent, Belgium.
| | - Jan L De Bleecker
- Department of Neurology, Ghent University and Ghent University Hospital, C. Heymanslaan 10, 9000 Gent, Belgium
| |
Collapse
|
24
|
Vincze K, Kolonics-Farkas A, Bohacs A, Müller V. Peripheral CD4+ T-cell changes in connective tissue diseases. Cytokine Growth Factor Rev 2018; 43:16-24. [PMID: 29853252 DOI: 10.1016/j.cytogfr.2018.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
Abstract
Connective tissue diseases (CTDs) are all characterized by changes in the adaptive immune system. In the last few decades several CD4 + T lymphocytes and their products have been associated with the development, progression, organ involvement, or therapeutic response of different CTDs. The T helper (Th) T-cell subsets are easy to measure in the peripheral blood, however changes are difficult to interpret. This review summarizes data about Th1/Th2/Th17 and regulatory T-cell (Treg) changes in the most common CTDs. Concordance and divergence of data might help in the better understanding of the common processes of these different systemic autoimmune disorders and might give future clues for differences in disease behavior and treatment response.
Collapse
Affiliation(s)
- Krisztina Vincze
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | | | - Aniko Bohacs
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
25
|
Pachman LM, Khojah AM. Advances in Juvenile Dermatomyositis: Myositis Specific Antibodies Aid in Understanding Disease Heterogeneity. J Pediatr 2018; 195:16-27. [PMID: 29576174 PMCID: PMC5881602 DOI: 10.1016/j.jpeds.2017.12.053] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/27/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Lauren M Pachman
- Department of Pediatrics , Northwestern University Feinberg School of Medicine, Chicago, IL; Stanley Manne Children's Research Institute, Cure JM Center of Excellence in Juvenile Myositis (JM) Research, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Amer M Khojah
- Department of Pediatrics, Division of Pediatric Rheumatology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| |
Collapse
|
26
|
Schiaffino S, Pereira MG, Ciciliot S, Rovere-Querini P. Regulatory T cells and skeletal muscle regeneration. FEBS J 2016; 284:517-524. [DOI: 10.1111/febs.13827] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/29/2016] [Indexed: 12/20/2022]
Affiliation(s)
| | - Marcelo G. Pereira
- Venetian Institute of Molecular Medicine (VIMM); Padova Italy
- Department of Biomedical Sciences; University of Padova; Italy
| | - Stefano Ciciliot
- Venetian Institute of Molecular Medicine (VIMM); Padova Italy
- Department of Medicine (DIMED); University of Padova; Italy
| | - Patrizia Rovere-Querini
- Division of Immunology, Transplantation and Infectious Disease; San Raffaele Scientific Institute; Vita-Salute San Raffaele University; Milano Italy
| |
Collapse
|
27
|
Rider LG, Nistala K. The juvenile idiopathic inflammatory myopathies: pathogenesis, clinical and autoantibody phenotypes, and outcomes. J Intern Med 2016; 280:24-38. [PMID: 27028907 PMCID: PMC4914449 DOI: 10.1111/joim.12444] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this review was to summarize recent advances in the understanding of the clinical and autoantibody phenotypes, their associated outcomes and the pathogenesis of the juvenile idiopathic inflammatory myopathies (JIIMs). The major clinical and autoantibody phenotypes in children have many features similar to those in adults, and each has distinct demographic and clinical features and associated outcomes. The most common myositis autoantibodies in JIIM patients are anti-p155/140, anti-MJ and anti-MDA5. Higher mortality has been associated with overlap myositis as well as with the presence of anti-synthetase and anti-MDA5 autoantibodies; a chronic illness course and lipodystrophy have been associated with anti-p155/140 autoantibodies; and calcinosis has been associated with anti-MJ autoantibodies. Histologic abnormalities of JIIMs detectable on muscle biopsy have also been correlated with myositis-specific autoantibodies; for example, patients with anti-MDA5 show low levels of inflammatory infiltrate and muscle damage on biopsy. The first genome-wide association study of adult and juvenile dermatomyositis revealed three novel genetic associations, BLK, PLCL1 and CCL21 and confirmed that the human leucocyte antigen region is the primary risk region for juvenile dermatomyositis. Here, we review the well-established pathogenic processes in JIIMs, including the type 1 interferon and endoplasmic reticulum stress pathways. Several novel JIIM-associated inflammatory mediators, such as the innate immune system proteins, myeloid-related peptide 8/14, galectin 9 and eotaxin, have emerged as promising biomarkers of disease. Advances in our understanding of the phenotypes and pathophysiology of the JIIMs are leading to better tools to help clinicians stratify and treat these heterogeneous disorders.
Collapse
Affiliation(s)
- L G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - K Nistala
- Centre for Rheumatology, University College London, London, UK
| |
Collapse
|
28
|
Fryer M, Grahammer J, Khalifian S, Furtmüller GJ, Lee WPA, Raimondi G, Brandacher G. Exploring cell-based tolerance strategies for hand and face transplantation. Expert Rev Clin Immunol 2015; 11:1189-204. [DOI: 10.1586/1744666x.2015.1078729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Lu J, Meng H, Zhang A, Yang J, Zhang X. Phenotype and function of tissue-resident unconventional Foxp3-expressing CD4(+) regulatory T cells. Cell Immunol 2015; 297:53-9. [PMID: 26142700 DOI: 10.1016/j.cellimm.2015.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 12/25/2022]
Abstract
It is becoming increasingly clear that regulatory T cells (Treg cells) in specific tissues are important parts of immune system. Tissue-resident Treg cells, which are largely Foxp3-expressing CD4(+) Treg cells, are distinct from one another and conventional Treg cells, and have tissue-specific phenotype and function. They have roles in improving insulin sensitivity in adipose tissue, promoting muscle repair, limiting inflammation in intestine, skin and central nervous system. In this Review, we discuss the current understanding of phenotype and function of tissue-resident Treg cells. Understanding phenotypic and functional diversity in different tissues could provide new insight into Treg cells development and investigation.
Collapse
Affiliation(s)
- Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, PR China
| | - Haiyang Meng
- Department of Pharmacy, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, PR China
| | - Ailing Zhang
- Department of Pharmacy, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, PR China
| | - Jie Yang
- Department of Pharmacy, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, PR China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
30
|
Hung CH. Treatment and clinical outcome of juvenile dermatomyositis. Pediatr Neonatol 2015; 56:1-2. [PMID: 25487198 DOI: 10.1016/j.pedneo.2014.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 12/26/2022] Open
Affiliation(s)
- Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.
| |
Collapse
|