1
|
Carvalho-Barbosa NC, Cristina-Rodrigues F, Temerozo JR, Souza TML, Gouvêa AL, Canetti CA, Kurtenbach E, Bou-Habib DC, Benjamim CF, Takiya CM, Savio LEB, Coutinho-Silva R. The role of the P2X7 receptor in inactivated SARS-CoV-2-induced lung injury. Purinergic Signal 2024:10.1007/s11302-024-10062-7. [PMID: 39607622 DOI: 10.1007/s11302-024-10062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Purinergic signaling plays a role in the pathophysiology of different viral infections. Recently, we showed that COVID-19 increases extracellular ATP levels, which may amplify the pro-inflammatory signals in the disease. The P2X7 receptor can be a protagonist in the pro-inflammatory responses. Herein, we investigated the role of the P2X7 receptor in the lung immune response triggered by inoculation of inactivated SARS-CoV-2 (iSARS-CoV-2) in K18-Human ACE2 transgenic mice. Pharmacological inhibition of the P2X7 receptor was performed with intraperitoneal administration of 50 mg/kg of Brilliant Blue G (BBG) one day before viral inoculation. Animals were divided into four groups: a control group (MOCK), a group inoculated with the inactivated virus iSARS-CoV-2, a BBG-treated control group (MOCK + BBG), and a BBG-treated inoculated group (iSARS-CoV-2 + BBG). Virus inoculation was intratracheal with 50 µl of mock or 2 × 106 Plaque Forming Units (PFU) of iSARS-CoV-2. After three days, blood and lungs were collected. We found a significant increase in ATP and LDH in serum and mRNA levels of P2X7 and P2Y12 receptors, CD39, IL-1β, and TNF-α in the lung of the iSARS-CoV-2 group when compared with the control group. BBG treatment attenuated these increases. Lung histological analyses showed severe lung damage in the iSARS-CoV-2 group, which was reduced by the BBG treatment. Immunohistochemical staining confirmed the increased presence of P2X7, P2Y12, and CD39 proteins in the iSARS-CoV-2 vs. the MOCK group. Thus, P2X7 receptor inhibition decreases iSARS-CoV-2-induced lung inflammation, indicating that this receptor might contribute to SARS-CoV-2 pathology.
Collapse
Affiliation(s)
- N C Carvalho-Barbosa
- Laboratory of Immunophysiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fabiana Cristina-Rodrigues
- Laboratory of Immunophysiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jairo R Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology On Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Thiago M L Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
- Center for Technological Development in Health, National Institute for Science and Technology On Innovation in Diseases of Neglected Populations, Fiocruz, Rio de Janeiro, Brazil
| | - Andre L Gouvêa
- Laboratory of Protein Biochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudio A Canetti
- Laboratory of Inflammation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eleonora Kurtenbach
- Laboratory of Protein Biochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology On Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Claudia F Benjamim
- Laboratory of Molecular and Cellular Immunology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina M Takiya
- Laboratory of Immunopathology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luiz E B Savio
- Laboratory of Immunophysiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
de Carvalho Braga G, Francisco GR, Bagatini MD. Current treatment of Psoriasis triggered by Cytokine Storm and future immunomodulation strategies. J Mol Med (Berl) 2024; 102:1187-1198. [PMID: 39212718 DOI: 10.1007/s00109-024-02481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Psoriasis is a chronic condition caused by an inflammation mediated mainly by cytokines and T cells. In COVID-19, the same type of imbalance is common, generating the Cytokine Storm and promoting a worsening in the skin conditions of patients with autoimmune disorders, such as Psoriasis. In this context, one of the main mediators of immune responses presented by SARS-CoV-2 infected patients is the Purinergic System. This immunological resource is capable of stimulating the hyperinflammatory state presented by infected individuals, mainly by the activity of the P2X7 receptor, culminating in the Cytokine Storm and consequently in the Psoriasis crisis. Currently, different drugs are used for patients with Psoriasis, such as immunosuppressants and small molecules; however, the safety of these drugs in infected patients has not been analyzed yet. In this context, studies are being developed to evaluate the possible administration of these traditional drugs to COVID-19 patients with Psoriasis crisis. Along with that, researchers must evaluate the potential of administrating P2X7 antagonists to these patients as well, improving both the systemic and the dermatological prognostics of patients, by reducing the Cytokine Storm and its general effects, but also avoiding the provocation of Psoriasis crisis.
Collapse
|
3
|
Du SL, Zhou YT, Hu HJ, Lin L, Zhang ZQ. Silica-induced ROS in alveolar macrophages and its role on the formation of pulmonary fibrosis via polarizing macrophages into M2 phenotype: a review. Toxicol Mech Methods 2024:1-12. [PMID: 39223849 DOI: 10.1080/15376516.2024.2400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Alveolar macrophages (AMs), the first line against the invasion of foreign invaders, play a predominant role in the pathogenesis of silicosis. Studies have shown that inhaled silica dust is recognized and engulfed by AMs, resulting in the production of large amounts of silica-induced reactive oxygen species (ROS), including particle-derived ROS and macrophage-derived ROS. These ROS change the microenvironment of the AMs where the macrophage phenotype is stimulated to swift from M0 to M1 and/or M2, and ultimately emerge as the M2 phenotype to trigger silicosis. This is a complex process accompanied by various molecular biological events. Unfortunately, the detailed processes and mechanisms have not been systematically described. In this review, we first systematically introduce the process of ROS induced by silica in AMs. Then, describe the role and molecular mechanism of M2-type macrophage polarization caused by silica-induced ROS. Finally, we review the mechanism of pulmonary fibrosis induced by M2 polarized AMs. We conclude that silica-induced ROS initiate the fibrotic process of silicosis by inducing macrophage into M2 phenotype, and that targeted intervention of silica-induced ROS in AMs can reprogram the macrophage polarization and ameliorate the pathogenesis of silicosis.
Collapse
Affiliation(s)
- Shu-Ling Du
- School of Public Health, Shandong Second Medical University, Weifang, China
- School of Public Health, Jining Medical University, Jining, China
| | - Yu-Ting Zhou
- School of Public Health, Jining Medical University, Jining, China
| | - Hui-Jie Hu
- School of Public Health, Shandong Second Medical University, Weifang, China
- School of Public Health, Jining Medical University, Jining, China
| | - Li Lin
- School of Public Health, Jining Medical University, Jining, China
| | - Zhao-Qiang Zhang
- School of Public Health, Jining Medical University, Jining, China
| |
Collapse
|
4
|
Wen W, Zhou J, Zhan C, Wang J. Microglia as a Game Changer in Epilepsy Comorbid Depression. Mol Neurobiol 2024; 61:4021-4037. [PMID: 38048030 DOI: 10.1007/s12035-023-03810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
As one of the most common neurological diseases, epilepsy is often accompanied by psychiatric disorders. Depression is the most universal comorbidity of epilepsy, especially in temporal lobe epilepsy (TLE). Therefore, it is urgently needed to figure out potential mechanisms and the optimization of therapeutic strategies. Microglia play a pivotal role in the coexistent relationship between epilepsy and depression. Activated microglia released cytokines like IL-6 and IL-1β, orchestrating neuroinflammation especially in the hippocampus, worsening both depression and epilepsy. The decrease of intracellular K+ is a common part in various molecular changes. The P2X7-NLRP3-IL-1β is a major inflammatory pathway that disrupts brain network. Extra ATP and CX3CL1 also lead to neuronal excitotoxicity and blood-brain barrier (BBB) disruption. Regulating neuroinflammation aiming at microglia-related molecules is capable of suspending the vicious mutual aggravating circle of epilepsy and depression. Other overlaps between epilepsy and depression lie in transcriptomic, neuroimaging, diagnosis and treatment. Hippocampal sclerosis (HS) and amygdala enlargement (AE) may be the underlying macroscopic pathological changes according to current studies. Extant evidence shows that cognitive behavioral therapy (CBT) and antidepressants like selective serotonin-reuptake inhibitors (SSRIs) are safe, but the effect is limited. Improvement in depression is likely to reduce the frequency of seizure. More comprehensive experiments are warranted to better understand the relationship between them.
Collapse
Affiliation(s)
- Wenrong Wen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North, Guangzhou, 1838, Guangdong Province, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jingsheng Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North, Guangzhou, 1838, Guangdong Province, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chang'an Zhan
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North, Guangzhou, 1838, Guangdong Province, China.
- The First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China.
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
5
|
Almusallam N, Alonazi A, Dayel AB, Almubarak A, Ali R, Althakfi W, Ali R, Alrasheed N. Antifibrotic effect of the P2X7 receptor antagonist A740003 against acute myocardial infarction-induced fibrotic remodelling. Saudi Pharm J 2024; 32:102102. [PMID: 39035363 PMCID: PMC11258548 DOI: 10.1016/j.jsps.2024.102102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 07/23/2024] Open
Abstract
Post-acute myocardial infarction (AMI) fibrosis is a pathophysiologic process characterised by activation of the profibrotic mediator, transforming growth factor-β (TGF-β). AMI is associated with a substantial increase in the levels of extracellular adenosine triphosphate (eATP), which acts on the purinergic P2X7-receptor (P2X7-R) and triggers an inflammatory response that contributes to myocardial fibrotic remodelling. P2X7-R has been implicated in several cardiovascular diseases; however, its role in the regulation of cardiac fibrosis remains unclear. Therefore, the current study aimed to determine the effect of the P2X7-R antagonist, A740003, on post-AMI fibrosis, via the profibrotic TGF-β1/Smad signalling pathway, and elucidate whether its effect is mediated via the modulation of GSK-3β. AMI was induced by surgical ligation of the left anterior descending coronary artery, Thereafter, animals were divided into groups: sham control, MI-untreated, MI-vehicle, and MI-A740003 (50 mg/kg/day) and treated for seven days accordingly. The heart weight/body weight ratio of untreated-ligated rats significantly increased by 15.1 %, creatine kinase-MB (CK-MB) significantly increased by 40 %, troponin-I levels significantly increased by 25.4 %, and lactate dehydrogenase significantly increased by 47.2 %, indicating myocardial damage confirmed by morphological changes and massive cardiac fibrosis. The protein expression of cardiac fibronectin, TGF-β1, and p-Smad2 were also upregulated by 143 %, 40 %, and 8 %, respectively, indicating cardiac fibrosis. The treatment of ligated rats with A740003 led to improvement in all the above-mentioned parameters. Overall, A740003 exhibits potential cardio-protective effects on post-AMI fibrotic remodelling in the animal model of AMI through P2X7-R blockade, possibly by downregulating the profibrotic TGF-β1/Smad signalling pathway and restoring GSK-3β phosphorylation. Altogether, treatment with A740003 could serve as a new cardioprotective strategy to attenuate post-AMI fibrotic remodelling.
Collapse
Affiliation(s)
- Noura Almusallam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Pharmaceutical Care Department, King Saud Medical City, Ministry of Health, Riyadh 11196, Saudi Arabia
| | - Asma Alonazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anfal Bin Dayel
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Almubarak
- Experimental Surgery and Animal Laboratory, Prince Naif Bin Abdul Aziz Health Research Center, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rizwan Ali
- King Abdullah International Medical Research Center, Medical Research Core Facility and Platforms, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| | - Wajd Althakfi
- Department of Pathology, College of Medicine, KSUMC, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rehab Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nouf Alrasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Xiong Q, Tian X, Xu C, Ma B, Li W, Xia Y, Liu W, Sun B, Ru Q, Shu X. Mediation of PM2.5-induced cytotoxicity: the role of P2X7 receptor in NR8383 cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1602-1614. [PMID: 37394938 DOI: 10.1080/09603123.2023.2230920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Ambient fine particulate matter (PM2.5) is a threat to public health. The P2 X 7purinergic receptor (P2X7R) is a modulator that responds to inflammation. Yet the role of P2X7R in the mediation of PM2.5-induced pulmonary cytotoxicity is rarely investigated. In this study, the expression of P2X7R and its effect on cell viability, oxidative damage, apoptosis, mitochondrial dysfunction and underlying mechanism following PM2.5 treatment in rat alveolar macrophages (NR8383) were analyzed. The outcome indicated that PM2.5 exposure significantly increased the expression of P2X7R, while P2X7R antagonist oATP markedly alleviate the production of reactive oxygen species (ROS), Nitrite Oxidation (NO), mitochondrial membrane potential, apoptosis rate, and release of inflammatory cytokines. In contrast, P2X7 agonist BzATP showed opposite effect in PM2.5-treated NR8383 cells. Therefore, these results demonstrated that P2X7R participated in PM2.5-induced pulmonary toxicity, while the blockade of P2X7R is a promising therapeutic approach of treating PM2.5-induced lung diseases.
Collapse
Affiliation(s)
- Qi Xiong
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan City, Hubei Province, China
| | - Xiang Tian
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan City, Hubei Province, China
| | - Congyue Xu
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan City, Hubei Province, China
| | - Baomiao Ma
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan City, Hubei Province, China
| | - Wenshuang Li
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan City, Hubei Province, China
| | - Yiyuan Xia
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan City, Hubei Province, China
| | - Wei Liu
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan City, Hubei Province, China
| | - Binlian Sun
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan City, Hubei Province, China
| | - Qin Ru
- School of Health and Physical Education, Jianghan University, Wuhan City, Hubei Province, China
| | - Xiji Shu
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan City, Hubei Province, China
| |
Collapse
|
7
|
Therkildsen JR, Tingskov SJ, Jensen MS, Praetorius H, Nørregaard R. P2X 7 accelerate tissue fibrosis via metalloproteinase 8-dependent macrophage infiltration in a murine model of unilateral ureteral obstruction. Physiol Rep 2023; 11:e15878. [PMID: 37994252 PMCID: PMC10665779 DOI: 10.14814/phy2.15878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023] Open
Abstract
Renal fibrosis is tightly associated with chronic kidney disease, irrespective of the underlying pathogenesis. We previously demonstrated mild antifibrotic effects of targeting the P2X7 receptor in a pyelonephritis model. Reduced P2X7 R-activation elevated the neutrophil-to-macrophage ratio, resulting in less matrix accumulation without affecting the initial tissue healing. Here, we test if this P2X7 R-dependent modification of matrix accumulation also applies to a noninfectious fibrosis model of unilateral ureteral obstruction (7dUUO) and whether the response is gender-dependent. We found that P2X7 -/- mice show reduced fibrosis compared to wild type after 7dUUO: the effect was most pronounced in females, with a 55% decrease in collagen deposition after 7dUUO (p < 0.0068). P2X7 R deficiency did not affect early fibrosis markers (TGF-β, α-SMA) or the renal infiltration of neutrophils. However, a UUO-induced increase in macrophages was observed in wildtypes only (p < 0.001), leaving the P2X7 -/- mice with ≈50% fewer CD68+ cells in the renal cortex (p = 0.018). In males, 7dUUO triggered an increase in diffusely interstitial scattering of the profibrotic, macrophage-attracting metalloproteinase MMP8 and showed significantly lower MMP8 tissue expression in both male and female P2X7 -/- mice (p < 0.0008). Thus, the P2X7 R is advocated as a late-stage fibrosis moderator by reducing neutrophil-dependent interstitial MMP8 release, resulting in less macrophage infiltration and reduced matrix accumulation.
Collapse
Affiliation(s)
- Jacob Rudjord Therkildsen
- Department of BiomedicineAarhus UniversityAarhus CDenmark
- Department of Clinical BiochemistryAarhus University HospitalAarhus NDenmark
| | | | | | | | | |
Collapse
|
8
|
Lis-López L, Bauset C, Seco-Cervera M, Macias-Ceja D, Navarro F, Álvarez Á, Esplugues JV, Calatayud S, Barrachina MD, Ortiz-Masià D, Cosín-Roger J. P2X7 Receptor Regulates Collagen Expression in Human Intestinal Fibroblasts: Relevance in Intestinal Fibrosis. Int J Mol Sci 2023; 24:12936. [PMID: 37629116 PMCID: PMC10454509 DOI: 10.3390/ijms241612936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Intestinal fibrosis is a common complication that affects more than 50% of Crohn´s Disease (CD) patients. There is no pharmacological treatment against this complication, with surgery being the only option. Due to the unknown role of P2X7 in intestinal fibrosis, we aim to analyze the relevance of this receptor in CD complications. Surgical resections from CD and non-Inflammatory Bowel Disease (IBD) patients were obtained. Intestinal fibrosis was induced with two different murine models: heterotopic transplant model and chronic-DSS colitis in wild-type and P2X7-/- mice. Human small intestine fibroblasts (HSIFs) were transfected with an siRNA against P2X7 and treated with TGF-β. A gene and protein expression of P2X7 receptor was significantly increased in CD compared to non-IBD patients. The lack of P2X7 in mice provoked an enhanced collagen deposition and increased expression of several profibrotic markers in both murine models of intestinal fibrosis. Furthermore, P2X7-/- mice exhibited a higher expression of proinflammatory cytokines and a lower expression of M2 macrophage markers. Moreover, the transient silencing of the P2X7 receptor in HSIFs significantly induced the expression of Col1a1 and potentiated the expression of Col4 and Col5a1 after TGF-β treatment. P2X7 regulates collagen expression in human intestinal fibroblasts, while the lack of this receptor aggravates intestinal fibrosis.
Collapse
Affiliation(s)
- Lluis Lis-López
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
| | - Cristina Bauset
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
| | - Marta Seco-Cervera
- FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica), Hospital Dr. Peset, 46017 Valencia, Spain;
| | - Dulce Macias-Ceja
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
| | - Francisco Navarro
- Servicio Cirugía y Coloproctología, Hospital de Manises, 46940 Valencia, Spain;
| | - Ángeles Álvarez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), 28029 Madrid, Spain
| | - Juan Vicente Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), 28029 Madrid, Spain
| | - Sara Calatayud
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), 28029 Madrid, Spain
| | - Maria Dolores Barrachina
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), 28029 Madrid, Spain
| | - Dolores Ortiz-Masià
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), 28029 Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain;
| | - Jesús Cosín-Roger
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (L.L.-L.); (C.B.); (D.M.-C.); (Á.Á.); (J.V.E.); (S.C.); (M.D.B.)
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), 28029 Madrid, Spain
| |
Collapse
|
9
|
Scherr BF, Reiner MF, Baumann F, Höhne K, Müller T, Ayata K, Müller-Quernheim J, Idzko M, Zissel G. Prevention of M2 polarization and temporal limitation of differentiation in monocytes by extracellular ATP. BMC Immunol 2023; 24:11. [PMID: 37353774 PMCID: PMC10288684 DOI: 10.1186/s12865-023-00546-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Elevated levels of extracellular adenosine triphosphate (ATP) modulate immunologic pathways and are considered to be a danger signal in inflammation, lung fibrosis and cancer. Macrophages can be classified into two main types: M1 macrophages are classically activated, pro-inflammatory macrophages, whereas M2 macrophages are alternatively activated, pro-fibrotic macrophages. In this study, we examined the effect of ATP on differentiation of native human monocytes into these macrophage subtypes. We characterized M1 and M2 like macrophages by their release of Interleukin-1beta (IL-1β) and Chemokine (C-C motif) ligand 18 (CCL18), respectively. RESULTS Monocytes were stimulated with ATP or the P2X7 receptor agonist Benzoylbenzoyl-ATP (Bz-ATP), and the production of various cytokines was analyzed, with a particular focus on CCL18 and IL-1β, along with the expression of different purinergic receptors. Over a 72 h period of cell culture, monocytes spontaneously differentiated to M2 like macrophages, as indicated by an increased release of CCL18. Immediate stimulation of monocytes with ATP resulted in a dose-dependent reduction in CCL18 release, but had no effect on the concentration of IL-1β. In contrast, delayed stimulation with ATP had no effect on either CCL18 or IL-1β release. Similar results were observed in a model of inflammation using lipopolysaccharide-stimulated human monocytes. Stimulation with the P2X7 receptor agonist Bz-ATP mimicked the effect of ATP on M2-macrophage differentiation, indicating that P2X7 is involved in ATP-induced inhibition of CCL18 release. Indeed, P2X7 was downregulated during spontaneous M2 differentiation, which may partially explain the ineffectiveness of late ATP stimulation of monocytes. However, pre-incubation of monocytes with PPADS, Suramin (unselective P2X- and P2Y-receptor blockers) and KN62 (P2X7-antagonist) failed to reverse the reduction of CCL18 by ATP. CONCLUSIONS ATP prevents spontaneous differentiation of monocytes into M2-like macrophages in a dose- and time-dependent manner. These effects were not mediated by P2X and P2Y receptors.
Collapse
Affiliation(s)
- Benedikt F Scherr
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, Engesserstr. 4 5thFloor, 79106 79108, Freiburg, Germany
- Institute of Intensive Care Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Martin F Reiner
- Department of Cardiology, University Heart Center, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Flavia Baumann
- Emergency Department, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Kerstin Höhne
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, Engesserstr. 4 5thFloor, 79106 79108, Freiburg, Germany
| | - Tobias Müller
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, Engesserstr. 4 5thFloor, 79106 79108, Freiburg, Germany
- Department of Pneumology, University Medical Center Mannheim, University of Heidelberg, 68167, Mannheim, Germany
| | - Korcan Ayata
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, Engesserstr. 4 5thFloor, 79106 79108, Freiburg, Germany
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Joachim Müller-Quernheim
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, Engesserstr. 4 5thFloor, 79106 79108, Freiburg, Germany
| | - Marco Idzko
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, Engesserstr. 4 5thFloor, 79106 79108, Freiburg, Germany
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, 1090, Vienna, Austria
| | - Gernot Zissel
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, Engesserstr. 4 5thFloor, 79106 79108, Freiburg, Germany.
| |
Collapse
|
10
|
Vultaggio-Poma V, Sanz JM, Amico A, Violi A, Ghisellini S, Pizzicotti S, Passaro A, Papi A, Libanore M, Di Virgilio F, Giuliani AL. The shed P2X7 receptor is an index of adverse clinical outcome in COVID-19 patients. Front Immunol 2023; 14:1182454. [PMID: 37215142 PMCID: PMC10196164 DOI: 10.3389/fimmu.2023.1182454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction The pathophysiology of the Corona Virus Disease 2019 (COVID-19) is incompletely known. A robust inflammatory response caused by viral replication is a main cause of the acute lung and multiorgan injury observed in critical patients. Inflammasomes are likely players in COVID-19 pathogenesis. The P2X7 receptor (P2X7R), a plasma membrane ATP-gated ion channel, is a main activator of the NLRP3 inflammasome, of the ensuing release of inflammatory cytokines and of cell death by pyroptosis. The P2X7R has been implicated in COVID-19-dependent hyperinflammation and in the associated multiorgan damage. Shed P2X7R (sP2X7R) and shed NLRP3 (sNLRP3) have been detected in plasma and other body fluids, especially during infection and inflammation. Methods Blood samples from 96 patients with confirmed SARS-CoV-2 infection with various degrees of disease severity were tested at the time of diagnosis at hospital admission. Standard haematological parameters and IL-6, IL-10, IL-1β, sP2X7R and sNLRP3 levels were measured, compared to reference values, statistically validated, and correlated to clinical outcome. Results Most COVID-19 patients included in this study had lymphopenia, eosinopenia, neutrophilia, increased inflammatory and coagulation indexes, and augmented sNLRP3, IL-6 and IL-10 levels. Blood concentration of sP2X7R was also increased, and significantly positively correlated with lymphopenia, procalcitonin (PCT), IL-10, and alanine transaminase (ALT). Patients with increased sP2X7R levels at diagnosis also showed fever and respiratory symptoms, were more often transferred to Pneumology division, required mechanical ventilation, and had a higher likelihood to die during hospitalization. Conclusion Blood sP2X7R was elevated in the early phases of COVID-19 and predicted an adverse clinical outcome. It is suggested that sP2X7R might be a useful marker of disease progression.
Collapse
Affiliation(s)
| | - Juana Maria Sanz
- Department of Chemical, Pharmaceutic and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Andrea Amico
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Alessandra Violi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Sara Ghisellini
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Stefano Pizzicotti
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Angelina Passaro
- Laboratory of Clinical Pathology, St. Anna Hospital, Ferrara, Italy
| | - Alberto Papi
- Laboratory of Clinical Pathology, St. Anna Hospital, Ferrara, Italy
| | - Marco Libanore
- Infectious Diseases Unit, St. Anna Hospital, Ferrara, Italy
| | | | | |
Collapse
|
11
|
Janho dit Hreich S, Juhel T, Hofman P, Vouret-Craviari V. Protocol for Evaluating In Vivo the Activation of the P2RX7 Immunomodulator. Biol Proced Online 2023; 25:1. [PMID: 36600200 PMCID: PMC9811721 DOI: 10.1186/s12575-022-00188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND P2RX7 is a purinergic receptor with pleiotropic activities that is activated by high levels of extracellular ATP that are found in inflamed tissues. P2RX7 has immunomodulatory and anti-tumor proprieties and is therefore a therapeutic target for various diseases. Several compounds are developed to either inhibit or enhance its activation. However, studying their effect on P2RX7's activities is limited to in vitro and ex vivo studies that require the use of unphysiological media that could affect its activation. Up to now, the only way to assess the activity of P2RX7 modulators on the receptor in vivo was in an indirect manner. RESULTS We successfully developed a protocol allowing the detection of P2RX7 activation in vivo in lungs of mice, by taking advantage of its unique macropore formation ability. The protocol is based on intranasal delivery of TO-PRO™-3, a non-permeant DNA intercalating dye, and fluorescence measurement by flow cytometry. We show that ATP enhances TO-PRO™-3 fluorescence mainly in lung immune cells of mice in a P2RX7-dependant manner. CONCLUSIONS The described approach has allowed the successful analysis of P2RX7 activity directly in the lungs of WT and transgenic C57BL6 mice. The provided detailed guidelines and recommendations will support the use of this protocol to study the potency of pharmacologic or biologic compounds targeting P2RX7.
Collapse
Affiliation(s)
- Serena Janho dit Hreich
- grid.463830.a0000 0004 8340 3111Université Côte d’Azur, CNRS, INSERM, IRCAN, 28 avenue de Valombrose, 06108 Nice, France ,grid.464719.90000 0004 0639 4696FHU OncoAge, Pasteur Hospital, 30 voie Romaine, 06001 Nice, France
| | - Thierry Juhel
- grid.463830.a0000 0004 8340 3111Université Côte d’Azur, CNRS, INSERM, IRCAN, 28 avenue de Valombrose, 06108 Nice, France
| | - Paul Hofman
- grid.463830.a0000 0004 8340 3111Université Côte d’Azur, CNRS, INSERM, IRCAN, 28 avenue de Valombrose, 06108 Nice, France ,grid.464719.90000 0004 0639 4696FHU OncoAge, Pasteur Hospital, 30 voie Romaine, 06001 Nice, France ,grid.464719.90000 0004 0639 4696Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, 30 voie Romaine, 06001 Nice, France ,grid.464719.90000 0004 0639 4696Hospital-Related Biobank (BB-0033-00025), Pasteur Hospital, 30 voie Romaine, 06001 Nice, France
| | - Valérie Vouret-Craviari
- grid.463830.a0000 0004 8340 3111Université Côte d’Azur, CNRS, INSERM, IRCAN, 28 avenue de Valombrose, 06108 Nice, France ,grid.464719.90000 0004 0639 4696FHU OncoAge, Pasteur Hospital, 30 voie Romaine, 06001 Nice, France
| |
Collapse
|
12
|
Suman PR, Souza LS, Kincheski GC, Melo HM, Machado MN, Carvalho GMC, De Felice FG, Zin WA, Ferreira ST. Lung inflammation induced by silica particles triggers hippocampal inflammation, synapse damage and memory impairment in mice. J Neuroinflammation 2022; 19:303. [PMID: 36527099 PMCID: PMC9756632 DOI: 10.1186/s12974-022-02662-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Considerable evidence indicates that a signaling crosstalk between the brain and periphery plays important roles in neurological disorders, and that both acute and chronic peripheral inflammation can produce brain changes leading to cognitive impairments. Recent clinical and epidemiological studies have revealed an increased risk of cognitive impairment and dementia in individuals with impaired pulmonary function. However, the mechanistic underpinnings of this association remain unknown. Exposure to SiO2 (silica) particles triggers lung inflammation, including infiltration by peripheral immune cells and upregulation of pro-inflammatory cytokines. We here utilized a mouse model of lung silicosis to investigate the crosstalk between lung inflammation and memory. METHODS Silicosis was induced by intratracheal administration of a single dose of 2.5 mg SiO2/kg in mice. Molecular and behavioral measurements were conducted 24 h and 15 days after silica administration. Lung and hippocampal inflammation were investigated by histological analysis and by determination of pro-inflammatory cytokines. Hippocampal synapse damage, amyloid-β (Aβ) peptide content and phosphorylation of Akt, a proxy of hippocampal insulin signaling, were investigated by Western blotting and ELISA. Memory was assessed using the open field and novel object recognition tests. RESULTS Administration of silica induced alveolar collapse, lung infiltration by polymorphonuclear (PMN) cells, and increased lung pro-inflammatory cytokines. Lung inflammation was followed by upregulation of hippocampal pro-inflammatory cytokines, synapse damage, accumulation of the Aβ peptide, and memory impairment in mice. CONCLUSION The current study identified a crosstalk between lung and brain inflammatory responses leading to hippocampal synapse damage and memory impairment after exposure to a single low dose of silica in mice.
Collapse
Affiliation(s)
- Patrick R. Suman
- grid.8536.80000 0001 2294 473XInstitute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lisiane S. Souza
- grid.8536.80000 0001 2294 473XInstitute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Grasielle C. Kincheski
- grid.8536.80000 0001 2294 473XInstitute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil ,grid.8536.80000 0001 2294 473XInstitute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helen M. Melo
- grid.8536.80000 0001 2294 473XInstitute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana N. Machado
- grid.8536.80000 0001 2294 473XInstitute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giovanna M. C. Carvalho
- grid.412211.50000 0004 4687 5267Pedro Ernesto University Hospital, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G. De Felice
- grid.8536.80000 0001 2294 473XInstitute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil ,grid.472984.4D’Or Institute for Research and Education, Rio de Janeiro, Brazil ,grid.410356.50000 0004 1936 8331Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences & Department of Psychiatry, Queen’s University, Kingston, Canada
| | - Walter A. Zin
- grid.8536.80000 0001 2294 473XInstitute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio T. Ferreira
- grid.8536.80000 0001 2294 473XInstitute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil ,grid.8536.80000 0001 2294 473XInstitute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Ahmedy OA, El-Tanbouly DM, Al-Mokaddem AK, El-Said YA. Insights into the role of P2X7R/DUSP6/ERK1/2 and SIRT2/MDM2 signaling in the nephroprotective effect of berberine against cisplatin-induced renal fibrosis in rats. Life Sci 2022; 309:121040. [DOI: 10.1016/j.lfs.2022.121040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022]
|
14
|
Lam M, Mansell A, Tate MD. Another One Fights the Dust - Targeting the NLRP3 Inflammasome for the Treatment of Silicosis. Am J Respir Cell Mol Biol 2022; 66:601-611. [PMID: 35290170 DOI: 10.1165/rcmb.2021-0545tr] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Silicosis is a multifaceted lung disease, characterised by persistent inflammation and structural remodelling. Despite its poor prognosis, there are no treatments currently available for patients with silicosis. Recent pre-clinical findings in models of lung fibrosis have suggested a major role for the nucleotide binding domain and leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome in silica-driven inflammation and fibrosis. This review outlines the beneficial effects of targeting the NLRP3 inflammasome in in vitro cell experiments and in in vivo animal models, whereby inflammation and fibrosis are abrogated following NLRP3 inflammasome inhibition. While preclinical evidence is promising, studies which explore NLRP3 inflammasomes in the clinical setting are warranted. In particular, there is still a need to identify biomarkers which may be helpful for the early detection of silicosis and to fully elucidate mechanisms underlying these beneficial effects to further develop or repurpose existing anti-NLRP3 drugs as novel treatments that limit disease progression.
Collapse
Affiliation(s)
- Maggie Lam
- Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases, 366840, Clayton, Victoria, Australia.,Monash University , Department of Molecular and Translational Sciences, Clayton, Victoria, Australia
| | - Ashley Mansell
- Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases, 366840, Clayton, Victoria, Australia.,Monash Univerisity, Department of Molecular and Translational Sciences, Clayton, Victoria, Australia.,Adiso Therapeutics Inc, Concord, Massachusetts, United States
| | - Michelle D Tate
- Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases, 366840, Clayton, Victoria, Australia.,Monash University, Department of Molecular and Translational Sciences, Clayton, Victoria, Australia;
| |
Collapse
|
15
|
Li Z, Du Z, Li J, Sun Y. Comparative analysis on lung transcriptome of Mycoplasma ovipneumoniae (Mo) - infected Bashbay sheep and argali hybrid sheep. BMC Vet Res 2021; 17:327. [PMID: 34645427 PMCID: PMC8511284 DOI: 10.1186/s12917-021-03040-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/01/2021] [Indexed: 12/04/2022] Open
Abstract
Background Bashbay sheep (Bbs) has a certain degree of resistance to Mycoplasma ovipneumoniae (Mo), however, Argali hybrid sheep (Ahs) is susceptible to Mo. To understand the molecular mechanisms underlying the difference of the susceptibility for Mo infection, RNA-sequencing technology was used to compare the transcriptomic response of the lung tissue of Mo-infected Bbs and Ahs. Results Six Bbs and six Ahs were divided into experimental group and control group respectively, all of them were experimentally infected with Mo by intratracheal injection. For collecting lung tissue samples, three Bbs and three Ahs were sacrificed on day 4 post-infection, and the others were sacrificed on day 14 post-infection. Total RNA extracted from lung tissue were used for transcriptome analyses based on high-throughput sequencing technique and bioinformatics. The results showed that 212 (146 up-regulated, 66 down-regulated) DEGs were found when comparing transcriptomic data of Bbs and Ahs at 4th dpi, besides, 311 (158 up-regulated, 153 down-regulated) DEGs were found at 14th dpi. After GO analysis, three main GO items protein glycosylation, immune response and positive regulation of gene expression were found related to Mo infection. In addition, there were 20 DEGs enriched in these above items, such as SPLUC1 (BPIFA1), P2X7R, DQA, HO-1 and SP-A (SFTPA-1). Conclusions These selected 20 DEGs associated with Mo infection laid the foundation for further study on the underlying molecular mechanism involved in high level of resistance to Mo expressed by Bbs, meanwhile, provided deeper understandings about the development of pathogenicity and host-pathogen interactions. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-03040-3.
Collapse
Affiliation(s)
- Zengqiang Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Zhihui Du
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Jie Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yanming Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China.
| |
Collapse
|
16
|
Al Mamun A, Ara Mimi A, Wu Y, Zaeem M, Abdul Aziz M, Aktar Suchi S, Alyafeai E, Munir F, Xiao J. Pyroptosis in diabetic nephropathy. Clin Chim Acta 2021; 523:131-143. [PMID: 34529985 DOI: 10.1016/j.cca.2021.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Diabetic nephropathy (DN), a sterile inflammatory disease, is a serious complication of diabetes mellitus. However, recent evidence indicates that pyroptosis, a new term for pro-inflammatory cell death featured by gasdermin D (GSDMD)-stimulated plasma membrane pore generation, cell expansion and rapid lysis with the extensive secretion of pro-inflammatory factors, including interleukin-1β (IL-1β) and -18 (IL-18) may be involved in DN. Caspase-1-induced canonical and caspase-4/5/11-induced non-canonical inflammasome-signaling pathways are mainly believed to participate in pyroptosis-mediated cell death. Further research has uncovered that activation of the caspase-3/8 signaling pathway may also activate pyroptosis. Accumulating evidence has shown that NLRP3 inflammasome activation plays a critical role in promoting the pathogenesis of DN. In addition, current studies have suggested that pyroptosis-induced cell death promotes several diabetic complications that include DN. Our present study briefs the cellular mechanisms of pyroptosis-related signaling pathways and their impact on the promotion of DN. In this review, several investigational compounds suppressing pyroptosis-mediated cell death are explored as promising therapeutics in DN.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Anjuman Ara Mimi
- Department of Pharmacy, Daffodil International University, Dhanmondi-27, Dhaka 1209, Bangladesh
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, China
| | - Muhammad Zaeem
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh; Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Suzia Aktar Suchi
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju 501-759, South Korea
| | - Eman Alyafeai
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China; Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated of Hospital Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
17
|
Physalin pool from Physalis angulata L. leaves and physalin D inhibit P2X7 receptor function in vitro and acute lung injury in vivo. Biomed Pharmacother 2021; 142:112006. [PMID: 34392085 DOI: 10.1016/j.biopha.2021.112006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 11/23/2022] Open
Abstract
P2X7 receptor promotes inflammatory response and neuropathic pain. New drugs capable of impairing inflammation and pain-reducing adverse effects extracted from plant extracts have been studied. Physalis angulate L. possesses traditional uses and exhibits antiparasitic, anti-inflammatory, antimicrobial, antinociceptive, antimalarial, antileishmanial, immunosuppressive, antiasthmatic. diuretic, and antitumor activities. The most representative phytochemical constituents identified with medicinal importance are the physalins and withanolides. However, the mechanism of anti-inflammatory action is scarce. Although some physalins and withanolides subtypes have anti-inflammatory activity, only four physalins subtypes (B, D, F, and G) have further studies. Therefore, we evaluated the crude ethanolic extract enriched with physalins B, D, F, and G from P. angulata leaves, a pool containing the physalins B, D, F, G, and the physalins individually, as P2X7 receptor antagonists. For this purpose, we evaluated ATP-induced dye uptake, macroscopic currents, and interleukin 1-β (IL-1β) in vitro. The crude extract and pool dose-dependently inhibited P2X7 receptor function. Thus, physalin B, D, F, and G individually evaluated for 5'-triphosphate (ATP)-induced dye uptake assay, whole-cell patch-clamp, and cytokine release showed distinct antagonist levels. Physalin D displayed higher potency and efficacy than physalin B, F, and G for all these parameters. In vivo mice model as ATP-induced paw edema was potently inhibited for physalin D, in contrast to physalin B, F, and G. ATP and lipopolysaccharide (LPS)-induced pleurisy in mice were reversed for physalin D treatment. Molecular modeling and computational simulation predicted the intermolecular interactions between the P2X7 receptor and physalin derivatives. In silico results indicated physalin D and F as a potent allosteric P2X7 receptor antagonist. These data confirm physalin D as a promisor source for developing a new P2X7 receptor antagonist with anti-inflammatory action.
Collapse
|
18
|
Hyperinflammation and airway surface liquid dehydration in cystic fibrosis: purinergic system as therapeutic target. Inflamm Res 2021; 70:633-649. [PMID: 33904934 DOI: 10.1007/s00011-021-01464-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE AND DESIGN The exacerbate inflammatory response contributes to the progressive loss of lung function in cystic fibrosis (CF), a genetic disease that affects the osmotic balance of mucus and mucociliary clearance, resulting in a microenvironment that favors infection and inflammation. The purinergic system, an extracellular signaling pathway characterized by nucleotides, enzymes and receptors, may have a protective role in the disease, through its action in airway surface liquid (ASL) and anti-inflammatory response. MATERIALS AND METHODS To make up this review, studies covering topics of CF, inflammation, ASL and purinergic system were selected from the main medical databases, such as Pubmed and ScienceDirect. CONCLUSION We propose several ways to modulate the purinergic system as a potential therapy for CF, like inhibition of P2X7, activation of P2Y2, A2A and A2B receptors and blocking of adenosine deaminase. Among them, we postulate that the most suitable strategy is to block the action of adenosine deaminase, which culminates in the increase of Ado levels that presents anti-inflammatory actions and improves mucociliary clearance. Furthermore, it is possible to maintain the physiological levels of ATP to control the hydration of ASL. These therapies could correct the main mechanisms that contribute to the progression of CF.
Collapse
|
19
|
Victoni T, Barreto E, Lagente V, Carvalho VF. Oxidative Imbalance as a Crucial Factor in Inflammatory Lung Diseases: Could Antioxidant Treatment Constitute a New Therapeutic Strategy? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6646923. [PMID: 33628371 PMCID: PMC7889360 DOI: 10.1155/2021/6646923] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Inflammatory lung disease results in a high global burden of death and disability. There are no effective treatments for the most severe forms of many inflammatory lung diseases, such as chronic obstructive pulmonary disease, emphysema, corticosteroid-resistant asthma, and coronavirus disease 2019; hence, new treatment options are required. Here, we review the role of oxidative imbalance in the development of difficult-to-treat inflammatory lung diseases. The inflammation-induced overproduction of reactive oxygen species (ROS) means that endogenous antioxidants may not be sufficient to prevent oxidative damage, resulting in an oxidative imbalance in the lung. In turn, intracellular signaling events trigger the production of proinflammatory mediators that perpetuate and aggravate the inflammatory response and may lead to tissue damage. The production of high levels of ROS in inflammatory lung diseases can induce the phosphorylation of mitogen-activated protein kinases, the inactivation of phosphoinositide 3-kinase (PI3K) signaling and histone deacetylase 2, a decrease in glucocorticoid binding to its receptor, and thus resistance to glucocorticoid treatment. Hence, antioxidant treatment might be a therapeutic option for inflammatory lung diseases. Preclinical studies have shown that antioxidants (alone or combined with anti-inflammatory drugs) are effective in the treatment of inflammatory lung diseases, although the clinical evidence of efficacy is weaker. Despite the high level of evidence for the efficacy of antioxidants in the treatment of inflammatory lung diseases, the discovery and clinical investigation of safer, more efficacious compounds are now a priority.
Collapse
Affiliation(s)
- Tatiana Victoni
- University of Lyon, VetAgro Sup, APCSe, Marcy l'Étoile, France
| | - Emiliano Barreto
- Laboratory of Cell Biology, Federal University of Alagoas, Maceió, AL 57072-900, Brazil
| | - Vincent Lagente
- NuMeCan Institute (Nutrition, Metabolism and Cancer), INSERM, INRAE, CHU Rennes, Univ Rennes, Rennes, France
| | - Vinicius F. Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21045-900, Brazil
| |
Collapse
|
20
|
Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol Psychiatry 2021; 26:1044-1059. [PMID: 33328588 PMCID: PMC7738776 DOI: 10.1038/s41380-020-00965-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Scientists and health professionals are exhaustively trying to contain the coronavirus disease 2019 (COVID-19) pandemic by elucidating viral invasion mechanisms, possible drugs to prevent viral infection/replication, and health cares to minimize individual exposure. Although neurological symptoms are being reported worldwide, neural acute and long-term consequences of SARS-CoV-2 are still unknown. COVID-19 complications are associated with exacerbated immunoinflammatory responses to SARS-CoV-2 invasion. In this scenario, pro-inflammatory factors are intensely released into the bloodstream, causing the so-called "cytokine storm". Both pro-inflammatory factors and viruses may cross the blood-brain barrier and enter the central nervous system, activating neuroinflammatory responses accompanied by hemorrhagic lesions and neuronal impairment, which are largely described processes in psychiatric disorders and neurodegenerative diseases. Therefore, SARS-CoV-2 infection could trigger and/or worse brain diseases. Moreover, patients with central nervous system disorders associated to neuroimmune activation (e.g. depression, Parkinson's and Alzheimer's disease) may present increased susceptibility to SARS-CoV-2 infection and/or achieve severe conditions. Elevated levels of extracellular ATP induced by SARS-CoV-2 infection may trigger hyperactivation of P2X7 receptors leading to NLRP3 inflammasome stimulation as a key mediator of neuroinvasion and consequent neuroinflammatory processes, as observed in psychiatric disorders and neurodegenerative diseases. In this context, P2X7 receptor antagonism could be a promising strategy to prevent or treat neurological complications in COVID-19 patients.
Collapse
|
21
|
The P2X7 purinergic receptor: a potential therapeutic target for lung cancer. J Cancer Res Clin Oncol 2020; 146:2731-2741. [PMID: 32892231 DOI: 10.1007/s00432-020-03379-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Purinergic P2X7 receptor (P2X7R) is a gated ion channel for which adenosine triphosphate (ATP) is a ligand. Activated P2X7R is widely expressed in a variety of immune cells and tissues and is involved in a variety of physiological and pathological processes. Studies have confirmed that P2X7R is involved in the regulation of tumor cell growth, stimulating cell proliferation or inducing apoptosis. Recent studies have found that P2X7R is abnormally expressed in lung cancer and is closely related to the carcinogenesis and development of lung cancer. In this paper, we comprehensively describe the structure, function, and genetic polymorphisms of P2X7R. In particular, the role and therapeutic potential of P2X7R in lung cancer are discussed to provide new targets and new strategies for the treatment and prognosis of clinical lung cancer. METHODS The relevant literature on P2X7R and lung cancer from PubMed databases is reviewed in this article. RESULTS P2X7R regulates the function of lung cancer cells by activating multiple intracellular signaling pathways (such as the JNK, Rho, HMGB1 and EMT pathways), thereby affecting cell survival, growth, invasion, and metastasis and patient prognosis. Targeting P2X7R with inhibitors effectively suppresses the growth and metastasis of lung cancer cells. CONCLUSION In summary, P2X7R is expected to become a potential target for the treatment of lung cancer, and more clinical research is needed in the future to explore the effectiveness of P2X7R antagonists as treatments.
Collapse
|
22
|
da Silva Ferreira NC, Alves LA, Soares-Bezerra RJ. Potential Therapeutic Applications of P2 Receptor Antagonists: From Bench to Clinical Trials. Curr Drug Targets 2020; 20:919-937. [PMID: 30760187 DOI: 10.2174/1389450120666190213095923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Extracellular purines and pyrimidines have important physiological functions in mammals. Purines and pyrimidines act on P1 and P2 purinergic receptors, which are widely expressed in the plasma membrane in various cell types. P2 receptors act as important therapeutic targets and are associated with several disorders, such as pain, neurodegeneration, cancer, inflammation, and thrombosis. However, the use of antagonists for P2 receptors in clinical therapy, with the exception of P2Y12, is a great challenge. Currently, many research groups and pharmaceutical companies are working on the development of specific antagonist molecules for each receptor subtype that could be used as new medicines to treat their respective disorders. OBJECTIVE The present review compiles some interesting findings on the application of P2 receptor antagonists in different in vitro and in vivo experimental models as well as the progress of advanced clinical trials with these compounds. CONCLUSION Despite all of the exciting results obtained on the bench, few antagonists of P2 receptors advanced to the clinical trials, and once they reach this stage, the effectiveness of the therapy is not guaranteed, as in the example of P2X7 antagonists. Despite this, P2Y12 receptor antagonists have a history of success and have been used in therapy for at least two decades to prevent thrombosis in patients at risk for myocardial infarctions. This breakthrough is the motivation for scientists to develop new drugs with antagonistic activity for the other P2 receptors; thus, in a matter of years, we will have an evolution in the field of purinergic therapy.
Collapse
Affiliation(s)
- Natiele C da Silva Ferreira
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040- 360, Brazil
| | - Luiz A Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040- 360, Brazil
| | - Rômulo J Soares-Bezerra
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
| |
Collapse
|
23
|
Di Virgilio F, Tang Y, Sarti AC, Rossato M. A rationale for targeting the P2X7 receptor in Coronavirus disease 19. Br J Pharmacol 2020; 177:4990-4994. [PMID: 32441783 PMCID: PMC7280564 DOI: 10.1111/bph.15138] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 01/18/2023] Open
Abstract
Severe pneumonia which shares several of the features of acute respiratory distress syndrome (ARDS) is the main cause of morbidity and mortality in Coronavirus disease 19 (Covid‐19) for which there is no effective treatment, so far. ARDS is caused and sustained by an uncontrolled inflammatory activation characterized by a massive release of cytokines (cytokine storm), diffuse lung oedema, inflammatory cell infiltration, and disseminated coagulation. Macrophage and T lymphocyte dysfunction plays a central role in this syndrome. In several experimental in vitro and in vivo models, many of these pathophysiological changes are triggered by stimulation of the P2X7 receptor. We hypothesize that this receptor might be an ideal candidate to target in Covid‐19‐associated severe pneumonia. Linked Articles This article is part of a themed issue on The Pharmacology of COVID‐19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc
Collapse
Affiliation(s)
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Alba Clara Sarti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marco Rossato
- Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
24
|
Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, McNulty S. P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Front Pharmacol 2020; 11:793. [PMID: 32581786 PMCID: PMC7287489 DOI: 10.3389/fphar.2020.00793] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
P2X7 is a transmembrane receptor expressed in multiple cell types including neurons, dendritic cells, macrophages, monocytes, B and T cells where it can drive a wide range of physiological responses from pain transduction to immune response. Upon activation by its main ligand, extracellular ATP, P2X7 can form a nonselective channel for cations to enter the cell. Prolonged activation of P2X7, via high levels of extracellular ATP over an extended time period can lead to the formation of a macropore, leading to depolarization of the plasma membrane and ultimately to cell death. Thus, dependent on its activation state, P2X7 can either drive cell survival and proliferation, or induce cell death. In cancer, P2X7 has been shown to have a broad range of functions, including playing key roles in the development and spread of tumor cells. It is therefore unsurprising that P2X7 has been reported to be upregulated in several malignancies. Critically, ATP is present at high extracellular concentrations in the tumor microenvironment (TME) compared to levels observed in normal tissues. These high levels of ATP should present a survival challenge for cancer cells, potentially leading to constitutive receptor activation, prolonged macropore formation and ultimately to cell death. Therefore, to deliver the proven advantages for P2X7 in driving tumor survival and metastatic potential, the P2X7 macropore must be tightly controlled while retaining other functions. Studies have shown that commonly expressed P2X7 splice variants, distinct SNPs and post-translational receptor modifications can impair the capacity of P2X7 to open the macropore. These receptor modifications and potentially others may ultimately protect cancer cells from the negative consequences associated with constitutive activation of P2X7. Significantly, the effects of both P2X7 agonists and antagonists in preclinical tumor models of cancer demonstrate the potential for agents modifying P2X7 function, to provide innovative cancer therapies. This review summarizes recent advances in understanding of the structure and functions of P2X7 and how these impact P2X7 roles in cancer progression. We also review potential therapeutic approaches directed against P2X7.
Collapse
Affiliation(s)
- Romain Lara
- Biosceptre (UK) Limited, Cambridge, United Kingdom
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mike Philpott
- Centre for Cutaneous Research, Blizard Institute, Bart's & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
25
|
Pereira JMS, Barreira AL, Gomes CR, Ornellas FM, Ornellas DS, Miranda LC, Cardoso LR, Coutinho-Silva R, Schanaider A, Morales MM, Leite M, Takiya CM. Brilliant blue G, a P2X7 receptor antagonist, attenuates early phase of renal inflammation, interstitial fibrosis and is associated with renal cell proliferation in ureteral obstruction in rats. BMC Nephrol 2020; 21:206. [PMID: 32471386 PMCID: PMC7260756 DOI: 10.1186/s12882-020-01861-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 05/21/2020] [Indexed: 01/10/2023] Open
Abstract
Background Previous study showed that purinergic P2X7 receptors (P2X7R) reach the highest expression in the first week after unilateral ureteral obstruction (UUO) in mice, and are involved in the process of inflammation, apoptosis and fibrosis of renal tissue. We, herein, document the role of purinergic P2X7 receptors activation on the third day of UUO, as assessed by means of BBG as its selective inhibitor. Methods We investigated the effects of brilliant blue G (BBG), a P2X7R antagonist, in the third day of kidney tissue response to UUO in rats. For this purpose, male Wistar rats submitted to UUO or sham operated, received BBG or vehicle (V), comprising four groups: UUO-BBG, UUO-V, sham-BBG and sham-V. The kidneys were harvested on day 3 UUO and prepared for histology, immunohistochemistry (P2X7R, PCNA, CD-68, α-sma, TGF-β1, Heat-shock protein-47, TUNEL assay), quantitative real-time PCR (IL-1β, procollagens type I, III, and IV) for mRNA quantification. Results The group UUO-V presented an enhancement in tubular cell P2X7-R expression, increase influx of macrophages and myofibroblasts, HSP-47 and TGF- β1 expression. Also, upregulation of procollagen types I, III, and IV, and IL-1β mRNAs were seen. On the other hand, group UUO-BBG showed lower expression of procollagens and IL-1β mRNAs, as well as less immunoreactivity of HSP-47, TGF-β, macrophages, myofibroblasts, and tubular apoptosis. This group also presented increased epithelial cell proliferation. Conclusion BBG, a known highly selective inhibitor of P2X7R, attenuated renal inflammation, collagen synthesis, renal cell apoptosis, and enhanced renal cell proliferation in the early phase of rat model of UUO.
Collapse
Affiliation(s)
- José Monteiro Sad Pereira
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Serviço de Urologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luis Barreira
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Conrado Rodrigues Gomes
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Mateus Ornellas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora Santos Ornellas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Carlos Miranda
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Serviço de Urologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio Ronaldo Cardoso
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Schanaider
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Cirurgia Experimental, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurilo Leite
- Serviço de Nefrologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Christina Maeda Takiya
- Programa de Pós-Graduação em Ciências Cirúrgicas, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Inhibition of P2X7 Purinergic Receptor Ameliorates Cardiac Fibrosis by Suppressing NLRP3/IL-1 β Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7956274. [PMID: 32566102 PMCID: PMC7261319 DOI: 10.1155/2020/7956274] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 02/05/2023]
Abstract
P2X7 purinergic receptor (P2X7R) has been implicated in several cardiovascular diseases. However, whether it regulates cardiac fibrosis remains elusive. Herein, its involvement in the development of cardiac fibrosis was examined using a transverse aortic constriction (TAC) mice model and cardiac fibroblasts (CFs) hyperstimulated by TGF-β1 for 48 hours. Results showed that TAC and TGF-β1 treatment increased the expression of P2X7R. Silencing of P2X7R expression with siP2X7R ameliorated TGF-β1 effects on fibroblasts activation. Similarly, P2X7R inhibition by Brilliant Blue G (BBG) reduced mRNA and protein levels of profibrosis markers, while the P2X7R agonist BzATP accelerated the TGF-β1-induced CFs activation. Moreover, it was found that TGF-β1-induced CFs activation was mediated by the NLRP3/IL-1β inflammasome pathway. BBG or siP2X7R treatment suppressed NLRP3/IL-1β pathway signaling. In vivo, BBG significantly alleviated TAC-induced cardiac fibrosis, cardiac dysfunction, and NLRP3/IL-1β activation. Collectively, our findings imply that suppressing P2X7R may limit cardiac fibrosis and abnormal activation of CFs.
Collapse
|
27
|
Stokes L, Bidula S, Bibič L, Allum E. To Inhibit or Enhance? Is There a Benefit to Positive Allosteric Modulation of P2X Receptors? Front Pharmacol 2020; 11:627. [PMID: 32477120 PMCID: PMC7235284 DOI: 10.3389/fphar.2020.00627] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
The family of ligand-gated ion channels known as P2X receptors were discovered several decades ago. Since the cloning of the seven P2X receptors (P2X1-P2X7), a huge research effort has elucidated their roles in regulating a range of physiological and pathophysiological processes. Transgenic animals have been influential in understanding which P2X receptors could be new therapeutic targets for disease. Furthermore, understanding how inherited mutations can increase susceptibility to disorders and diseases has advanced this knowledge base. There has been an emphasis on the discovery and development of pharmacological tools to help dissect the individual roles of P2X receptors and the pharmaceutical industry has been involved in pushing forward clinical development of several lead compounds. During the discovery phase, a number of positive allosteric modulators have been described for P2X receptors and these have been useful in assigning physiological roles to receptors. This review will consider the major physiological roles of P2X1-P2X7 and discuss whether enhancement of P2X receptor activity would offer any therapeutic benefit. We will review what is known about identified compounds acting as positive allosteric modulators and the recent identification of drug binding pockets for such modulators.
Collapse
Affiliation(s)
- Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Lučka Bibič
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Elizabeth Allum
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
28
|
Deletion of P2X7 Receptor Decreases Basal Glutathione Level by Changing Glutamate-Glutamine Cycle and Neutral Amino Acid Transporters. Cells 2020; 9:cells9040995. [PMID: 32316268 PMCID: PMC7226967 DOI: 10.3390/cells9040995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Glutathione (GSH) is an endogenous tripeptide antioxidant that consists of glutamate-cysteine-glycine. GSH content is limited by the availability of glutamate and cysteine. Furthermore, glutamine is involved in the regulation of GSH synthesis via the glutamate–glutamine cycle. P2X7 receptor (P2X7R) is one of the cation-permeable ATP ligand-gated ion channels, which is involved in neuronal excitability, neuroinflammation and astroglial functions. In addition, P2X7R activation decreases glutamate uptake and glutamine synthase (GS) expression/activity. In the present study, we found that P2X7R deletion decreased the basal GSH level without altering GSH synthetic enzyme expressions in the mouse hippocampus. P2X7R deletion also increased expressions of GS and ASCT2 (a glutamine:cysteine exchanger), but diminished the efficacy of N-acetylcysteine (NAC, a GSH precursor) in the GSH level. SIN-1 (500 μM, a generator nitric oxide, superoxide and peroxynitrite), which facilitates the cystine–cysteine shuttle mediated by xCT (a glutamate/cystein:cystine/NAC antiporter), did not affect basal GSH concentration in WT and P2X7R knockout (KO) mice. However, SIN-1 effectively reduced the efficacy of NAC in GSH synthesis in WT mice, but not in P2X7R KO mice. Therefore, our findings indicate that P2X7R may be involved in the maintenance of basal GSH levels by regulating the glutamate–glutamine cycle and neutral amino acid transports under physiological conditions, which may be the defense mechanism against oxidative stress during P2X7R activation.
Collapse
|
29
|
Scalia Carneiro AP, Algranti E, Chérot‐Kornobis N, Silva Bezerra F, Tibiriça Bon AM, Felicidade Tomaz Braz N, Soares Souza DM, Paula Costa G, Bussacos MA, Paula Alves Bezerra OM, Talvani A. Inflammatory and oxidative stress biomarkers induced by silica exposure in crystal craftsmen. Am J Ind Med 2020; 63:337-347. [PMID: 31953962 DOI: 10.1002/ajim.23088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Identification of biomarkers associated with the diagnosis and prognosis of silicosis would be highly advantageous in the clinical setting. The aim of this study is to evaluate inflammatory and oxidative stress biomarkers in subjects exposed to silica. METHODS A cross-sectional study of crystal craftsmen currently (n = 34) or formerly (n = 35) exposed and a group of nonexposed subjects (n = 12) was performed. Personal respirable dust samples were collected. Plasma inflammatory mediators (bone morphogenetic protein- BMP2 and chemokines CXCL16, and CCL5), oxidative stress enzymes (thiobarbituric acid reactive substances [TBARs] and superoxide dismutase [SOD]), and nitrite (NO2 - ) were analyzed in parallel with nitric oxide in exhaled breath (FeNO). RESULTS Being currently or formerly exposed to silica was related to increased levels of CXCL16 and TBARs. Currently, exposed subjects showed decreased levels of SOD. Thirty-seven craftsmen with silicosis (26 formerly and 11 currently exposed) showed higher levels of CXCL16, which was positively associated with the radiological severity of silicosis. Compared with the nonexposed, subjects with silicosis had higher levels of TBARs and those with complicated silicosis had lower levels of SOD. In multivariate analysis, higher levels of CXCL16 were associated with exposure status and radiological severity of silicosis. Smoking was not a confounder. FeNO did not distinguish between the exposure status and the presence of silicosis. CONCLUSION CXCL16 emerged as a potential biomarker that could distinguish both silica exposure and silicosis. TBARs were elevated in exposed individuals. However, their clinical applications demand further investigation in follow-up studies of representative samples.
Collapse
Affiliation(s)
- Ana Paula Scalia Carneiro
- Workers' Health Division of the Clinics Hospital of Federal University of Minas GeraisBelo Horizonte Brazil
| | | | | | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology/DECBIFederal University of Ouro PretoOuro Preto Minas Gerais Brazil
| | | | - Nayara Felicidade Tomaz Braz
- Interdisciplinary Laboratory for Medical Research, Department of Neuroscience, School of MedicineFederal University of Minas GeraisBelo Horizonte Brazil
| | | | - Guilherme Paula Costa
- Laboratory of Immunobiology of Inflammation/DECBIFederal University of Ouro PretoOuro Preto Brazil
| | | | - Olívia Maria Paula Alves Bezerra
- School of Medicine, Department of Family Medicine, Mental and Collective HealthFederal University of Ouro PretoOuro Preto Minas Gerais Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation/DECBIFederal University of Ouro PretoOuro Preto Brazil
| |
Collapse
|
30
|
Santana PT, Luna-Gomes T, Rangel-Ferreira MV, Tamura AS, Da Graça CLAL, Machado MN, Zin WA, Takiya CM, Faffe DS, Coutinho-Silva R. P2Y 12 Receptor Antagonist Clopidogrel Attenuates Lung Inflammation Triggered by Silica Particles. Front Pharmacol 2020; 11:301. [PMID: 32256366 PMCID: PMC7093325 DOI: 10.3389/fphar.2020.00301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/28/2020] [Indexed: 11/15/2022] Open
Abstract
Silicosis is an occupational lung disease caused by inhalation of silica particles. It is characterized by intense lung inflammation, with progressive and irreversible fibrosis, leading to impaired lung function. Purinergic signaling modulates silica-induced lung inflammation and fibrosis through P2X7 receptor. In the present study, we investigate the role of P2Y12, the G-protein-coupled subfamily prototype of P2 receptor class in silicosis. To that end, BALB/c mice received an intratracheal injection of PBS or silica particles (20 mg), without or with P2Y12 receptor blockade by clopidogrel (20 mg/kg body weight by gavage every 48 h) - groups CTRL, SIL, and SIL + Clopi, respectively. After 14 days, lung mechanics were determined by the end-inflation occlusion method. Lung histology was analyzed, and lung parenchyma production of nitric oxide and cytokines (IL-1β, IL-6, TNF-α, and TGF-β) were determined. Silica injection reduced animal survival and increased all lung mechanical parameters in relation to CTRL, followed by diffuse lung parenchyma inflammation, increased neutrophil infiltration, collagen deposition and increased pro-inflammatory and pro-fibrogenic cytokine secretion, as well as increased nitrite production. Clopidogrel treatment prevented silica-induced changes in lung function, and significantly reduced lung inflammation, fibrosis, as well as cytokine and nitrite production. These data suggest that inhibition of P2Y12 signaling improves silica-induced lung inflammation, preventing lung functional changes and mortality. Our results corroborate previous observations of silica-induced lung changes and expand the understanding of purinergic signaling in this process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Leikauf GD, Kim SH, Jang AS. Mechanisms of ultrafine particle-induced respiratory health effects. Exp Mol Med 2020; 52:329-337. [PMID: 32203100 PMCID: PMC7156674 DOI: 10.1038/s12276-020-0394-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 01/04/2023] Open
Abstract
Particulate matter (PM) is the principal component of air pollution. PM includes a range of particle sizes, such as coarse, fine, and ultrafine particles. Particles that are <100 nm in diameter are defined as ultrafine particles (UFPs). UFPs are found to a large extent in urban air as both singlet and aggregated particles. UFPs are classified into two major categories based on their source. Typically, UFPs are incidentally generated in the environment, often as byproducts of fossil fuel combustion, condensation of semivolatile substances or industrial emissions, whereas nanoparticles are manufactured through controlled engineering processes. The primary exposure mechanism of PM is inhalation. Inhalation of PM exacerbates respiratory symptoms in patients with chronic airway diseases, but the mechanisms underlying this response remain unclear. This review offers insights into the mechanisms by which particles, including UFPs, influence airway inflammation and discusses several mechanisms that may explain the relationship between particulate air pollutants and human health, particularly respiratory health. Understanding the mechanisms of PM-mediated lung injury will enhance efforts to protect at-risk individuals from the harmful health effects of air pollutants.
Collapse
Affiliation(s)
- George D Leikauf
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, USA
| | - Sang-Heon Kim
- Department of Internal Medicine, Hanyang University, Seoul, Republic of Korea
| | - An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea.
| |
Collapse
|
32
|
Luz HL, Reichel M, Unwin RJ, Mutig K, Najenson AC, Tonner LM, Eckardt KU, Tam FWK, Knauf F. P2X7 Receptor Stimulation Is Not Required for Oxalate Crystal-Induced Kidney Injury. Sci Rep 2019; 9:20086. [PMID: 31882798 PMCID: PMC6934555 DOI: 10.1038/s41598-019-56560-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
Oxalate crystal-induced renal inflammation is associated with progressive kidney failure due to activation of the NLRP3/CASP-1 inflammasome. It has been suggested previously that purinergic P2X7 receptor signaling is critical for crystal-induced inflammasome activation and renal injury. Therefore, we investigated the role of the P2X7 receptor in response to crystal-induced cytokine release, inflammation, and kidney failure using in vitro and in vivo models. Dendritic cells and macrophages derived from murine bone marrow and human peripheral blood mononucleated cells stimulated with calcium-oxalate crystals, monosodium urate crystals, or ATP lead to the robust release of interleukin-1beta (IL-1ß). Treatment with the P2X7 inhibitor A740003 or the depletion of ATP by apyrase selectively abrogated ATP-induced, but not oxalate and urate crystal-induced IL-1ß release. In line with this finding, dendritic cells derived from bone marrow (BMDCs) from P2X7-/- mice released reduced amounts of IL-1ß following stimulation with ATP, while oxalate and urate crystal-induced IL-1ß release was unaffected. In sharp contrast, BMDCs from Casp1-/- mice exhibited reduced IL-1ß release following either of the three stimulants. In addition, P2X7-/- mice demonstrated similar degrees of crystal deposition, tubular damage and inflammation when compared with WT mice. In line with these findings, increases in plasma creatinine were no different between WT and P2X7-/- mice. In contrast to previous reports, our results indicate that P2X7 receptor is not required for crystal-induced CKD and it is unlikely to be a suitable therapeutic target for crystal-induced progressive kidney disease.
Collapse
Affiliation(s)
- Hannah L Luz
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Centre of inflammatory disease, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Martin Reichel
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Robert J Unwin
- Centre for Nephrology, Royal Free Hospital, University College London, London, UK
| | - Kerim Mutig
- Department of Vegetative Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Ana C Najenson
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Louise M Tonner
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frederick W K Tam
- Centre of inflammatory disease, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Felix Knauf
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
33
|
Effects of nanoparticles on neuroinflammation in a mouse model of asthma. Respir Physiol Neurobiol 2019; 271:103292. [PMID: 31542455 DOI: 10.1016/j.resp.2019.103292] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 01/01/2023]
Abstract
The interaction between chronic inflammation and neural dysfunction points to a link between the nervous and immune systems in the airways. In particular, environmental exposure to nanoparticles (NPs), defined as particulate matter having one dimension <100 nm, is associated with an enhanced risk of childhood and adult asthma. However, the impact of NPs on the neural response in asthma remains to be determined. This study determined the impact of NPs on neuroinflammation in a mouse model of allergic asthma. Ovalbumin (OVA) sensitized mice were treated with saline (Sham), OVA challenged and exposed to 200 μg/m3 NPs 1 h a day for 3 days on days 21-23 in a closed-system chamber attached to a ultrasonic nebulizer. The effect of NPs on the levels of neuropeptides, transient receptor potential vanilloid 1 (TRPV1), TRPV4, P2 × 4, and P2 × 7 was assessed by enzyme-linked immunosorbent assays, immunoblotting, and immunohistochemistry. NP exposure increased airway inflammation and responsiveness in OVA mice, and these increases were augmented in OVA plus NP-exposed mice. The lung tissue levels of TRPV1, TRPV4, P2 × 4, and P2 × 7 were increased in OVA mice, and these increases were augmented in OVA plus NP-exposed mice. The substance P, adenosine triphosphate (ATP), and calcitonin gene-related peptide (CGRP) levels in bronchoalveolar lavage fluid were increased in OVA mice, and these increases were augmented in OVA plus NP-exposed mice. Bradykinin, ATP, and CGRP were dose dependently increased in NP-exposed normal human bronchial epithelial (NHBE) cells. The calcium concentration was increased in NHBE cells exposed to NPs for 8 h. These results indicate that neuroinflammation can be involved in the pathogenesis of bronchial asthma and that NPs can exacerbate asthma via neuromediator release.
Collapse
|
34
|
Ferreira L, Peng HH, Cox DP, Chambers DW, Bhula A, Young JD, Ojcius DM, Ramos-Junior ES, Morandini AC. Investigation of foreign materials in gingival lesions: a clinicopathologic, energy-dispersive microanalysis of the lesions and in vitro confirmation of pro-inflammatory effects of the foreign materials. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 128:250-267. [PMID: 31300373 DOI: 10.1016/j.oooo.2019.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/26/2019] [Accepted: 04/13/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This study aimed to evaluate the clinical and histopathologic features of gingival lesions containing foreign material (GLFMs). In parallel, the composition of the foreign material and its effects in primary human gingival fibroblasts (HGFs) were investigated. STUDY DESIGN Eighty-six GLFMs were retrieved from an oral pathology biopsy service. Clinical and microscopic data were analyzed, and the composition of the particles was identified by using energy-dispersive X-ray spectroscopy (EDX). Furthermore, HGFs were stimulated with silica (SiO2) microparticles to investigate the production of collagen type 1 (COL-1), matrix metalloproteinase 2 (MMP2), and inflammatory cytokines. RESULTS GLFMs were most commonly found in women (60.5%) and most frequently described as white plaques. Histopathologic examination identified verrucous hyperplasia in 59% and epithelial dysplasia in 28% of the cases. EDX microanalysis revealed that Si (94%) was the most frequently detected foreign element. SiO2 microparticles induced higher COL-1 expression; higher levels of proinflammatory cytokines, such as interleukin-6 (IL-6), IL-8, and transforming growth factor-β, and increased MMP-2 activity in HGFs. CONCLUSIONS There was a strong association between the presence of foreign material in the gingiva and white verrucous clinical lesions. In addition, the most common element in the foreign material was Si, and our in vitro findings demonstrate the importance of silica-mediated effects on gingival fibroblasts.
Collapse
Affiliation(s)
- Leticia Ferreira
- Department of Diagnostic Sciences, University of Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA.
| | - Hsin-Hsin Peng
- Center for Molecular and Clinical Immunology, Chang Gung University, Taiwan; Laboratory Animal Center, Chang Gung Memorial Hospital, Taiwan
| | - Darren P Cox
- Department of Diagnostic Sciences, University of Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA
| | - David W Chambers
- Department of Orthodontics, University of Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA
| | - Avni Bhula
- International Dental Studies Program, University of Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA; Department of Oral and Maxillofacial Radiology, University of California, Los Angeles, CA, USA
| | - John D Young
- Center for Molecular and Clinical Immunology, Chang Gung University, Taiwan; Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, NY, USA
| | - David M Ojcius
- Department of Biomedical Sciences, University of Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA
| | - Erivan S Ramos-Junior
- Department of Biomedical Sciences, University of Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA
| | - Ana Carolina Morandini
- Department of Biomedical Sciences, University of Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA
| |
Collapse
|
35
|
Therkildsen JR, Christensen MG, Tingskov SJ, Wehmöller J, Nørregaard R, Praetorius HA. Lack of P2X 7 Receptors Protects against Renal Fibrosis after Pyelonephritis with α-Hemolysin-Producing Escherichia coli. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1201-1211. [PMID: 30926332 DOI: 10.1016/j.ajpath.2019.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/07/2023]
Abstract
Severe urinary tract infections are commonly caused by sub-strains of Escherichia coli secreting the pore-forming virulence factor α-hemolysin (HlyA). Repeated or severe cases of pyelonephritis can cause renal scarring that subsequently can lead to progressive failure. We have previously demonstrated that HlyA releases cellular ATP directly through its membrane pore and that acute HlyA-induced cell damage is completely prevented by blocking ATP signaling. Local ATP signaling and P2X7 receptor activation play a key role in the development of tissue fibrosis. This study investigated the effect of P2X7 receptors on infection-induced renal scarring in a murine model of pyelonephritis. Pyelonephritis was induced by injecting 100 million HlyA-producing, uropathogenic E. coli into the urinary bladder of BALB/cJ mice. A similar degree of pyelonephritis and mortality was confirmed at day 5 after infection in P2X7+/+ and P2X7-/- mice. Fibrosis was first observed 2 weeks after infection, and the data clearly demonstrated that P2X7-/- mice and mice exposed to the P2X7 antagonist, brillian blue G, show markedly less renal fibrosis 14 days after infection compared with controls (P < 0.001). Immunohistochemistry revealed comparable early neutrophil infiltration in the renal cortex from P2X7+/+ and P2X7-/- mice. Interestingly, lack of P2X7 receptors resulted in diminished macrophage infiltration and reduced neutrophil clearance in the cortex of P2X7-/- mice. Hence, this study suggests the P2X7 receptor to be an appealing antifibrotic target after renal infections.
Collapse
Affiliation(s)
| | | | - Stine J Tingskov
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Julia Wehmöller
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
36
|
Cicko S, Köhler TC, Ayata CK, Müller T, Ehrat N, Meyer A, Hossfeld M, Zech A, Di Virgilio F, Idzko M. Extracellular ATP is a danger signal activating P2X7 receptor in a LPS mediated inflammation (ARDS/ALI). Oncotarget 2018; 9:30635-30648. [PMID: 30093975 PMCID: PMC6078145 DOI: 10.18632/oncotarget.25761] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/19/2018] [Indexed: 02/06/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threating lung condition resulting from a direct and indirect injury to the lungs [1, 2]. Pathophysiologically it is characterized by an acute alveolar damage, an increased permeability of the microvascular-barrier, leading to protein-rich pulmonary edema and subsequent impairment of arterial oxygenation and respiratory failure [1]. This study examined the role of extracellular ATP in recruiting inflammatory cells to the lung after induction of acute lung injury with lipopolysaccharide (LPS). However, the precise mechanism is poorly understood. Our objective was to investigate the functional role of the P2X7 receptor in the pathogenesis of acute respiratory distress syndrome (ARDS/ acute lung injury (ALI)) in vitro and in vivo. We show that intratracheally applied LPS causes an acute accumulation of ATP in the BALF (bronchoalveolar lavage) and lungs of mice. Prophylactic and therapeutic inhibition of P2X7R signalling by a specific antagonist and knock-out experiments was able to ameliorate the inflammatory response demonstrated by reduced ATP-levels, number of neutrophils and concentration of pro-inflammatory cytokine levels in the BALF. Experiments with chimeric mice showed that P2X7R expression on immune cells was responsible for the observed effect. Consistently, the inflammatory response is diminished only by a cell-type specific knockdown of P2X7 receptor on non-stationary immune cells. Since the results of BALF from patients with acute ARDS or pneumonia simulated the in vivo data after LPS exposure, the P2X7 receptor may be a new therapeutic target for treatment in acute respiratory distress syndrome (ARDS/ALI).
Collapse
Affiliation(s)
- Sanja Cicko
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
| | | | - Cemil Korcan Ayata
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
| | - Tobias Müller
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany.,Division of Pneumology, University Hospital RWTH Aachen, Aachen, Germany
| | - Nicolas Ehrat
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
| | - Anja Meyer
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
| | - Madelon Hossfeld
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
| | - Andreas Zech
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
| | - Francesco Di Virgilio
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Idzko
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
| |
Collapse
|
37
|
Müller T, Fay S, Vieira RP, Karmouty-Quintana H, Cicko S, Ayata K, Zissel G, Goldmann T, Lungarella G, Ferrari D, Di Virgilio F, Robaye B, Boeynaems JM, Blackburn MR, Idzko M. The purinergic receptor subtype P2Y2 mediates chemotaxis of neutrophils and fibroblasts in fibrotic lung disease. Oncotarget 2018; 8:35962-35972. [PMID: 28415591 PMCID: PMC5482630 DOI: 10.18632/oncotarget.16414] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/10/2017] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease with few available treatment options. Recently, the involvement of purinergic receptor subtypes in the pathogenesis of different lung diseases has been demonstrated. Here we investigated the role of the purinergic receptor subtype P2Y2 in the context of fibrotic lung diseases.The concentration of different nucleotides was measured in the broncho-alveolar lavage (BAL) fluid derived from IPF patients and animals with bleomycin-induced pulmonary fibrosis. In addition expression of P2Y2 receptors by different cell types was determined. To investigate the functional relevance of P2Y2 receptors for the pathogenesis of the disease the bleomycin model of pulmonary fibrosis was used. Finally, experiments were performed in pursuit of the involved mechanisms.Compared to healthy individuals or vehicle treated animals, extracellular nucleotide levels in the BAL fluid were increased in patients with IPF and in mice after bleomycin administration, paralleled by a functional up-regulation of P2Y2R expression. Both bleomycin-induced inflammation and fibrosis were reduced in P2Y2R-deficient compared to wild type animals. Mechanistic studies demonstrated that recruitment of neutrophils into the lungs, proliferation and migration of lung fibroblasts as well as IL6 production are key P2Y2R mediated processes.Our results clearly demonstrate the involvement of P2Y2R subtypes in the pathogenesis of fibrotic lung diseases in humans and mice and hence support the development of selective P2Y2R antagonists for the treatment of IPF.
Collapse
Affiliation(s)
- Tobias Müller
- University Hospital Freiburg, Department of Pneumology, Germany.,University Hospital RWTH Aachen, Division of Pneumology, Germany
| | - Susanne Fay
- University Hospital Freiburg, Department of Pneumology, Germany
| | | | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, Houston Medical School, University of Texas, Houston, USA
| | - Sanja Cicko
- University Hospital Freiburg, Department of Pneumology, Germany
| | - Korcan Ayata
- University Hospital Freiburg, Department of Pneumology, Germany
| | - Gernot Zissel
- University Hospital Freiburg, Department of Pneumology, Germany
| | - Torsten Goldmann
- Research Center Borstel, Clinical and Experimental Pathology, Borstel, Germany
| | - Giuseppe Lungarella
- Department of Physiopathology and Experimental Medicine, University of Siena, Siena, Italy
| | - Davide Ferrari
- Department of Experimental and Diagnostic Medicine, Section of General Pathology and Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, Italy
| | - Francesco Di Virgilio
- Department of Experimental and Diagnostic Medicine, Section of General Pathology and Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, Italy
| | - Bernard Robaye
- IRIBHM and Erasme Hospital, Université Libre de Bruxelles, Belgium
| | | | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, Houston Medical School, University of Texas, Houston, USA
| | - Marco Idzko
- University Hospital Freiburg, Department of Pneumology, Germany
| |
Collapse
|
38
|
Burnstock G, Knight GE. The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signal 2018; 14:1-18. [PMID: 29164451 PMCID: PMC5842154 DOI: 10.1007/s11302-017-9593-0] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022] Open
Abstract
Seven P2X ion channel nucleotide receptor subtypes have been cloned and characterised. P2X7 receptors (P2X7R) are unusual in that there are extra amino acids in the intracellular C terminus. Low concentrations of ATP open cation channels sometimes leading to cell proliferation, whereas high concentrations of ATP open large pores that release inflammatory cytokines and can lead to apoptotic cell death. Since many diseases involve inflammation and immune responses, and the P2X7R regulates inflammation, there has been recent interest in the pathophysiological roles of P2X7R and the potential of P2X7R antagonists to treat a variety of diseases. These include neurodegenerative diseases, psychiatric disorders, epilepsy and a number of diseases of peripheral organs, including the cardiovascular, airways, kidney, liver, bladder, skin and musculoskeletal. The potential of P2X7R drugs to treat tumour progression is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK.
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia.
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia.
| | - Gillian E Knight
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| |
Collapse
|
39
|
Savio LEB, de Andrade Mello P, da Silva CG, Coutinho-Silva R. The P2X7 Receptor in Inflammatory Diseases: Angel or Demon? Front Pharmacol 2018; 9:52. [PMID: 29467654 PMCID: PMC5808178 DOI: 10.3389/fphar.2018.00052] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Under physiological conditions, adenosine triphosphate (ATP) is present at low levels in the extracellular milieu, being massively released by stressed or dying cells. Once outside the cells, ATP and related nucleotides/nucleoside generated by ectonucleotidases mediate a high evolutionary conserved signaling system: the purinergic signaling, which is involved in a variety of pathological conditions, including inflammatory diseases. Extracellular ATP has been considered an endogenous adjuvant that can initiate inflammation by acting as a danger signal through the activation of purinergic type 2 receptors-P2 receptors (P2Y G-protein coupled receptors and P2X ligand-gated ion channels). Among the P2 receptors, the P2X7 receptor is the most extensively studied from an immunological perspective, being involved in both innate and adaptive immune responses. P2X7 receptor activation induces large-scale ATP release via its intrinsic ability to form a membrane pore or in association with pannexin hemichannels, boosting purinergic signaling. ATP acting via P2X7 receptor is the second signal to the inflammasome activation, inducing both maturation and release of pro-inflammatory cytokines, such as IL-1β and IL-18, and the production of reactive nitrogen and oxygen species. Furthermore, the P2X7 receptor is involved in caspases activation, as well as in apoptosis induction. During adaptive immune response, P2X7 receptor modulates the balance between the generation of T helper type 17 (Th17) and T regulatory (Treg) lymphocytes. Therefore, this receptor is involved in several inflammatory pathological conditions. In infectious diseases and cancer, P2X7 receptor can have different and contrasting effects, being an angel or a demon depending on its level of activation, cell studied, type of pathogen, and severity of infection. In neuroinflammatory and neurodegenerative diseases, P2X7 upregulation and function appears to contribute to disease progression. In this review, we deeply discuss P2X7 receptor dual function and its pharmacological modulation in the context of different pathologies, and we also highlight the P2X7 receptor as a potential target to treat inflammatory related diseases.
Collapse
Affiliation(s)
- Luiz E B Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paola de Andrade Mello
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Cleide Gonçalves da Silva
- Division of Vascular Surgery, Department of Surgery, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Ochoa-Amaya JE, Queiroz-Hazarbassanov N, Namazu LB, Calefi AS, Tobaruela CN, Margatho R, Palermo-Neto J, Ligeiro de Oliveira AP, Felicio LF. Short-Term Hyperprolactinemia Reduces the Expression of Purinergic P2X7 Receptors during Allergic Inflammatory Response of the Lungs. Neuroimmunomodulation 2018; 25:34-41. [PMID: 29874677 DOI: 10.1159/000489312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/04/2018] [Indexed: 11/19/2022] Open
Abstract
PURPOSE We have previously shown that domperidone-induced short-term hyperprolactinemia reduces the lung's allergic inflammatory response in an ovalbumin antigenic challenge model. Since purinergic receptor P2X7R activity leads to proinflammatory cytokine release and is possibly related to the pathogenesis of allergic respiratory conditions, the present study was designed to investigate a possible involvement of purinergic and prolactin receptors in this phenomenon. METHODS To induce hyperprolactinemia, domperidone was injected intraperitoneally in rats at a dose of 5.1 mg × kg-1 per day for 5 days. P2X7 expression was evaluated by lung immunohistochemistry while prolactin receptor expression in bronchoalveolar lavage leukocytes was analyzed through flow cytometry. RESULTS Previous reports demonstrated that rats subjected to short-term hyperprolactinemia exhibited a decrease in leukocyte counts in bronchoalveolar lavage, especially granulocytes. Here, it is revealed that hyperprolactinemia promotes an increased expression of prolactin receptors in granulocytes. Also, increased expression of purinergic P2X7R observed in allergic animals was significantly reduced by hyperprolactinemia. CONCLUSIONS Both purinergic and prolactin receptor expression changes occur during the anti-asthmatic effect of hyperprolactinemia.
Collapse
Affiliation(s)
- Julieta E Ochoa-Amaya
- Departamento de Patologia da Faculdade de Medicina Veterinária da Universidade de São Paulo, São Paulo, Brazil
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Programa de Medicina Veterinaria y Zootecnia, Universidad de los Llanos, Villavicencio, Colombia
| | | | - Lilian B Namazu
- Departamento de Patologia da Faculdade de Medicina Veterinária da Universidade de São Paulo, São Paulo, Brazil
| | - Atilio S Calefi
- Departamento de Patologia da Faculdade de Medicina Veterinária da Universidade de São Paulo, São Paulo, Brazil
| | - Carla N Tobaruela
- Departamento de Patologia da Faculdade de Medicina Veterinária da Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Margatho
- Departamento de Patologia da Faculdade de Medicina Veterinária da Universidade de São Paulo, São Paulo, Brazil
| | - João Palermo-Neto
- Departamento de Patologia da Faculdade de Medicina Veterinária da Universidade de São Paulo, São Paulo, Brazil
| | - Ana P Ligeiro de Oliveira
- Programa de Pós-Graduação em Biofotônica Aplicada às Ciências da Saúde, Universidade Nove de Julho, São Paulo, Brazil
| | - Luciano F Felicio
- Departamento de Patologia da Faculdade de Medicina Veterinária da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Cordero MD, Alcocer-Gómez E. Inflammasome in the Pathogenesis of Pulmonary Diseases. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 108:111-151. [PMID: 30536170 PMCID: PMC7123416 DOI: 10.1007/978-3-319-89390-7_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lung diseases are common and significant causes of illness and death around the world. Inflammasomes have emerged as an important regulator of lung diseases. The important role of IL-1 beta and IL-18 in the inflammatory response of many lung diseases has been elucidated. The cleavage to turn IL-1 beta and IL-18 from their precursors into the active forms is tightly regulated by inflammasomes. In this chapter, we structurally review current evidence of inflammasome-related components in the pathogenesis of acute and chronic lung diseases, focusing on the "inflammasome-caspase-1-IL-1 beta/IL-18" axis.
Collapse
Affiliation(s)
- Mario D. Cordero
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center (CIBM), University of Granada, Armilla, Spain
| | - Elísabet Alcocer-Gómez
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
42
|
P2X7R Blockade Prevents NLRP3 Inflammasome Activation and Pancreatic Fibrosis in a Mouse Model of Chronic Pancreatitis. Pancreas 2017; 46:1327-1335. [PMID: 28930866 DOI: 10.1097/mpa.0000000000000928] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the role of P2X7R (purinergic 2X7 receptor) and NLRP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome activation in the process of pancreatic fibrosis in a mouse model of chronic pancreatitis (CP). METHODS Chronic pancreatitis was induced by repeated intraperitoneal injections of 50 μg/kg cerulein for 6 weeks in mice. P2X7R antagonist oxidized ATP (OxATP) or brilliant blue G (BBG) was administered after the last cerulein injection for 2 weeks. Pancreatic chronic inflammation and fibrosis were evaluated by histological score, Sirius red staining, and alpha-smooth muscle actin immunohistochemical staining. We further determined pancreatic P2X7R, NLRP3, and caspase-1 expressions in gene and protein levels and the pancreatic concentrations of caspase-1, interleukin 1β (IL-1β), and IL-18. RESULTS The pancreatic P2X7R, NLRP3, and caspase-1 expressions in gene and protein levels and the pancreatic concentrations of caspase-1, IL-1β, and IL-18 were all reduced significantly in both the OxATP and BBG groups (P < 0.05). The pancreatic chronic inflammation and the fibrosis indices were all remarkably attenuated (P < 0.05). CONCLUSIONS P2X7R antagonist OxATP and BBG significantly decreased pancreatic chronic inflammation and fibrosis in a mouse CP model and suggested that blockade of P2X7R-NLRP3 inflammasome signaling pathway may represent a novel therapeutic strategy for CP and its fibrotic process.
Collapse
|
43
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
44
|
Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S. The P2X7 Receptor in Infection and Inflammation. Immunity 2017; 47:15-31. [PMID: 28723547 DOI: 10.1016/j.immuni.2017.06.020] [Citation(s) in RCA: 828] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/14/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022]
Abstract
Adenosine triphosphate (ATP) accumulates at sites of tissue injury and inflammation. Effects of extracellular ATP are mediated by plasma membrane receptors named P2 receptors (P2Rs). The P2R most involved in inflammation and immunity is the P2X7 receptor (P2X7R), expressed by virtually all cells of innate and adaptive immunity. P2X7R mediates NLRP3 inflammasome activation, cytokine and chemokine release, T lymphocyte survival and differentiation, transcription factor activation, and cell death. Ten human P2RX7 gene splice variants and several SNPs that produce complex haplotypes are known. The P2X7R is a potent stimulant of inflammation and immunity and a promoter of cancer cell growth. This makes P2X7R an appealing target for anti-inflammatory and anti-cancer therapy. However, an in-depth knowledge of its structure and of the associated signal transduction mechanisms is needed for an effective therapeutic development.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| | - Diego Dal Ben
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Alba Clara Sarti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Anna Lisa Giuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
45
|
Müller T, Fay S, Vieira RP, Karmouty-Quintana H, Cicko S, Ayata CK, Zissel G, Goldmann T, Lungarella G, Ferrari D, Di Virgilio F, Robaye B, Boeynaems JM, Lazarowski ER, Blackburn MR, Idzko M. P2Y 6 Receptor Activation Promotes Inflammation and Tissue Remodeling in Pulmonary Fibrosis. Front Immunol 2017; 8:1028. [PMID: 28878780 PMCID: PMC5572280 DOI: 10.3389/fimmu.2017.01028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/09/2017] [Indexed: 01/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease with a poor prognosis and very few available treatment options. The involvement of the purinergic receptor subtypes P2Y2 and P2X7 in fibrotic lung disease has been demonstrated recently. In this study, we investigated the role of P2Y6 receptors in the pathogenesis of IPF in humans and in the animal model of bleomycin-induced lung injury. P2Y6R expression was upregulated in lung structural cells but not in bronchoalveolar lavage (BAL) cells derived from IPF patients as well as in animals following bleomycin administration. Furthermore, BAL fluid levels of the P2Y6R agonist uridine-5′-diphosphate were elevated in animals with bleomycin-induced pulmonary fibrosis. Inflammation and fibrosis following bleomycin administration were reduced in P2Y6R-deficient compared to wild-type animals confirming the pathophysiological relevance of P2Y6R subtypes for fibrotic lung diseases. Experiments with bone marrow chimeras revealed the importance of P2Y6R expression on lung structural cells for pulmonary inflammation and fibrosis. Similar effects were obtained when animals were treated with the P2Y6R antagonist MRS2578. In vitro studies demonstrated that proliferation and secretion of the pro-inflammatory/pro-fibrotic cytokine IL-6 by lung fibroblasts are P2Y6R-mediated processes. In summary, our results clearly demonstrate the involvement of P2Y6R subtypes in the pathogenesis of pulmonary fibrosis. Thus, blocking pulmonary P2Y6 receptors might be a new target for the treatment of IPF.
Collapse
Affiliation(s)
- Tobias Müller
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany.,Division of Pneumology, University Hospital RWTH Aachen, Aachen, Germany
| | - Susanne Fay
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | | | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, University of Texas, Houston, TX, United States
| | - Sanja Cicko
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Cemil Korcan Ayata
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Gernot Zissel
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Torsten Goldmann
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany
| | - Giuseppe Lungarella
- Department of Physiopathology and Experimental Medicine, University of Siena, Siena, Italy
| | - Davide Ferrari
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Bernard Robaye
- IRIBHM and Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Eduardo R Lazarowski
- Cystic Fibrosis Research Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, University of Texas, Houston, TX, United States
| | - Marco Idzko
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
46
|
Yin J, You S, Liu H, Chen L, Zhang C, Hu H, Xue M, Cheng W, Wang Y, Li X, Shi Y, Li N, Yan S, Li X. Role of P2X 7R in the development and progression of pulmonary hypertension. Respir Res 2017. [PMID: 28646872 PMCID: PMC5483271 DOI: 10.1186/s12931-017-0603-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a devastating disease that lacks sufficient treatment. Studies have shown that the Nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome contributes to PAH pathogenesis, but the role of the upstream molecular P2X7 receptor (P2X7R) has remained unexplored. We investigated the role of P2X7R in the pathogenesis of PAH. METHODS AND RESULTS PH was induced by a single subcutaneous injection of monocrotaline (MCT) (60 mg/kg) on left pneumonectomised Sprague-Dawley rats, as validated by significant increases in pulmonary artery pressure and vessel wall thickness. Marked P2X7R was detected by predominant PA immunostaining in lungs from PH rats. Western blot revealed a significant increase in the protein levels of P2X7R as well as NLRP3 and caspase-1 in the diseased lung tissue compared with normal tissue. The rats received A-740003 (a selective P2X7 receptor antagonist, 30 mg/kg) daily starting from 1 week before or 2 weeks after MCT injection. Consequently, A-740003 reversed the NLRP3 inflammasome upregulation, significantly decreased the mean right ventricular (RV) pressure and RV hypertrophy, and reversed pulmonary arterial remodelling 4 weeks after MCT injection, as both a pretreatment and rescue intervention. Notably, A-740003 significantly reduced macrophage and pro-inflammatory cytokine levels, as measured via bronchoalveolar lavage. The recruitment of macrophages as well as collagen fibre deposition in the perivascular areas were also reduced, as confirmed by histological staining. CONCLUSIONS P2X7R contributes to the pathogenesis of PH, probably in association with activation of the NLRP3 inflammasome. Blockade of P2X7R might be applied as a novel therapeutic approach for the treatment of PAH.
Collapse
Affiliation(s)
- Jie Yin
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Shuling You
- Adicon Company, Department of Pathology, Wangkai Infectious Diseases Hospital of Zaozhuang City, Zaozhuang, Shandong Province, China
| | - Haopeng Liu
- Department of Neurosurgery, Zhangqiu People Hospital, Jinan, Shandong, China
| | - Li Chen
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengdong Zhang
- Department of Orthopedics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hesheng Hu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Mei Xue
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Wenjuan Cheng
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Ye Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Xinran Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Yugen Shi
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Nannan Li
- Department of Emergency, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, No. 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Suhua Yan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China.
| | - Xiaolu Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China. .,Department of Emergency, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
| |
Collapse
|
47
|
Abdelaziz HA, Shaker ME, Hamed MF, Gameil NM. Repression of acetaminophen-induced hepatotoxicity by a combination of celastrol and brilliant blue G. Toxicol Lett 2017; 275:6-18. [PMID: 28435131 DOI: 10.1016/j.toxlet.2017.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 01/20/2023]
Abstract
The sterile inflammatory response is an eminent contributor to acetaminophen (APAP)-hepatotoxicity in humans. Recent advances unraveled an axial role of the NLRP3-inflammasome in APAP-post injury inflammation. Nevertheless, the role of signaling events preceded the NLRP3-inflammasome activation, like the transcription factor NF-κB and the purinergic receptor P2X7, is still unclear and needs further elucidation. Here, we investigated the pharmacological inhibition of these upstream signaling molecules by celastrol and brilliant blue G (BBG) (separately or simultaneously) in APAP-hepatotoxicity in mice. The results indicated that both celastrol and BBG pretreatments, especially when combined together, curbed APAP-induced hepatocellular injury (ALT, AST and LDH) and death (necrosis and apoptosis). The underlying mechanisms of protection of such combination against APAP-challenge were attributed to their efficient cooperation in: i) preventing the consumption of hepatic antioxidants (reduced glutathione and superoxide dismutase); ii) limiting the overproduction of lipid peroxidation aldehydes (malondialdehyde and 4-hydroxynonenal) and total nitrate/nitrite products; iii) attenuating the inflammatory cells accumulation in the liver, as evidenced by reducing the number of F4/80 positive cells/field in immunostaining and myeloperoxidase activity; iv) reversing the dysregulation in production of pro-inflammatory (TNF-α, IL-17A and IL-23) and anti-inflammatory (IL-10) cytokines; and v) enhancing the reparative capacity of injured hepatocytes, as demonstrated by increasing the percentage of PCNA positive hepatocytes per field of immunostaining. In conclusion, this murine study elicits a potential clinical applicability and therapeutic utility of celastrol and BBG combination in human cases of APAP-overdose hepatotoxicity.
Collapse
Affiliation(s)
- Heba A Abdelaziz
- Pharmacology and Toxicology Dept., Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Pharmacology and Biochemistry Dept., Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mohamed E Shaker
- Pharmacology and Toxicology Dept., Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Mohamed F Hamed
- Pathology Dept., Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Nariman M Gameil
- Pharmacology and Toxicology Dept., Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
48
|
Bomfim CCB, Amaral EP, Cassado ADA, Salles ÉM, do Nascimento RS, Lasunskaia E, Hirata MH, Álvarez JM, D'Império-Lima MR. P2X7 Receptor in Bone Marrow-Derived Cells Aggravates Tuberculosis Caused by Hypervirulent Mycobacterium bovis. Front Immunol 2017; 8:435. [PMID: 28450867 PMCID: PMC5389976 DOI: 10.3389/fimmu.2017.00435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/28/2017] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) remains a serious public health problem despite the great scientific advances in the recent decades. We have previously shown that aggressive forms of TB caused by hypervirulent strains of Mycobacterium tuberculosis and Mycobacterium bovis are attenuated in mice lacking the P2X7 receptor, an ion channel activated by extracellular ATP. Therefore, P2X7 receptor is a potential target for therapeutic intervention. In vitro, hypervirulent mycobacteria cause macrophage death by a P2X7-dependent mechanism that facilitates bacillus dissemination. However, as P2X7 receptor is expressed in both bone marrow (BM)-derived cells and lung structural cells, several cellular mechanisms can operate in vivo. To investigate whether the presence of P2X7 receptor in BM-derived cells contributes to TB severity, we generated chimeric mice by adoptive transfer of hematopoietic cells from C57BL/6 or P2X7-/- mice into CD45.1 irradiated mice. After infection with hypervirulent mycobacteria (MP287/03 strain of M. bovis), P2X7-/->CD45.1 mice recapitulated the TB resistance observed in P2X7-/- mice. These chimeric mice showed lower lung bacterial load and attenuated pneumonia compared to C57BL/6>CD45.1 mice. Lung necrosis and bacterial dissemination to the spleen and liver were also reduced in P2X7-/->CD45.1 mice compared to C57BL/6>CD45.1 mice. Furthermore, an immature-like myeloid cell population showing a Ly6Gint phenotype was observed in the lungs of infected C57BL/6 and C57BL/6>CD45.1 mice, whereas P2X7-/- and P2X7-/->CD45.1 mice showed a typical neutrophil (Ly6Ghi) population. This study clearly demonstrates that P2X7 receptor in BM-derived cells plays a critical role in the progression of severe TB.
Collapse
Affiliation(s)
- Caio César Barbosa Bomfim
- Department of Immunology, Biomedical Science Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Eduardo Pinheiro Amaral
- Department of Immunology, Biomedical Science Institute, University of São Paulo (USP), São Paulo, Brazil
| | | | - Érika Machado Salles
- Department of Immunology, Biomedical Science Institute, University of São Paulo (USP), São Paulo, Brazil
| | | | - Elena Lasunskaia
- Laboratory of Biology of Recognition, State University of North Fluminense, Campos dos Goytacazes, Brazil
| | - Mario Hiroyuki Hirata
- Faculty of Pharmaceutical Sciences, Department of Clinical Chemistry and Toxicology, University of São Paulo (USP), São Paulo, Brazil
| | - José Maria Álvarez
- Department of Immunology, Biomedical Science Institute, University of São Paulo (USP), São Paulo, Brazil
| | | |
Collapse
|
49
|
Gao H, Yin J, Shi Y, Hu H, Li X, Xue M, Cheng W, Wang Y, Li X, Li Y, Wang Y, Yan S. Targeted P2X 7 R shRNA delivery attenuates sympathetic nerve sprouting and ameliorates cardiac dysfunction in rats with myocardial infarction. Cardiovasc Ther 2017; 35. [PMID: 28039938 DOI: 10.1111/1755-5922.12245] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Inflammation-dominated sympathetic sprouting adjacent to the necrotic region following myocardial infarction (MI) has been implicated in the etiology of arrhythmias resulting in sudden cardiac death; however, the mechanisms responsible remain to be elucidated. Although P2X7 R is a key immune mediator, its role has yet to be explored. OBJECTIVE We investigated whether P2X7 R regulates NF-κB and affects cardiac sympathetic reinnervation in rats undergoing MI. METHODS AND RESULTS An adenoviral vector with a short hairpin RNA (shRNA) sequence inserted was adopted for the inhibition of P2X7 R in vivo. Myocardial infarction was induced by left coronary artery ligation, and immediately after that, recombinant P2X7 R-shRNA adenovirus, negative adenovirus (control), or normal saline solution (vehicle) was injected intramyocardially around the MI region and border areas. A high level of P2X7 R was activated in the infarcted tissue at an early stage. The administration of P2X7 R RNAi resulted in the inhibition of Akt and Erk1/2 phosphorylation and decreased the activation of NF-κB and macrophage infiltration, as well as attenuated the expression of nerve growth factor (NGF). Eventually, the NGF-induced sympathetic hyperinnervation was blunted, as assessed by the immunofluorescence of tyrosine hydroxylase (TH) and growth-associated protein 43 (GAP 43). At 7 days post-MI, the arrhythmia score of programmed electrical stimulation in the vehicle-treated infarcted rats was higher than the MI-shRNA group. Further amelioration of cardiac dysfunction was also detected. CONCLUSIONS The administration of P2X7 R RNAi during the acute inflammatory response phase prevented the process of sympathetic hyperinnervation after MI, which was associated in part with inhibiting the Akt and ERK1/2 pathways and NF-κB activation.
Collapse
Affiliation(s)
- Hongmei Gao
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Department of Cardiology, Shandong Provincial Corps Hospital, Chinese People's Armed Police Force, Jinan, China
| | - Jie Yin
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yugen Shi
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Hesheng Hu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xiaolu Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Mei Xue
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Wenjuan Cheng
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Ye Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xinran Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yongkang Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yu Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Suhua Yan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
50
|
Inflammatory early events associated to the role of P2X7 receptor in acute murine toxoplasmosis. Immunobiology 2016; 222:676-683. [PMID: 28069296 DOI: 10.1016/j.imbio.2016.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/19/2016] [Accepted: 12/27/2016] [Indexed: 12/22/2022]
Abstract
Activation of the purinergic P2X7 receptor by extracellular ATP (eATP) potentiates proinflammatory responses during infections by intracellular pathogens. Extracellular ATP triggers an antimicrobial response in macrophages infected with Toxoplasma gondii in vitro, suggesting that purinergic signaling may stimulate host defense mechanisms against toxoplasmosis. Here, we provide in vivo evidence in support of this hypothesis, by showing that P2X7-/- mice are more susceptible than P2X7+/+ mice to acute infection by the RH strain of T. gondii, and that this phenomenon is associated with a deficient proinflammatory response. Four days post-infection, peritoneal washes from infected P2X7-/- mice had no or little increase in the levels of the proinflammatory cytokines IL-12, IL-1β, IFN-γ, and TNF-α, whose levels increased markedly in samples from infected P2X7+/+ mice. Infected P2X7-/- mice displayed an increase in organ weight and histological alterations in some of the 'shock organs' in toxoplasmosis - the liver, spleen and mesenteric lymph nodes. The liver of infected P2X7-/- mice had smaller granulomas, but increased parasite load/granuloma. Our results confirm that the P2X7 receptor is involved in containing T. gondii spread in vivo, by stimulating inflammation.
Collapse
|