1
|
Shang L, Deng D, Krom BP, Gibbs S. Oral host-microbe interactions investigated in 3D organotypic models. Crit Rev Microbiol 2024; 50:397-416. [PMID: 37166371 DOI: 10.1080/1040841x.2023.2211665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
The oral cavity is inhabited by abundant microbes which continuously interact with the host and influence the host's health. Such host-microbe interactions (HMI) are dynamic and complex processes involving e.g. oral tissues, microbial communities and saliva. Due to difficulties in mimicking the in vivo complexity, it is still unclear how exactly HMI influence the transition between healthy status and disease conditions in the oral cavity. As an advanced approach, three-dimensional (3D) organotypic oral tissues (epithelium and mucosa/gingiva) are being increasingly used to study underlying mechanisms. These in vitro models were designed with different complexity depending on the research questions to be answered. In this review, we summarised the existing 3D oral HMI models, comparing designs and readouts, discussing applications as well as future perspectives.
Collapse
Affiliation(s)
- Lin Shang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Jiao C, Ruan J, Sun W, Zhang X, Liu X, Sun G, Liu C, Sun C, Tian X, Yang D, Chen L, Wang Z. Molecular characterization, expression and antibacterial function of a macin, HdMac, from Haliotis discus hannai. J Invertebr Pathol 2024; 204:108113. [PMID: 38631559 DOI: 10.1016/j.jip.2024.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Macins are a family of antimicrobial peptides, which play multiple roles in the elimination of invading pathogens. In the present study, a macin was cloned and characterized from Pacific abalone Haliotis discus hannai (Designated as HdMac). Analysis of the conserved domain suggested that HdMac was a new member of the macin family. In non-stimulated abalones, HdMac transcripts were constitutively expressed in all five tested tissues, especially in hemocytes. After Vibrio harveyi stimulation, the expression of HdMac mRNA in hemocytes was significantly up-regulated at 12 hr (P < 0.01). RNAi-mediated knockdown of HdMac transcripts affected the survival rates of abalone against V. harveyi. Moreover, recombinant protein of HdMac (rHdMac) exhibited high antibacterial activities against invading bacteria, especially for Vibrio anguillarum. In addition, rHdMac possessed binding activities towards glucan, lipopolysaccharides (LPS), and peptidoglycan (PGN), but not chitin in vitro. Membrane integrity analysis revealed that rHdMac could increase the membrane permeability of bacteria. Meanwhile, both the phagocytosis and chemotaxis ability of hemocytes could be significantly enhanced by rHdMac. Overall, the results showed that HdMac could function as a versatile molecule involved in immune responses of H. discus hannai.
Collapse
Affiliation(s)
- Chunli Jiao
- Yantai Center for Food and Drug Control, Yantai 264003, PR China
| | - Jian Ruan
- Yantai Center for Food and Drug Control, Yantai 264003, PR China
| | - Wei Sun
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Xinze Zhang
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Xiaobo Liu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Guodong Sun
- Tianjin Xiqing District Agriculture and Rural Development Service Center, Tianjin 300380, PR China
| | - Caili Liu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Chunxiao Sun
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Xiuhui Tian
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Lizhu Chen
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China.
| | - Zhongquan Wang
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China.
| |
Collapse
|
3
|
Ustianowska K, Ustianowski Ł, Bakinowska E, Kiełbowski K, Szostak J, Murawka M, Szostak B, Pawlik A. The Genetic Aspects of Periodontitis Pathogenesis and the Regenerative Properties of Stem Cells. Cells 2024; 13:117. [PMID: 38247810 PMCID: PMC10814055 DOI: 10.3390/cells13020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Periodontitis (PD) is a prevalent and chronic inflammatory disease with a complex pathogenesis, and it is associated with the presence of specific pathogens, such as Porphyromonas gingivalis. Dysbiosis and dysregulated immune responses ultimately lead to chronic inflammation as well as tooth and alveolar bone loss. Multiple studies have demonstrated that genetic polymorphisms may increase the susceptibility to PD. Furthermore, gene expression is modulated by various epigenetic mechanisms, such as DNA methylation, histone modifications, or the activity of non-coding RNA. These processes can also be induced by PD-associated pathogens. In this review, we try to summarize the genetic processes that are implicated in the pathogenesis of PD. Furthermore, we discuss the use of these mechanisms in diagnosis and therapeutic purposes. Importantly, novel treatment methods that could promote tissue regeneration are greatly needed in PD. In this paper, we also demonstrate current evidence on the potential use of stem cells and extracellular vesicles to stimulate tissue regeneration and suppress inflammation. The understanding of the molecular mechanisms involved in the pathogenesis of PD, as well as the impact of PD-associated bacteria and stem cells in these processes, may enhance future research and ultimately improve long-term treatment outcomes.
Collapse
Affiliation(s)
- Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Martyna Murawka
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| |
Collapse
|
4
|
Meghil MM, Cutler CW. Influence of Vitamin D on Periodontal Inflammation: A Review. Pathogens 2023; 12:1180. [PMID: 37764988 PMCID: PMC10537363 DOI: 10.3390/pathogens12091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The active form of vitamin D is the hormonally active 1,25(OH)2D3 (Vit D) vitamin, which plays an important role in bone biology and host immunity. The vitamin D receptor (VDR) is a nuclear ligand-dependent transcription factor expressed by many cells. Ligation of VDR by VitD regulates a wide plethora of genes and physiologic functions through the formation of the complex Vit D-VDR signaling cascade. The influence of Vit D-VDR signaling in host immune response to microbial infection has been of interest to many researchers. This is particularly important in oral health and diseases, as oral mucosa is exposed to a complex microbiota, with certain species capable of causing disruption to immune homeostasis. In this review, we focus on the immune modulatory roles of Vit D in the bone degenerative oral disease, periodontitis.
Collapse
Affiliation(s)
- Mohamed M. Meghil
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Christopher W. Cutler
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
5
|
Yu H, Wang P, Lu H, Guan J, Yao F, Zhang T, Wang Q, Wang Z. Effects of G-CSF on hPDLSC proliferation and osteogenic differentiation in the LPS-induced inflammatory microenvironment. BMC Oral Health 2023; 23:422. [PMID: 37365568 DOI: 10.1186/s12903-023-03040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/13/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Periodontitis is a chronic infectious disease of periodontal support tissue caused by microorganisms in dental plaque, which causes alveolar bone resorption and tooth loss. Periodontitis treatment goals include prevention of alveolar bone resorption and promotion of periodontal regeneration. We previously found that granulocyte colony-stimulating factor (G-CSF) was involved in periodontitis-related alveolar bone resorption through induction of an immune response and subsequent destruction of periodontal tissue. However, the mechanisms underlying the effects of G-CSF on abnormal bone remodeling have not yet been fully elucidated. Human periodontal ligament stem cells (hPDLSCs) are major modulators of osteogenic differentiation in periodontal tissues. Thus, the aim of this study was to investigated whether G-CSF acts effects on hPDLSC proliferation and osteogenic differentiation, as well as periodontal tissue repair. METHODS hPDLSCs were cultured and identified by short tandem repeat analysis. The expression patterns and locations of G-CSF receptor (G-CSFR) on hPDLSCs were detected by immunofluorescence analysis. The effects of G-CSF on hPDLSCs in a lipopolysaccharide (LPS)-induced inflammatory microenvironment were investigated. Specifically, Cell-Counting Kit 8 (CCK8) and Alizarin red staining were used to examine hPDLSC proliferation and osteogenic differentiation; reverse transcription-polymerase chain reaction was performed to detect the expression patterns of osteogenesis-related genes (alkaline phosphatase [ALP], runt-related transcription factor 2 [Runx2], and osteocalcin [OCN]) in hPDLSCs; and Western blotting was used to detect the expression patterns of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt) of PI3K/Akt signaling pathway. RESULTS hPDLSCs exhibited a typical spindle-shaped morphology and good clonogenic ability. G-CSFR was mostly localized on the cell surface membrane. Analyses showed that G-CSF inhibited hPDLSC proliferation. Also, in the LPS-induced inflammatory microenvironment, G-CSF inhibited hPDLSC osteogenic differentiation and reduced the expression levels of osteogenesis-related genes. G-CSF increased the protein expression levels of hPDLSC pathway components p-PI3K and p-Akt. CONCLUSIONS We found that G-CSFR was expressed on hPDLSCs. Furthermore, G-CSF inhibited hPDLSC osteogenic differentiation in vitro in the LPS-induced inflammatory microenvironment.
Collapse
Affiliation(s)
- Hui Yu
- Department of Stomatology, Affiliated Zhongshan Hospital of Dalian University, 6th Jiefang Street, Dalian, Liaoning, China
| | - Pengcheng Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8th Gongti South Road, Beijing, China
| | - Haibin Lu
- Department of Stomatology, Affiliated Zhongshan Hospital of Dalian University, 6th Jiefang Street, Dalian, Liaoning, China
| | - Jiurong Guan
- Department of Stomatology, Affiliated Zhongshan Hospital of Dalian University, 6th Jiefang Street, Dalian, Liaoning, China
| | - Fang Yao
- Department of Stomatology, Affiliated Zhongshan Hospital of Dalian University, 6th Jiefang Street, Dalian, Liaoning, China
| | - Tianyi Zhang
- Shanxi Medical University, 382th WuyiRoad, Xinghualing Distrct, Taiyuan, Shanxi, China
| | - Qiuxu Wang
- Department of Stomatology, Affiliated Zhongshan Hospital of Dalian University, 6th Jiefang Street, Dalian, Liaoning, China.
| | - Zuomin Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8th Gongti South Road, Beijing, China.
| |
Collapse
|
6
|
Laberge S, Akoum D, Wlodarczyk P, Massé JD, Fournier D, Semlali A. The Potential Role of Epigenetic Modifications on Different Facets in the Periodontal Pathogenesis. Genes (Basel) 2023; 14:1202. [PMID: 37372382 DOI: 10.3390/genes14061202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease that affects the supporting structures of teeth. In the literature, the association between the pathogenicity of bacteria and environmental factors in this regard have been extensively examined. In the present study, we will shed light on the potential role that epigenetic change can play on different facets of its process, more particularly the modifications concerning the genes involved in inflammation, defense, and immune systems. Since the 1960s, the role of genetic variants in the onset and severity of periodontal disease has been widely demonstrated. These make some people more susceptible to developing it than others. It has been documented that the wide variation in its frequency for various racial and ethnic populations is due primarily to the complex interplay among genetic factors with those affecting the environment and the demography. In molecular biology, epigenetic modifications are defined as any change in the promoter for the CpG islands, in the structure of the histone protein, as well as post-translational regulation by microRNAs (miRNAs), being known to contribute to the alteration in gene expression for complex multifactorial diseases such as periodontitis. The key role of epigenetic modification is to understand the mechanism involved in the gene-environment interaction, and the development of periodontitis is now the subject of more and more studies that attempt to identify which factors are stimulating it, but also affect the reduced response to therapy.
Collapse
Affiliation(s)
- Samuel Laberge
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Daniel Akoum
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Piotr Wlodarczyk
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jean-Daniel Massé
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
7
|
Cohen H, Wani NA, Ben Hur D, Migliolo L, Cardoso MH, Porat Z, Shimoni E, Franco OL, Shai Y. Interaction of Pexiganan (MSI-78)-Derived Analogues Reduces Inflammation and TLR4-Mediated Cytokine Secretion: A Comparative Study. ACS OMEGA 2023; 8:17856-17868. [PMID: 37251186 PMCID: PMC10210221 DOI: 10.1021/acsomega.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Antibiotic-resistant bacterial infections have increased the prevalence of sepsis and septic shock mortality worldwide and have become a global concern. Antimicrobial peptides (AMPs) show remarkable properties for developing new antimicrobial agents and host response modulatory therapies. A new series of AMPs derived from pexiganan (MSI-78) were synthesized. The positively charged amino acids were segregated at their N- and C-termini, and the rest of the amino acids created a hydrophobic core surrounded by positive charges and were modified to simulate the lipopolysaccharide (LPS). The peptides were investigated for their antimicrobial activity and LPS-induced cytokine release inhibition profile. Various biochemical and biophysical methods were used, including attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, microscale thermophoresis (MST), and electron microscopy. Two new AMPs, MSI-Seg-F2F and MSI-N7K, preserved their neutralizing endotoxin activity while reducing toxicity and hemolytic activity. Combining all of these properties makes the designed peptides potential candidates to eradicate bacterial infection and detoxify LPS, which might be useful for sepsis treatment.
Collapse
Affiliation(s)
- Hadar Cohen
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Naiem Ahmad Wani
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Daniel Ben Hur
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Ludovico Migliolo
- Departamento
de Engenharia Sanitária e Ambiental, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
| | - Marlon H. Cardoso
- S-Inova,
Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, MS, Brazil
- Centro
de
Análises Proteômicas e Bioquímicas, Pós-Graduação
em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, DF, Brazil
- Instituto
de Biociências (INBIO), Universidade
Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070900, Mato Grosso do Sul, Brazil
| | - Ziv Porat
- The
Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal Shimoni
- Department
of Chemical Research Support, The Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Octavio Luiz Franco
- Departamento
de Engenharia Sanitária e Ambiental, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
- S-Inova,
Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, MS, Brazil
- Centro
de
Análises Proteômicas e Bioquímicas, Pós-Graduação
em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, DF, Brazil
| | - Yechiel Shai
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 76100, Israel
| |
Collapse
|
8
|
Lappin MJ, Dellett M, Mills KI, Lundy FT, Irwin CR. The neutralising and stimulatory effects of antimicrobial peptide LL-37 in human gingival fibroblasts. Arch Oral Biol 2023; 148:105634. [PMID: 36773560 DOI: 10.1016/j.archoralbio.2023.105634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
OBJECTIVES To investigate the effects of LL-37, a broad spectrum antimicrobial peptide expressed in periodontal tissues, on human gingival fibroblast responsiveness to microbial challenge and to explore the direct effects of LL-37 on human gingival fibroblasts. DESIGN The effect of LL-37 on bacterial lipopolysaccharide-induced expression of Interleukin (IL-6) and chemokine C-X-C motif ligand (CXCL) 8 was determined by enzyme linked immunosorbent assay (ELISA). LL-37's influence on bacterial lipopolysaccharide-induced IκBα degradation was investigated by western blot. DNA microarray analysis initially determined the direct effects of LL-37 on gene expression, these findings were subsequently confirmed by quantitative polymerase chain reaction and ELISA analysis of selected genes. RESULTS Bacterial lipopolysaccharide-induced IL-6 and CXCL8 production by human gingival fibroblasts was significantly reduced in the presence of LL-37 at concentrations in the range of 1-10 µg/ml. LL-37 led to a reduction in lipopolysaccharide-induced IκBα degradation by Escherichia coli lipopolysaccharide and Porphyromonas gingivalis lipopolysaccharide (10 µg/ml). LL-37 (50 µg/ml) significantly altered the gene expression of 367 genes in human gingival fibroblasts by at least 2-fold. CXCL1, CXCL2, CXCL3, Interleukin-24 (IL-24), CXCL8, Chemokine (C-C motif) Ligand 2, and Suppressor of Cytokine Signalling 3 mRNA were significantly upregulated by LL-37. LL-37 also significantly stimulated expression of CXCL8, hepatocyte growth factor and CXCL1 at the protein level. CONCLUSION LL-37 plays an important regulatory role in the immunomodulatory activity of gingival fibroblasts by inhibiting lipopolysaccharide -induced expression of inflammatory cytokines and directly stimulating the expression of an array of bioactive molecules involved in inflammation and repair.
Collapse
Affiliation(s)
| | - M Dellett
- Patrick G Johnston Centre for Cancer Research, UK
| | - K I Mills
- Patrick G Johnston Centre for Cancer Research, UK
| | - F T Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
| | | |
Collapse
|
9
|
Farag AGA, Shoeib MAA, labeeb AZ, Sleem AS, Khallaf HMA, Khalifa AS, Elshaib ME, Elnaidany NF, Hanout HMA. Human beta-defensin 1 circulating level and gene polymorphism in non-segmental vitiligo Egyptian patients. An Bras Dermatol 2023; 98:181-188. [PMID: 36535830 PMCID: PMC9984704 DOI: 10.1016/j.abd.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/03/2022] [Accepted: 04/16/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Vitiligo is an acquired depigmented skin disorder. It has a genetic and autoimmune background. Human beta defensin-1(HBD-1) plus its gene polymorphism were linked to some autoimmune disorders. OBJECTIVE To elucidate the possible role of HBD-1 in the pathogenesis of non-segmental vitiligo (NSV) through evaluation of HBD-1 serum levels and its single nucleotide polymorphism (SNP) in patients having NSV, in addition, to correlating the results with the extent of vitiligo in those patients. METHODS A current case-control study included 50 patients having NSV and 50 controls. The authors used Vitiligo Area Scoring Index (VASI) score to assess vitiligo severity and laboratory investigations to assess serum HBD-1 level using ELISA and defensin-beta1 (DEFB1) SNP using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS There were significantly lower HBD-1 serum levels in NSV cases than in controls (p < 0.001). There was a significant predominance of GG DEFB1 genotype and G allele in NSV patients in comparison to controls (p < 0.001). The levels of serum HBD-1 and DEFB1 genotypes were not associated or correlated significantly with any of the personal and clinical parameters of vitiligo patients. STUDY LIMITATION The small sample size. CONCLUSIONS DEFB1 gene polymorphism (GG genotype and G allele) may modulate vitiligo risk and contribute to vitiligo development in Egyptian populations. Decreased circulating HBD-1 levels might have an active role in vitiligo etiopathogenesis that could be mediated through its possible anti-inflammatory effects.
Collapse
Affiliation(s)
- Azza Gaber Antar Farag
- Dermatology, Andrology and STDs Department, Faculty of Medicine Menoufia University, Shebin EL-koum, Egypt.
| | | | - Azza Zagloul labeeb
- Microbiology and Immunology Department, Faculty of Medicine Menoufia University, Shebin EL-koum, Egypt
| | - Asmaa Shaaban Sleem
- Microbiology and Immunology Department, Faculty of Medicine Menoufia University, Shebin EL-koum, Egypt
| | | | - Amany Salah Khalifa
- Clinical Pathology Department, Faculty of Medicine Menoufia University, Shebin EL-koum, Egypt
| | | | | | | |
Collapse
|
10
|
Pereira MR, dos Santos VR, de Oliveira WC, Duque C, da Silva BF, Santos-Filho NA, Carneiro VA, Lorenzón EN, Cilli EM. Effects of Conjugation of Ferrocene and Gallic Acid On desCys 11/Lys 12/Lys 13-(p-BthTX-I) 2K Peptide: Structure, Permeabilization and Antibacterial Activity. Protein Pept Lett 2023; 30:690-698. [PMID: 37488753 DOI: 10.2174/0929866530666230721112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Antimicrobial resistance is an emerging global health challenge that has led researchers to study alternatives to conventional antibiotics. A promising alternative is antimicrobial peptides (AMPs), produced as the first line of defense by almost all living organisms. To improve its biological activity, the conjugation of AMPs is a promising approach. OBJECTIVE In this study, we evaluated the N-terminal conjugation of p-Bt (a peptide derived from Bothrops Jararacuçu`s venom) with ferrocene (Fc) and gallic acid (GA). Acetylated and linear versions of p-Bt were also synthesized to evaluate the importance of N-terminal charge and dimeric structure. METHODS The compounds were obtained using solid-phase peptide synthesis. Circular dichroism, vesicle permeabilization, antimicrobial activity, and cytotoxicity studies were conducted. RESULTS No increase in antibacterial activity against Escherichia coli was observed by adding either Fc or GA to p-Bt. However, Fc-p-Bt and GA-p-Bt exhibited improved activity against Staphylococcus aureus. No cytotoxicity upon fibroblast was observed for GA-p-Bt. On the other hand, conjugation with Fc increased cytotoxicity. This toxicity may be related to the membrane permeabilization capacity of this bioconjugate, which showed the highest carboxyfluorescein leakage in vesicle permeabilization experiments. CONCLUSION Considering these observations, our findings highlight the importance of adding bioactive organic compounds in the N-terminal position as a tool to modulate the activity of AMPs.
Collapse
Affiliation(s)
- Marina Rodrigues Pereira
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista (UNESP), SP, 14800-060, São Paulo, Araraquara, Brasil
| | - Vanessa Rodrigues dos Santos
- Departamento de Odontologia Preventiva e Restauradora, Faculdade de Odontologia de Araçatuba, Universidade Estadual Paulista (UNESP), Araçatuba 16015-050, SP, Brasil
| | - Warlley Campos de Oliveira
- Departamento de Odontologia Preventiva e Restauradora, Faculdade de Odontologia de Araçatuba, Universidade Estadual Paulista (UNESP), Araçatuba 16015-050, SP, Brasil
| | - Cristiane Duque
- Departamento de Odontologia Preventiva e Restauradora, Faculdade de Odontologia de Araçatuba, Universidade Estadual Paulista (UNESP), Araçatuba 16015-050, SP, Brasil
- Dental Research Institute, Faculdade de Odontologia, Universidade de Toronto, Toronto, ONM5G 1G6, Canadá
| | - Benise Ferreira da Silva
- Núcleo de Bioprospecção e Experimentação Molecular Aplicada (NUBEM), Centro Universitário INTA - UNINTA, Sobral, 62050-100, Ceará, Brasil
| | - Norival Alves Santos-Filho
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista (UNESP), SP, 14800-060, São Paulo, Araraquara, Brasil
| | - Victor Alves Carneiro
- Núcleo de Bioprospecção e Experimentação Molecular Aplicada (NUBEM), Centro Universitário INTA - UNINTA, Sobral, 62050-100, Ceará, Brasil
| | | | - Eduardo Maffud Cilli
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista (UNESP), SP, 14800-060, São Paulo, Araraquara, Brasil
| |
Collapse
|
11
|
Chinipardaz Z, Zhong JM, Yang S. Regulation of LL-37 in Bone and Periodontium Regeneration. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101533. [PMID: 36294968 PMCID: PMC9604716 DOI: 10.3390/life12101533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
The goal of regenerative therapy is to restore the structure and function of the lost tissues in the fields of medicine and dentistry. However, there are some challenges in regeneration therapy such as the delivery of oxygen and nutrition, and the risk of infection in conditions such as periodontitis, osteomyelitis, etc. Leucine leucine-37 (LL-37) is a 37-residue, amphipathic, and helical peptide found only in humans and is expressed throughout the body. It has been shown to induce neovascularization and vascular endothelial growth factor (VEGF) expression. LL-37 also stimulates the migration and differentiation of mesenchymal stem cells (MSCs). Recent studies have shown that LL-37 plays an important role in the innate defense system through the elimination of pathogenic microbes and the modulation of the host immune response. LL-37 also manifests other functions such as promoting wound healing, angiogenesis, cell differentiation, and modulating apoptosis. This review summarizes the current studies on the structure, expression, and function of LL-37 and highlights the contributions of LL-37 to oral cavity, periodontium, and bone regeneration.
Collapse
Affiliation(s)
- Zahra Chinipardaz
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica M. Zhong
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
| | - Shuying Yang
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
12
|
Antimicrobial Peptides in Early-Life Host Defense, Perinatal Infections, and Necrotizing Enterocolitis—An Update. J Clin Med 2022; 11:jcm11175074. [PMID: 36079001 PMCID: PMC9457252 DOI: 10.3390/jcm11175074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Host defense against early-life infections such as chorioamnionitis, neonatal sepsis, or necrotizing enterocolitis (NEC) relies primarily on innate immunity, in which antimicrobial peptides (AMPs) play a major role. AMPs that are important for the fetus and neonate include α and β defensins, cathelicidin LL-37, antiproteases (elafin, SLPI), and hepcidin. They can be produced by the fetus or neonate, the placenta, chorioamniotic membranes, recruited neutrophils, and milk-protein ingestion or proteolysis. They possess antimicrobial, immunomodulating, inflammation-regulating, and tissue-repairing properties. AMPs are expressed as early as the 13th week and increase progressively through gestation. Limited studies are available on AMP expression and levels in the fetus and neonate. Nevertheless, existing evidence supports the role of AMPs in pathogenesis of chorioamnionitis, neonatal sepsis, and NEC, and their association with disease severity. This suggests a potential role of AMPs in diagnosis, prevention, prognosis, and treatment of sepsis and NEC. Herein, we present an overview of the antimicrobial and immunomodulating properties of human AMPs, their sources in the intrauterine environment, fetus, and neonate, and their changes during pre- and post-natal infections and NEC. We also discuss emerging data regarding the potential utility of AMPs in early-life infections, as diagnostic or predictive biomarkers and as therapeutic alternatives or adjuncts to antibiotic therapy considering the increase of antibiotic resistance in neonatal intensive care units.
Collapse
|
13
|
Glycosaminoglycan, Antimicrobial Defence Molecule and Cytokine Appearance in Tracheal Hyaline Cartilage of Healthy Humans. J Funct Morphol Kinesiol 2022; 7:jfmk7030055. [PMID: 35893329 PMCID: PMC9326615 DOI: 10.3390/jfmk7030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Hyaline cartilage is an important tracheal structure, yet little is known about its molecular composition, complicating investigation of pathologies and replacement options. Our aim was to research tracheal hyaline cartilage structure, protective tissue factors and variations in healthy humans. The tissue material was obtained from 10 cadavers obtained from the Riga Stradins University Institute of Anatomy and Anthropology archive. Tissues were stained with Bismarck brown and PAS for glycosaminoglycans, and immunohistochemistry was performed for HBD-2, HBD-3, HBD-4, IL-10 and LL-37. The slides were inspected by light microscopy and Spearman's rank correlation coefficient was calculated. The extracellular matrix was positive across hyaline cartilage for PAS, yet Bismarck brown marked positive proliferation and growth zones. Numerous positive cells for both factors were found in all zones. All of the antimicrobial defence molecules and cytokines were found in a moderate number of cells, except in the mature cell zone with few positive cells. Spearman's rank correlation coefficient revealed strong and moderate correlations between studied factors. Hyaline cartilage is a tracheal defence structure with a moderate number of antimicrobial defence protein and cytokine immunoreactive cells as well as numerous glycosaminoglycan positive cells. The extracellular matrix glycosaminoglycans provide structural scaffolding and intercellular signalling. The correlations between the studied factors confirm the synergistic activity of them.
Collapse
|
14
|
Ebersole JL, Kirakodu S, Nguyen L, Gonzalez OA. Gingival Transcriptome of Innate Antimicrobial Factors and the Oral Microbiome With Aging and Periodontitis. FRONTIERS IN ORAL HEALTH 2022; 3:817249. [PMID: 35330821 PMCID: PMC8940521 DOI: 10.3389/froh.2022.817249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/04/2022] [Indexed: 12/30/2022] Open
Abstract
The epithelial barrier at mucosal sites comprises an important mechanical protective feature of innate immunity, and is intimately involved in communicating signals of infection/tissue damage to inflammatory and immune cells in these local environments. A wide array of antimicrobial factors (AMF) exist at mucosal sites and in secretions that contribute to this innate immunity. A non-human primate model of ligature-induced periodontitis was used to explore characteristics of the antimicrobial factor transcriptome (n = 114 genes) of gingival biopsies in health, initiation and progression of periodontal lesions, and in samples with clinical resolution. Age effects and relationship of AMF to the dominant members of the oral microbiome were also evaluated. AMF could be stratified into 4 groups with high (n = 22), intermediate (n = 29), low (n = 18) and very low (n = 45) expression in healthy adult tissues. A subset of AMF were altered in healthy young, adolescent and aged samples compared with adults (e.g., APP, CCL28, DEFB113, DEFB126, FLG2, PRH1) and were affected across multiple age groups. With disease, a greater number of the AMF genes were affected in the adult and aged samples with skewing toward decreased expression, for example WDC12, PGLYRP3, FLG2, DEFB128, and DEF4A/B, with multiple age groups. Few of the AMF genes showed a >2-fold increase with disease in any age group. Selected AMF exhibited significant positive correlations across the array of AMF that varied in health and disease. In contrast, a rather limited number of the AMF significantly correlated with members of the microbiome; most prominent in healthy samples. These correlated microbes were different in younger and older samples and differed in health, disease and resolution samples. The findings supported effects of age on the expression of AMF genes in healthy gingival tissues showing a relationship to members of the oral microbiome. Furthermore, a dynamic expression of AMF genes was related to the disease process and showed similarities across the age groups, except for low/very low expressed genes that were unaffected in young samples. Targeted assessment of AMF members from this large array may provide insight into differences in disease risk and biomolecules that provide some discernment of early transition to disease.
Collapse
Affiliation(s)
- Jeffrey L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Sreenatha Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Linh Nguyen
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Octavio A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
15
|
Sakulpaptong W, Clairmonte IA, Blackstone BN, Leblebicioglu B, Powell HM. 3D engineered human gingiva fabricated with electrospun collagen scaffolds provides a platform for in vitro analysis of gingival seal to abutment materials. PLoS One 2022; 17:e0263083. [PMID: 35113915 PMCID: PMC8812907 DOI: 10.1371/journal.pone.0263083] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/11/2022] [Indexed: 11/28/2022] Open
Abstract
In order to advance models of human oral mucosa towards routine use, these models must faithfully mimic the native tissue structure while also being scalable and cost efficient. The goal of this study was to develop a low-cost, keratinized human gingival model with high fidelity to human attached gingiva and demonstrate its utility for studying the implant-tissue interface. Primary human gingival fibroblasts (HGF) and keratinocytes (HGK) were isolated from clinically healthy gingival biopsies. Four matrices, electrospun collagen (ES), decellularized dermis (DD), type I collagen gels (Gel) and released type I collagen gels (Gel-R)) were tested to engineer lamina propria and gingiva. HGF viability was similar in all matrices except for Gel-R, which was significantly decreased. Cell penetration was largely limited to the top layers of all matrices. Histomorphometrically, engineered human gingiva was found to have similar appearance to the native normal human gingiva except absence of rete pegs. Immunohistochemical staining for cell phenotype, differentiation and extracellular matrix composition and organization within 3D engineered gingiva made with electrospun collagen was mostly in agreement with normal gingival tissue staining. Additionally, five types of dental material posts (5-mm diameter x 3-mm height) with different surface characteristics were used [machined titanium, SLA (sandblasted-acid etched) titanium, TiN-coated (titanium nitride-coated) titanium, ceramic, and PEEK (Polyetheretherketone) to investigate peri-implant soft tissue attachment studied by histology and SEM. Engineered epithelial and stromal tissue migration to the implant-gingival tissue interface was observed in machined, SLA, ceramic, and PEEK groups, while TiN was lacking attachment. Taken together, the results suggest that electrospun collagen scaffolds provide a scalable, reproducible and cost-effective lamina propria and 3D engineered gingiva that can be used to explore biomaterial-soft tissue interface.
Collapse
Affiliation(s)
- Wichurat Sakulpaptong
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, United States of America
- Faculty of Dentistry, Department of Oral Medicine and Periodontology, Mahidol University, Bangkok, Thailand
| | - Isabelle A. Clairmonte
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Britani N. Blackstone
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Binnaz Leblebicioglu
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, United States of America
| | - Heather M. Powell
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States of America
- Research Department, Shriners Children’s Ohio, Dayton, Ohio, United States of America
- * E-mail:
| |
Collapse
|
16
|
Andrukhov O, Blufstein A, Behm C. A Review of Antimicrobial Activity of Dental Mesenchymal Stromal Cells: Is There Any Potential? FRONTIERS IN ORAL HEALTH 2022; 2:832976. [PMID: 35098213 PMCID: PMC8795861 DOI: 10.3389/froh.2021.832976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial defense is an essential component of host-microbial homeostasis and contributes substantially to oral health maintenance. Dental mesenchymal stromal cells (MSCs) possess multilineage differentiation potential, immunomodulatory properties and play an important role in various processes like regeneration and disease progression. Recent studies show that dental MSCs might also be involved in antibacterial defense. This occurs by producing antimicrobial peptides or attracting professional phagocytic immune cells and modulating their activity. The production of antimicrobial peptides and immunomodulatory abilities of dental MSCs are enhanced by an inflammatory environment and influenced by vitamin D3. Antimicrobial peptides also have anti-inflammatory effects in dental MSCs and improve their differentiation potential. Augmentation of antibacterial efficiency of dental MSCs could broaden their clinical application in dentistry.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Alice Blufstein
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Sasaki N, Takeuchi H, Kitano S, Irie S, Amano A, Matsusaki M. Dynamic analysis of Porphyromonas gingivalis invasion into blood capillaries during the infection process in host tissues using a vascularized three-dimensional human gingival model. Biomater Sci 2021; 9:6574-6583. [PMID: 34582534 DOI: 10.1039/d1bm00831e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Porphyromonas gingivalis, the pathogen of periodontal disease, is thought to be involved in various diseases throughout the body via gingival tissue blood capillaries. However, the dynamic analysis of the infection mechanism, particularly the deep invasion process of the gingival tissue, has not yet been elucidated because of the lack of both in vivo and in vitro models. In this study, we developed a vascularized three-dimensional (3D) gingival model with an epithelial barrier expressing cell-cell junctions using collagen microfibers (CMFs) to enable the dynamic analysis of the P. gingivalis invasion process. Lipid raft disruption experiments in the gingival epithelial cell layer demonstrated that P. gingivalis migrates into the deeper epithelium via the intercellular pathway rather than intracellular routes. P. gingivalis was shown to invade the 3D gingival model, being found inside blood capillaries during two days of culture. Notably, the number of bacteria had increased greatly at least two days later, whereas the mutant P. gingivalis lacking the cysteine proteases, gingipains, showed a significantly lower number of survivors. The secretion of interleukin-6 (IL-6) from the gingival tissue decreased during the two days of infection with the wild type P. gingivalis, but the opposite was found for the mutant suggesting that P. gingivalis infection disturbs IL-6 secretion at an early stage. By allowing the dynamic observation of the P. gingivalis invasion from the epithelial cell layer into the blood capillaries for the first time, this model will be a powerful tool for the development of novel therapeutics against periodontal infection related diseases.
Collapse
Affiliation(s)
- Naoko Sasaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroki Takeuchi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shiro Kitano
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. .,TOPPAN PRINTING CO., LTD, Japan
| | - Shinji Irie
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. .,TOPPAN PRINTING CO., LTD, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. .,Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Caiaffa KS, Dos Santos VR, Abuna GF, Santos-Filho NA, Cilli EM, Sakai VT, Cintra LTA, Duque C. Cytocompatibility and Synergy of EGCG and Cationic Peptides Against Bacteria Related to Endodontic Infections, in Planktonic and Biofilm Conditions. Probiotics Antimicrob Proteins 2021; 13:1808-1819. [PMID: 34402021 DOI: 10.1007/s12602-021-09830-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 12/01/2022]
Abstract
This study evaluated the cytocompatibility and antimicrobial/antibiofilm effects of epigallocatechin-3-gallate (EGCG) associated with peptide LL-37 and its analogue KR-12-a5 against oral pathogens. The effect of the compounds on metabolism of fibroblasts was evaluated by methyltetrazolium assays. Antimicrobial activity of the compounds was evaluated on Streptococcus mutans, Enterococcus faecalis, Actinomyces israelii, and Fusobacterium nucleatum under planktonic conditions, on single- and dual-species biofilms and E. faecalis biofilms in dentinal tubules and analyzed by bacterial counts and confocal microscopy. Data were statistically analyzed considering p < 0.05. EGCG and peptide combinations were not toxic to fibroblasts. KR-12-a5 showed synergistic or addictive effects with EGCG and LL-37 against all bacteria tested. However, EGCG associated with KR-12-a5 demonstrated the highest bactericidal activity on all bacteria tested, at lower concentrations. In single-species biofilms, EGCG + KR-12-a5 eliminated S. mutans and A. israelii and reduced E. faecalis and F. nucleatum counts around 5 log CFU/mL. EGCG + KR-12-a5 reduced E. faecalis (-3.93 log CFU/mL) and eliminated S. mutans in dual-species biofilms. No growth of E. faecalis and significant reduction in A. israelii (-6.24 log CFU/mL) and F. nucleatum (-4.62 log CFU/mL) counts were detected in dual-species biofilms. The combination of EGCG and KR-12-a5 led to 88% of E. faecalis dead cells inside dentin tubules. The association of EGCG and KR-12-a5 was cytocompatible and promoted synergistic effect against biofilms of bacteria associated with endodontic infections.
Collapse
Affiliation(s)
- Karina Sampaio Caiaffa
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, São Paulo State University (UNESP), Aracatuba, São Paulo, Brazil
| | - Vanessa Rodrigues Dos Santos
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, São Paulo State University (UNESP), Aracatuba, São Paulo, Brazil
| | - Gabriel Flores Abuna
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Norival Alves Santos-Filho
- Department of Biochemistry and Organic Chemistry, São Paulo State University - Institute of Chemistry (UNESP), Araraquara, São Paulo, Brazil
| | - Eduardo Maffud Cilli
- Department of Biochemistry and Organic Chemistry, São Paulo State University - Institute of Chemistry (UNESP), Araraquara, São Paulo, Brazil
| | - Vivien Thiemy Sakai
- Department of Clinics and Surgery, School of Dentistry, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Luciano Tavares Angelo Cintra
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, São Paulo State University (UNESP), Aracatuba, São Paulo, Brazil
| | - Cristiane Duque
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, São Paulo State University (UNESP), Aracatuba, São Paulo, Brazil.
| |
Collapse
|
19
|
Weng Y, Wang H, Li L, Feng Y, Xu S, Wang Z. Trem2 mediated Syk-dependent ROS amplification is essential for osteoclastogenesis in periodontitis microenvironment. Redox Biol 2020; 40:101849. [PMID: 33486152 PMCID: PMC7823053 DOI: 10.1016/j.redox.2020.101849] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/04/2020] [Accepted: 12/24/2020] [Indexed: 12/20/2022] Open
Abstract
Periodontitis is the sixth most prevalent diseases around the globe, which is closely related to many systemic diseases and affects general health. As the leading cause of tooth loss, periodontitis is characterized by irreversible alveolar bone loss and activated osteoclastogenic process, which might be closely related to the activated intracellular reactive oxygen species (ROS) in osteoclasts. Here, we demonstrated triggering receptor expressed on myeloid cells 2 (Trem2) as a key regulator of osteoclastogenesis with the regulation of intracellular ROS signals in periodontitis. In the present study, the expression of Trem2 was significantly upregulated in human alveolar bones diagnosed with chronic periodontitis, as assessed by RNA-seq. In the mice model of periodontitis, the alveolar bone resorption was impeded in the presence of the conditional knockout of Trem2 in osteoclasts. Furthermore, we identified Trem2/DAP12/Syk-dependent cascade as a vital intracellular signaling for the amplification of reactive oxygen species (ROS) signals in osteoclastogenesis, while the accumulation of soluble Aβ42 oligomers (Aβo) in periodontitis microenvironment further strengthened the signals and enhanced osteoclastogenesis through direct interactions with Trem2. Collectively, Trem2 mediated ROS signal amplification cascade was crucial in the process of osteoclastogenesis in periodontitis, suggesting the potential of Trem2 as a target for the prevention and treatment of bone destruction in periodontitis.
Collapse
Affiliation(s)
- Yuteng Weng
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Haicheng Wang
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Lin Li
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yanhuizhi Feng
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Shuyu Xu
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Zuolin Wang
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
20
|
Para R, Romero R, Miller D, Panaitescu B, Varrey A, Chaiworapongsa T, Hassan SS, Hsu CD, Gomez-Lopez N. Human β-defensin-3 participates in intra-amniotic host defense in women with labor at term, spontaneous preterm labor and intact membranes, and preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2020; 33:4117-4132. [PMID: 30999788 PMCID: PMC6800590 DOI: 10.1080/14767058.2019.1597047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/09/2019] [Accepted: 03/16/2019] [Indexed: 01/16/2023]
Abstract
Objective: Human β-defensin-3 (HBD-3) has a broad spectrum of antimicrobial activity, and activity and, therefore, plays a central role in host defense mechanisms against infection. Herein, we determined whether HBD-3 was a physiological constituent of amniotic fluid during midtrimester and at term and whether the concentration of this defensin was increased in amniotic fluid of women with spontaneous preterm labor and intact membranes and those with preterm prelabor rupture of membranes (pPROM) with intra-amniotic inflammation or intra-amniotic infection.Methods: Amniotic fluid was collected from 219 women in the following groups: (1) midtrimester who delivered at term (n = 35); (2) with or without spontaneous labor at term (n = 50); (3) spontaneous preterm labor with intact membranes who delivered at term (n = 29); (4) spontaneous preterm labor with intact membranes who delivered preterm with or without intra-amniotic inflammation or intra-amniotic infection (n = 69); and (5) pPROM with or without intra-amniotic infection (n = 36). Amniotic fluid HBD-3 concentrations were determined using a sensitive and specific ELISA kit.Results: (1) HBD-3 is a physiological constituent of amniotic fluid; (2) the amniotic fluid concentration of HBD-3 did not change with gestational age (midtrimester versus term not in labor); (3) amniotic fluid concentrations of HBD-3 were higher in women with spontaneous labor at term than in those without labor; (4) in the absence of intra-amniotic inflammation, amniotic fluid concentrations of HBD-3 were similar between women with spontaneous preterm labor who delivered preterm and those who delivered at term; (5) among patients with spontaneous preterm labor who delivered preterm, amniotic fluid concentrations of HBD-3 were greater in women with intra-amniotic infection than in those without this clinical condition; (6) among patients with spontaneous preterm labor, amniotic fluid concentrations of HBD-3 were higher in women with intra-amniotic inflammation or intra-amniotic infection who delivered preterm than in those without these clinical conditions who delivered at term; and (7) women with pPROM and intra-amniotic infection had higher median amniotic fluid concentrations of HBD-3 than those without this clinical condition.Conclusion: Human β-defensin-3 is a physiological constituent of amniotic fluid and increases during the process of labor at term. Amniotic fluid concentrations of HBD-3 were increased in women with spontaneous preterm labor with intact membranes or pPROM with intra-amniotic inflammation or intra-amniotic infection, indicating that this defensin participates in the host defense mechanisms in the amniotic cavity against microorganisms or danger signals. These findings provide insight into the soluble host defense mechanisms against intra-amniotic inflammation and intra-amniotic infection.
Collapse
Affiliation(s)
- Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Aneesha Varrey
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U S Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
21
|
Sousa MGC, Xavier PD, Cantuária APDC, Porcino RA, Almeida JA, Franco OL, Rezende TMB. Host defense peptide IDR-1002 associated with ciprofloxacin as a new antimicrobial and immunomodulatory strategy for dental pulp revascularization therapy. Microb Pathog 2020; 152:104634. [PMID: 33242643 DOI: 10.1016/j.micpath.2020.104634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/08/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022]
Abstract
Regenerative therapies such as dental pulpal revascularization appear as an option for traumatized immature permanent teeth. However, the triple antibiotic paste - TAP (metronidazole, minocycline, and ciprofloxacin), used for these therapies, can generate cytotoxicity and dentin discoloration. In contrast, host defense peptides (HDPs) are promising antimicrobial and immunomodulatory biomolecules for dentistry. This study aimed to evaluate in vitro the antimicrobial activity (against Staphylococcus aureus and Enterococcus faecalis) and the immunomodulatory potential (by the evaluation of IL-1α, IL-6, IL-12, IL-10, TNF-α and NO, in RAW 264.7 macrophages and IL-6, TGF-β and NO, in L929 fibroblast) of synthetic peptides (DJK-6, IDR-1018, and IDR-1002), compared to TAP in an in vitro infection model containing heat-killed antigens from E. faecalis and S. aureus. Furthermore, the synergistic potential of ciprofloxacin and IDR-1002 was evaluated by checkerboard. Ciprofloxacin was the best antimicrobial of TAP, besides acting in synergism with IDR-1002. TAP was pro-inflammatory (p < 0.05), while the association of ciprofloxacin and IDR-1002 presented an anti-inflammatory profile mainly in the presence of both heat-killed antigens (p < 0.05). Based on these results, ciprofloxacin associated with IDR-1002 may demonstrate an efficient antimicrobial and immunomodulatory action in this in vitro model. Further in vivo studies may determine the real potential of this combination.
Collapse
Affiliation(s)
- Maurício Gonçalves C Sousa
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Patrícia D Xavier
- Curso de Farmácia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Ana Paula de C Cantuária
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Rayssa A Porcino
- Programa de Pós-Graduação Em Patologia Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Jeeser A Almeida
- Programa de Pós-Graduação Em Saúde e Desenvolvimento na Região Centro Oeste, Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil; Programa de Pós-Graduação Em Patologia Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil; S-Inova Biotech, Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Taia Maria B Rezende
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil; Programa de Pós-Graduação Em Ciências da Saúde, Universidade de Brasília, Brasília, Distrito Federal, Brazil; Curso de Odontologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
22
|
Lachowicz JI, Szczepski K, Scano A, Casu C, Fais S, Orrù G, Pisano B, Piras M, Jaremko M. The Best Peptidomimetic Strategies to Undercover Antibacterial Peptides. Int J Mol Sci 2020; 21:E7349. [PMID: 33027928 PMCID: PMC7583890 DOI: 10.3390/ijms21197349] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/05/2023] Open
Abstract
Health-care systems that develop rapidly and efficiently may increase the lifespan of humans. Nevertheless, the older population is more fragile, and is at an increased risk of disease development. A concurrently growing number of surgeries and transplantations have caused antibiotics to be used much more frequently, and for much longer periods of time, which in turn increases microbial resistance. In 1945, Fleming warned against the abuse of antibiotics in his Nobel lecture: "The time may come when penicillin can be bought by anyone in the shops. Then there is the danger that the ignorant man may easily underdose himself and by exposing his microbes to non-lethal quantities of the drug make them resistant". After 70 years, we are witnessing the fulfilment of Fleming's prophecy, as more than 700,000 people die each year due to drug-resistant diseases. Naturally occurring antimicrobial peptides protect all living matter against bacteria, and now different peptidomimetic strategies to engineer innovative antibiotics are being developed to defend humans against bacterial infections.
Collapse
Affiliation(s)
- Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Kacper Szczepski
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Alessandra Scano
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Cinzia Casu
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Sara Fais
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Germano Orrù
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Barbara Pisano
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
23
|
Lv C, Han Y, Yang D, Zhao J, Wang C, Mu C. Antibacterial activities and mechanisms of action of a defensin from manila clam Ruditapes philippinarum. FISH & SHELLFISH IMMUNOLOGY 2020; 103:266-276. [PMID: 32439511 DOI: 10.1016/j.fsi.2020.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/28/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Defensins represent an evolutionary ancient family of antimicrobial peptides, which played an undeniably important role in host defense. In the present study, a defensin isoform was identified and characterized from manila clam Ruditapes philippinarum (designed as Rpdef1α). Multiple alignments and phylogenetic analysis suggested that Rpdef1α belonged to the defensin family. Quantitative RT-PCR and immunohistochemical analysis revealed that Rpdef1α transcripts and the encoding peptide were dominantly expressed in the tissues of gills and mantle. After Vibrio anguillarum challenge, the Rpdef1α transcripts were significantly up-regulated in gills of clams. In addition, rRpdef1α not only showed broad-spectrum antimicrobial activities towards Vibrio species, but also inhibited the formation of bacterial biofilms. Knockdown of Rpdef1α transcripts caused significant increase in the cumulative mortality of manila clams post V. anguillarum challenge. Membrane integrity, scanning electron microscopy analysis and electrochemical assay indicated that rRpdef1α was capable of causing bacterial membrane permeabilization and then resulted in cell death. Moreover, phagocytosis and chemotactic ability of hemocytes could be significantly enhanced after incubation with rRpdef1α. Overall, these results suggested that Rpdef1α could act as both antibacterial agent and opsonin to defend against the invading microorganisms in manila clam R. philippinarum.
Collapse
Affiliation(s)
- Chengjie Lv
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315832, PR China
| | - Yijing Han
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dinglong Yang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China.
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315832, PR China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315832, PR China.
| |
Collapse
|
24
|
Blyth GAD, Connors L, Fodor C, Cobo ER. The Network of Colonic Host Defense Peptides as an Innate Immune Defense Against Enteropathogenic Bacteria. Front Immunol 2020; 11:965. [PMID: 32508838 PMCID: PMC7251035 DOI: 10.3389/fimmu.2020.00965] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Host defense peptides, abundantly secreted by colonic epithelial cells and leukocytes, are proposed to be critical components of an innate immune response in the colon against enteropathogenic bacteria, including Shigella spp., Salmonella spp., Clostridium difficile, and attaching and effacing Escherichia coli and Citrobacter rodentium. These short cationic peptides are bactericidal against both Gram-positive and -negative enteric pathogens, but may also exert killing effects on intestinal luminal microbiota. Simultaneously, these peptides modulate numerous cellular responses crucial for gut defenses, including leukocyte chemotaxis and migration, wound healing, cytokine production, cell proliferation, and pathogen sensing. This review discusses recent advances in our understanding of expression, mechanisms of action and microbicidal and immunomodulatory functions of major colonic host defense peptides, namely cathelicidins, β-defensins, and members of the Regenerating islet-derived protein III (RegIII) and Resistin-like molecule (RELM) families. In a theoretical framework where these peptides work synergistically, aspects of pathogenesis of infectious colitis reviewed herein uncover roles of host defense peptides aimed to promote epithelial defenses and prevent pathogen colonization, mediated through a combination of direct antimicrobial function and fine-tuning of host immune response and inflammation. This interactive host defense peptide network may decode how the intestinal immune system functions to quickly clear infections, restore homeostasis and avoid damaging inflammation associated with pathogen persistence during infectious colitis. This information is of interest in development of host defense peptides (either alone or in combination with reduced doses of antibiotics) as antimicrobial and immunomodulatory therapeutics for controlling infectious colitis.
Collapse
Affiliation(s)
- Graham A D Blyth
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Liam Connors
- Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cristina Fodor
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Eduardo R Cobo
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
25
|
Human β-defensin 3 gene modification promotes the osteogenic differentiation of human periodontal ligament cells and bone repair in periodontitis. Int J Oral Sci 2020; 12:13. [PMID: 32350241 PMCID: PMC7190824 DOI: 10.1038/s41368-020-0078-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Efforts to control inflammation and achieve better tissue repair in the treatment of periodontitis have been ongoing for years. Human β-defensin 3, a broad-spectrum antimicrobial peptide has been proven to have a variety of biological functions in periodontitis; however, relatively few reports have addressed the effects of human periodontal ligament cells (hPDLCs) on osteogenic differentiation. In this study, we evaluated the osteogenic effects of hPDLCs with an adenoviral vector encoding human β-defensin 3 in an inflammatory microenvironment. Then human β-defensin 3 gene-modified rat periodontal ligament cells were transplanted into rats with experimental periodontitis to observe their effects on periodontal bone repair. We found that the human β-defensin 3 gene-modified hPDLCs presented with high levels of osteogenesis-related gene expression and calcium deposition. Furthermore, the p38 MAPK pathway was activated in this process. In vivo, human β-defensin 3 gene-transfected rat PDLCs promoted bone repair in SD rats with periodontitis, and the p38 mitogen-activated protein kinase (MAPK) pathway might also have been involved. These findings demonstrate that human β-defensin 3 accelerates osteogenesis and that human β-defensin 3 gene modification may offer a potential approach to promote bone repair in patients with periodontitis.
Collapse
|
26
|
Guandalini Cunha B, Duque C, Sampaio Caiaffa K, Massunari L, Araguê Catanoze I, dos Santos DM, de Oliveira SHP, Guiotti AM. Cytotoxicity and antimicrobial effects of citronella oil (Cymbopogon nardus) and commercial mouthwashes on S. aureus and C. albicans biofilms in prosthetic materials. Arch Oral Biol 2020; 109:104577. [DOI: 10.1016/j.archoralbio.2019.104577] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
|
27
|
Zhang Z, Yuan W, Deng J, Wang D, Zhang T, Peng L, Tian H, Wang Z, Ma J. Granulocyte colony stimulating factor (G-CSF) regulates neutrophils infiltration and periodontal tissue destruction in an experimental periodontitis. Mol Immunol 2019; 117:110-121. [PMID: 31765840 DOI: 10.1016/j.molimm.2019.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/29/2019] [Accepted: 11/10/2019] [Indexed: 12/15/2022]
Abstract
Although granulocyte colony-stimulating factor(G-CSF) has pathogenic roles in several immune inflammatory diseases, its role in periodontitis has not been investigated. Here we detected local expression of G-CSF using public datasets in the Gene Expression Omnibus (GEO) database, and immune cell infiltration into gingival tissue was estimated based on single-sample gene set enrichment analysis (ssGSEA). G-CSF expression and neutrophil infiltration were also confirmed by human gingival biopsies analysis. Moreover, anti-G-CSF neutralizing antibody was locally administrated to investigate the effects of G-CSF neutralization on neutrophils infiltration and periodontal tissue destruction in periodontitis mice model. Two public datasets (GSE10334 and GSE16134), which included 424 patients with periodontitis and 133 health controls, were used in the analysis. Markedly increased immune cell infiltration and G-CSF expression in gingival tissues were found in the periodontitis group as compared to the control group. The higher expression of G-CSF was correlated with higher infiltration of immune cells, especially with neutrophil infiltration. Analysis of gingival biopsies further confirmed high neutrophil infiltration and G-CSF expression. In addition, anti-G-CSF antibody-treated mice with periodontitis showed significantly reduced alveolar bone resorption and neutrophil infiltration when compared with periodontitis mice treated with isotype control antibody. Also, anti-G-CSF antibody treatment significantly reduced mRNA expression of CXC chemokines (CXCL1, CXCL2 and CXCL3), interleukin 1β (IL-1β), IL-6, matrix metalloproteinases 9, receptor activator of nuclear factor κB ligand/osteoprotegerin (RANKL/OPG) ratio and osteoclasts number in periodontal tissues. In summary, neutrophil infiltration and G-CSF expression levels were significantly increased in inflamed gingival tissues. G-CSF neutralization in periodontal inflammation could alleviate neutrophil infiltration and periodontal tissue destruction in experimental periodontitis.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8th Gongti South Road, Beijing, 100020, China; Department of Periodontology, Tianjin Stomatological Hospital, Hospital of Stomatology, Nankai University, 75th Dagu North Road, Tianjin, 300000, China
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 17(th) Panjiayuan Nanli, Beijing, 100021, China
| | - Junjie Deng
- State Key Laboratory of Molecular Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 17(th) Panjiayuan Nanli, Beijing, 100021, China
| | - Danyang Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8th Gongti South Road, Beijing, 100020, China
| | - Tianyi Zhang
- School of Stomatology, Shanxi Medical University, 56th Xinjian South Road, Taiyuan, 030001, China
| | - Li Peng
- Department of Stomatology, The Third People's Hospital of Datong City, 1th Wenchang Road, Datong, 037008, China
| | - Huan Tian
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8th Gongti South Road, Beijing, 100020, China
| | - Zuomin Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8th Gongti South Road, Beijing, 100020, China.
| | - Jie Ma
- Department of Biotherapy, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1th Dongdan Dahua Road, Beijing, 100730, China.
| |
Collapse
|
28
|
Gomez Hernandez MP, Bates AM, Starman EE, Lanzel EA, Comnick C, Xie XJ, Brogden KA. HBD3 Induces PD-L1 Expression on Head and Neck Squamous Cell Carcinoma Cell Lines. Antibiotics (Basel) 2019; 8:antibiotics8040161. [PMID: 31554151 PMCID: PMC6963492 DOI: 10.3390/antibiotics8040161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022] Open
Abstract
Human β-defensin 3 (HBD3) is an antimicrobial peptide up-regulated in the oral tissues of individuals with head and neck squamous cell carcinomas (HNSCC) and oral squamous cell carcinomas (SCC) and present in high concentrations in their saliva. In this study, we determined if HBD3 contributes to HNSCC pathogenesis by inducing programmed death-ligand 1 (PD-L1) expression on HNSCC cell lines. For this, SCC cell lines SCC4, SCC15, SCC19, SCC25, and SCC99 (5.0 × 104 viable cells) were used. Cells were incubated with IFNγ (0.6 µM) and HBD3 (0.2, 2.0, or 20.0 µM) for 24 h. Cells alone served as controls. Cells were then treated with anti-human APC-CD274 (PD-L1) and Live/Dead Fixable Green Dead Cell Stain. Cells treated with an isotype antibody and cells alone served as controls. All cell suspensions were analyzed in a LSR II Violet Flow Cytometer. Cytometric data was analyzed using FlowJo software. Treatment with IFNγ (0.6 µM) increased the number of cells expressing PD-L1 (p < 0.05) with respect to controls. Treatment with HBD3 (20.0 µM) also increased the number of cells expressing PD-L1 (p < 0.05) with respect to controls. However, treatment with IFNγ (0.6 µM) was not significantly different from treatment with HBD3 (20.0 µM) and the numbers of cells expressing PD-L1 were similar (p = 1). Thus, HBD3 increases the number of cells expressing PD-L1. This is a novel concept, but the role HBD3 contributes to HNSCC pathogenesis by inducing PD-L1 expression in tumors will have to be determined.
Collapse
Affiliation(s)
- Maria Paula Gomez Hernandez
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Amber M Bates
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Emily E Starman
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Emily A Lanzel
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Carissa Comnick
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Xian Jin Xie
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Kim A Brogden
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA.
- Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
29
|
Targeting macrophages and their recruitment in the oral cavity using swellable (+) alpha tocopheryl phosphate nanostructures. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102010. [PMID: 31195135 DOI: 10.1016/j.nano.2019.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/12/2019] [Accepted: 04/30/2019] [Indexed: 11/23/2022]
Abstract
The phosphorylation of (+) alpha tocopherol produces adhesive nanostructures that interact with oral biofilms to restrict their growth. The aim of this work was to understand if these adhesive (+) alpha tocopheryl phosphate (α-TP) nanostructures could also control macrophage responses to the presence of oral bacteria. The (+) α-TP planar bilayer fragments (175 nm ± 21 nm) formed in a Trizma®/ethanol vehicle swelled when exposed to the cell lines (maximum stabilized size = 29 μm). The swelled (+) α-TP aggregates showed selective toxicity towards THP-1 macrophages (LD50 = 304 μM) compared to human gingival fibroblasts (HGF-1 cells; LD50 > 5 mM), and they inhibited heat killed bacteria stimulated MCP-1 production in both macrophages (control 57.3 ± 18.1 pg/mL vs (+) α-TP 6.5 ± 3.2 pg/mL) and HGF-1 cells (control 673.5 ± 133 pg/mL vs (+) α-TP - 463.9 ± 68.9 pg/mL).
Collapse
|
30
|
Aida KL, Kreling PF, Caiaffa KS, Calixto GMF, Chorilli M, Spolidorio DM, Santos-Filho NA, Cilli EM, Duque C. Antimicrobial peptide-loaded liquid crystalline precursor bioadhesive system for the prevention of dental caries. Int J Nanomedicine 2018; 13:3081-3091. [PMID: 29872295 PMCID: PMC5975612 DOI: 10.2147/ijn.s155245] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Anticaries agents must interfere with the adhesion of Streptococcus mutans and its proliferation in dental biofilm, without causing host toxicity and bacterial resistance. Natural substances, including cationic antimicrobial peptides (CAMPs) and their fragments, such as β-defensin-3 peptide fragment (D1–23), have been widely studied. However, the chemical and physical stability of CAMPs may be compromised by external factors, such as temperature and pH, reducing the period of antimicrobial activity. Methods To overcome the aforementioned disadvantage, this study developed and character-ized a drug delivery system and evaluated the cytotoxicity and effect against S. mutans biofilm of a D1–23-loaded bioadhesive liquid crystalline system (LCS). LCS was composed of oleic acid, polyoxypropylene-(5)-polyoxyethylene-(20)-cetyl alcohol, Carbopol® 974P and Carbopol® 971P. LCS was analyzed by polarized light microscopy (PLM), rheology (viscoelasticity and flow properties) and in vitro bioadhesion. The viability of epithelial cells was evaluated. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) against S. mutans were determined for D1–23 for further evaluation of the effect against S. mutans biofilm after 4 and 24 h of exposure to treatments. Results PLM, rheology, and in vitro bioadhesion tests showed that both viscosity and bioadhesion of LCS increased after it was diluted with artificial saliva. D1–23-loaded LCS system presented better activity against S. mutans biofilm after 24 h when compared to 4 h of treatment, showing a cumulative effect. Neither LCS nor D1–23-loaded LCS presented toxicity on human epithelial cells. Conclusion D1–23-loaded LCS is a promising drug delivery system for the prevention of dental caries.
Collapse
Affiliation(s)
- Kelly Limi Aida
- Department of Pediatric Dentistry and Public Health, Araçatuba Dental School, Sao Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Paula Fernanda Kreling
- Department of Pediatric Dentistry and Public Health, Araçatuba Dental School, Sao Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Karina Sampaio Caiaffa
- Department of Endodontics, Araçatuba Dental School, Sao Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Giovana Maria Fioramonti Calixto
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Denise Mp Spolidorio
- Department of Physiology and Pathology, Araraquara Dental School, Sao Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Norival Alves Santos-Filho
- Department of Biochemistry and Chemical Technology, Institute of Chemistry, Sao Paulo State University (UNESP), Araraquara, São Paulo, Brazil.,Registro Experimental Campus, Sao Paulo State University (UNESP), Registro, São Paulo, Brazil
| | - Eduardo Maffud Cilli
- Department of Biochemistry and Chemical Technology, Institute of Chemistry, Sao Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Cristiane Duque
- Department of Pediatric Dentistry and Public Health, Araçatuba Dental School, Sao Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| |
Collapse
|
31
|
Jourdain ML, Pierrard L, Kanagaratnam L, Velard F, Sergheraert J, Lefèvre B, Gangloff SC, Braux J. Antimicrobial peptide gene expression in periodontitis patients: A pilot study. J Clin Periodontol 2018; 45:524-537. [PMID: 29446150 DOI: 10.1111/jcpe.12879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
AIM Antimicrobial peptides (AMPs) are one of the most active components of innate immunity and have characteristics that could place them at the heart of the pathogenesis of periodontal disease. This study investigated differences in the expression of AMP coding genes obtained using a simple harvesting technique, gingival smear, between two groups of patients: chronic periodontitis subjects versus healthy ones. MATERIALS AND METHODS Twenty-three patients were enrolled in two groups: 12 were diagnosed with moderate or severe generalized chronic periodontitis, and 11 were diagnosed as clinically healthy. Gingival smears were retrieved and studied using reverse transcription-quantitative PCR (RT-qPCR) after mRNA purification. RESULTS Fifteen gene expressions were obtained using real-time RT-qPCR. Three AMP genes, histatin 3 (HTN3), α-defensin 4 (DEFA4) and lysozyme C (LYZ), presented different expression levels in periodontitis patients compared with healthy subjects. The relative expression level of DEFA4 appeared to be a protective factor against periodontitis. CONCLUSION Gingival smears studied by RT-qPCR may be used to assess the expression of AMPs coding genes. A lack of expression of DEFA4 could be a potential indicator of periodontitis status.
Collapse
Affiliation(s)
- Marie-Laure Jourdain
- EA 4691 Biomatériaux et inflammation en site osseux (BIOS), SFR CAP-Santé (FED 4231), Université de Reims-Champagne-Ardenne, Reims, France.,UFR Odontologie, Reims, France.,Pôle Odontologie, CHU de Reims, Reims, France
| | - Loïc Pierrard
- UFR Odontologie, Reims, France.,Pôle Odontologie, CHU de Reims, Reims, France.,EA 3797 Santé Publique, Vieillissement, Qualité de Vie et Réadaptation des Sujets Fragiles, Université de Reims-Champagne-Ardenne, Reims, France
| | - Lukshe Kanagaratnam
- Pôle Odontologie, CHU de Reims, Reims, France.,EA 3797 Santé Publique, Vieillissement, Qualité de Vie et Réadaptation des Sujets Fragiles, Université de Reims-Champagne-Ardenne, Reims, France
| | - Frédéric Velard
- EA 4691 Biomatériaux et inflammation en site osseux (BIOS), SFR CAP-Santé (FED 4231), Université de Reims-Champagne-Ardenne, Reims, France.,UFR Odontologie, Reims, France
| | - Johan Sergheraert
- EA 4691 Biomatériaux et inflammation en site osseux (BIOS), SFR CAP-Santé (FED 4231), Université de Reims-Champagne-Ardenne, Reims, France.,Pôle Odontologie, CHU de Reims, Reims, France
| | - Benoît Lefèvre
- UFR Odontologie, Reims, France.,Pôle Odontologie, CHU de Reims, Reims, France
| | - Sophie C Gangloff
- EA 4691 Biomatériaux et inflammation en site osseux (BIOS), SFR CAP-Santé (FED 4231), Université de Reims-Champagne-Ardenne, Reims, France.,UFR de Pharmacie, Reims, France
| | - Julien Braux
- EA 4691 Biomatériaux et inflammation en site osseux (BIOS), SFR CAP-Santé (FED 4231), Université de Reims-Champagne-Ardenne, Reims, France.,UFR Odontologie, Reims, France.,Pôle Odontologie, CHU de Reims, Reims, France
| |
Collapse
|
32
|
Caiaffa KS, Massunari L, Danelon M, Abuna GF, Bedran TBL, Santos-Filho NA, Spolidorio DMP, Vizoto NL, Cilli EM, Duque C. KR-12-a5 is a non-cytotoxic agent with potent antimicrobial effects against oral pathogens. BIOFOULING 2017; 33:807-818. [PMID: 29022391 DOI: 10.1080/08927014.2017.1370087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
This study evaluated the cytotoxicity and antimicrobial activity of analogs of cationic peptides against microorganisms associated with endodontic infections. L-929 fibroblasts were exposed to LL-37, KR-12-a5 and hBD-3-1CV and chlorhexidine (CHX, control), and cell metabolism was evaluated with MTT. The minimal inhibitory concentration (MIC) and the minimal bactericidal/fungicidal concentration (MBC/MFC) of the peptides and CHX were determined against oral pathogens associated with endodontic infections. Enterococcus faecalis and Streptococcus mutans biofilms were cultivated in bovine dentin blocks, exposed to different concentrations of the most efficient antimicrobial peptide and analyzed by confocal laser scanning microscopy. CHX and peptides affected the metabolism of L-929 at concentrations > 31.25 and 500 μg ml-1, respectively. Among the peptides, KR-12-a5 inhibited growth of both the microorganisms tested with the lowest MIC/MBC/MFC values. In addition, KR-12-a5 significantly reduced E. faecalis and S. mutans biofilms inside dentin tubules. In conclusion, KR-12-a5 is a non-cytotoxic agent with potent antimicrobial and anti-biofilm activity against oral pathogens associated with endodontic infections.
Collapse
Affiliation(s)
- Karina Sampaio Caiaffa
- a São Paulo State University (UNESP), Department of Restorative Dentistry, School of Dentistry , Araçatuba , Brazil
| | - Loiane Massunari
- a São Paulo State University (UNESP), Department of Restorative Dentistry, School of Dentistry , Araçatuba , Brazil
| | - Marcelle Danelon
- b São Paulo State University (UNESP), Department of Pediatric Dentistry and Public Health, School of Dentistry , Araçatuba , Brazil
| | - Gabriel Flores Abuna
- c University of Campinas (UNICAMP), Department of Restorative Dentistry, School of Dentistry , Piracicaba , Brazil
| | - Telma Blanca Lombardo Bedran
- e São Paulo State University (UNESP), Department of Physiology and Pathology, School of Dentistry , Araraquara , Brazil
| | - Norival Alves Santos-Filho
- f São Paulo State University (UNESP), Department of Biochemistry and Chemical Technology, Institute of Chemistry , Araraquara , Brazil
| | | | - Natalia Leal Vizoto
- d University of Campinas (UNICAMP), Department of Oral Diagnosis, School of Dentistry , Piracicaba , Brazil
| | - Eduardo Maffud Cilli
- f São Paulo State University (UNESP), Department of Biochemistry and Chemical Technology, Institute of Chemistry , Araraquara , Brazil
| | - Cristiane Duque
- b São Paulo State University (UNESP), Department of Pediatric Dentistry and Public Health, School of Dentistry , Araçatuba , Brazil
| |
Collapse
|
33
|
Piotrowska U, Sobczak M, Oledzka E. Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors. Chem Biol Drug Des 2017; 90:1079-1093. [DOI: 10.1111/cbdd.13031] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/14/2017] [Accepted: 05/18/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Urszula Piotrowska
- Chair of Inorganic and Analytical Chemistry; Department of Biomaterials Chemistry; Faculty of Pharmacy with the Laboratory Medicine Division; Medical University of Warsaw; Warsaw Poland
| | - Marcin Sobczak
- Chair of Inorganic and Analytical Chemistry; Department of Biomaterials Chemistry; Faculty of Pharmacy with the Laboratory Medicine Division; Medical University of Warsaw; Warsaw Poland
| | - Ewa Oledzka
- Chair of Inorganic and Analytical Chemistry; Department of Biomaterials Chemistry; Faculty of Pharmacy with the Laboratory Medicine Division; Medical University of Warsaw; Warsaw Poland
| |
Collapse
|
34
|
Yang N, Liu X, Teng D, Li Z, Wang X, Mao R, Wang X, Hao Y, Wang J. Antibacterial and detoxifying activity of NZ17074 analogues with multi-layers of selective antimicrobial actions against Escherichia coli and Salmonella enteritidis. Sci Rep 2017; 7:3392. [PMID: 28611436 PMCID: PMC5469750 DOI: 10.1038/s41598-017-03664-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/25/2017] [Indexed: 01/09/2023] Open
Abstract
NZ17074 (N1), an arenicin-3 derivative isolated from the lugworm, has potent antibacterial activity and is cytotoxic. To reduce its cytotoxicity, seven N1 analogues with different structures were designed by changing their disulfide bonds, hydrophobicity, or charge. The “rocket” analogue-N2 and the “kite” analogue-N6 have potent activity and showed lower cytotoxicity in RAW264.7 cells than N1. The NMR spectra revealed that N1, N2, and N6 adopt β-sheet structures stabilized by one or two disulfide bonds. N2 and N6 permeabilized the outer/inner membranes of E. coli, but did not permeabilize the inner membranes of S. enteritidis. N2 and N6 induced E. coli and S. enteritidis cell cycle arrest in the I-phase and R-phase, respectively. In E. coli and in S. enteritidis, 18.7–43.8% of DNA/RNA/cell wall synthesis and 5.7–61.8% of DNA/RNA/protein synthesis were inhibited by the two peptides, respectively. Collapsed and filamentous E. coli cells and intact morphologies of S. enteritidis cells were observed after treatment with the two peptides. Body weight doses from 2.5–7.5 mg/kg of N2 and N6 enhanced the survival rate of peritonitis- and endotoxemia-induced mice; reduced the serum IL-6, IL-1β and TNF-α levels; and protected mice from lipopolysaccharide-induced lung injury. These data indicate that N2 and N6, through multiple selective actions, may be promising dual-function candidates as novel antimicrobial and anti-endotoxin peptides.
Collapse
Affiliation(s)
- Na Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuehui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Da Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhanzhan Li
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China. .,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Ruoyu Mao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ya Hao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianhua Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China. .,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
35
|
Jia J, Peng H, Chen S. Evaluation of the role of human β-defensin 3 in modulation of immunity and inflammatory response after knee replacement. Exp Ther Med 2017; 13:1343-1346. [PMID: 28413475 PMCID: PMC5377263 DOI: 10.3892/etm.2017.4100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/23/2017] [Indexed: 11/23/2022] Open
Abstract
The present study investigated the value of human β-defensin 3 (HBD-3) in adjusting the immunity and inflammatory response of T lymphocytes in the body after knee replacement. Sixty-four cases of knee replacement patients were successively selected and randomly divided into the control group and the observation group each with 32 cases. Once a day, for 7 days, patients in the control group were injected with placebo saline solution in the articular cavity. Levels of Th1 and/Th2, interleukin (IL)-2 and IL-10, tumor necrosis factor (TNF)-α, toll-like receptor (TLR)-4, and alkaline phosphatase (ALP) were compared one month later, and implant infection rates were compared within 1-year follow-up. Compared with patients in the control group, the levels of Th1 and Th1/Th2 in the observation group significantly increased, yet their Th2 decreased. The levels of IL-2 and TNF-α were also observed to be significantly elevated, yet IL-10 decreased. Furthermore, their TLR-4 and ALP levels were significantly higher. Three cases of implant-related infection occurred in the control group and 1 case in the observation group. In conclusion, HBD-3 could adjust the immunity and inflammatory response of cells in the body after knee replacement, possibly playing an important role in implant-related infection.
Collapse
Affiliation(s)
- Jiguang Jia
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hao Peng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sen Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
36
|
Crabbé A, Liu Y, Matthijs N, Rigole P, De La Fuente-Nùñez C, Davis R, Ledesma MA, Sarker S, Van Houdt R, Hancock REW, Coenye T, Nickerson CA. Antimicrobial efficacy against Pseudomonas aeruginosa biofilm formation in a three-dimensional lung epithelial model and the influence of fetal bovine serum. Sci Rep 2017; 7:43321. [PMID: 28256611 PMCID: PMC5335707 DOI: 10.1038/srep43321] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/25/2017] [Indexed: 12/14/2022] Open
Abstract
In vitro models that mimic in vivo host-pathogen interactions are needed to evaluate candidate drugs that inhibit bacterial virulence traits. We established a new approach to study Pseudomonas aeruginosa biofilm susceptibility on biotic surfaces, using a three-dimensional (3-D) lung epithelial cell model. P. aeruginosa formed antibiotic resistant biofilms on 3-D cells without affecting cell viability. The biofilm-inhibitory activity of antibiotics and/or the anti-biofilm peptide DJK-5 were evaluated on 3-D cells compared to a plastic surface, in medium with and without fetal bovine serum (FBS). In both media, aminoglycosides were more efficacious in the 3-D cell model. In serum-free medium, most antibiotics (except polymyxins) showed enhanced efficacy when 3-D cells were present. In medium with FBS, colistin was less efficacious in the 3-D cell model. DJK-5 exerted potent inhibition of P. aeruginosa association with both substrates, only in serum-free medium. DJK-5 showed stronger inhibitory activity against P. aeruginosa associated with plastic compared to 3-D cells. The combined addition of tobramycin and DJK-5 exhibited more potent ability to inhibit P. aeruginosa association with both substrates. In conclusion, lung epithelial cells influence the efficacy of most antimicrobials against P. aeruginosa biofilm formation, which in turn depends on the presence or absence of FBS.
Collapse
Affiliation(s)
- Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium.,The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Yulong Liu
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Nele Matthijs
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
| | - César De La Fuente-Nùñez
- University of British Columbia, Centre for Microbial Diseases and Immunity Research, Vancouver, British Columbia, Canada
| | - Richard Davis
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Maria A Ledesma
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Shameema Sarker
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Rob Van Houdt
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium
| | - Robert E W Hancock
- University of British Columbia, Centre for Microbial Diseases and Immunity Research, Vancouver, British Columbia, Canada
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
| | - Cheryl A Nickerson
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America.,School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States of America
| |
Collapse
|
37
|
Zhu C, Bao NR, Chen S, Zhao JN. The mechanism of human β-defensin 3 in MRSA-induced infection of implant drug-resistant bacteria biofilm in the mouse tibial bone marrow. Exp Ther Med 2017; 13:1347-1352. [PMID: 28413476 PMCID: PMC5377296 DOI: 10.3892/etm.2017.4112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/23/2017] [Indexed: 11/11/2022] Open
Abstract
The mechanism of human β-defensin 3 (HBD-3) in methicillin-resistant Staphylococcus aureus (MRSA-induced infection of implant drug-resistant bacteria biofilm in the mouse tibial bone marrow was studied. Healthy adult male Sprague-Dawley rats with average weight of 230 g were selected to construct the infection model of MRSA-induced implant drug-resistant bacteria biofilm in the mouse left tibial bone marrow. The drugs were intraperitoneally injected after 24 h medullary cavity infection, and the experimental groups included the model group, HBD-3 group, and vancomycin group (20 rats in each group). The model group was injected with 10 ml saline, HBD-3 group was injected with 10 ml of 8 µg/ml (1 MIC) and vancomycin group was injected with 10 ml of 0.5 µg/ml (1 MIC), five animals in each group were sacrificed on the 1, 7, 14 and 21 days, respectively. Observation was carried out on whether there was swelling and purulent secretion on the local wound; 1 ml venous sinus blood of eye socket was collected for blood routine examination and blood culture, and the laser scanning confocal microscopy was used to observe the morphology of the biofilm on the implant surface and the number of viable bacteria. Immunohistochemical staining was adopted to test the expression of nuclear factor-κB (NF-κB) and toll-like receptor 4 (TLR-4), and ELISA method was used to test interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), IL-1α and interferon-γ (INF-γ)-inducible protein-10 (IP-10) expression levels. There was no death due to infection in the HBD-3 group or vancomycin group, 1 case with significant wound swelling was found, respectively, in each group, but there was no purulent secretion. The percentage of the total white blood cells and neutrophil granulocytes as well as the biofilm morphology and the number of viable bacteria in the model group was gradually increased with time, while those in the HBD-3 group and vancomycin group were decreased with time. The comparative difference among groups was statistically significant (P<0.05); those in the HBD-3 group and vancomycin group at each time-point was decreased significantly compared with the model group, and the difference among groups was statistically significant (P<0.05), but in terms of the comparison between the HBD-3 group and vancomycin group, the difference was not significantly different (P>0.05). The NF-κB and TLR-4 expressions in the model group and vancomycin group were not significantly changed at each time-point, those in the HBD-3 group began to increase on the 1st day, and reached the peak on the 7th day and began to decline on the 14th day, and the comparative difference at each time-point was statistically significant (P<0.05); those in the HBD-3 group were significantly higher than the model group and vancomycin group at each time-point and the difference was statistically significant (P<0.05). The IL-10, TNF-α, IL-1α, and IP-10 expressions in the model group at each time were significantly higher than the other two groups and the difference was statistically significant (P<0.05); in terms of the comparison between the HBD-3 group and vancomycin group, the difference was not statistically significant (P>0.05). In conclusion, β-defensin 3 can inhibit the bacterial growth by regulating inflammation and immune responses in the MRSA-induced implant drug-resistant bacteria biofilm infection in the mouse tibial bone marrow.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Orthopaedic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Ni-Rong Bao
- Department of Orthopaedic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Shuo Chen
- Department of Orthopaedic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Jian-Ning Zhao
- Department of Orthopaedic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
38
|
Lyu J, Bian T, Chen B, Cui D, Li L, Gong L, Yan F. β-defensin 3 modulates macrophage activation and orientation during acute inflammatory response to Porphyromonas gingivalis lipopolysaccharide. Cytokine 2017; 92:48-54. [PMID: 28092794 DOI: 10.1016/j.cyto.2016.12.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/21/2016] [Indexed: 01/01/2023]
Abstract
β-defensin 3, a multifunctional antimicrobial peptide, has immuno-regulatory activities. We investigated the modulatory mechanism of human β-defensin 3 (hBD3) on acute inflammatory response resulted from Porphyromonas gingivalis lipopolysaccharide (P.g-LPS), which plays a pro-inflammatory role in periodontal infection and its derived systemic inflammation. P.g-LPS was administrated to mice and murine macrophages alone or along with hBD3. P.g-LPS could lead to acute inflammation as soon as 2h. And it was observed that hBD3 significantly decreased the production of pro-inflammatory biomarkers of in response to P.g-LPS in vivo and in vitro in the early stage. Interestingly, although hBD3 as well as P.g-LPS stimulated the expression of TLR2 mRNA in macrophages in this study, hBD3 exhibited suppressive effect on the downstream NF-κB signaling pathway activated by P.g-LPS. And above all, hBD3 could polarize macrophages into M2 phenotype and this contributed to its anti-inflammatory property. These results indicated that hBD3 could have therapeutic effect on systemic inflammation associated with periodontal infections via modulating macrophage activation and orientation.
Collapse
Affiliation(s)
- Jinglu Lyu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Tianying Bian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Bin Chen
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Di Cui
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Lili Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Ling Gong
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
39
|
Jennings LR, Colley HE, Ong J, Panagakos F, Masters JG, Trivedi HM, Murdoch C, Whawell S. Development and Characterization of In Vitro Human Oral Mucosal Equivalents Derived from Immortalized Oral Keratinocytes. Tissue Eng Part C Methods 2016; 22:1108-1117. [PMID: 27846777 DOI: 10.1089/ten.tec.2016.0310] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tissue-engineered oral mucosal equivalents (OME) are being increasingly used to measure toxicity, drug delivery, and to model oral diseases. Current OME mainly comprise normal oral keratinocytes (NOK) cultured on top of a normal oral fibroblasts-containing matrix. However, the commercial supply of NOK is limited, restricting widespread use of these mucosal models. In addition, NOK suffer from poor longevity and donor-to-donor variability. Therefore, we constructed, characterized, and tested the functionality of OME based on commercial TERT2-immortalized oral keratinocytes (FNB6) to produce a more readily available alternative to NOK-based OME. FNB6 OME cultured at an air-to-liquid interface for 14 days exhibited expression of differentiation markers cytokeratin 13 in the suprabasal layers and cytokeratin 14 in basal layer of the epithelium. Proliferating cells were restricted to the basal epithelium, and there was immuno-positive expression of E-cadherin confirming the presence of established cell-to-cell contacts. The histology and expression of these structural markers paralleled those observed in the normal oral mucosa and NOK-based models. On stimulation with TNFα and IL-1, FNB6 OME displayed a similar global gene expression profile to NOK-based OME, with increased expression of many common pro-inflammatory molecules such as chemokines (CXCL8), cytokines (IL-6), and adhesion molecules (ICAM-1) when analyzed by gene array and quantitative PCR. Similarly, pathway analysis showed that both FNB6 and NOK models initiated similar intracellular signaling on stimulation. Gene expression in FNB6 OME was more consistent than NOK-based OME that suffered from donor variation in response to stimuli. Mucosal equivalents based on immortalized FNB6 cells are accessible, reproducible and will provide an alternative animal experimental system for studying mucosal drug delivery systems, host-pathogen interactions, and drug-induced toxicity.
Collapse
Affiliation(s)
- Luke R Jennings
- 1 School of Clinical Dentistry, University of Sheffield , Sheffield, United Kingdom
| | - Helen E Colley
- 1 School of Clinical Dentistry, University of Sheffield , Sheffield, United Kingdom
| | - Jane Ong
- 2 Colgate-Palmolive Company , Piscataway, New Jersey
| | | | | | | | - Craig Murdoch
- 1 School of Clinical Dentistry, University of Sheffield , Sheffield, United Kingdom
| | - Simon Whawell
- 1 School of Clinical Dentistry, University of Sheffield , Sheffield, United Kingdom
| |
Collapse
|
40
|
Niyonsaba F, Kiatsurayanon C, Ogawa H. The role of human β-defensins in allergic diseases. Clin Exp Allergy 2016; 46:1522-1530. [PMID: 27790779 DOI: 10.1111/cea.12843] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antimicrobial peptides (AMPs), also referred to as host defence peptides (HDPs), comprise a large family of small molecules broadly distributed throughout the animal and plant kingdom, historically serving as natural antibiotics. In mammals, there are two major families of AMPs/HDPs, the defensins and the cathelicidins. These peptides have evolved to protect against a wide range of infections from bacteria, viruses, fungi and some parasites. However, in addition to their broad-spectrum killing activities, AMPs/HDPs also possess various biological functions. They activate a variety of cell types, such as keratinocytes, airway epithelial cells and mast cells, among others, and regulate cytokine/chemokine production, cell migration, proliferation, differentiation, angiogenesis, the wound healing process and maintenance of the skin barrier function. Recently, it has become clear that alterations in the level of AMPs/HDPs are associated with the initiation and development of various inflammatory and allergic diseases. In this review, we will discuss the regulation and functions of human β-defensins and outline the current evidence supporting the role of these peptides in the pathogenesis of allergic diseases, including atopic dermatitis, allergic rhinitis, asthma and chronic rhinosinusitis. Understanding the functions and mechanisms of human β-defensins may aid in the development of novel therapeutic strategies for allergic diseases.
Collapse
Affiliation(s)
- F Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan
| | - C Kiatsurayanon
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Institute of Dermatology, Department of Medical Services, Ministry of Public Health, Bangkok, Thailand
| | - H Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Kreling PF, Aida KL, Massunari L, Caiaffa KS, Percinoto C, Bedran TBL, Spolidorio DMP, Abuna GF, Cilli EM, Duque C. Cytotoxicity and the effect of cationic peptide fragments against cariogenic bacteria under planktonic and biofilm conditions. BIOFOULING 2016; 32:995-1006. [PMID: 27538256 DOI: 10.1080/08927014.2016.1218850] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
This study evaluated the cytotoxicity and effect of fragments derived from three oral cationic peptides (CP): LL-37, D6-17 and D1-23 against cariogenic bacteria under planktonic and biofilm conditions. For cytotoxicity analysis, two epithelial cell lines were used. The minimum inhibitory concentration and the minimal bactericidal concentration were determined for the CP fragments and the control (chlorhexidine-CHX) against cariogenic bacteria. The fractional inhibitory concentration was obtained for the combinations of CP fragments on Streptococcus mutans. Biofilm assays were conducted with the best antimicrobial CP fragment against S. mutans. The results indicated that D6-17 was not cytotoxic. D1-23, LL-37 and CHX were not cytotoxic in low concentrations. D1-23 presented the best bactericidal activity against S. mutans, S. mitis and S. salivarius. Combinations of CP fragments did not show a synergic effect. D1-23 presented a higher activity against S. mutans biofilm than CHX. It was concluded that D1-23 showed a substantial effect against cariogenic bacteria and low cytotoxicity.
Collapse
Affiliation(s)
- Paula Fernanda Kreling
- a Department of Pediatric Dentistry and Public Health, Araçatuba Dental School , UNESP - Universidade Estadual Paulista , Araçatuba , São Paulo , Brazil
| | - Kelly Limi Aida
- a Department of Pediatric Dentistry and Public Health, Araçatuba Dental School , UNESP - Universidade Estadual Paulista , Araçatuba , São Paulo , Brazil
| | - Loiane Massunari
- b Department of Restorative Dentistry (Endodontics) , Araçatuba Dental School, UNESP - Universidade Estadual Paulista , Araçatuba , São Paulo , Brazil
| | - Karina Sampaio Caiaffa
- b Department of Restorative Dentistry (Endodontics) , Araçatuba Dental School, UNESP - Universidade Estadual Paulista , Araçatuba , São Paulo , Brazil
| | - Célio Percinoto
- a Department of Pediatric Dentistry and Public Health, Araçatuba Dental School , UNESP - Universidade Estadual Paulista , Araçatuba , São Paulo , Brazil
| | - Telma Blanca Lombardo Bedran
- c Department of Physiology and Pathology , Araraquara Dental School, UNESP - Universidade Estadual Paulista , Araraquara , São Paulo , Brazil
| | - Denise Madalena Palomari Spolidorio
- c Department of Physiology and Pathology , Araraquara Dental School, UNESP - Universidade Estadual Paulista , Araraquara , São Paulo , Brazil
| | - Gabriel Flores Abuna
- d Department of Dental Materials , Piracicaba Dental School, UNICAMP - Universidade de Campinas , Piracicaba , São Paulo , Brazil
| | - Eduardo Maffud Cilli
- e Department of Biochemistry and Chemical Technology , Institute of Chemistry, UNESP - Universidade Estadual Paulista , Araraquara , São Paulo , Brazil
| | - Cristiane Duque
- a Department of Pediatric Dentistry and Public Health, Araçatuba Dental School , UNESP - Universidade Estadual Paulista , Araçatuba , São Paulo , Brazil
| |
Collapse
|
42
|
Russo FB, Pignatari GC, Fernandes IR, Dias JLRM, Beltrão-Braga PCB. Epithelial cells from oral mucosa: How to cultivate them? Cytotechnology 2016; 68:2105-14. [PMID: 26825681 PMCID: PMC5023582 DOI: 10.1007/s10616-016-9950-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/18/2016] [Indexed: 12/16/2022] Open
Abstract
Epithelial cells from oral mucosa (EOM) are responsible for important functions, like the primary protection of oral mucosa against external aggressions building a mechanical barrier against microorganisms, mechanical damage, toxic material, thermal regulation and secretion of different classes of inflammatory mediators. EOM could be an interesting tool for cellular and molecular biology research. Usually, EOM are collected by a painful and invasive process. In this study, we propose an alternative method to cultivate EOM collected by non-invasive scraping method of oral mucosa. Papanicolaou staining showed mainly two kinds of epithelial cell population after EOM scraping. As result of the five culture methods tested here, our results revealed that the EOM were successfully cultured on a murine feeder layer. In addition, EOM could be frozen and thawed, without morphology changes and loss of viability. Our findings suggest that EOM can be considered as a good cell source for many purposes, such as genetic studies, diagnosis and cell therapy.
Collapse
Affiliation(s)
- F. B. Russo
- Stem Cell Lab, Department of Surgery, School of Veterinary Medicine, University of São Paulo, 87 Prof. Dr. Orlando Marques de Paiva Av., São Paulo, 05508-270 Brazil
| | - G. C. Pignatari
- Stem Cell Lab, Department of Surgery, School of Veterinary Medicine, University of São Paulo, 87 Prof. Dr. Orlando Marques de Paiva Av., São Paulo, 05508-270 Brazil
- Center for Cellular and Molecular Therapy (NETCEM), School of Medicine, University of São Paulo, 455 Dr. Arnaldo Av., São Paulo, 01246-903 Brazil
| | - I. R. Fernandes
- Stem Cell Lab, Department of Surgery, School of Veterinary Medicine, University of São Paulo, 87 Prof. Dr. Orlando Marques de Paiva Av., São Paulo, 05508-270 Brazil
| | - J. L. R. M. Dias
- Stem Cell Lab, Department of Surgery, School of Veterinary Medicine, University of São Paulo, 87 Prof. Dr. Orlando Marques de Paiva Av., São Paulo, 05508-270 Brazil
| | - P. C. B. Beltrão-Braga
- Stem Cell Lab, Department of Surgery, School of Veterinary Medicine, University of São Paulo, 87 Prof. Dr. Orlando Marques de Paiva Av., São Paulo, 05508-270 Brazil
- Center for Cellular and Molecular Therapy (NETCEM), School of Medicine, University of São Paulo, 455 Dr. Arnaldo Av., São Paulo, 01246-903 Brazil
- Obstetrics Department, School of Arts, Sciences and Humanities, University of São Paulo, 100 Arlindo Béttio Av., São Paulo, 03828-100 Brazil
| |
Collapse
|
43
|
Bian T, Li L, Lyu J, Cui D, Lei L, Yan F. Human β-defensin 3 suppresses Porphyromonas gingivalis lipopolysaccharide-induced inflammation in RAW 264.7 cells and aortas of ApoE-deficient mice. Peptides 2016; 82:92-100. [PMID: 27298203 DOI: 10.1016/j.peptides.2016.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/28/2016] [Accepted: 06/09/2016] [Indexed: 12/13/2022]
Abstract
Human beta-defensin 3 (hBD3) is an antimicrobial peptide showing immunomodulatory effect on both innate and acquired immune response. Atherosclerosis is an inflammatory disease characterized by accumulation of lipids in the vascular wall. In this study, we evaluated whether hBD3 could attenuate the atherosclerosis development accelerated by Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) with apolipoprotein E-deficient (ApoE(-/-)) mice. We observed that, in vivo, hBD3 inhibited serum MCP-1, sICAM-1 levels of ApoE-deficient mice exposed to Pg-LPS in a chronic inflammation model. Serum levels of total cholesterol (TC) and low-density lipoprotein (LDL) were also markedly reduced with hBD3 intervention. In addition, thinned vascular walls, less macrophage infiltration and the formation of atherosclerotic lesions were observed in the hBD3-treated group. Furthermore, in vitro, hBD3 profoundly suppressed the production of TNF-α and IL-6 in RAW 264.7 cells induced by Pg-LPS in a dose-dependent manner. Moreover, hBD3 attenuated the phosphorylation of p38 and ERK1/2 in the mitogen-activated protein kinase (MAPK) pathway. Taken together, our work has revealed that hBD3 exhibits potent anti-inflammatory properties both in vitro and in vivo, and this effect might be correlated with inhibition of MAPK pathway.
Collapse
Affiliation(s)
- Tianying Bian
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China; Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lili Li
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China; Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jinglu Lyu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China; Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Di Cui
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China; Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lang Lei
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China; Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China; Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
44
|
Salim T, Sershen CL, May EE. Investigating the Role of TNF-α and IFN-γ Activation on the Dynamics of iNOS Gene Expression in LPS Stimulated Macrophages. PLoS One 2016; 11:e0153289. [PMID: 27276061 PMCID: PMC4898755 DOI: 10.1371/journal.pone.0153289] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 03/25/2016] [Indexed: 01/09/2023] Open
Abstract
Macrophage produced inducible nitric oxide synthase (iNOS) is known to play a critical role in the proinflammatory response against intracellular pathogens by promoting the generation of bactericidal reactive nitrogen species. Robust and timely production of nitric oxide (NO) by iNOS and analogous production of reactive oxygen species are critical components of an effective immune response. In addition to pathogen associated lipopolysaccharides (LPS), iNOS gene expression is dependent on numerous proinflammatory cytokines in the cellular microenvironment of the macrophage, two of which include interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). To understand the synergistic effect of IFN-γ and TNF-α activation, and LPS stimulation on iNOS expression dynamics and NO production, we developed a systems biology based mathematical model. Using our model, we investigated the impact of pre-infection cytokine exposure, or priming, on the system. We explored the essentiality of IFN-γ priming to the robustness of initial proinflammatory response with respect to the ability of macrophages to produce reactive species needed for pathogen clearance. Results from our theoretical studies indicated that IFN-γ and subsequent activation of IRF1 are essential in consequential production of iNOS upon LPS stimulation. We showed that IFN-γ priming at low concentrations greatly increases the effector response of macrophages against intracellular pathogens. Ultimately the model demonstrated that although TNF-α contributed towards a more rapid response time, measured as time to reach maximum iNOS production, IFN-γ stimulation was significantly more significant in terms of the maximum expression of iNOS and the concentration of NO produced.
Collapse
Affiliation(s)
- Taha Salim
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States of America
| | - Cheryl L. Sershen
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States of America
| | - Elebeoba E. May
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
45
|
Cuperus T, van Dijk A, Matthijs MGR, Veldhuizen EJA, Haagsman HP. Protective effect of in ovo treatment with the chicken cathelicidin analog D-CATH-2 against avian pathogenic E. coli. Sci Rep 2016; 6:26622. [PMID: 27229866 PMCID: PMC4882517 DOI: 10.1038/srep26622] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/04/2016] [Indexed: 12/30/2022] Open
Abstract
Increasing antibiotic resistance and ever stricter control on antibiotic use are a driving force to develop alternatives to antibiotics. One such strategy is the use of multifunctional Host Defense Peptides. Here we examined the protective effect of prophylactic treatment with the D analog of chicken cathelicidin-2 (D-CATH-2) against a respiratory E. coli infection. Chickens were treated with D-CATH-2 in ovo at day 18 of embryonic development or intramuscularly at days 1 and 4 after hatch. At 7 days of age, birds were challenged intratracheally with avian pathogenic E. coli. Protection was evaluated by recording mortality, morbidity (Mean Lesion Score) and bacterial swabs of air sacs at 7 days post-infection. In ovo D-CATH-2 treatment significantly reduced morbidity (63%) and respiratory bacterial load (>90%), while intramuscular treatment was less effective. D-CATH-2 increased the percentage of peripheral blood lymphocytes and heterophils by both administration routes. E. coli specific IgM levels were lower in in ovo treated animals compared to intramuscular D-CATH-2 treatment. In short, in ovo treatment with the Host Defense Peptide derived D-CATH-2 can partially protect chickens from E. coli infection, making this peptide an interesting starting point to develop alternatives to antibiotics for use in the poultry sector.
Collapse
Affiliation(s)
- Tryntsje Cuperus
- Division of Molecular Host Defence, Department of Infectious Diseases &Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Albert van Dijk
- Division of Molecular Host Defence, Department of Infectious Diseases &Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mieke G R Matthijs
- Division of Poultry Health, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Edwin J A Veldhuizen
- Division of Molecular Host Defence, Department of Infectious Diseases &Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henk P Haagsman
- Division of Molecular Host Defence, Department of Infectious Diseases &Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
46
|
Turkoglu O, Emingil G, Eren G, Atmaca H, Kutukculer N, Atilla G. Gingival crevicular fluid and serum hCAP18/LL-37 levels in generalized aggressive periodontitis. Clin Oral Investig 2016; 21:763-769. [DOI: 10.1007/s00784-016-1834-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/20/2016] [Indexed: 12/14/2022]
|
47
|
Du H, Samuel RL, Massiah MA, Gillmor SD. The structure and behavior of the NA-CATH antimicrobial peptide with liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015. [DOI: 10.1016/j.bbamem.2015.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Lu X, Miousse IR, Pirela SV, Melnyk S, Koturbash I, Demokritou P. Short-term exposure to engineered nanomaterials affects cellular epigenome. Nanotoxicology 2015; 10:140-50. [PMID: 25938281 DOI: 10.3109/17435390.2015.1025115] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Extensive incorporation of engineered nanomaterials (ENMs) into industrial and biomedical applications increases the risks of exposure to these potentially hazardous materials. While the geno- and cytotoxic effects of ENMs have been investigated, the potential of ENMs to target the cellular epigenome remains largely unknown. Our goal was to determine whether industry relevant ENMs can affect the epigenome at low cytotoxic doses. A panel of cells relevant to inhalation exposures such as human and murine macrophages (THP-1 and RAW264.7, respectively) and human small airway epithelial cells (SAEC) were exposed to printer-emitted engineered nanoparticles (PEPs), mild steel welding fumes (MS-WF), copper oxide (CuO) and titanium dioxide nanoparticles. Toxicological effects, including cytotoxicity, oxidative stress and inflammatory responses were assessed, taking into consideration in vitro dosimetry. The effects of ENMs on cellular epigenome were determined by addressing the global and transposable elements (TEs)-associated DNA methylation and expression of DNA methylation machinery and TEs. The percentage of ENMs-induced cytotoxicity for all cell lines was in the range of 0-15%. Oxidative stress was evident in SAEC after exposure to PEPs and in THP-1 when exposed to CuO. In addition, exposure to ENMs resulted in modest alterations in DNA methylation of two most abundant TEs in mammalian genomes, LINE-1 and Alu/SINE, their transcriptional reactivation, and decreased expression of DNA methylation machinery in a cell-, dose- and ENM-dependent manner. These results indicate that exposure to ENMs at environmentally relevant concentrations, aside from the geno- and cytotoxic effects, can also affect the epigenome of target cells.
Collapse
Affiliation(s)
- Xiaoyan Lu
- a Center for Nanotechnology and Nanotoxicology , Department of Environmental Health , Harvard School of Public Health , Boston , MA , USA
| | - Isabelle R Miousse
- b Department of Environmental and Occupational Health , College of Public Health, University of Arkansas for Medical Sciences , Little Rock , AR , USA , and
| | - Sandra V Pirela
- a Center for Nanotechnology and Nanotoxicology , Department of Environmental Health , Harvard School of Public Health , Boston , MA , USA
| | - Stepan Melnyk
- c Department of Pediatrics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Igor Koturbash
- b Department of Environmental and Occupational Health , College of Public Health, University of Arkansas for Medical Sciences , Little Rock , AR , USA , and
| | - Philip Demokritou
- a Center for Nanotechnology and Nanotoxicology , Department of Environmental Health , Harvard School of Public Health , Boston , MA , USA
| |
Collapse
|
49
|
Heimlich DR, Harrison A, Mason KM. Host Antimicrobial Peptides in Bacterial Homeostasis and Pathogenesis of Disease. Antibiotics (Basel) 2014; 3:645-76. [PMID: 26029470 PMCID: PMC4448142 DOI: 10.3390/antibiotics3040645] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 01/10/2023] Open
Abstract
Innate immune responses function as a first line of host defense against the development of bacterial infection, and in some cases to preserve the sterility of privileged sites in the human host. Bacteria that enter these sites must counter host responses for colonization. From the host's perspective, the innate immune system works expeditiously to minimize the bacterial threat before colonization and subsequent dysbiosis. The multifactorial nature of disease further challenges predictions of how each independent variable influences bacterial pathogenesis. From bacterial colonization to infection and through disease, the microenvironments of the host are in constant flux as bacterial and host factors contribute to changes at the host-pathogen interface, with the host attempting to eradicate bacteria and the bacteria fighting to maintain residency. A key component of this innate host response towards bacterial infection is the production of antimicrobial peptides (AMPs). As an early component of the host response, AMPs modulate bacterial load and prevent establishment of infection. Under quiescent conditions, some AMPs are constitutively expressed by the epithelium. Bacterial infection can subsequently induce production of other AMPs in an effort to maintain sterility, or to restrict colonization. As demonstrated in various studies, the absence of a single AMP can influence pathogenesis, highlighting the importance of AMP concentration in maintaining homeostasis. Yet, AMPs can increase bacterial virulence through the co-opting of the peptides or alteration of bacterial virulence gene expression. Further, bacterial factors used to subvert AMPs can modify host microenvironments and alter colonization of the residential flora that principally maintain homeostasis. Thus, the dynamic interplay between host defense peptides and bacterial factors produced to quell peptide activity play a critical role in the progression and outcome of disease.
Collapse
Affiliation(s)
- Derek R. Heimlich
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
| | - Alistair Harrison
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
| | - Kevin M. Mason
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
- The Ohio State University College of Medicine, Department of Pediatrics, Columbus, OH 43205, USA
| |
Collapse
|