1
|
Pinninti SG, Britt WJ, Boppana SB. Auditory and Vestibular Involvement in Congenital Cytomegalovirus Infection. Pathogens 2024; 13:1019. [PMID: 39599572 PMCID: PMC11597862 DOI: 10.3390/pathogens13111019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Congenital cytomegalovirus infection (cCMV) is a frequent cause of non-hereditary sensorineural hearing loss (SNHL) and developmental disabilities. The contribution of cCMV to childhood hearing loss has been estimated to be about 25% of all hearing loss in children at 4 years of age. Although the vestibular insufficiency (VI) in cCMV has not been well-characterized and therefore, underestimated, recent studies suggest that VI is also frequent in children with cCMV and can lead to adverse neurodevelopmental outcomes. The pathogenesis of SNHL and VI in children with cCMV has been thought to be from direct viral cytopathic effects as well as local inflammatory responses playing a role. Hearing loss in cCMV can be of varying degrees of severity, unilateral or bilateral, present at birth or develop later (late-onset), and can progress or fluctuate in early childhood. Therefore, newborn hearing screening fails to identify a significant number of children with CMV-related SNHL. Although the natural history of cCMV-associated VI has not been well characterized, recent data suggests that it is likely that VI also varies considerably with respect to the laterality, timing of onset, degree of the deficit, and continued deterioration during early childhood. This article summarizes the current understanding of the natural history and pathogenesis of auditory and vestibular disorders in children with cCMV.
Collapse
Affiliation(s)
- Swetha G. Pinninti
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.G.P.); (W.J.B.)
| | - William J. Britt
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.G.P.); (W.J.B.)
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suresh B. Boppana
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.G.P.); (W.J.B.)
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
2
|
Bieniussa L, Stolte C, Arampatzi P, Engert J, Völker J, Hagen R, Hackenberg S, Rak K. Inactivity of Stat3 in sensory and non-sensory cells of the mature cochlea. Front Mol Neurosci 2024; 17:1455136. [PMID: 39469187 PMCID: PMC11513353 DOI: 10.3389/fnmol.2024.1455136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Signal transducer and activator of transcription 3 (Stat3) plays a role in various cellular processes such as differentiation, inflammation, cell survival and microtubule dynamics, depending on the cell type and the activated signaling pathway. Stat3 is highly expressed in the hair cells and supporting cells of the cochlea and is essential for the differentiation of mouse hair cells in the early embryonic stage. However, it is unclear how Stat3 contributes to the correct function of cells in the organ of Corti postnatally. To investigate this, an inducible Cre/loxp system was used to knock out Stat3 in either the outer hair cells or the supporting cells. The results showed that the absence of Stat3 in either the outer hair cells or the supporting cells resulted in hearing loss without altering the morphology of the organ of Corti. Molecular analysis of the outer hair cells revealed an inflammatory process with increased cytokine production and upregulation of the NF-kB pathway. However, the absence of Stat3 in the supporting cells resulted in reduced microtubule stability. In conclusion, Stat3 is a critical protein for the sensory epithelium of the cochlea and hearing and functions in a cell and function-specific manner.
Collapse
Affiliation(s)
- L. Bieniussa
- Department of Oto-Rhino-Laryngology, University Hospital, Würzburg, Germany
| | - C. Stolte
- Department of Oto-Rhino-Laryngology, University Hospital, Würzburg, Germany
| | - P. Arampatzi
- Core Unit System Medicine, University of Würzburg, Würzburg, Germany
| | - J. Engert
- Department of Oto-Rhino-Laryngology, University Hospital, Würzburg, Germany
| | - J. Völker
- Department of Oto-Rhino-Laryngology, University Hospital, Würzburg, Germany
| | - R. Hagen
- Department of Oto-Rhino-Laryngology, University Hospital, Würzburg, Germany
| | - S. Hackenberg
- Department of Oto-Rhino-Laryngology, University Hospital, Würzburg, Germany
| | - K. Rak
- Department of Oto-Rhino-Laryngology, University Hospital, Würzburg, Germany
| |
Collapse
|
3
|
Zhu Z, Liu M, Zhang H, Zheng H, Li J. Post-marketing safety concerns with abrocitinib: a real-world pharmacovigilance analysis of the FDA adverse event reporting system. Expert Opin Drug Saf 2024:1-8. [PMID: 38743462 DOI: 10.1080/14740338.2024.2356020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Abrocitinib was newly approved for treatment of moderate-to-severe atopic dermatitis. The present study was to assess abrocitinib-related adverse events (AEs) using the Food and Drug Administration Adverse Event Reporting System (FAERS). METHODS Disproportionality analyses, including the reporting odds ratio (ROR), the proportional reporting ratio (PRR), the Bayesian confidence propagation neural network (BCPNN), and the multi-item gamma Poisson shrinker (MGPS) algorithms, were employed to quantify the signals of abrocitinib-related AEs. RESULTS A total of 3,177,744 reports of AEs were collected from the FAERS database, of which 1370 reports were identified with abrocitinib as the primary suspect drug. Abrocitinib-induced adverse events (AEs) occurred across 27 system organ classes (SOCs). A total of 68 preferred terms (PTs) with significant disproportionality, meeting the criteria of all four algorithms simultaneously, were identified. Unexpected significant AEs, such as increased blood cholesterol, venous embolism, hypoacusis, cellulitis, and tuberculosis, might also occur. The median onset time for abrocitinib-associated AEs was 182 days (interquartile range [IQR] 47-527 days). CONCLUSIONS The results of this study were consistent with clinical observations. Additionally, unexpected safety signals for abrocitinib were identified, which provided supportive information for the safety profile of abrocitinib. Prospective clinical studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Zhou Zhu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mingjuan Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hanlin Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Heyi Zheng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Li
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Hayashi Y. Signaling pathways regulating the immune function of cochlear supporting cells and their involvement in cochlear pathophysiology. Glia 2024; 72:665-676. [PMID: 37933494 DOI: 10.1002/glia.24476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
The inner ear, including the cochlea, used to be regarded as an immune-privileged site because of its immunologically isolated environment caused by the blood-labyrinthine barrier. Cochlear resident macrophages, which originate from the yolk sac or fetal liver during the embryonic stage and are maintained after birth, are distributed throughout various regions of the cochlear duct. Intriguingly, these cells are absent in the organ of Corti, where hair cells (HCs) and supporting cells (SCs) are located, except for a limited number of ionized calcium-binding adapter molecule 1 (Iba1)-positive cells. Instead, SCs exert glial functions varying from a quiescent to an emergency state. Notably, SCs acquire the nature of macrophages and begin to secrete inflammatory cytokines during viral infection in the organ of Corti, which is ostensibly unprotected owing to the lack of general resident macrophages. This review provides an overview of both positive and negative functions of SCs enabled to acquire macrophage phenotypes upon viral infection focusing on the signaling pathways that regulate these functions. The former function protects HCs from viral infection by inducting type I interferons, and the latter function induces HC death by necroptosis, leading to sensorineural hearing loss. Thus, SCs play contradictory roles as immune cells with acquired macrophage phenotypes; thereby, they are favorable and unfavorable to HCs, which play a pivotal role in hearing function.
Collapse
Affiliation(s)
- Yushi Hayashi
- Department of Molecular and Medical Genetics, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
5
|
Chen X, Xiang W, Li L, Xu K. Copper Chaperone Atox1 Protected the Cochlea From Cisplatin by Regulating the Copper Transport Family and Cell Cycle. Int J Toxicol 2024; 43:134-145. [PMID: 37859596 DOI: 10.1177/10915818231206665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Antioxidant 1 copper chaperone (Atox1) may contribute to preventing DDP cochlear damage by regulating copper transport family and cell cycle proteins. A rat model of cochlear damage was developed by placing gelatin sponges treated with DDP in the cochlea. HEI-OC1 cells were treated with 133 μM DDP as a cell model. DDP-induced ototoxicity in rats was confirmed by immunofluorescence (IF) imaging. The damage of DDP to HEI-OC1 cells was assessed by using CCK-8, TUNEL, and flow cytometry. The relationship between Atox1, a member of the copper transport protein family, and the damage to in vivo/vitro models was explored by qRT-PCR, western blot, CCK-8, TUNEL, and flow cytometry. DDP had toxic and other side effects causing cochlear damage and promoted HEI-OC1 cell apoptosis and cell cycle arrest. The over-expression of Atox1 (oe-Atox1) was accomplished by transfecting lentiviral vectors into in vitro/vivo models. We found that oe-Atox1 increased the levels of Atox1, copper transporter 1 (CTR1), and SOD3 in HEI-OC1 cells and decreased the expression levels of ATPase copper transporting α (ATP7A) and ATPase copper transporting β (ATP7B). In addition, the transfection of oe-Atox1 decreased cell apoptosis rate and the number of G2/M stage cells. Similarly, the expression of myosin VI and phalloidin of cochlea cells in vivo decreased. Atox1 ameliorated DDP-induced damage to HEI-OC1 cells or rats' cochlea by regulating the levels of members of the copper transport family.
Collapse
Affiliation(s)
- Xubo Chen
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiren Xiang
- Department of Otolaryngology, Head and Neck Surgery, Jiu Jiang No.1 People's Hospital, Jiujiang, China
| | - Lihua Li
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Rincon Sabatino S, Rivero A, Sangaletti R, Dietrich WD, Hoffer ME, King CS, Rajguru SM. Targeted therapeutic hypothermia protects against noise induced hearing loss. Front Neurosci 2024; 17:1296458. [PMID: 38292902 PMCID: PMC10826421 DOI: 10.3389/fnins.2023.1296458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Exposure to occupational or recreational loud noise activates multiple biological regulatory circuits and damages the cochlea, causing permanent changes in hearing sensitivity. Currently, no effective clinical therapy is available for the treatment or mitigation of noise-induced hearing loss (NIHL). Here, we describe an application of localized and non-invasive therapeutic hypothermia and targeted temperature management of the inner ear to prevent NIHL. Methods We developed a custom-designed cooling neck collar to reduce the temperature of the inner ear by 3-4°C post-injury to deliver mild therapeutic hypothermia. Results This localized and non-invasive therapeutic hypothermia successfully mitigated NIHL in rats. Our results show that mild hypothermia can be applied quickly and safely to the inner ear following noise exposure. We show that localized hypothermia after NIHL preserves residual hearing and rescues noise-induced synaptopathy over a period of months. Discussion This study establishes a minimally-invasive therapeutic paradigm with a high potential for rapid translation to the clinic for long-term preservation of hearing health.
Collapse
Affiliation(s)
| | - Andrea Rivero
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Rachele Sangaletti
- The Miami Project to Cure Paralysis, University of Miami, Coral Gables, FL, United States
| | - W. Dalton Dietrich
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Michael E. Hoffer
- The Miami Project to Cure Paralysis, University of Miami, Coral Gables, FL, United States
| | | | - Suhrud M. Rajguru
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- The Miami Project to Cure Paralysis, University of Miami, Coral Gables, FL, United States
- RestorEar Devices LLC, Bozeman, MT, United States
| |
Collapse
|
7
|
Xiao L, Zhang Z, Liu J, Zheng Z, Xiong Y, Li C, Feng Y, Yin S. HMGB1 accumulation in cytoplasm mediates noise-induced cochlear damage. Cell Tissue Res 2023; 391:43-54. [PMID: 36287265 DOI: 10.1007/s00441-022-03696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/05/2022] [Indexed: 01/18/2023]
Abstract
Damage-associated molecular pattern molecules (DAMPs) play a critical role in mediating cochlear cell death, which leads to noise-induced hearing loss (NIHL). High-mobility group box 1 (HMGB1), a prototypical DAMP released from cells, has been extensively studied in the context of various diseases. However, whether extracellular HMGB1 contributes to cochlear pathogenesis in NIHL and the potential signals initiating HMGB1 release from cochlear cells are not well understood. Here, through the transfection of the adeno-associated virus with HMGB1-HA-tag, we first investigated early cytoplasmic accumulation of HMGB1 in cochlear hair cells after noise exposure. We found that the cochlear administration of HMGB1-neutralizing antibody immediately after noise exposure significantly alleviated hearing loss and outer hair cells (OHCs) death induced by noise exposure. In addition, activation of signal transducer and activators of transcription 1 (STAT1) and cellular hyperacetylation were verified as potential canonical initiators of HMGB1 cytoplasmic accumulation. These findings reveal the adverse effects of extracellular HMGB1 on the cochlea and the potential signaling events mediating HMGB1 release in hair cells, indicating multiple potential pharmacotherapeutic targets for NIHL.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
| | - Zhen Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
| | - Jianju Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhong Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
| | - Yuanping Xiong
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Chunyan Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China.
| | - Yanmei Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China.
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China.
| |
Collapse
|
8
|
Zou T, Ye B, Chen K, Zhang A, Guo D, Pan Y, Ding R, Hu H, Sun X, Xiang M. Impacts of impaired mitochondrial dynamics in hearing loss: Potential therapeutic targets. Front Neurosci 2022; 16:998507. [PMID: 36278017 PMCID: PMC9579438 DOI: 10.3389/fnins.2022.998507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are the powerhouse of the cells. Under physiological conditions, mitochondrial fission and fusion maintain a dynamic equilibrium in the cytoplasm, which is referred to as mitochondrial dynamics. As an important approach to regulating mitochondrial function and quantity, the role of mitochondrial dynamics has been demonstrated in the pathogenesis of various disease models, including brain damage, neurodegeneration, and stress. As the vital organ of the peripheral auditory system, the cochlea consumes a significant amount of energy, and the maintenance of mitochondrial homeostasis is essential for the cochlear auditory capacity. OPA1 functions as both a necessary gene regulating mitochondrial fusion and a pathogenic gene responsible for auditory neuropathy, suggesting that an imbalance in mitochondrial dynamics may play a critical role in hearing loss, but relevant studies are few. In this review, we summarize recent evidence regarding the role of mitochondrial dynamics in the pathogenesis of noise-induced hearing loss (NIHL), drug-induced hearing loss, hereditary hearing loss, and age-related hearing loss. The impacts of impaired mitochondrial dynamics on hearing loss are discussed, and the potential of mitochondrial dynamics for the prevention and treatment of hearing loss is considered.
Collapse
Affiliation(s)
- Tianyuan Zou
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Kaili Chen
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Andi Zhang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dongye Guo
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yi Pan
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Rui Ding
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xingmei Sun
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Xingmei Sun,
| | - Mingliang Xiang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Mingliang Xiang,
| |
Collapse
|
9
|
Mucke HA. Drug Repurposing Patent Applications January–March 2022. Assay Drug Dev Technol 2022; 20:183-190. [DOI: 10.1089/adt.2022.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Krey JF, Liu C, Belyantseva IA, Bateschell M, Dumont RA, Goldsmith J, Chatterjee P, Morrill RS, Fedorov LM, Foster S, Kim J, Nuttall AL, Jones SM, Choi D, Friedman TB, Ricci AJ, Zhao B, Barr-Gillespie PG. ANKRD24 organizes TRIOBP to reinforce stereocilia insertion points. J Cell Biol 2022; 221:e202109134. [PMID: 35175278 PMCID: PMC8859912 DOI: 10.1083/jcb.202109134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 01/04/2023] Open
Abstract
The stereocilia rootlet is a key structure in vertebrate hair cells, anchoring stereocilia firmly into the cell's cuticular plate and protecting them from overstimulation. Using superresolution microscopy, we show that the ankyrin-repeat protein ANKRD24 concentrates at the stereocilia insertion point, forming a ring at the junction between the lower and upper rootlets. Annular ANKRD24 continues into the lower rootlet, where it surrounds and binds TRIOBP-5, which itself bundles rootlet F-actin. TRIOBP-5 is mislocalized in Ankrd24KO/KO hair cells, and ANKRD24 no longer localizes with rootlets in mice lacking TRIOBP-5; exogenous DsRed-TRIOBP-5 restores endogenous ANKRD24 to rootlets in these mice. Ankrd24KO/KO mice show progressive hearing loss and diminished recovery of auditory function after noise damage, as well as increased susceptibility to overstimulation of the hair bundle. We propose that ANKRD24 bridges the apical plasma membrane with the lower rootlet, maintaining a normal distribution of TRIOBP-5. Together with TRIOBP-5, ANKRD24 organizes rootlets to enable hearing with long-term resilience.
Collapse
Affiliation(s)
- Jocelyn F. Krey
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Chang Liu
- Department of Otolaryngology—Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Michael Bateschell
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Rachel A. Dumont
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Jennifer Goldsmith
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Paroma Chatterjee
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Rachel S. Morrill
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Lev M. Fedorov
- Transgenic Mouse Models, University Shared Resources Program, Oregon Health & Science University, Portland, OR
| | - Sarah Foster
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
| | - Jinkyung Kim
- Department of Otolaryngology—Head & Neck Surgery, Stanford University, Stanford, CA
| | - Alfred L. Nuttall
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
| | - Sherri M. Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE
| | - Dongseok Choi
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Anthony J. Ricci
- Department of Otolaryngology—Head & Neck Surgery, Stanford University, Stanford, CA
| | - Bo Zhao
- Department of Otolaryngology—Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Peter G. Barr-Gillespie
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR
- Vollum Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
11
|
Ray M, Rath SN, Sarkar S, Sable MN. Presentation of potential genes and deleterious variants associated with non-syndromic hearing loss: a computational approach. Genomics Inform 2022; 20:e5. [PMID: 35399004 PMCID: PMC9001992 DOI: 10.5808/gi.21070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022] Open
Abstract
Non-syndromic hearing loss (NSHL) is a common hereditary disorder. Both clinical and genetic heterogeneity has created many obstacles to understanding the causes of NSHL. The present study has attempted to ravel the genetic aetiology in NSHL progression and to screen out potential target genes using computational approaches. The reported NSHL target genes (2009-2020) have been studied by analyzing different biochemical and signaling pathways, interpretation of their functional association network, and discovery of important regulatory interactions with three previously established miRNAs in the human inner ear as well as in NSHL such as miR-183, miR-182, and miR-96. This study has identified SMAD4 and SNAI2 as the most putative target genes of NSHL. But pathogenic and deleterious non-synonymous single nucleotide polymorphisms discovered within SMAD4 is anticipated to have an impact on NSHL progression. Additionally, the identified deleterious variants in the functional domains of SMAD4 added a supportive clue for further study. Thus, the identified deleterious variant i.e., rs377767367 (G491V) in SMAD4 needs further clinical validation. The present outcomes would provide insights into the genetics of NSHL progression.
Collapse
Affiliation(s)
- Manisha Ray
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Surya Narayan Rath
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Saurav Sarkar
- Department of Ear Nose Throat, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Mukund Namdev Sable
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| |
Collapse
|
12
|
García-Mato Á, Cervantes B, Murillo-Cuesta S, Rodríguez-de la Rosa L, Varela-Nieto I. Insulin-like Growth Factor 1 Signaling in Mammalian Hearing. Genes (Basel) 2021; 12:genes12101553. [PMID: 34680948 PMCID: PMC8535591 DOI: 10.3390/genes12101553] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a peptide hormone belonging to the insulin family of proteins. Almost all of the biological effects of IGF-1 are mediated through binding to its high-affinity tyrosine kinase receptor (IGF1R), a transmembrane receptor belonging to the insulin receptor family. Factors, receptors and IGF-binding proteins form the IGF system, which has multiple roles in mammalian development, adult tissue homeostasis, and aging. Consequently, mutations in genes of the IGF system, including downstream intracellular targets, underlie multiple common pathologies and are associated with multiple rare human diseases. Here we review the contribution of the IGF system to our understanding of the molecular and genetic basis of human hearing loss by describing, (i) the expression patterns of the IGF system in the mammalian inner ear; (ii) downstream signaling of IGF-1 in the hearing organ; (iii) mouse mutations in the IGF system, including upstream regulators and downstream targets of IGF-1 that inform cochlear pathophysiology; and (iv) human mutations in these genes causing hearing loss.
Collapse
Affiliation(s)
- Ángela García-Mato
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Blanca Cervantes
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| | - Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| |
Collapse
|
13
|
Milon B, Shulman ED, So KS, Cederroth CR, Lipford EL, Sperber M, Sellon JB, Sarlus H, Pregernig G, Shuster B, Song Y, Mitra S, Orvis J, Margulies Z, Ogawa Y, Shults C, Depireux DA, Palermo AT, Canlon B, Burns J, Elkon R, Hertzano R. A cell-type-specific atlas of the inner ear transcriptional response to acoustic trauma. Cell Rep 2021; 36:109758. [PMID: 34592158 PMCID: PMC8709734 DOI: 10.1016/j.celrep.2021.109758] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/29/2021] [Accepted: 09/03/2021] [Indexed: 01/26/2023] Open
Abstract
Noise-induced hearing loss (NIHL) results from a complex interplay of damage to the sensory cells of the inner ear, dysfunction of its lateral wall, axonal retraction of type 1C spiral ganglion neurons, and activation of the immune response. We use RiboTag and single-cell RNA sequencing to survey the cell-type-specific molecular landscape of the mouse inner ear before and after noise trauma. We identify induction of the transcription factors STAT3 and IRF7 and immune-related genes across all cell-types. Yet, cell-type-specific transcriptomic changes dominate the response. The ATF3/ATF4 stress-response pathway is robustly induced in the type 1A noise-resilient neurons, potassium transport genes are downregulated in the lateral wall, mRNA metabolism genes are downregulated in outer hair cells, and deafness-associated genes are downregulated in most cell types. This transcriptomic resource is available via the Gene Expression Analysis Resource (gEAR; https://umgear.org/NIHL) and provides a blueprint for the rational development of drugs to prevent and treat NIHL.
Collapse
Affiliation(s)
- Beatrice Milon
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Eldad D Shulman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kathy S So
- Decibel Therapeutics, Boston, MA 02215, USA
| | - Christopher R Cederroth
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden; Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Erika L Lipford
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michal Sperber
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Heela Sarlus
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden; Applied Immunology & Immunotherapy, Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | | | - Benjamin Shuster
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sunayana Mitra
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joshua Orvis
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zachary Margulies
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yoko Ogawa
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christopher Shults
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | - Barbara Canlon
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Joe Burns
- Decibel Therapeutics, Boston, MA 02215, USA
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
14
|
Yu S, Guo H, Luo Y, Chen H. Ozone protects cardiomyocytes against ischemia/reperfusion injury: Regulating the heat shock protein 70 (HPS70) expression through activating the JAK2/STAT3 Pathway. Bioengineered 2021; 12:6606-6616. [PMID: 34516361 PMCID: PMC8806608 DOI: 10.1080/21655979.2021.1974760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury causes complications in early coronary artery reperfusion for acute myocardial infarction (AMI). Ozone (O3) has been reported to be applied for protecting I/R injury, but its detailed mechanism remains unclear. Our study focused on the protective effect of O3 pretreatment on myocardial I/R injury and JAK2/STAT3 signaling and HSP70 regulation involving in the mediation. The rat hearts which were perfused and isolated as well as the cultured cardiomyocytes of neonatal rat were exposed to hypoxia/reoxygenation (H/R) and different concentrations of O3 followed by heat shock protein 70 (HSP70) siRNA treatment. The results showed O3 attenuated the suppression of cell viability induced by H/R and decreased the release of activity of creatine kinase (CK), lactate dehydrogenase (LDH) and apoptosis of cardiomyocytes in vitro. Moreover, O3 also activated the JAK2/STAT3 signaling, upregulated the expression of HSP70 both in vitro and vivo, and decreased the index of apoptosis of cardiomyocytes caused by I/R as well as myocardial infarct area in vivo. In addition, HSP70 siRNA and JAK2 inhibitor AG490 inhibited the cardioprotective effect of O3. And the expression of HSP70 increased by ozone was reduced by AG-490. In conclusion, our results demonstrated that ozone protects cardiomyocytes in I/R injury through regulation of the expression of HSP70 by activating the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Shenglong Yu
- The first clinical college of Jinan University, Guangzhou, China.,Department of Cardiovascular, Panyu Central Hospital, (Cardiovascular Institute of Panyu District), Guangzhou, China
| | - Huizhuang Guo
- Department of Radiology, Panyu Central Hospital, (Medical Imaging Institute of Panyu District), Guangzhou, China
| | - Yi Luo
- The first clinical college of Jinan University, Guangzhou, China.,Department of Cardiovascular Medicine, First People's Hospital, Guangzhou, China
| | - Hanwei Chen
- The first clinical college of Jinan University, Guangzhou, China.,Department of Radiology, Panyu Central Hospital, (Medical Imaging Institute of Panyu District), Guangzhou, China
| |
Collapse
|
15
|
顾 晓, 戴 艳, 佘 万. [Research progress on antioxidant therapy and prevention in noise- induced hearing loss]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:850-853. [PMID: 34628844 PMCID: PMC10127829 DOI: 10.13201/j.issn.2096-7993.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 11/12/2022]
Abstract
Noise- induced hearing loss usually refers to auditory impairment which is caused by long-term exposure to noise. The occupational noise problem is serious and urgently needs to be addressed, along with the lack of effective treatments. Recent studies have shown that the imbalance between oxidation and antioxidation is the source of the disease. To correct the redox reaction imbalance and to maintain an equilibrium of the redox reaction have always been the research focus of the prevention and treatment in noise induced hearing loss. This article reviews antioxidant therapy and prevention in noise induced hearing loss, including antioxidants, antioxidant enzymes and herbal medicine.
Collapse
Affiliation(s)
- 晓娜 顾
- 南京中医药大学中西医结合鼓楼临床医学院(南京,210008)
- 南京中医药大学附属中西医结合医院耳鼻咽喉科
| | | | - 万东 佘
- 南京中医药大学中西医结合鼓楼临床医学院(南京,210008)
- 南京大学医学院附属鼓楼医院耳鼻咽喉头颈外科
| |
Collapse
|
16
|
Hossain E, Li Y, Anand-Srivastava MB. Role of the JAK2/STAT3 pathway in angiotensin II-induced enhanced expression of Giα proteins and hyperproliferation of aortic vascular smooth muscle cells. Can J Physiol Pharmacol 2021; 99:237-246. [PMID: 33002365 DOI: 10.1139/cjpp-2020-0415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We earlier showed that angiotensin (Ang) II-induced overexpression of Giα proteins contributes to the hyperproliferation of vascular smooth muscle cells (VSMC). In addition, the implication of the JAK2/STAT3 pathway in Ang II-induced hyperproliferation of VSMC has also been reported. However, the role of the JAK2/STAT3 pathway in Ang II-induced overexpression of Giα proteins and hyperproliferation of VSMC remains unexplored. In the present study, we show that inhibition or knockdown of the JAK2/STAT3 pathway by a specific inhibitor "cucurbitacin I" (CuI) or siRNAs attenuated Ang II-induced overexpression of Giα proteins and hyperproliferation of VSMC. In addition, the enhanced expression of cell cycle proteins induced by Ang II was also attenuated by CuI. Furthermore, Ang II-induced enhanced production of the superoxide anion (O2 -), H2O2, and NADPH oxidase activity, as well as the enhanced expression of NADPH oxidase subunits implicated in enhanced expression of Giα proteins and hyperproliferation, were also attenuated by inhibition of the JAK2/STAT3 pathway. On the other hand, Ang II-induced inhibition and augmentation of the levels of nitric oxide and peroxynitrite, respectively, in VSMC were restored to control levels by CuI. In summary, our results demonstrate that Ang II through the JAK2/STAT3 pathway increases nitroxidative stress, which contributes to the overexpression of Giα proteins and cell cycle proteins and the hyperproliferation of VSMC.
Collapse
MESH Headings
- Animals
- Rats
- Angiotensin II/pharmacology
- Aorta/drug effects
- Aorta/metabolism
- Aorta/cytology
- Cell Proliferation/drug effects
- Cells, Cultured
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Janus Kinase 2/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- NADPH Oxidases/metabolism
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- STAT3 Transcription Factor/metabolism
- Male
Collapse
Affiliation(s)
- Ekhtear Hossain
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
17
|
Dufek B, Meehan DT, Delimont D, Wilhelm K, Samuelson G, Coenen R, Madison J, Doyle E, Smyth B, Phillips G, Gratton MA, Cosgrove D. RNA-seq analysis of gene expression profiles in isolated stria vascularis from wild-type and Alport mice reveals key pathways underling Alport strial pathogenesis. PLoS One 2020; 15:e0237907. [PMID: 32822386 PMCID: PMC7446819 DOI: 10.1371/journal.pone.0237907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Previous work demonstrates that the hearing loss in Alport mice is caused by defects in the stria vascularis. As the animals age, progressive thickening of strial capillary basement membranes (SCBMs) occurs associated with elevated levels of extracellular matrix expression and hypoxia-related gene and protein expression. These conditions render the animals susceptible to noise-induced hearing loss. In an effort to develop a more comprehensive understanding of how the underlying mutation in the COL4A3 gene influences homeostasis in the stria vascularis, we performed vascular permeability studies combined with RNA-seq analysis using isolated stria vascularis from 7-week old wild-type and Alport mice on the 129 Sv background. Alport SCBMs were found to be less permeable than wild-type littermates. RNA-seq and bioinformatics analysis revealed 68 genes were induced and 61 genes suppressed in the stria from Alport mice relative to wild-type using a cut-off of 2-fold. These included pathways involving transcription factors associated with the regulation of pro-inflammatory responses as well as cytokines, chemokines, and chemokine receptors that are up- or down-regulated. Canonical pathways included modulation of genes associated with glucose and glucose-1-PO4 degradation, NAD biosynthesis, histidine degradation, calcium signaling, and glutamate receptor signaling (among others). In all, the data point to the Alport stria being in an inflammatory state with disruption in numerous metabolic pathways indicative of metabolic stress, a likely cause for the susceptibility of Alport mice to noise-induced hearing loss under conditions that do not cause permanent hearing loss in age/strain-matched wild-type mice. The work lays the foundation for studies aimed at understanding the nature of strial pathology in Alport mice. The modulation of these genes under conditions of therapeutic intervention may provide important pre-clinical data to justify trials in humans afflicted with the disease.
Collapse
Affiliation(s)
- Brianna Dufek
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Daniel T. Meehan
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Duane Delimont
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Kevin Wilhelm
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Gina Samuelson
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Ross Coenen
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Jacob Madison
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Edward Doyle
- Department of Otolaryngology, Wake Forest School of Medicine, Washington University, Saint Louis, MO, United States of America
| | - Brendan Smyth
- Department of Otolaryngology, Wake Forest School of Medicine, Washington University, Saint Louis, MO, United States of America
| | - Grady Phillips
- Department of Otolaryngology, Wake Forest School of Medicine, Washington University, Saint Louis, MO, United States of America
| | - Michael Anne Gratton
- Department of Otolaryngology, Wake Forest School of Medicine, Washington University, Saint Louis, MO, United States of America
| | - Dominic Cosgrove
- Boys Town National Research Hospital, Omaha, NE, United States of America
| |
Collapse
|
18
|
Gene therapy development in hearing research in China. Gene Ther 2020; 27:349-359. [PMID: 32681137 DOI: 10.1038/s41434-020-0177-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
Sensorineural hearing loss, the most common form of hearing impairment, is mainly attributable to genetic mutations or acquired factors, such as aging, noise exposure, and ototoxic drugs. In the field of gene therapy, advances in genetic and physiological studies and profound increases in knowledge regarding the underlying mechanisms have yielded great progress in terms of restoring the auditory function in animal models of deafness. Nonetheless, many challenges associated with the translation from basic research to clinical therapies remain to be overcome before a total restoration of auditory function can be expected. In recent years, Chinese research teams have promoted various developmental efforts in this field, including gene sequencing to identify additional potential loci that cause deafness, studies to elucidate the underlying molecular mechanisms, and research to optimize vectors and delivery routes. In this review, we summarize the state of the field and focus mainly on the progress of gene therapy in animal model studies and the optimization of therapeutic strategies in China.
Collapse
|
19
|
Zhang C, Frye MD, Sun W, Sharma A, Manohar S, Salvi R, Hu BH. New insights on repeated acoustic injury: Augmentation of cochlear susceptibility and inflammatory reaction resultant of prior acoustic injury. Hear Res 2020; 393:107996. [PMID: 32534268 DOI: 10.1016/j.heares.2020.107996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
In industrial and military settings, individuals who suffer from one episode of acoustic trauma are likely to sustain another episode of acoustic stress, creating an opportunity for a potential interaction between the two stress conditions. We previously demonstrated that acoustic overstimulation perturbs the cochlear immune environment. However, how the cochlear immune system responds to repeated acoustic overstimulation is unknown. Here, we used a mouse model to investigate the cochlear immune response to repeated stress. We reveal that exposure to an intense noise at 120 dB SPL for 1 h activates the cochlear immune response in a time-dependent fashion with substantial expansion and activation of the macrophage population in the cochlea at 2-days post-exposure. At 20-days post-exposure, the number and pro-inflammatory phenotypes of cochlear macrophages have significantly subsided, but have yet to return to homeostatic levels. Monocytes with anti-inflammatory phenotypes are recruited into the cochlea. With the presence of this residual immune activation, a second exposure to the same noise provokes an exaggerated inflammatory response as evidenced by exacerbated maturation of macrophages. Furthermore, the second noise causes greater sensory cell pathogenesis. Unlike the first noise-induced damage that occurs mainly between 0 and 2 days post-exposure, the second noise-induced damage occurs more frequently between 2 and 20 days post-exposure, the period when secondary damage takes place. These observations suggest that repeated acoustic overstimulation exacerbates cochlear inflammation and secondary sensory cell pathogenesis. Together, our results suggest that the cochlear immune system plays an important role in modulating cochlear responses to repeated acoustic stress.
Collapse
Affiliation(s)
- Celia Zhang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Mitchell D Frye
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Wei Sun
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Ashu Sharma
- Department of Oral Biology, University at Buffalo, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY, USA, 14214.
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| |
Collapse
|
20
|
Sun X, Yan P, Zou C, Wong YK, Shu Y, Lee YM, Zhang C, Yang ND, Wang J, Zhang J. Targeting autophagy enhances the anticancer effect of artemisinin and its derivatives. Med Res Rev 2019; 39:2172-2193. [PMID: 30972803 DOI: 10.1002/med.21580] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/12/2022]
Abstract
Artemisinin and its derivatives, with their outstanding clinical efficacy and safety, represent the most effective and impactful antimalarial drugs. Apart from its antimalarial effect, artemisinin has also been shown to exhibit selective anticancer properties against multiple cancer types both in vitro and in vivo. Specifically, our previous studies highlighted the therapeutic effects of artemisinin on autophagy regulation. Autophagy is a well-conserved degradative process that recycles cytoplasmic contents and organelles in lysosomes to maintain cellular homeostasis. The deregulation of autophagy is often observed in cancer cells, where it contributes to tumor adaptation to nutrient-deficient tumor microenvironments. This review discusses recent advances in the anticancer properties of artemisinin and its derivatives via their regulation of autophagy, mitophagy, and ferritinophagy. In particular, we will discuss the mechanisms of artemisinin activation in cancer and novel findings regarding the role of artemisinin in regulating autophagy, which involves changes in multiple signaling pathways. More importantly, with increasing failure rates and the high cost of the development of novel anticancer drugs, the strategy of repurposing traditional therapeutic Chinese medicinal agents such as artemisinin to treat cancer provides a more attractive alternative. We believe that the topics covered here will be important in demonstrating the potential of artemisinin and its derivatives as safe and potent anticancer agents.
Collapse
Affiliation(s)
- Xin Sun
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Peiyi Yan
- Department of Clinical Laboratory, Shanghai Putuo District People's Hospital, Shanghai, China
| | - Chang Zou
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen People's Hospital, Shenzhen, China
| | - Yin-Kwan Wong
- Department of Pharmacology, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuhan Shu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yew Mun Lee
- Department of Pharmacology, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chongjing Zhang
- Institute of Material Medical, Peking Union Medical College, Beijing, China
| | - Nai-Di Yang
- Department of Pharmacology, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jigang Wang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen People's Hospital, Shenzhen, China.,Department of Pharmacology, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Cardio-Cerebrovascular Disease Prevention & Therapy, Gannan Medical University, Ganzhou, China
| | - Jianbin Zhang
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
21
|
Luo P, Li Y, Tian LP, Wu FX. Enhancing the prediction of disease–gene associations with multimodal deep learning. Bioinformatics 2019; 35:3735-3742. [DOI: 10.1093/bioinformatics/btz155] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/11/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
Abstract
Motivation
Computationally predicting disease genes helps scientists optimize the in-depth experimental validation and accelerates the identification of real disease-associated genes. Modern high-throughput technologies have generated a vast amount of omics data, and integrating them is expected to improve the accuracy of computational prediction. As an integrative model, multimodal deep belief net (DBN) can capture cross-modality features from heterogeneous datasets to model a complex system. Studies have shown its power in image classification and tumor subtype prediction. However, multimodal DBN has not been used in predicting disease–gene associations.
Results
In this study, we propose a method to predict disease–gene associations by multimodal DBN (dgMDL). Specifically, latent representations of protein-protein interaction networks and gene ontology terms are first learned by two DBNs independently. Then, a joint DBN is used to learn cross-modality representations from the two sub-models by taking the concatenation of their obtained latent representations as the multimodal input. Finally, disease–gene associations are predicted with the learned cross-modality representations. The proposed method is compared with two state-of-the-art algorithms in terms of 5-fold cross-validation on a set of curated disease–gene associations. dgMDL achieves an AUC of 0.969 which is superior to the competing algorithms. Further analysis of the top-10 unknown disease–gene pairs also demonstrates the ability of dgMDL in predicting new disease–gene associations.
Availability and implementation
Prediction results and a reference implementation of dgMDL in Python is available on https://github.com/luoping1004/dgMDL.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ping Luo
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Yuanyuan Li
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
- School of Mathematics and Physics, Wuhan Institute of Technology, Wuhan, China
| | - Li-Ping Tian
- School of Information, Beijing Wuzi University, Beijing, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
22
|
Castañeda R, Natarajan S, Jeong SY, Hong BN, Kang TH. Traditional oriental medicine for sensorineural hearing loss: Can ethnopharmacology contribute to potential drug discovery? JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:409-428. [PMID: 30439402 DOI: 10.1016/j.jep.2018.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Traditional Oriental Medicine (TOM), the development of hearing pathologies is related to an inadequate nourishment of the ears by the kidney and other organs involved in regulation of bodily fluids and nutrients. Several herbal species have historically been prescribed for promoting the production of bodily fluids or as antiaging agents to treat deficiencies in hearing. AIM OF REVIEW The prevalence of hearing loss has been increasing in the last decade and is projected to grow considerably in the coming years. Recently, several herbal-derived products prescribed in TOM have demonstrated a therapeutic potential for acquired sensorineural hearing loss and tinnitus. Therefore, the aims of this review are to provide a comprehensive overview of the current known efficacy of the herbs used in TOM for preventing different forms of acquired sensorineural hearing loss and tinnitus, and associate the traditional principle with the demonstrated pharmacological mechanisms to establish a solid foundation for directing future research. METHODS The present review collected the literature related to herbs used in TOM or related compounds on hearing from Chinese, Korean, and Japanese herbal classics; library catalogs; and scientific databases (PubMed, Scopus, Google Scholar; and Science Direct). RESULTS This review shows that approximately 25 herbal species and 40 active compounds prescribed in TOM for hearing loss and tinnitus have shown in vitro or in vivo beneficial effects for acquired sensorineural hearing loss produced by noise, aging, ototoxic drugs or diabetes. The inner ear is highly vulnerable to ischemia and oxidative damage, where several TOM agents have revealed a direct effect on the auditory system by normalizing the blood supply to the cochlea and increasing the antioxidant defense in sensory hair cells. These strategies have shown a positive impact on maintaining the inner ear potential, sustaining the production of endolymph, reducing the accumulation of toxic and inflammatory substances, preventing sensory cell death and preserving sensory transmission. There are still several herbal species with demonstrated therapeutic efficacy whose mechanisms have not been deeply studied and others that have been traditionally used in hearing loss but have not been tested experimentally. In clinical studies, Ginkgo biloba, Panax ginseng, and Astragalus propinquus have demonstrated to improve hearing thresholds in patients with sensorineural hearing loss and alleviated the symptoms of tinnitus. However, some of these clinical studies have been limited by small sample sizes, lack of an adequate control group or contradictory results. CONCLUSIONS Current therapeutic strategies have proven that the goal of the traditional oriental medicine principle of increasing bodily fluids is a relevant approach for reducing the development of hearing loss by improving microcirculation in the blood-labyrinth barrier and increasing cochlear blood flow. The potential benefits of TOM agents expand to a multi-target approach on different auditory structures of the inner ear related to increased cochlear blood flow, antioxidant, anti-inflammatory, anti-apoptotic and neuroprotective activities. However, more research is required, given the evidence is very limited in terms of the mechanism of action at the preclinical in vivo level and the scarce number of clinical studies published.
Collapse
Affiliation(s)
- Rodrigo Castañeda
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Sathishkumar Natarajan
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Seo Yule Jeong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Bin Na Hong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea.
| | - Tong Ho Kang
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| |
Collapse
|
23
|
|
24
|
Morioka S, Sakaguchi H, Yamaguchi T, Ninoyu Y, Mohri H, Nakamura T, Hisa Y, Ogita K, Saito N, Ueyama T. Hearing vulnerability after noise exposure in a mouse model of reactive oxygen species overproduction. J Neurochem 2018; 146:459-473. [PMID: 29675997 DOI: 10.1111/jnc.14451] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022]
Abstract
Previous studies have convincingly argued that reactive oxygen species (ROS) contribute to the development of several major types of sensorineural hearing loss, such as noise-induced hearing loss (NIHL), drug-induced hearing loss, and age-related hearing loss. However, the underlying molecular mechanisms induced by ROS in these pathologies remain unclear. To resolve this issue, we established an in vivo model of ROS overproduction by generating a transgenic (TG) mouse line expressing the human NADPH oxidase 4 (NOX4, NOX4-TG mice), which is a constitutively active ROS-producing enzyme that does not require stimulation or an activator. Overproduction of ROS was detected at the cochlea of the inner ear in NOX4-TG mice, but they showed normal hearing function under baseline conditions. However, they demonstrated hearing function vulnerability, especially at high-frequency sounds, upon exposure to intense noise, which was accompanied by loss of cochlear outer hair cells (OHCs). The vulnerability to loss of hearing function and OHCs was rescued by treatment with the antioxidant Tempol. Additionally, we found increased protein levels of the heat-shock protein 47 (HSP47) in models using HEK293 cells, including H2 O2 treatment and cells with stable and transient expression of NOX4. Furthermore, the up-regulated levels of Hsp47 were observed in both the cochlea and heart of NOX4-TG mice. Thus, antioxidant therapy is a promising approach for the treatment of NIHL. Hsp47 may be an endogenous antioxidant factor, compensating for the chronic ROS overexposure in vivo, and counteracting ROS-related hearing loss.
Collapse
Affiliation(s)
- Shigefumi Morioka
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.,Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirofumi Sakaguchi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taro Yamaguchi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Yuzuru Ninoyu
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Hiroaki Mohri
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Takashi Nakamura
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Yasuo Hisa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Faculty of Health and Medical Sciences, Kyoto Gakuen University, Kyoto, Japan
| | - Kiyokazu Ogita
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Naoaki Saito
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| |
Collapse
|
25
|
Shi X, Wang L, Li X, Bai J, Li J, Li S, Wang Z, Zhou M. Dihydroartemisinin induces autophagy-dependent death in human tongue squamous cell carcinoma cells through DNA double-strand break-mediated oxidative stress. Oncotarget 2018; 8:45981-45993. [PMID: 28526807 PMCID: PMC5542242 DOI: 10.18632/oncotarget.17520] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/04/2017] [Indexed: 12/19/2022] Open
Abstract
Dihydroartemisinin is an effective antimalarial agent with multiple biological activities. In the present investigation, we elucidated its therapeutic potential and working mechanism on human tongue squamous cell carcinoma (TSCC). It was demonstrated that dihydroartemisinin could significantly inhibit cell growth in a dose- and time-dependent manner by the Cell Counting Kit-8 and colony formation assay in vitro. Meanwhile, autophagy was promoted in the Cal-27 cells treated by dihydroartemisinin, evidenced by increased LC3B-II level, increased autophagosome formation, and increased Beclin-1 level compared to dihydroartemisinin-untreated cells. Importantly, dihydroartemisinin caused DNA double-strand break with simultaneously increased γH2AX foci and oxidative stress; this inhibited the nuclear localization of phosphorylated signal transducer and activator of transcription 3 (p-STAT3), finally leading to autophagic cell death. Furthermore, the antitumor effect of dihydroartemisinin-monotherapy was confirmed with a mouse xenograft model, and no kidney injury associated with toxic effect was observed after intraperitoneal injection with dihydroartemisinin for 3 weeks in vivo. In the present study, it was revealed that dihydroartemisinin-induced DNA double-strand break promoted oxidative stress, which decreased p-STAT3 (Tyr705) nuclear localization, and successively increased autophagic cell death in the Cal-27 cells. Thus, dihydroartemisinin alone may represent an effective and safe therapeutic agent for human TSCC.
Collapse
Affiliation(s)
- Xinli Shi
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang 050081, China.,Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Li Wang
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaoming Li
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang 050081, China
| | - Jing Bai
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang 050081, China
| | - Jianchun Li
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shenghao Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Zeming Wang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Mingrui Zhou
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
26
|
Gao X, Yuan YY, Lin QF, Xu JC, Wang WQ, Qiao YH, Kang DY, Bai D, Xin F, Huang SS, Qiu SW, Guan LP, Su Y, Wang GJ, Han MY, Jiang Y, Liu HK, Dai P. Mutation of IFNLR1, an interferon lambda receptor 1, is associated with autosomal-dominant non-syndromic hearing loss. J Med Genet 2018; 55:298-306. [PMID: 29453195 PMCID: PMC5931241 DOI: 10.1136/jmedgenet-2017-104954] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 11/04/2022]
Abstract
Background Hereditary sensorineural hearing loss is a genetically heterogeneous disorder. Objectives This study was designed to explore the genetic etiology of deafness in a large Chinese family with autosomal dominant, nonsyndromic, progressive sensorineural hearing loss (ADNSHL). Methods Whole exome sequencing and linkage analysis were performed to identify pathogenic mutation. Inner ear expression of Ifnlr1 was investigated by immunostaining in mice. ifnlr1 Morpholino knockdown Zebrafish were constructed to explore the deafness mechanism. Results We identified a cosegregating heterozygous missense mutation, c.296G>A (p.Arg99His) in the gene encoding interferon lambda receptor 1 (IFNLR1) - a protein that functions in the Jak/ STAT pathway- are associated with ADNSHL Morpholino knockdown of ifnlr1 leads to a significant decrease in hair cells and non-inflation of the swim bladder in late-stage zebrafish, which can be reversed by injection with normal Zebrafish ifnlr1 mRNA. Knockdown of ifnlr1 in zebrafish causes significant upregulation of cytokine receptor family member b4 (interleukin-10r2), jak1, tyrosine kinase 2, stat3, and stat5b in the Jak1/STAT3 pathway at the mRNA level. ConclusionIFNLR1 function is required in the auditory system and that IFNLR1 mutations are associated with ADNSHL. To the best of our knowledge, this is the first study implicating an interferon lambda receptor in auditory function.
Collapse
Affiliation(s)
- Xue Gao
- Department of Otolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, China.,Department of Otolaryngology, The General Hospital of the PLA Rocket Force, Beijing, China
| | - Yong-Yi Yuan
- Department of Otolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, China
| | - Qiong-Fen Lin
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jin-Cao Xu
- Department of Otolaryngology, The General Hospital of the PLA Rocket Force, Beijing, China
| | - Wei-Qian Wang
- Department of Otolaryngology, The General Hospital of the PLA Rocket Force, Beijing, China
| | - Yue-Hua Qiao
- Department of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, China
| | - Dong-Yang Kang
- Department of Otolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, China
| | - Dan Bai
- Department of Otolaryngology, Xi'an Medical College, Xi'an, China
| | - Feng Xin
- Department of Otolaryngology, Head and Neck Surgery, Shanxi Medical University, Taiyuan, China
| | - Sha-Sha Huang
- Department of Otolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, China
| | - Shi-Wei Qiu
- Department of Otolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, China.,Department of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, China
| | - Li-Ping Guan
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yu Su
- Department of Otolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, China
| | - Guo-Jian Wang
- Department of Otolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, China
| | - Ming-Yu Han
- Department of Otolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, China
| | - Yi Jiang
- Department of Otolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, China.,Department of Otolaryngology, Fujian Medical University ShengLi Clinical College, Fujian Provincial Hospital, Fuzhou, China
| | - Han-Kui Liu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Pu Dai
- Department of Otolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, China
| |
Collapse
|
27
|
Protective Effect of Yang Mi Ryung® Extract on Noise-Induced Hearing Loss in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9814836. [PMID: 29270205 PMCID: PMC5705878 DOI: 10.1155/2017/9814836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/13/2017] [Accepted: 09/28/2017] [Indexed: 11/18/2022]
Abstract
Noise-induced hearing loss (NIHL) results from the damage of the delicate hair cells inside the ear after excessive stimulation of noise. Unlike certain lower animals such as amphibians, fishes, and birds, in humans, hair cells cannot be regenerated once they are killed or damaged; thus, there are no therapeutic options to cure NIHL. Therefore, it is more important to protect hair cells from the noise before the damage occurs. In this study, we report the protective effect of Yang Mi Ryung extract (YMRE) against NIHL; this novel therapeutic property of YMRE has not been reported previously. Our data demonstrates that the hearing ability damaged by noise is markedly restored in mice preadministrated with YMRE before noise exposure, to the level of normal control group. Our study also provides the molecular mechanism underlying the protective effect of YMRE against NIHL by showing that YMRE significantly blocks noise-induced apoptotic cell death and reduces reactive oxygen species (ROS) production in cochleae. Moreover, quantitative polymerase chain reaction (qPCR) analysis demonstrates that YMRE has anti-inflammatory properties, suppressing the mRNA levels of TNFα and IL-1β induced by noise exposure. In conclusion, YMRE could be a useful preventive intervention to prevent hearing impairment induced by the exposure to excessive noise.
Collapse
|
28
|
Misawa H, Ohashi W, Tomita K, Hattori K, Shimada Y, Hattori Y. Prostacyclin mimetics afford protection against lipopolysaccharide/d-galactosamine-induced acute liver injury in mice. Toxicol Appl Pharmacol 2017; 334:55-65. [DOI: 10.1016/j.taap.2017.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 02/06/2023]
|
29
|
The Genomic Basis of Noise-induced Hearing Loss: A Literature Review Organized by Cellular Pathways. Otol Neurotol 2017; 37:e309-16. [PMID: 27518140 DOI: 10.1097/mao.0000000000001073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Using Reactome, a curated Internet database, noise-induced hearing loss studies were aggregated into cellular pathways for organization of the emerging genomic and epigenetic data in the literature. DATA SOURCES PubMed and Reactome.org, a relational data base program systematizing biological processes into interactive pathways and subpathways based on ontology, cellular constituents, gene expression, and molecular components. STUDY SELECTION Peer-reviewed population and laboratory studies for the previous 15 years relating genomics and noise and hearing loss were identified in PubMed. Criteria included p values <0.05 with correction for multiple genes, a fold change of >1.5, or duplicated studies. DATA EXTRACTION AND SYNTHESIS One-hundred fifty-eight unique HGNC identifiers from 77 articles met the selection criteria, and were uploaded into the analysis program at http://reactome.org. These genes participated in a total of 621 cellular interactions in 21 of 23 pathways. Cellular response to stress with its attenuation phase, particularly in response to heat stress, detoxification of ROS, and specific areas of the immune system are predominant pathways identified as significantly 'overrepresented' (p values <0.1e-5 and false discovery rates <0.01). CONCLUSION Twenty-one of 23 of the designated pathways in Reactome have significant influence on noise-induced hearing loss, signifying a confluence of molecular pathways in reaction to acoustic trauma; however, cellular response to stress, including heat shock response, and other small areas of immune response were highly overrepresented. Yet-to-be-explored genomics areas include miRNA, lncRNA, copy number variations, RNA sequencing, and human genome-wide association study.
Collapse
|
30
|
Annexin A5 is the Most Abundant Membrane-Associated Protein in Stereocilia but is Dispensable for Hair-Bundle Development and Function. Sci Rep 2016; 6:27221. [PMID: 27251877 PMCID: PMC4890179 DOI: 10.1038/srep27221] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/17/2016] [Indexed: 01/26/2023] Open
Abstract
The phospholipid- and Ca(2+)-binding protein annexin A5 (ANXA5) is the most abundant membrane-associated protein of ~P23 mouse vestibular hair bundles, the inner ear's sensory organelle. Using quantitative mass spectrometry, we estimated that ANXA5 accounts for ~15,000 copies per stereocilium, or ~2% of the total protein there. Although seven other annexin genes are expressed in mouse utricles, mass spectrometry showed that none were present at levels near ANXA5 in bundles and none were upregulated in stereocilia of Anxa5(-/-) mice. Annexins have been proposed to mediate Ca(2+)-dependent repair of membrane lesions, which could be part of the repair mechanism in hair cells after noise damage. Nevertheless, mature Anxa5(-/-) mice not only have normal hearing and balance function, but following noise exposure, they are identical to wild-type mice in their temporary or permanent changes in hearing sensitivity. We suggest that despite the unusually high levels of ANXA5 in bundles, it does not play a role in the bundle's key function, mechanotransduction, at least until after two months of age in the cochlea and six months of age in the vestibular system. These results reinforce the lack of correlation between abundance of a protein in a specific compartment or cellular structure and its functional significance.
Collapse
|
31
|
Prestin-Dependence of Outer Hair Cell Survival and Partial Rescue of Outer Hair Cell Loss in PrestinV499G/Y501H Knockin Mice. PLoS One 2015; 10:e0145428. [PMID: 26682723 PMCID: PMC4684303 DOI: 10.1371/journal.pone.0145428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/23/2015] [Indexed: 12/23/2022] Open
Abstract
A knockin (KI) mouse expressing mutated prestinV499G/Y501H (499 prestin) was created to study cochlear amplification. Recordings from isolated outer hair cells (OHC) in this mutant showed vastly reduced electromotility and, as a consequence, reduced hearing sensitivity. Although 499 prestin OHCs were normal in stiffness and longer than OHCs lacking prestin, accelerated OHC death was unexpectedly observed relative to that documented in prestin knockout (KO) mice. These observations imply an additional role of prestin in OHC maintenance besides its known requirement for mammalian cochlear amplification. In order to gain mechanistic insights into prestin-associated OHC loss, we implemented several interventions to improve survival. First, 499 prestin KI’s were backcrossed to Bak KO mice, which lack the mitochondrial pro-apoptotic gene Bak. Because oxidative stress is implicated in OHC death, another group of 499 prestin KI mice was fed the antioxidant diet, Protandim. 499 KI mice were also backcrossed onto the FVB murine strain, which retains excellent high-frequency hearing well into adulthood, to reduce the compounding effect of age-related hearing loss associated with the original 499 prestin KIs. Finally, a compound heterozygous (chet) mouse expressing one copy of 499 prestin and one copy of KO prestin was also created to reduce quantities of 499 prestin protein. Results show reduction in OHC death in chets, and in 499 prestin KIs on the FVB background, but only a slight improvement in OHC survival for mice receiving Protandim. We also report that improved OHC survival in 499 prestin KIs had little effect on hearing phenotype, reaffirming the original contention about the essential role of prestin’s motor function in cochlear amplification.
Collapse
|
32
|
Loss of STAT1 protects hair cells from ototoxicity through modulation of STAT3, c-Jun, Akt, and autophagy factors. Cell Death Dis 2015; 6:e2019. [PMID: 26673664 PMCID: PMC4720895 DOI: 10.1038/cddis.2015.362] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 12/20/2022]
Abstract
Hair cell damage is a side effect of cisplatin and aminoglycoside use. The inhibition or attenuation of this process is a target of many investigations. There is growing evidence that STAT1 deficiency decreases cisplatin-mediated ototoxicity; however, the role of STAT function and the molecules that act in gentamicin-mediated toxicity have not been fully elucidated. We used mice lacking STAT1 to investigate the effect of STAT1 ablation in cultured organs treated with cisplatin and gentamicin. Here we show that ablation of STAT1 decreased cisplatin toxicity and attenuated gentamicin-mediated hair cell damage. More TUNEL-positive hair cells were observed in explants of wild-type mice than that of STAT1−/− mice. Although cisplatin increased serine phosphorylation of STAT1 in wild-type mice and diminished STAT3 expression in wild-type and STAT1−/− mice, gentamicin increased tyrosine phosphorylation of STAT3 in STAT1−/− mice. The early inflammatory response was manifested in the upregulation of TNF-α and IL-6 in cisplatin-treated explants of wild-type and STAT1−/− mice. Expression of the anti-inflammatory cytokine IL-10 was altered in cisplatin-treated explants, upregulated in wild-type explants, and downregulated in STAT1−/− explants. Cisplatin and gentamicin triggered the activation of c-Jun. Activation of Akt was observed in gentamicin-treated explants from STAT1−/− mice. Increased levels of the autophagy proteins Beclin-1 and LC3-II were observed in STAT1−/− explants. These data suggest that STAT1 is a central player in mediating ototoxicity. Gentamicin and cisplatin activate different downstream factors to trigger ototoxicity. Although cisplatin and gentamicin triggered inflammation and activated apoptotic factors, the absence of STAT1 allowed the cells to overcome the effects of these drugs.
Collapse
|