1
|
Caccialupi G, Milc J, Caradonia F, Nasar MF, Francia E. The Triticeae CBF Gene Cluster-To Frost Resistance and Beyond. Cells 2023; 12:2606. [PMID: 37998341 PMCID: PMC10670769 DOI: 10.3390/cells12222606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The pivotal role of CBF/DREB1 transcriptional factors in Triticeae crops involved in the abiotic stress response has been highlighted. The CBFs represent an important hub in the ICE-CBF-COR pathway, which is one of the most relevant mechanisms capable of activating the adaptive response to cold and drought in wheat, barley, and rye. Understanding the intricate mechanisms and regulation of the cluster of CBF genes harbored by the homoeologous chromosome group 5 entails significant potential for the genetic improvement of small grain cereals. Triticeae crops seem to share common mechanisms characterized, however, by some peculiar aspects of the response to stress, highlighting a combined landscape of single-nucleotide variants and copy number variation involving CBF members of subgroup IV. Moreover, while chromosome 5 ploidy appears to confer species-specific levels of resistance, an important involvement of the ICE factor might explain the greater tolerance of rye. By unraveling the genetic basis of abiotic stress tolerance, researchers can develop resilient varieties better equipped to withstand extreme environmental conditions. Hence, advancing our knowledge of CBFs and their interactions represents a promising avenue for improving crop resilience and food security.
Collapse
Affiliation(s)
- Giovanni Caccialupi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; (J.M.); (F.C.); (M.F.N.); (E.F.)
| | | | | | | | | |
Collapse
|
2
|
Islam MS, Corak K, McCord P, Hulse-Kemp AM, Lipka AE. A first look at the ability to use genomic prediction for improving the ratooning ability of sugarcane. FRONTIERS IN PLANT SCIENCE 2023; 14:1205999. [PMID: 37600177 PMCID: PMC10433174 DOI: 10.3389/fpls.2023.1205999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023]
Abstract
The sugarcane ratooning ability (RA) is the most important target trait for breeders seeking to enhance the profitability of sugarcane production by reducing the planting cost. Understanding the genetics governing the RA could help breeders by identifying molecular markers that could be used for genomics-assisted breeding (GAB). A replicated field trial was conducted for three crop cycles (plant cane, first ratoon, and second ratoon) using 432 sugarcane clones and used for conducting genome-wide association and genomic prediction of five sugar and yield component traits of the RA. The RA traits for economic index (EI), stalk population (SP), stalk weight (SW), tonns of cane per hectare (TCH), and tonns of sucrose per hectare (TSH) were estimated from the yield and sugar data. A total of six putative quantitative trait loci and eight nonredundant single-nucleotide polymorphism (SNP) markers were associated with all five tested RA traits and appear to be unique. Seven putative candidate genes were colocated with significant SNPs associated with the five RA traits. The genomic prediction accuracies for those tested traits were moderate and ranged from 0.21 to 0.36. However, the models fitting fixed effects for the most significant associated markers for each respective trait did not give any advantages over the standard models without fixed effects. As a result of this study, more robust markers could be used in the future for clone selection in sugarcane, potentially helping resolve the genetic control of the RA in sugarcane.
Collapse
Affiliation(s)
| | - Keo Corak
- Genomics and Bioinformatics Research Unit, USDA-ARS, Raleigh, NC, United States
| | - Per McCord
- Sugarcane Field Station, USDA-ARS, Canal Point, FL, United States
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, United States
| | - Amanda M. Hulse-Kemp
- Genomics and Bioinformatics Research Unit, USDA-ARS, Raleigh, NC, United States
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Alexander E. Lipka
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, IL, United States
| |
Collapse
|
3
|
Genievskaya Y, Zatybekov A, Abugalieva S, Turuspekov Y. Identification of Quantitative Trait Loci Associated with Powdery Mildew Resistance in Spring Barley under Conditions of Southeastern Kazakhstan. PLANTS (BASEL, SWITZERLAND) 2023; 12:2375. [PMID: 37376001 DOI: 10.3390/plants12122375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Barley (Hordeum vulgare L.) is one of the most produced cereal crops in the world. It has traditionally been used for the production of animal feed and for malting, as well as for human consumption. However, its production is highly affected by biotic stress factors, particularly the fungal pathogen Blumeria graminis (DC.) f. sp. hordei (Bgh), which causes powdery mildew (PM). In this study, a collection of 406 barley accessions from the USA, Kazakhstan, Europe, and Africa were assessed for resistance to PM over a 3-year period in southeastern Kazakhstan. The collection was grown in the field in 2020, 2021, and 2022 and was genotyped using the 9K SNP Illumina chip. A genome-wide association study (GWAS) was conducted to identify the quantitative trait loci (QTLs) associated with PM resistance. As a result, seven QTLs for PM resistance were detected on chromosomes 4H, 5H, and 7H (FDR p-values < 0.05). Genetic positions of two QTLs were similar to those of PM resistance QTLs previously reported in the scientific literature, suggesting that the five remaining QTLs are novel putative genetic factors for the studied trait. Haplotype analysis for seven QTLs revealed three haplotypes which were associated with total PM resistance and one haplotype associated with the high PM severity in the barley collection. Identified QTLs and haplotypes associated with the PM resistance of barley may be used for further analysis, trait pyramiding, and marker-assisted selection.
Collapse
Affiliation(s)
- Yuliya Genievskaya
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Alibek Zatybekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Saule Abugalieva
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yerlan Turuspekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
4
|
Rooney TE, Sweeney DW, Kunze KH, Sorrells ME, Walling JG. Malting quality and preharvest sprouting traits are genetically correlated in spring malting barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:59. [PMID: 36912946 PMCID: PMC10011292 DOI: 10.1007/s00122-023-04257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Malt for craft "all-malt" brewing can have high quality, PHS resistance, and malted in normal timeframes. Canadian style adjunct malt is associated with PHS susceptibility. Expansion of malting barley production into non-traditional growing regions and erratic weather has increased the demand for preharvest sprouting (PHS) resistant, high quality malting barley cultivars. This is hindered by the relatively unknown relationships between PHS resistance and malting quality. Here we present a three-year study of malting quality and germination at different after-ripening durations post physiological maturity. Malting quality traits alpha amylase (AA) and free amino nitrogen (FAN) and germination rate at six days post PM shared a common association with a SNP in HvMKK3 on chromosome 5H in the Seed Dormancy 2 (SD2) region responsible for PHS susceptibility. Soluble protein (SP) and soluble over total protein (S/T) both shared a common association with a marker in the SD2 region. Significant genetic correlations between PHS resistance and the malting quality traits AA, FAN, SP, S/T were detected across and within HvMKK3 allele groups. High adjunct malt quality was related to PHS susceptibility. Selection for PHS resistance led to a correlated response in malting quality traits. Results strongly suggest pleiotropy of HvMKK3 on malting quality traits and that the classic "Canadian-style" malt is caused by a PHS susceptible allele of HvMKK3. PHS susceptibility appears to benefit the production of malt intended for adjunct brewing, while PHS resistance is compatible with all-malt brewing specifications. Here we present our analysis on the effect of combining complexly inherited and correlated traits with contrasting goals to inform breeding practice in malting barley, the general principles of which can be extended to other breeding programs.
Collapse
Affiliation(s)
- Travis E Rooney
- Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Daniel W Sweeney
- Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Karl H Kunze
- Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Mark E Sorrells
- Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Jason G Walling
- USDA-ARS - Cereal Crops Research Unit, 502 Walnut St, Madison, WI, 53726, USA.
| |
Collapse
|
5
|
Wenndt A, Boyles R, Ackerman A, Sapkota S, Repka A, Nelson R. Host Determinants of Fungal Species Composition and Symptom Manifestation in the Sorghum Grain Mold Disease Complex. PLANT DISEASE 2023; 107:315-325. [PMID: 36800304 DOI: 10.1094/pdis-03-22-0675-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sorghum grain mold (SGM) is an important multifungal disease complex affecting sorghum (Sorghum bicolor) production systems worldwide. SGM-affected sorghum grain can be contaminated with potent fumonisin mycotoxins produced by Fusarium verticillioides, a prevalent SGM-associated taxon. Historically, efforts to improve resistance to SGM have achieved only limited success. Classical approaches to evaluating SGM resistance are based solely on disease severity, which offers little insight regarding the distinct symptom manifestations within the disease complex. In this study, three novel phenotypes were developed to facilitate assessment of SGM symptom manifestation. A sorghum diversity panel composed of 390 accessions was inoculated with endogenous strains of F. verticillioides and evaluated for these phenotypes, as well as for the conventional panicle grain mold severity rating phenotype, in South Carolina, U.S.A., in 2017 and 2019. Distributions of phenotype values were examined, broad-sense heritability was estimated, and relationships to botanical race were explored. A typology of SGM symptom manifestations was developed to classify accessions using principal component analysis and k-means clustering, constituting a novel option for basing breeding decisions on SGM outcomes more nuanced than disease severity. Genome-wide association studies were performed using SGM trait data, resulting in the identification of 19 significant single nucleotide polymorphisms in linkage disequilibrium with a total of 86 gene models. Our findings provide a basis of exploratory evidence regarding the genetic architecture of SGM symptom manifestation and indicate that traits other than disease severity could be tractable targets for SGM resistance breeding.
Collapse
Affiliation(s)
- Anthony Wenndt
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Richard Boyles
- Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC 29506
| | - Arlyn Ackerman
- Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC 29506
| | - Sirjan Sapkota
- Advanced Plant Technology Program, Clemson University, Clemson, SC 29634
| | - Ace Repka
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Rebecca Nelson
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
6
|
Polishchuk TP, Hudzenko VM. Inheritance of kernel number per spike in F1 of spring barley obtained from crossings of cultivars of different origin, purpose of use and botanical varieties. PLANT VARIETIES STUDYING AND PROTECTION 2022. [DOI: 10.21498/2518-1017.18.3.2022.269023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Purpose. To reveal the peculiarities of inheritance of kernel number per spike in crosses of spring barley cultivars of different origin, purpose of use and botanical varieties, as well as to distinguish effective genetic sources for improving the trait.
Methods. The study was carried out at the M. Remeslo Myronivka Institute of Wheat of National Academy of Agrarian Sciences of Ukraine in 2019 and 2020. In F1 of spring barley in two diallel crossing schemes the degree of phenotypic dominance, parameters of genetic variation, and combining ability for kernel number per spike were determined. Results. According to the indicator of the degree of phenotypic dominance, all possible types of inheritance of kernel number per spike were identified. In a number of crossing compositions, a change in the type of inheritance depending on the conditions of the year was revealed. Most combinations with overdominance in both years were noted in crossings of the covered awned cultivar ‘Avgur’, as well as the covered awnless cultivar ‘Kozyr’. According to the parameters of genetic variation in crosses of malting varieties (covered awned), correspondence of the additive-dominant model, overdominance and dominance in loci, as well as unidirectional dominance to increasing of the trait caused by dominant effects were revealed. When crossing cultivars of different varieties, a change in gene action in different years was found. In particular, additive-dominant system changed to complementary epistasis, incomplete dominance to overdominance, unidirectional dominance to increasing of the trait to multidirectional dominance. The genetic sources of increased general combining ability were identified, as follows: covered awned malting cultivars ‘Quench’ and ‘Avgur’, the naked awned cultivar ‘CDC Rattan’, as well as the covered awnless cultivar ‘Kozyr’. Based on the constants of specific combining ability, the most promising crossing combinations for further breeding efforts were determined.
Conclusions. The identified peculiarities of the inheritance of kernel number per spike make it possible to optimally combine parental components of crossings and carry out directional selection to increase the trait when developing spring barley cultivars for different use and different botanical varieties.
Collapse
Affiliation(s)
- T. P. Polishchuk
- The V. M. Remeslo Myronivka Institute of Wheat, NAAS of Ukraine, Ukraine
| | - V. M. Hudzenko
- The V. M. Remeslo Myronivka Institute of Wheat, NAAS of Ukraine, Ukraine
| |
Collapse
|
7
|
Hudzenko VM, Polishchuk TP, Lysenko AA, Fedorenko IV, Fedorenko MV, Khudolii LV, Ishchenko VA, Kozelets HM, Babenko AI, Tanchyk SP, Mandrovska SM. Elucidation of gene action and combining ability for productive tillering in spring barley. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The purpose of the present study is to identify breeding and genetic peculiarities for productive tillering in spring barley genotypes of different origin, purposes of usage and botanical affiliation, as well as to identify effective genetic sources to further improving of the trait. There were created two complete (6 × 6) diallel crossing schemes. Into the Scheme I elite Ukrainian (MIP Tytul and Avhur) and Western European (Datcha, Quench, Gladys, and Beatrix) malting spring barley varieties were involved. Scheme II included awnless covered barley varieties Kozyr and Vitrazh bred at the Plant Production Institute named after V. Y. Yuriev of NAAS of Ukraine, naked barley varieties Condor and CDC Rattan from Canada, as well as awned feed barley variety MIP Myroslav created at MIW and malting barley variety Sebastian from Denmark. For more reliable and informative characterization of barley varieties and their progeny for productive tillering in terms of inheritance, parameters of genetic variation and general combining ability (GCA) statistical analyses of experimental data from different (2019 and 2020) growing seasons were conducted. Accordingly to the indicator of phenotypic dominance all possible modes of inheritance were detected, except for negative dominance in the Scheme I in 2020. The degree of phenotypic dominance significantly varied depending on both varieties involved in crossing schemes and conditions of the years of trials. There was overdominance in loci in both schemes in both years. The other parameters of genetic variation showed significant differences in gene action for productive tillering between crossing Schemes. In Scheme I in both years the dominance was mainly unidirectional and due to dominant effects. In the Scheme II in both years there was multidirectional dominance. In Scheme I compliance with the additive-dominant system was revealed in 2019, but in 2020 there was a strong epistasis. In Scheme II in both years non-allelic interaction was identified. In general, the mode of gene action showed a very complex gene action for productive tillering in barley and a significant role of non-genetic factors in phenotypic manifestation of the trait. Despite this, the level of heritability in the narrow sense in both Schemes pointed to the possibility of the successful selection of individuals with genetically determined increased productive tillering in the splitting generations. In Scheme I the final selection for productive tillering will be more effective in later generations, when dominant alleles become homozygous. In Scheme II it is theoretically possible to select plants with high productive tillering on both recessive and dominant basis. In both schemes the non-allelic interaction should be taken into consideration. Spring barley varieties Beatrix, Datcha, MIP Myroslav and Kozyr can be used as effective genetic sources for involvement in crossings aimed at improving the productive tillering. The results of present study contribute to further development of studies devoted to evaluation of gene action for yield-related traits in spring barley, as well as identification of new genetic sources for plant improvement.
Collapse
|
8
|
Trubacheeva NV, Pershina LA. Problems and possibilities of studying malting quality in barley using molecular genetic approaches. Vavilovskii Zhurnal Genet Selektsii 2021; 25:171-177. [PMID: 34901715 PMCID: PMC8627870 DOI: 10.18699/vj21.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/24/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022] Open
Abstract
About one-third of the world’s barley crop is used for malt production to meet the needs of the brewing
industry. In this regard, the study of the genetic basis of malting quality traits and the breeding of malting barley
varieties that are adaptive to their growing conditions are relevant throughout the world, particularly in the Russian Federation, where the cultivation and use of foreign malting varieties of barley prevails. The main parameters
of malting quality (artificially germinated and dried barley grains) are malt extract, diastatic power, Kolbach index,
viscosity, grain protein, wort β-glucan, free amino nitrogen, and soluble protein content. Most of these components
are under the control of quantitative trait loci (QTLs) and are affected by environmental conditions, which complicates their study and precise localization. In addition, the phenotypic assessment of malting quality traits requires
elaborate, expensive phenotypic analyses. Currently, there are more than 200 QTLs associated with malting parameters, which were identified using biparental mapping populations. Molecular markers are widely used both for
mapping QTL loci responsible for malting quality traits and for performing marker-assisted selection (MAS), which,
in combination with conventional breeding, makes it possible to create effective strategies aimed at accelerating
the process of obtaining new promising genotypes. Nevertheless, the MAS of malting quality traits faces a series of
difficulties, such as the low accuracy of localization of QTLs, their ineffectiveness when transferred to another genetic background, and linkage with undesirable traits, which makes it necessary to validate QTLs and the molecular
markers linked to them. This review presents the results of studies that used MAS to improve the malting quality of
barley, and it also considers studies that searched for associations between genotype and phenotype, carried out
using GWAS (genome-wide association study) approaches based on the latest achievements of high-throughput
genotyping (diversity array technology (DArT) and single-nucleotide polymorphism markers (SNPs)).
Collapse
Affiliation(s)
- N V Trubacheeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Kurchatov Genomics Center of ICG SB RAS, Novosibirsk, Russia
| | - L A Pershina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Kurchatov Genomics Center of ICG SB RAS, Novosibirsk, Russia
| |
Collapse
|
9
|
Thapa R, Singh J, Gutierrez B, Arro J, Khan A. Genome-wide association mapping identifies novel loci underlying fire blight resistance in apple. THE PLANT GENOME 2021; 14:e20087. [PMID: 33650322 DOI: 10.1002/tpg2.20087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/17/2020] [Indexed: 05/12/2023]
Abstract
Fire blight, caused by epiphytotic gram-negative bacteria Erwinia amylovora, is the most destructive bacterial disease of apple (Malus spp.). Genetic mechanisms of fire blight resistance have mainly been studied using traditional biparental quantitative trait loci (QTL) mapping approaches. Here, we use large-scale historic shoot and blossom fire blight data collected over multiple years and genotyping-by-sequencing (GBS) markers to identify significant marker-trait associations in a diverse set of 566 apple [Malus domestica (Suckow) Borkh.] accessions. There was large variation in fire blight resistance and susceptibility in these accessions. We identified 23 and 38 QTL significantly (p < .001) associated with shoot and blossom blight resistance, respectively. The QTL are distributed across all 17 chromosomes of apple. Four shoot blight and 19 blossom blight QTL identified in this study colocalized with previously identified QTL associated with resistance to fire blight or apple scab. Using transcriptomics data of two apple cultivars with contrasting fire blight responses, we also identified candidate genes for fire blight resistance that are differentially expressed between resistant and susceptible cultivars and located within QTL intervals for fire blight resistance. However, further experiments are needed to confirm and validate these marker-trait associations and develop diagnostic markers before use in marker-assisted breeding to develop apple cultivars with decreased fire blight susceptibility.
Collapse
Affiliation(s)
- Ranjita Thapa
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Jugpreet Singh
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Benjamin Gutierrez
- USDA-ARS Plant Genetic Resources Unit, New York State Agricultural Experiment Station, 630 West North Street, Geneva, NY, 14456, USA
| | - Jie Arro
- USDA-ARS Plant Genetic Resources Unit, New York State Agricultural Experiment Station, 630 West North Street, Geneva, NY, 14456, USA
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| |
Collapse
|
10
|
Genetic Analysis of Stem Diameter and Water Contents To Improve Sorghum Bioenergy Efficiency. G3-GENES GENOMES GENETICS 2020; 10:3991-4000. [PMID: 32907818 PMCID: PMC7642951 DOI: 10.1534/g3.120.401608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biofuel made from agricultural products has the potential in contribute to a stable supply of fuel for growing energy demands. Some salient plant traits, such as stem diameter and water content, and their relationship to other important biomass-related traits are so far poorly understood. Here, we performed QTL mapping for three stem diameter and two water content traits in a S. bicolor BTx623 x IS3620c recombinant inbred line population of 399 genotypes, and validated the genomic regions identified using genome-wide association studies (GWAS) in a diversity panel of 354 accessions. The discovery of both co-localized and non-overlapping loci affecting stem diameter traits suggests that stem widths at different heights share some common genetic control, but also have some distinct genetic influences. Co-localizations of stem diameter and water content traits with other biomass traits including plant height, flowering time and the ‘dry’ trait, suggest that their inheritance may be linked functionally (pleiotropy) or physically (linkage disequilibrium). Water content QTL in homeologous regions resulting from an ancient duplication event may have been retained and continue to have related functions for an estimated 96 million years. Integration of QTL and GWAS data advanced knowledge of the genetic basis of stem diameter and water content components in sorghum, which may lead to tools and strategies for either enhancing or suppressing these traits, supporting advances toward improved quality of plant-based biomass for biofuel production.
Collapse
|
11
|
Looseley ME, Ramsay L, Bull H, Swanston JS, Shaw PD, Macaulay M, Booth A, Russell JR, Waugh R, Thomas WTB. Association mapping of malting quality traits in UK spring and winter barley cultivar collections. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2567-2582. [PMID: 32506274 PMCID: PMC7419451 DOI: 10.1007/s00122-020-03618-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/18/2020] [Indexed: 05/10/2023]
Abstract
Historical malting quality data was collated from UK national and recommended list trial data and used in a GWAS. 25 QTL were identified, with the majority from spring barley cultivar sets. In Europe, the most economically significant use of barley is the production of malt for use in the brewing and distilling industries. As such, selection for traits related to malting quality is of great commercial interest. In order to study the genetic basis of variation for malting quality traits in UK cultivars, a historical set of trial data was collated from national and recommended list trials from the period 1988 to 2016. This data was used to estimate variety means for 20 quality related traits in 451 spring barley cultivars, and 407 winter cultivars. Genotypes for these cultivars were generated using iSelect 9k and 50k genotyping platforms, and a genome wide association scan performed to identify malting quality quantitative trait loci (QTL). 24 QTL were identified in spring barley cultivars, and 2 from the winter set. A number of these correspond to known malting quality related genes but the remainder represents novel genetic variation that is accessible to breeders for the genetic improvement of new cultivars.
Collapse
Affiliation(s)
- Mark E Looseley
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Xelect Ltd, Horizon House, Abbey Walk, St Andrews, Fife, KY16 9LB, Scotland, UK
| | - Luke Ramsay
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK.
| | - Hazel Bull
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Syngenta UK Ltd., Market Stainton, Market Rasen, Lincolnshire, LN8 5LJ, UK
| | - J Stuart Swanston
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Paul D Shaw
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Malcolm Macaulay
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Allan Booth
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Joanne R Russell
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Robbie Waugh
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Plant Sciences Division, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | | |
Collapse
|
12
|
Alqudah AM, Sallam A, Stephen Baenziger P, Börner A. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley - A review. J Adv Res 2020; 22:119-135. [PMID: 31956447 PMCID: PMC6961222 DOI: 10.1016/j.jare.2019.10.013] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/07/2019] [Accepted: 10/31/2019] [Indexed: 11/28/2022] Open
Abstract
Understanding the genetic complexity of traits is an important objective of small grain temperate cereals yield and adaptation improvements. Bi-parental quantitative trait loci (QTL) linkage mapping is a powerful method to identify genetic regions that co-segregate in the trait of interest within the research population. However, recently, association or linkage disequilibrium (LD) mapping using a genome-wide association study (GWAS) became an approach for unraveling the molecular genetic basis underlying the natural phenotypic variation. Many causative allele(s)/loci have been identified using the power of this approach which had not been detected in QTL mapping populations. In barley (Hordeum vulgare L.), GWAS has been successfully applied to define the causative allele(s)/loci which can be used in the breeding crop for adaptation and yield improvement. This promising approach represents a tremendous step forward in genetic analysis and undoubtedly proved it is a valuable tool in the identification of candidate genes. In this review, we describe the recently used approach for genetic analyses (linkage mapping or association mapping), and then provide the basic genetic and statistical concepts of GWAS, and subsequently highlight the genetic discoveries using GWAS. The review explained how the candidate gene(s) can be detected using state-of-art bioinformatic tools.
Collapse
Affiliation(s)
- Ahmad M. Alqudah
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526- Assiut, Egypt
| | - P. Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 68583-Lincoln, NE, USA
| | - Andreas Börner
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| |
Collapse
|
13
|
Podyma W, Bolc P, Nocen J, Puchta M, Wlodarczyk S, Lapinski B, Boczkowska M. A multilevel exploration of Avena strigosa diversity as a prelude to promote alternative crop. BMC PLANT BIOLOGY 2019; 19:291. [PMID: 31269919 PMCID: PMC6610812 DOI: 10.1186/s12870-019-1819-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Sand oat (Avena strigosa Schreb.), one of the four cultivated species of the genus Avena, could be considered as another alternative crop. In gene banks 865 germplasm samples of this species have been preserved that have not been thoroughly investigated so far. The results of phenotyping (36 traits), isoenzymatic (12 systems) and genetic (8 pairs of Sequence-related amplified polymorphism markers) variation were used to obtain the complete description of 56 accessions diversity originated from different parts of world. RESULTS Breeded and weedy forms represented similar pool of morphological traits that indicated a short-term and extensive breeding process, albeit all accessions which we classified as cultivated were characterized by better grain and green mass parameters compared to the weedy ones. Isoenzymes showed relationships with geographical origin, which was not possible to detect by SRAP markers. There was no similarity between morphological and biochemical results. The polymorphism level of SRAP markers was lower than indicated by the available literature data for other species, however it may result from the analysis of pooled samples of accessions with a high internal variability. The extensive type of breeding and its relatively short duration was also reflected in the population structure results. Joint analysis revealed that a secondary centre of diversity is being created in South America and that it has its genealogy from the Iberian Peninsula. CONCLUSIONS Despite the relatively large representation of this species is in various gene banks, it is highly probable that the vast majority of stored worldwide accessions are duplicates, and the protected gene pool is relatively narrow. Sand oat meets all the requirements for an alternative crop species, but further studies are needed to identify the genotypes/populations with the most favourable distribution of utility and quality parameters.
Collapse
Affiliation(s)
- Wiesław Podyma
- Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Radzików, Poland
- Polish Academy of Sciences Botanical Garden - Center for Biological Diversity Conservation in Powsin, Warszawa, Poland
| | - Paulina Bolc
- Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Radzików, Poland
| | - Joanna Nocen
- Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Radzików, Poland
| | - Marta Puchta
- Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Radzików, Poland
| | - Sylwia Wlodarczyk
- Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Radzików, Poland
| | - Boguslaw Lapinski
- Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Radzików, Poland
| | - Maja Boczkowska
- Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Radzików, Poland.
- Polish Academy of Sciences Botanical Garden - Center for Biological Diversity Conservation in Powsin, Warszawa, Poland.
| |
Collapse
|
14
|
Larsen B, Migicovsky Z, Jeppesen AA, Gardner KM, Toldam-Andersen TB, Myles S, Ørgaard M, Petersen MA, Pedersen C. Genome-Wide Association Studies in Apple Reveal Loci for Aroma Volatiles, Sugar Composition, and Harvest Date. THE PLANT GENOME 2019; 12. [PMID: 31290918 DOI: 10.3835/plantgenome2018.12.0104] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Understanding the genetic architecture of fruit quality traits is crucial to target breeding of apple ( L.) cultivars. We linked genotype and phenotype information by combining genotyping-by-sequencing (GBS) generated single nucleotide polymorphism (SNP) markers with fruit flavor volatile data, sugar and acid content, and historical trait data from a gene bank collection. Using gas chromatography-mass spectrometry (GC-MS) analysis of apple juice samples, we identified 49 fruit volatile organic compounds (VOCs). We found a very variable content of VOCs, especially for the esters, among 149 apple cultivars. We identified convincing associations for the acetate esters especially butyl acetate and hexyl acetate on chromosome 2 in a region of several alcohol acyl-transferases including AAT1. For sucrose content and for fructose and sucrose in percentage of total sugars, we revealed significant SNP associations. Here, we suggest a vacuolar invertase close to significant SNPs for this association as candidate gene. Harvest date was in strong SNP association with a NAC transcription factor gene and sequencing identified two haplotypes associated with harvest date. The study shows that SNP marker characterization of a gene bank collection can be successfully combined with new and historical trait data for association studies. Suggested candidate genes may contribute to an improved understanding of the genetic basis for important traits and simultaneously provide tools for targeted breeding using marker-assisted selection (MAS).
Collapse
|
15
|
Fang Y, Zhang X, Xue D. Genetic Analysis and Molecular Breeding Applications of Malting Quality QTLs in Barley. Front Genet 2019; 10:352. [PMID: 31068969 PMCID: PMC6491634 DOI: 10.3389/fgene.2019.00352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/02/2019] [Indexed: 11/13/2022] Open
Abstract
Malting quality is an important determinant of the value of barley grain used in malting and brewing. With recent sequencing and assembling of the barley genome, an increasing number of quantitative trait loci (QTLs) and genes related to malting quality have been identified and cloned, which lays a good molecular genetic basis for barley quality improvement. In this review, we describe the following indicators of malting quality: malt extract (ME), diastatic power (DP), kolbach index (KI), wort viscosity (VIS), free amino nitrogen (FAN) content, soluble protein (SP) content, wort β-glucan (WBG) content, and protein content (PC), and have list related QTLs/genes with high phenotypic variation in multiple populations or environments. Meanwhile, the correlations among the quality parameters and parts of significant indicators suitable for improvement are discussed based on nutrient composition and content required for high-quality malt, which will provide reference for molecular marker-assisted selection (MAS) of malting quality in barley.
Collapse
Affiliation(s)
| | | | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
16
|
Daba S, Horsley R, Schwarz P, Chao S, Capettini F, Mohammadi M. Association and genome analyses to propose putative candidate genes for malt quality traits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2775-2785. [PMID: 30430569 DOI: 10.1002/jsfa.9485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/25/2018] [Accepted: 11/11/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND We studied the genetics of nine malt quality traits using association genetics in a panel of North Dakota, ICARDA, and Ethiopian barley lines. Grain samples harvested from Bekoji in 2011 and 2012 were used. RESULTS The mapping panel revealed strong population structure explained by inflorescence-type, geographic origin, and breeding history. North Dakota germplasm were superior in malt quality traits and they can be donors to improve malt quality properties. We identified 106 marker-trait associations (MTAs) for the nine traits, representing 81 genomic regions across all barley chromosomes. Chromosomes 3H, 5H, and 7H contained most of the MTAs (58.5%). Nearly 18.5% of these genomic regions contained two to three malt quality traits. Within ±250 kb of 81 genomic regions, we recovered 348 barley genes, with some potential impacting malt quality. These include invertase, β-fructofuranosidase, α-glucosidase, serine carboxypeptidase, and bidirectional sugar transporter SWEET14-like protein. Eighteen of these genes were also previously reported in the Hordeum Toolbox, and 17 of them highly expressed during the germination process. CONCLUSION The results from this study invite further follow-up functional characterization experiments to relate the genes with individual malt quality traits with higher confidence. It also provides germplasm resources for malt barley improvement. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sintayehu Daba
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Richard Horsley
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Paul Schwarz
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Shaoman Chao
- USDA-ARS, Cereal Crop Research Unit, Fargo, ND, USA
| | - Flavio Capettini
- Alberta Agriculture and Forestry, Field Crop Development Center, Lacombe, AB, Canada
| | - Mohsen Mohammadi
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
17
|
Kochevenko A, Jiang Y, Seiler C, Surdonja K, Kollers S, Reif JC, Korzun V, Graner A. Identification of QTL hot spots for malting quality in two elite breeding lines with distinct tolerance to abiotic stress. BMC PLANT BIOLOGY 2018; 18:106. [PMID: 29866039 PMCID: PMC5987402 DOI: 10.1186/s12870-018-1323-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/24/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Barley (Hordeum vulgare) is an important crop cultivated across the world. Drought is a major abiotic factor compromising barley yield worldwide, therefore in modern spring barley cultivars superior seed and malting quality characteristics should be combined with reasonable level of drought tolerance. Previously we have identified a number of barley lines demonstrating the superior yield performance under drought conditions. The aim of this work was to perform a QTL analysis of malting quality traits in a doubled haploid (DH) mapping population of two elite barley lines that differ in their reaction pattern to drought stress. RESULTS A population of DH lines was developed by crossing two drought-tolerant elite breeding lines, Victoriana and Sofiara, exploiting distinct mechanism of drought tolerance, sustaining assimilation vs remobilization. The mapping population was assayed under field conditions at four distinct locations that differed in precipitation rate. DH lines were genotyped with the Illumina 9 K iSelect assay, and linkage map including 1782 polymorphic markers and covering a total map length of 1140 cM was constructed. The result of quantitative trait loci (QTL) analysis showed that majority of the traits were affected by several main effect QTL and/or QTL x environment (QE) interactions. In total, 57, 41, and 5 QTL were associated with yield-related traits, malting quality traits and seed quality traits, respectively. 11 and 29 of mapped QTL explained more than 10 and 5% of phenotypic variation, respectively. In several chromosomal regions co-localization between QTL for various traits were observed. The largest clusters were detected on chromosomes 3H and 4H. CONCLUSIONS Our QTL mapping results revealed several novel consistent genomic regions controlling malting quality which could be exploited in marker assisted selection. In this context, the complex QTL region on chromosome 3H seems of particular interest, as it harbors several large effect QTL.
Collapse
Affiliation(s)
- Andriy Kochevenko
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Yong Jiang
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Christiane Seiler
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Korana Surdonja
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Sonja Kollers
- KWS LOCHOW GmbH, Ferdinand-von-Lochow-Str. 5, 29303 Bergen, Germany
| | - Jochen Christoph Reif
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Viktor Korzun
- KWS LOCHOW GmbH, Ferdinand-von-Lochow-Str. 5, 29303 Bergen, Germany
| | - Andreas Graner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| |
Collapse
|
18
|
Xu X, Sharma R, Tondelli A, Russell J, Comadran J, Schnaithmann F, Pillen K, Kilian B, Cattivelli L, Thomas WTB, Flavell AJ. Genome-Wide Association Analysis of Grain Yield-Associated Traits in a Pan-European Barley Cultivar Collection. THE PLANT GENOME 2018; 11:170073. [PMID: 29505630 DOI: 10.3835/plantgenome2017.08.0073] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A collection of 379 Hordeum vulgare cultivars, comprising all combinations of spring and winter growth habits with two and six row ear type, was screened by genome wide association analysis to discover alleles controlling traits related to grain yield. Genotypes were obtained at 6,810 segregating gene-based single nucleotide polymorphism (SNP) loci and corresponding field trial data were obtained for eight traits related to grain yield at four European sites in three countries over two growth years. The combined data were analyzed and statistically significant associations between the traits and regions of the barley genomes were obtained. Combining this information with the high resolution gene map for barley allowed the identification of candidate genes underlying all scored traits and superposition of this information with the known genomics of grain trait genes in rice resulted in the assignation of 13 putative barley genes controlling grain traits in European cultivated barley. Several of these genes are associated with grain traits in both winter and spring barley.
Collapse
|
19
|
Antony Ceasar S, Maharajan T, Ajeesh Krishna TP, Ramakrishnan M, Victor Roch G, Satish L, Ignacimuthu S. Finger Millet [ Eleusine coracana (L.) Gaertn.] Improvement: Current Status and Future Interventions of Whole Genome Sequence. FRONTIERS IN PLANT SCIENCE 2018; 9:1054. [PMID: 30083176 PMCID: PMC6064933 DOI: 10.3389/fpls.2018.01054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/28/2018] [Indexed: 05/05/2023]
Abstract
The whole genome sequence (WGS) of the much awaited, nutrient rich and climate resilient crop, finger millet (Eleusine coracana (L.) Gaertn.) has been released recently. While possessing superior mineral nutrients and excellent shelf life as compared to other major cereals, multiploidy nature of the genome and relatively small plantation acreage in less developed countries hampered the genome sequencing of finger millet, disposing it as one of the lastly sequenced genomes in cereals. The genomic information available for this crop is very little when compared to other major cereals like rice, maize and barley. As a result, only a limited number of genetic and genomic studies has been undertaken for the improvement of this crop. Finger millet is known especially for its superior calcium content, but the high-throughput studies are yet to be performed to understand the mechanisms behind calcium transport and grain filling. The WGS of finger millet is expected to help to understand this and other important molecular mechanisms in finger millet, which may be harnessed for the nutrient fortification of other cereals. In this review, we discuss various efforts made so far on the improvement of finger millet including genetic improvement, transcriptome analysis, mapping of quantitative trait loci (QTLs) for traits, etc. We also discuss the pitfalls of modern genetic studies and provide insights for accelerating the finger millet improvement with the interventions of WGS in near future. Advanced genetic and genomic studies aided by WGS may help to improve the finger millet, which will be helpful to strengthen the nutritional security in addition to food security in the developing countries of Asia and Africa.
Collapse
Affiliation(s)
- S. Antony Ceasar
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
- Functional Genomics and Plant Molecular Imaging Lab, University of Liege, Liege, Belgium
- *Correspondence: S. Antony Ceasar, Savarimuthu Ignacimuthu,
| | - T. Maharajan
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
| | - T. P. Ajeesh Krishna
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
| | - M. Ramakrishnan
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
| | - G. Victor Roch
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
| | - Lakkakula Satish
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Savarimuthu Ignacimuthu
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
- *Correspondence: S. Antony Ceasar, Savarimuthu Ignacimuthu,
| |
Collapse
|
20
|
Laidig F, Piepho HP, Rentel D, Drobek T, Meyer U. Breeding progress, genotypic and environmental variation and correlation of quality traits in malting barley in German official variety trials between 1983 and 2015. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2411-2429. [PMID: 28821914 PMCID: PMC5641284 DOI: 10.1007/s00122-017-2967-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/07/2017] [Indexed: 05/24/2023]
Abstract
Evaluation of breeding progress for spring barley varieties in Germany showed that both grain yield and malting quality were considerably improved during the last 33 years, and that genetic effects of protein concentration and malting traits were not associated. Based on historical data, this study aimed to investigate yield potential and malting quality of 187 varieties tested and released in German registration trials to evaluate the value for cultivation and use (VCU) during 1983-2015, and to quantify the environmental variability and the association among traits. We used mixed linear models with multiple linear regression terms to dissect genetic and non-genetic trend components. Grain yield increased by 43% (23.4 dt ha-1) in VCU trials and 35% (14.0 dt ha-1) on-farm relative to 1983. All yield components contributed significantly. Malting quality was also considerably improved by 2.3% for extract content up to 25.1% for friability, relative to 1983, nearly completely due to new varieties. Total variability of individual traits was very different between traits (2.4-24.4% relative to 1983). The relative influence of genotypes on total variation was low for grain yield and its components, whereas it was considerably larger for other traits. We found remarkable differences between phenotypic and genetic correlation coefficients for grain yield and protein concentration with malting traits. The observed positive phenotypic relation between grain yield and malting quality can be attributed to a shift of selection and environmental effects, but genetic correlations showed a negative association. Genetic effects of protein concentration and malting quality were not correlated indicating that both were not genetically linked. Considerable yield progress and improvement of malting quality were achieved despite of their weak to moderate negative genetic dependence.
Collapse
Affiliation(s)
| | - Hans-Peter Piepho
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 23, 70599, Stuttgart, Germany
| | - Dirk Rentel
- Bundessortenamt, Osterfelddamm 80, 30627, Hannover, Germany
| | - Thomas Drobek
- Bundessortenamt, Osterfelddamm 80, 30627, Hannover, Germany
| | - Uwe Meyer
- Bundessortenamt, Osterfelddamm 80, 30627, Hannover, Germany
| |
Collapse
|
21
|
Wonneberger R, Ficke A, Lillemo M. Identification of quantitative trait loci associated with resistance to net form net blotch in a collection of Nordic barley germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2025-2043. [PMID: 28653151 DOI: 10.1007/s00122-017-2940-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Abstract
Association mapping of resistance to Pyrenophora teres f. teres in a collection of Nordic barley germplasm at different developmental stages revealed 13 quantitative loci with mostly small effects. Net blotch, caused by the necrotrophic fungus Pyrenophora teres, is one of the major diseases in barley in Norway causing quantitative and qualitative yield losses. Resistance in Norwegian cultivars and germplasm is generally insufficient and resistance sources have not been extensively explored yet. In this study, we mapped quantitative trait loci (QTL) associated with resistance to net blotch in Nordic germplasm. We evaluated a collection of 209 mostly Nordic spring barley lines for reactions to net form net blotch (NFNB; Pyrenophora teres f. teres) in inoculations with three single conidia isolates at the seedling stage and in inoculated field trials at the adult stage in 4 years. Using 5669 SNP markers genotyped with the Illumina iSelect 9k Barley SNP Chip and a mixed linear model accounting for population structure and kinship, we found a total of 35 significant marker-trait associations for net blotch resistance, corresponding to 13 QTL, on all chromosomes. Out of these QTL, seven conferred resistance only in adult plants and four were only detectable in seedlings. Two QTL on chromosomes 3H and 6H were significant during both seedling inoculations and adult stage field trials. These are promising candidates for breeding programs using marker-assisted selection strategies. The results elucidate the genetic background of NFNB resistance in Nordic germplasm and suggest that NB resistance is conferred by a number of genes each with small-to-moderate effects, making it necessary to pyramid these genes to achieve sufficient levels of resistance.
Collapse
Affiliation(s)
- Ronja Wonneberger
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Andrea Ficke
- Division for Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, 1430, Ås, Norway
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
| |
Collapse
|
22
|
Fan C, Zhai H, Wang H, Yue Y, Zhang M, Li J, Wen S, Guo G, Zeng Y, Ni Z, You M. Identification of QTLs controlling grain protein concentration using a high-density SNP and SSR linkage map in barley (Hordeum vulgare L.). BMC PLANT BIOLOGY 2017; 17:122. [PMID: 28697758 PMCID: PMC5504602 DOI: 10.1186/s12870-017-1067-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 06/25/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND Grain protein concentration (GPC) is a major determinant of quality in barley (Hordeum vulgare L.). Breeding barley cultivars with high GPC has practical value for feed and food properties. The aim of the present study was to identify quantitative trait loci (QTLs) for GPC that could be detected under multiple environments. RESULTS A population of 190 recombinant inbred lines (RILs) deriving from a cross between Chinese landrace ZGMLEL with high GPC (> 20%) and Australian cultivar Schooner was used for linkage and QTL analyses. The genetic linkage map spanned 2353.48 cM in length with an average locus interval of 2.33 cM. GPC was evaluated under six environments for the RIL population and the two parental lines. In total, six environmentally stable QTLs for GPC were detected on chromosomes 2H (1), 4H (1), 6H (1), and 7H (3) and the increasing alleles were derived from ZGMLEL. Notably, the three QTLs on chromosome 7H (QGpc.ZiSc-7H.1, QGpc.ZiSc-7H.2, and QGpc.ZiSc-7H.3) that linked in coupling phase were firstly identified. Moreover, the genetic effects of stable QTLs on chromosomes 2H, 6H and 7H were validated using near isogenic lines (NILs). CONCLUSIONS Collectively, the identified QTLs expanded our knowledge about the genetic basis of GPC in barley and could be selected to develop cultivars with high grain protein concentration.
Collapse
Affiliation(s)
- Chaofeng Fan
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
- National Plant Gene Research Centre, Beijing, 100193 China
| | - Huijie Zhai
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
- National Plant Gene Research Centre, Beijing, 100193 China
| | - Huifang Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
- National Plant Gene Research Centre, Beijing, 100193 China
| | - Yafei Yue
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
- National Plant Gene Research Centre, Beijing, 100193 China
| | - Minghu Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
- National Plant Gene Research Centre, Beijing, 100193 China
| | - Jinghui Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
- National Plant Gene Research Centre, Beijing, 100193 China
| | - Shaozhe Wen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
- National Plant Gene Research Centre, Beijing, 100193 China
| | - Ganggang Guo
- Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081 China
| | - Yawen Zeng
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
- National Plant Gene Research Centre, Beijing, 100193 China
| | - Mingshan You
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
- National Plant Gene Research Centre, Beijing, 100193 China
| |
Collapse
|
23
|
Bellucci A, Tondelli A, Fangel JU, Torp AM, Xu X, Willats WGT, Flavell A, Cattivelli L, Rasmussen SK. Genome-wide association mapping in winter barley for grain yield and culm cell wall polymer content using the high-throughput CoMPP technique. PLoS One 2017; 12:e0173313. [PMID: 28301509 PMCID: PMC5354286 DOI: 10.1371/journal.pone.0173313] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
A collection of 112 winter barley varieties (Hordeum vulgare L.) was grown in the field for two years (2008/09 and 2009/10) in northern Italy and grain and straw yields recorded. In the first year of the trial, a severe attack of barley yellow mosaic virus (BaYMV) strongly influenced final performances with an average reduction of ~ 50% for grain and straw harvested in comparison to the second year. The genetic determination (GD) for grain yield was 0.49 and 0.70, for the two years respectively, and for straw yield GD was low in 2009 (0.09) and higher in 2010 (0.29). Cell wall polymers in culms were quantified by means of the monoclonal antibodies LM6, LM11, JIM13 and BS-400-3 and the carbohydrate-binding module CBM3a using the high-throughput CoMPP technique. Of these, LM6, which detects arabinan components, showed a relatively high GD in both years and a significantly negative correlation with grain yield (GYLD). Overall, heritability (H2) was calculated for GYLD, LM6 and JIM and resulted to be 0.42, 0.32 and 0.20, respectively. A total of 4,976 SNPs from the 9K iSelect array were used in the study for the analysis of population structure, linkage disequilibrium (LD) and genome-wide association study (GWAS). Marker-trait associations (MTA) were analyzed for grain yield and cell wall determination by LM6 and JIM13 as these were the traits showing significant correlations between the years. A single QTL for GYLD containing three MTAs was found on chromosome 3H located close to the Hv-eIF4E gene, which is known to regulate resistance to BaYMV. Subsequently the QTL was shown to be tightly linked to rym4, a locus for resistance to the virus. GWAs on arabinans quantified by LM6 resulted in the identification of major QTLs closely located on 3H and hypotheses regarding putative candidate genes were formulated through the study of gene expression levels based on bioinformatics tools.
Collapse
Affiliation(s)
- Andrea Bellucci
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Alessandro Tondelli
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca per la Genomica Vegetale, Fiorenzuola d’Arda, Italy
| | - Jonatan U. Fangel
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anna Maria Torp
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Xin Xu
- School of Life Science, University of Dundee, Dundee, United Kingdom
| | - William G. T. Willats
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrew Flavell
- School of Life Science, University of Dundee, Dundee, United Kingdom
| | - Luigi Cattivelli
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca per la Genomica Vegetale, Fiorenzuola d’Arda, Italy
| | - Søren K. Rasmussen
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
24
|
N’Diaye A, Haile JK, Cory AT, Clarke FR, Clarke JM, Knox RE, Pozniak CJ. Single Marker and Haplotype-Based Association Analysis of Semolina and Pasta Colour in Elite Durum Wheat Breeding Lines Using a High-Density Consensus Map. PLoS One 2017; 12:e0170941. [PMID: 28135299 PMCID: PMC5279799 DOI: 10.1371/journal.pone.0170941] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/12/2017] [Indexed: 12/30/2022] Open
Abstract
Association mapping is usually performed by testing the correlation between a single marker and phenotypes. However, because patterns of variation within genomes are inherited as blocks, clustering markers into haplotypes for genome-wide scans could be a worthwhile approach to improve statistical power to detect associations. The availability of high-density molecular data allows the possibility to assess the potential of both approaches to identify marker-trait associations in durum wheat. In the present study, we used single marker- and haplotype-based approaches to identify loci associated with semolina and pasta colour in durum wheat, the main objective being to evaluate the potential benefits of haplotype-based analysis for identifying quantitative trait loci. One hundred sixty-nine durum lines were genotyped using the Illumina 90K Infinium iSelect assay, and 12,234 polymorphic single nucleotide polymorphism (SNP) markers were generated and used to assess the population structure and the linkage disequilibrium (LD) patterns. A total of 8,581 SNPs previously localized to a high-density consensus map were clustered into 406 haplotype blocks based on the average LD distance of 5.3 cM. Combining multiple SNPs into haplotype blocks increased the average polymorphism information content (PIC) from 0.27 per SNP to 0.50 per haplotype. The haplotype-based analysis identified 12 loci associated with grain pigment colour traits, including the five loci identified by the single marker-based analysis. Furthermore, the haplotype-based analysis resulted in an increase of the phenotypic variance explained (50.4% on average) and the allelic effect (33.7% on average) when compared to single marker analysis. The presence of multiple allelic combinations within each haplotype locus offers potential for screening the most favorable haplotype series and may facilitate marker-assisted selection of grain pigment colour in durum wheat. These results suggest a benefit of haplotype-based analysis over single marker analysis to detect loci associated with colour traits in durum wheat.
Collapse
Affiliation(s)
- Amidou N’Diaye
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jemanesh K. Haile
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Aron T. Cory
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Fran R. Clarke
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - John M. Clarke
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ron E. Knox
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Curtis J. Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
25
|
Migicovsky Z, Sawler J, Gardner KM, Aradhya MK, Prins BH, Schwaninger HR, Bustamante CD, Buckler ES, Zhong GY, Brown PJ, Myles S. Patterns of genomic and phenomic diversity in wine and table grapes. HORTICULTURE RESEARCH 2017; 4:17035. [PMID: 28791127 PMCID: PMC5539807 DOI: 10.1038/hortres.2017.35] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/16/2017] [Indexed: 05/18/2023]
Abstract
Grapes are one of the most economically and culturally important crops worldwide, and they have been bred for both winemaking and fresh consumption. Here we evaluate patterns of diversity across 33 phenotypes collected over a 17-year period from 580 table and wine grape accessions that belong to one of the world's largest grape gene banks, the grape germplasm collection of the United States Department of Agriculture. We find that phenological events throughout the growing season are correlated, and quantify the marked difference in size between table and wine grapes. By pairing publicly available historical phenotype data with genome-wide polymorphism data, we identify large effect loci controlling traits that have been targeted during domestication and breeding, including hermaphroditism, lighter skin pigmentation and muscat aroma. Breeding for larger berries in table grapes was traditionally concentrated in geographic regions where Islam predominates and alcohol was prohibited, whereas wine grapes retained the ancestral smaller size that is more desirable for winemaking in predominantly Christian regions. We uncover a novel locus with a suggestive association with berry size that harbors a signature of positive selection for larger berries. Our results suggest that religious rules concerning alcohol consumption have had a marked impact on patterns of phenomic and genomic diversity in grapes.
Collapse
Affiliation(s)
- Zoë Migicovsky
- Department of Plant, Food and Environmental
Sciences, Faculty of Agriculture, Dalhousie University, Truro,
NS
B2N 5E3, Canada
| | - Jason Sawler
- Department of Plant, Food and Environmental
Sciences, Faculty of Agriculture, Dalhousie University, Truro,
NS
B2N 5E3, Canada
- Anandia Labs, Vancouver,
BC
V6T 1Z4, Canada
| | - Kyle M Gardner
- Department of Plant, Food and Environmental
Sciences, Faculty of Agriculture, Dalhousie University, Truro,
NS
B2N 5E3, Canada
- Agriculture and Agri-Food Canada, Fredericton
Research and Development Centre, Fredericton, NB,
Canada
E3B 4Z7
| | - Mallikarjuna K Aradhya
- National Clonal Germplasm Repository, United
States Department of Agriculture-Agricultural Research Service, University of
California, Davis, CA
95616, USA
| | - Bernard H Prins
- National Clonal Germplasm Repository, United
States Department of Agriculture-Agricultural Research Service, University of
California, Davis, CA
95616, USA
| | - Heidi R Schwaninger
- United States Department of Agriculture,
Agricultural Research Service, Grape Genetics Research Unit, New York State Agricultural
Experiment Station, Cornell University, Geneva, NY
14456, USA
| | | | - Edward S Buckler
- Department of Plant Breeding and Genetics,
Cornell University, Ithaca, NY
14853, USA
| | - Gan-Yuan Zhong
- United States Department of Agriculture,
Agricultural Research Service, Grape Genetics Research Unit, New York State Agricultural
Experiment Station, Cornell University, Geneva, NY
14456, USA
- United States Department of Agriculture,
Agricultural Research Service, Plant Genetic Resources Unit, New York State Agricultural
Experiment Station, Cornell University, Geneva, NY
14456, USA
| | - Patrick J Brown
- Department of Crop Science, University of
Illinois, Urbana, IL
61801, USA
| | - Sean Myles
- Department of Plant, Food and Environmental
Sciences, Faculty of Agriculture, Dalhousie University, Truro,
NS
B2N 5E3, Canada
| |
Collapse
|
26
|
Islam MS, Thyssen GN, Jenkins JN, Zeng L, Delhom CD, McCarty JC, Deng DD, Hinchliffe DJ, Jones DC, Fang DD. A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genomics 2016; 17:903. [PMID: 27829353 PMCID: PMC5103610 DOI: 10.1186/s12864-016-3249-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/02/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cotton supplies a great majority of natural fiber for the global textile industry. The negative correlation between yield and fiber quality has hindered breeders' ability to improve these traits simultaneously. A multi-parent advanced generation inter-cross (MAGIC) population developed through random-mating of multiple diverse parents has the ability to break this negative correlation. Genotyping-by-sequencing (GBS) is a method that can rapidly identify and genotype a large number of single nucleotide polymorphisms (SNP). Genotyping a MAGIC population using GBS technologies will enable us to identify marker-trait associations with high resolution. RESULTS An Upland cotton MAGIC population was developed through random-mating of 11 diverse cultivars for five generations. In this study, fiber quality data obtained from four environments and 6071 SNP markers generated via GBS and 223 microsatellite markers of 547 recombinant inbred lines (RILs) of the MAGIC population were used to conduct a genome wide association study (GWAS). By employing a mixed linear model, GWAS enabled us to identify markers significantly associated with fiber quantitative trait loci (QTL). We identified and validated one QTL cluster associated with four fiber quality traits [short fiber content (SFC), strength (STR), length (UHM) and uniformity (UI)] on chromosome A07. We further identified candidate genes related to fiber quality attributes in this region. Gene expression and amino acid substitution analysis suggested that a regeneration of bulb biogenesis 1 (GhRBB1_A07) gene is a candidate for superior fiber quality in Upland cotton. The DNA marker CFBid0004 designed from an 18 bp deletion in the coding sequence of GhRBB1_A07 in Acala Ultima is associated with the improved fiber quality in the MAGIC RILs and 105 additional commercial Upland cotton cultivars. CONCLUSION Using GBS and a MAGIC population enabled more precise fiber QTL mapping in Upland cotton. The fiber QTL and associated markers identified in this study can be used to improve fiber quality through marker assisted selection or genomic selection in a cotton breeding program. Target manipulation of the GhRBB1_A07 gene through biotechnology or gene editing may potentially improve cotton fiber quality.
Collapse
Affiliation(s)
- Md Sariful Islam
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124 USA
| | - Gregory N. Thyssen
- Cotton Chemistry and Utilization Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124 USA
| | - Johnie N. Jenkins
- Genetics & Sustainable Agriculture Research Unit, USDA-ARS, Mississippi State, MS 39762 USA
| | - Linghe Zeng
- Crop Genetics Research Unit, USDA-ARS, Stoneville, MS 38772 USA
| | - Christopher D. Delhom
- Cotton Structure and Quality Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124 USA
| | - Jack C. McCarty
- Genetics & Sustainable Agriculture Research Unit, USDA-ARS, Mississippi State, MS 39762 USA
| | - Dewayne D. Deng
- Genetics & Sustainable Agriculture Research Unit, USDA-ARS, Mississippi State, MS 39762 USA
| | - Doug J. Hinchliffe
- Cotton Chemistry and Utilization Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124 USA
| | | | - David D. Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124 USA
| |
Collapse
|
27
|
Nielsen NH, Jahoor A, Jensen JD, Orabi J, Cericola F, Edriss V, Jensen J. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines. PLoS One 2016; 11:e0164494. [PMID: 27783639 PMCID: PMC5082657 DOI: 10.1371/journal.pone.0164494] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/26/2016] [Indexed: 12/23/2022] Open
Abstract
Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families.
Collapse
Affiliation(s)
| | - Ahmed Jahoor
- Nordic Seed A/S, Grindsnabevej 25, 8300, Odder, Denmark
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, 2353, Alnarp, Sweden
| | | | - Jihad Orabi
- Nordic Seed A/S, Grindsnabevej 25, 8300, Odder, Denmark
| | - Fabio Cericola
- Department of Molecular Biology and Genetics—Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Vahid Edriss
- Nordic Seed A/S, Grindsnabevej 25, 8300, Odder, Denmark
| | - Just Jensen
- Department of Molecular Biology and Genetics—Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| |
Collapse
|
28
|
Migicovsky Z, Gardner KM, Money D, Sawler J, Bloom JS, Moffett P, Chao CT, Schwaninger H, Fazio G, Zhong GY, Myles S. Genome to Phenome Mapping in Apple Using Historical Data. THE PLANT GENOME 2016; 9. [PMID: 27898813 DOI: 10.3835/plantgenome2015.11.0113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Apple ( X Borkh.) is one of the world's most valuable fruit crops. Its large size and long juvenile phase make it a particularly promising candidate for marker-assisted selection (MAS). However, advances in MAS in apple have been limited by a lack of phenotype and genotype data from sufficiently large samples. To establish genotype-phenotype relationships and advance MAS in apple, we extracted over 24,000 phenotype scores from the USDA-Germplasm Resources Information Network (GRIN) database and linked them with over 8000 single nucleotide polymorphisms (SNPs) from 689 apple accessions from the USDA apple germplasm collection clonally preserved in Geneva, NY. We find significant genetic differentiation between Old World and New World cultivars and demonstrate that the genetic structure of the domesticated apple also reflects the time required for ripening. A genome-wide association study (GWAS) of 36 phenotypes confirms the association between fruit color and the MYB1 locus, and we also report a novel association between the transcription factor, NAC18.1, and harvest date and fruit firmness. We demonstrate that harvest time and fruit size can be predicted with relatively high accuracies ( > 0.46) using genomic prediction. Rapid decay of linkage disequilibrium (LD) in apples means millions of SNPs may be required for well-powered GWAS. However, rapid LD decay also promises to enable extremely high resolution mapping of causal variants, which holds great potential for advancing MAS.
Collapse
|
29
|
Racedo J, Gutiérrez L, Perera MF, Ostengo S, Pardo EM, Cuenya MI, Welin B, Castagnaro AP. Genome-wide association mapping of quantitative traits in a breeding population of sugarcane. BMC PLANT BIOLOGY 2016; 16:142. [PMID: 27342657 PMCID: PMC4921039 DOI: 10.1186/s12870-016-0829-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/14/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Molecular markers associated with relevant agronomic traits could significantly reduce the time and cost involved in developing new sugarcane varieties. Previous sugarcane genome-wide association analyses (GWAS) have found few molecular markers associated with relevant traits at plant-cane stage. The aim of this study was to establish an appropriate GWAS to find molecular markers associated with yield related traits consistent across harvesting seasons in a breeding population. Sugarcane clones were genotyped with DArT (Diversity Array Technology) and TRAP (Target Region Amplified Polymorphism) markers, and evaluated for cane yield (CY) and sugar content (SC) at two locations during three successive crop cycles. GWAS mapping was applied within a novel mixed-model framework accounting for population structure with Principal Component Analysis scores as random component. RESULTS A total of 43 markers significantly associated with CY in plant-cane, 42 in first ratoon, and 41 in second ratoon were detected. Out of these markers, 20 were associated with CY in 2 years. Additionally, 38 significant associations for SC were detected in plant-cane, 34 in first ratoon, and 47 in second ratoon. For SC, one marker-trait association was found significant for the 3 years of the study, while twelve markers presented association for 2 years. In the multi-QTL model several markers with large allelic substitution effect were found. Sequences of four DArT markers showed high similitude and e-value with coding sequences of Sorghum bicolor, confirming the high gene microlinearity between sorghum and sugarcane. CONCLUSIONS In contrast with other sugarcane GWAS studies reported earlier, the novel methodology to analyze multi-QTLs through successive crop cycles used in the present study allowed us to find several markers associated with relevant traits. Combining existing phenotypic trial data and genotypic DArT and TRAP marker characterizations within a GWAS approach including population structure as random covariates may prove to be highly successful. Moreover, sequences of DArT marker associated with the traits of interest were aligned in chromosomal regions where sorghum QTLs has previously been reported. This approach could be a valuable tool to assist the improvement of sugarcane and better supply sugarcane demand that has been projected for the upcoming decades.
Collapse
Affiliation(s)
- Josefina Racedo
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| | - Lucía Gutiérrez
- />Departamento de Biometría, Estadística y Cómputos, Facultad de Agronomía, Universidad de la República, Garzón 780, 12900 Montevideo, Uruguay
- />Agronomy Department, University of Wisconsin – Madison, 1575 Linden Dr., Madison, WI 53706 USA
| | - María Francisca Perera
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| | - Santiago Ostengo
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| | - Esteban Mariano Pardo
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| | - María Inés Cuenya
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| | - Bjorn Welin
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| | - Atilio Pedro Castagnaro
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| |
Collapse
|
30
|
Singh AK, Singh R, Subramani R, Kumar R, Wankhede DP. Molecular Approaches to Understand Nutritional Potential of Coarse Cereals. Curr Genomics 2016; 17:177-92. [PMID: 27252585 PMCID: PMC4869005 DOI: 10.2174/1389202917666160202215308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 01/01/2023] Open
Abstract
Coarse grains are important group of crops that constitutes staple food for large population residing primarily in the arid and semi-arid regions of the world. Coarse grains are designated as nutri-cereals as they are rich in essential amino acids, minerals and vitamins. In spite of having several nutritional virtues in coarse grain as mentioned above, there is still scope for improvement in quality parameters such as cooking qualities, modulation of nutritional constituents and reduction or elimination of anti-nutritional factors. Besides its use in traditional cooking, coarse grains have been used mainly in the weaning food preparation and other malted food production. Improvement in quality parameters will certainly increase consumer's preference for coarse grains and increase their demand. The overall genetic gain in quality traits of economic importance in the cultivated varieties will enhance their industrial value and simultaneously increase income of farmers growing these varieties. The urgent step for improvement of quality traits in coarse grains requires a detailed understanding of molecular mechanisms responsible for varied level of different nutritional contents in different genotypes of these crops. In this review we have discussed the progresses made in understanding of coarse grain biology with various omics tool coupled with modern breeding approaches and the current status with regard to our effort towards dissecting traits related to improvement of quality and nutritional constituents of grains.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rajkumar Subramani
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rajesh Kumar
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | | |
Collapse
|
31
|
Schönhals EM, Ortega F, Barandalla L, Aragones A, Ruiz de Galarreta JI, Liao JC, Sanetomo R, Walkemeier B, Tacke E, Ritter E, Gebhardt C. Identification and reproducibility of diagnostic DNA markers for tuber starch and yield optimization in a novel association mapping population of potato (Solanum tuberosum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:767-785. [PMID: 26825382 PMCID: PMC4799268 DOI: 10.1007/s00122-016-2665-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 01/09/2016] [Indexed: 05/23/2023]
Abstract
SNPs in candidate genes Pain - 1, InvCD141 (invertases), SSIV (starch synthase), StCDF1 (transcription factor), LapN (leucine aminopeptidase), and cytoplasm type are associated with potato tuber yield, starch content and/or starch yield. Tuber yield (TY), starch content (TSC), and starch yield (TSY) are complex characters of high importance for the potato crop in general and for industrial starch production in particular. DNA markers associated with superior alleles of genes that control the natural variation of TY, TSC, and TSY could increase precision and speed of breeding new cultivars optimized for potato starch production. Diagnostic DNA markers are identified by association mapping in populations of tetraploid potato varieties and advanced breeding clones. A novel association mapping population of 282 genotypes including varieties, breeding clones and Andean landraces was assembled and field evaluated in Northern Spain for TY, TSC, TSY, tuber number (TN) and tuber weight (TW). The landraces had lower mean values of TY, TW, TN, and TSY. The population was genotyped for 183 microsatellite alleles, 221 single nucleotide polymorphisms (SNPs) in fourteen candidate genes and eight known diagnostic markers for TSC and TSY. Association test statistics including kinship and population structure reproduced five known marker-trait associations of candidate genes and discovered new ones, particularly for tuber yield and starch yield. The inclusion of landraces increased the number of detected marker-trait associations. Integration of the present association mapping results with previous QTL linkage mapping studies for TY, TSC, TSY, TW, TN, and tuberization revealed some hot spots of QTL for these traits in the potato genome. The genomic positions of markers linked or associated with QTL for complex tuber traits suggest high multiplicity and genome wide distribution of the underlying genes.
Collapse
Affiliation(s)
- E M Schönhals
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | | | | | | - J-C Liao
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - R Sanetomo
- Potato Germplasm Enhancement Laboratory, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - B Walkemeier
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | | - C Gebhardt
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
32
|
Fan Y, Zhou G, Shabala S, Chen ZH, Cai S, Li C, Zhou M. Genome-Wide Association Study Reveals a New QTL for Salinity Tolerance in Barley (Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2016; 7:946. [PMID: 27446173 PMCID: PMC4923249 DOI: 10.3389/fpls.2016.00946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/14/2016] [Indexed: 05/02/2023]
Abstract
Salinity stress is one of the most severe abiotic stresses that affect agricultural production. Genome wide association study (GWAS) has been widely used to detect genetic variations in extensive natural accessions with more recombination and higher resolution. In this study, 206 barley accessions collected worldwide were genotyped with 408 Diversity Arrays Technology (DArT) markers and evaluated for salinity stress tolerance using salinity tolerance score - a reliable trait developed in our previous work. GWAS for salinity tolerance had been conducted through a general linkage model and a mixed linkage model based on population structure and kinship. A total of 24 significant marker-trait associations were identified. A QTL on 4H with the nearest marker of bPb-9668 was consistently detected in all different methods. This QTL has not been reported before and is worth to be further confirmed with bi-parental populations.
Collapse
Affiliation(s)
- Yun Fan
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania,Kings Meadows, TAS Australia
| | - Gaofeng Zhou
- Western Australian State Agricultural Biotechnology Centre, Murdoch University,Murdoch, WA Australia
| | - Sergey Shabala
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania,Kings Meadows, TAS Australia
| | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University,Penrith, NSW Australia
| | - Shengguan Cai
- School of Science and Health, Western Sydney University,Penrith, NSW Australia
| | - Chengdao Li
- Western Australian State Agricultural Biotechnology Centre, Murdoch University,Murdoch, WA Australia
- *Correspondence: Meixue Zhou, ; Chengdao Li,
| | - Meixue Zhou
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania,Kings Meadows, TAS Australia
- *Correspondence: Meixue Zhou, ; Chengdao Li,
| |
Collapse
|
33
|
Zhang D, Kong W, Robertson J, Goff VH, Epps E, Kerr A, Mills G, Cromwell J, Lugin Y, Phillips C, Paterson AH. Genetic analysis of inflorescence and plant height components in sorghum (Panicoidae) and comparative genetics with rice (Oryzoidae). BMC PLANT BIOLOGY 2015; 15:107. [PMID: 25896918 PMCID: PMC4404672 DOI: 10.1186/s12870-015-0477-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 03/19/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Domestication has played an important role in shaping characteristics of the inflorescence and plant height in cultivated cereals. Taking advantage of meta-analysis of QTLs, phylogenetic analyses in 502 diverse sorghum accessions, GWAS in a sorghum association panel (n = 354) and comparative data, we provide insight into the genetic basis of the domestication traits in sorghum and rice. RESULTS We performed genome-wide association studies (GWAS) on 6 traits related to inflorescence morphology and 6 traits related to plant height in sorghum, comparing the genomic regions implicated in these traits by GWAS and QTL mapping, respectively. In a search for signatures of selection, we identify genomic regions that may contribute to sorghum domestication regarding plant height, flowering time and pericarp color. Comparative studies across taxa show functionally conserved 'hotspots' in sorghum and rice for awn presence and pericarp color that do not appear to reflect corresponding single genes but may indicate co-regulated clusters of genes. We also reveal homoeologous regions retaining similar functions for plant height and flowering time since genome duplication an estimated 70 million years ago or more in a common ancestor of cereals. In most such homoeologous QTL pairs, only one QTL interval exhibits strong selection signals in modern sorghum. CONCLUSIONS Intersections among QTL, GWAS and comparative data advance knowledge of genetic determinants of inflorescence and plant height components in sorghum, and add new dimensions to comparisons between sorghum and rice.
Collapse
Affiliation(s)
- Dong Zhang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
| | - Wenqian Kong
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
| | - Jon Robertson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| | - Valorie H Goff
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| | - Ethan Epps
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| | - Alexandra Kerr
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| | - Gabriel Mills
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| | - Jay Cromwell
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| | - Yelena Lugin
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| | - Christine Phillips
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
34
|
Comparative Genetics of Seed Size Traits in Divergent Cereal Lineages Represented by Sorghum (Panicoidae) and Rice (Oryzoidae). G3-GENES GENOMES GENETICS 2015; 5:1117-28. [PMID: 25834216 PMCID: PMC4478542 DOI: 10.1534/g3.115.017590] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Seed size is closely related to fitness of wild plants, and its modification has been a key recurring element in domestication of seed/grain crops. In sorghum, a genomic and morphological model for panicoid cereals, a rich history of research into the genetics of seed size is reflected by a total of 13 likelihood intervals determined by conventional QTL (linkage) mapping in 11 nonoverlapping regions of the genome. To complement QTL data and investigate whether the discovery of seed size QTL is approaching “saturation,” we compared QTL data to GWAS for seed mass, seed length, and seed width studied in 354 accessions from a sorghum association panel (SAP) that have been genotyped at 265,487 SNPs. We identified nine independent GWAS-based “hotspots” for seed size associations. Targeted resequencing near four association peaks with the most notable linkage disequilibrium provides further support of the role(s) of these regions in the genetic control of sorghum seed size and identifies two candidate causal variants with nonsynonymous mutations. Of nine GWAS hotspots in sorghum, seven have significant correspondence with rice QTL intervals and known genes for components of seed size on orthologous chromosomes. Identifying intersections between positional and association genetic data are a potentially powerful means to mitigate constraints associated with each approach, and nonrandom correspondence of sorghum (panicoid) GWAS signals to rice (oryzoid) QTL adds a new dimension to the ability to leverage genetic data about this important trait across divergent plants.
Collapse
|
35
|
Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann F, Eichhorn A, Polley A, Jaenecke C, Ganal MW, Röder MS. Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping. FRONTIERS IN PLANT SCIENCE 2015; 6:644. [PMID: 26388877 PMCID: PMC4555037 DOI: 10.3389/fpls.2015.00644] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/03/2015] [Indexed: 05/19/2023]
Abstract
Grain weight, an essential yield component, is under strong genetic control and at the same time markedly influenced by the environment. Genetic analysis of the thousand grain weight (TGW) by genome-wide association study (GWAS) was performed with a panel of 358 European winter wheat (Triticum aestivum L.) varieties and 14 spring wheat varieties using phenotypic data of field tests in eight environments. Wide phenotypic variations were indicated for the TGW with BLUEs (best linear unbiased estimations) values ranging from 35.9 to 58.2 g with a mean value of 45.4 g and a heritability of H(2) = 0.89. A total of 12 candidate genes for plant height, photoperiodism and grain weight were genotyped on all varieties. Only three candidates, the photoperiodism gene Ppd-D1, dwarfing gene Rht-B1and the TaGW-6A gene were significant explaining up to 14.4, 2.3, and 3.4% of phenotypic variation, respectively. For a comprehensive genome-wide analysis of TGW-QTL genotyping data from 732 microsatellite markers and a set of 7769 mapped SNP-markers genotyped with the 90k iSELECT array were analyzed. In total, 342 significant (-log10 (P-value) ≥ 3.0) marker trait associations (MTAs) were detected for SSR-markers and 1195 MTAs (-log10(P-value) ≥ 3.0) for SNP-markers in all single environments plus the BLUEs. After Bonferroni correction, 28 MTAs remained significant for SSR-markers (-log10 (P-value) ≥ 4.82) and 58 MTAs for SNP-markers (-log10 (P-value) ≥ 5.89). Apart from chromosomes 4B and 6B for SSR-markers and chromosomes 4D and 5D for SNP-markers, MTAs were detected on all chromosomes. The highest number of significant SNP-markers was found on chromosomes 3B and 1B, while for the SSRs most markers were significant on chromosomes 6D and 3D. Overall, TGW was determined by many markers with small effects. Only three SNP-markers had R(2) values above 6%.
Collapse
Affiliation(s)
- Christine D. Zanke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Jie Ling
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | | | | - Cornelia Jaenecke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | | | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
- *Correspondence: Marion S. Röder, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| |
Collapse
|