1
|
Lafleur A, Daffis S, Mowbray C, Arana B. Immunotherapeutic Strategies as Potential Treatment Options for Cutaneous Leishmaniasis. Vaccines (Basel) 2024; 12:1179. [PMID: 39460345 PMCID: PMC11511131 DOI: 10.3390/vaccines12101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Cutaneous leishmaniasis (CL), caused by protozoan parasites of the Leishmania genus, is prevalent in tropical and subtropical regions, with important morbidity, particularly in low- to middle-income countries. Current systemic treatments, including pentavalent antimonials and miltefosine, are associated with significant toxicity, reduced efficacy, and are frequently ineffective in cases of severe or chronic CL. Immunotherapies leverage the immune system to combat microbial infection and offer a promising adjunct or alternative approach to the current standard of care for CL. However, the heterogeneous clinical presentation of CL, which is dependent on parasite species and host immunity, may require informed clinical intervention with immunotherapies. This review explores the clinical and immunological characteristics of CL, emphasising the current landscape of immunotherapies in in vivo models and clinical studies. Such immune-based interventions aim to modulate immune responses against Leishmania, with additive therapeutic effects enabling the efficacy of lower drug doses and decreasing the associated toxicity. Understanding the mechanisms that underlie immunotherapy for CL provides critical insights into developing safer and more effective treatments for this neglected tropical disease. Identifying suitable therapeutic candidates and establishing their safety and efficacy are essential steps in this process. However, the feasibility and utility of these treatments in resource-limited settings must also be considered, taking into account factors such as cost of production, temperature stability, and overall patient access.
Collapse
Affiliation(s)
- Andrea Lafleur
- Doctoral Training Centre, University of Oxford, Oxford OX1 3NP, UK
| | - Stephane Daffis
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (S.D.)
| | - Charles Mowbray
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (S.D.)
| | - Byron Arana
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (S.D.)
| |
Collapse
|
2
|
Sellau J, Hansen CS, Gálvez RI, Linnemann L, Honecker B, Lotter H. Immunological clues to sex differences in parasitic diseases. Trends Parasitol 2024:S1471-4922(24)00249-6. [PMID: 39379261 DOI: 10.1016/j.pt.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
The effect of sex on the prevalence and severity of parasitic diseases is an emerging area of research. Several factors underlie sex-based differences, including sociocultural influences that affect exposure to parasites, and physiological disparities linked to biological sex. Hence, human studies must be interpreted cautiously; however, studies conducted under controlled laboratory conditions are important to validate findings in humans. Such research can more effectively elucidate the role of sex-determining physiological factors (particularly their impact on immune responses), as well as the role of sex-specific differences in resistance to, or severity of, parasitic diseases. This review focuses on the overarching impact of biological sex variables on immunity. Both human and rodent experimental data are discussed, with a focus on selected protozoan and helminth infections.
Collapse
Affiliation(s)
- Julie Sellau
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Lara Linnemann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Barbara Honecker
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanna Lotter
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
3
|
Morales-Primo AU, Becker I, Pedraza-Zamora CP, Zamora-Chimal J. Th17 Cell and Inflammatory Infiltrate Interactions in Cutaneous Leishmaniasis: Unraveling Immunopathogenic Mechanisms. Immune Netw 2024; 24:e14. [PMID: 38725676 PMCID: PMC11076297 DOI: 10.4110/in.2024.24.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 05/12/2024] Open
Abstract
The inflammatory response during cutaneous leishmaniasis (CL) involves immune and non-immune cell cooperation to contain and eliminate Leishmania parasites. The orchestration of these responses is coordinated primarily by CD4+ T cells; however, the disease outcome depends on the Th cell predominant phenotype. Although Th1 and Th2 phenotypes are the most addressed as steers for the resolution or perpetuation of the disease, Th17 cell activities, especially IL-17 release, are recognized to be vital during CL development. Th17 cells perform vital functions during both acute and chronic phases of CL. Overall, Th17 cells induce the migration of phagocytes (neutrophils, macrophages) to the infection site and CD8+ T cells and NK cell activation. They also provoke granzyme and perforin secretion from CD8+ T cells, macrophage differentiation towards an M2 phenotype, and expansion of B and Treg cells. Likewise, immune cells from the inflammatory infiltrate have modulatory activities over Th17 cells involving their differentiation from naive CD4+ T cells and further expansion by generating a microenvironment rich in optimal cytokines such as IL-1β, TGF-β, IL-6, and IL-21. Th17 cell activities and synergies are crucial for the resistance of the infection during the early and acute stages; however, if unchecked, Th17 cells might lead to a chronic stage. This review discusses the synergies between Th17 cells and the inflammatory infiltrate and how these interactions might destine the course of CL.
Collapse
Affiliation(s)
- Abraham U. Morales-Primo
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| | - Ingeborg Becker
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| | - Claudia Patricia Pedraza-Zamora
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Jaime Zamora-Chimal
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| |
Collapse
|
4
|
Camelo GMA, Silva JKADO, Geiger SM, Melo MN, Negrão-Corrêa DA. Schistosoma and Leishmania: An Untold Story of Coinfection. Trop Med Infect Dis 2023; 8:383. [PMID: 37624321 PMCID: PMC10458104 DOI: 10.3390/tropicalmed8080383] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
A remarkable characteristic of infectious diseases classified as Neglected Tropical Diseases (NTDs) is the fact that they are mostly transmitted in tropical and subtropical regions with poor conditions of sanitation and low access to healthcare, which makes transmission areas more likely to overlap. Two of the most important NTDs, schistosomiasis and leishmaniasis, despite being caused by very different etiological agents, have their pathogenesis heavily associated with immune-mediated mechanisms, and Schistosoma spp. and Leishmania spp. have been shown to simultaneously infect humans. Still, the consequences of Schistosoma-Leishmania coinfections remain underexplored. As the inflammatory processes elicited by each one of these parasites can influence the other, several changes have been observed due to this coinfection in naturally infected humans, experimental models, and in vitro cell assays, including modifications in susceptibility to infection, pathogenesis, prognostic, and response to treatment. Herein, we review the current knowledge in Schistosoma-Leishmania coinfections in both human populations and experimental models, with special regard to how schistosomiasis affects tegumentary leishmaniasis, discuss future perspectives, and suggest a few steps to further improve our understanding in this model of parasite-host-parasite interaction.
Collapse
Affiliation(s)
| | | | | | | | - Deborah Aparecida Negrão-Corrêa
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.M.A.C.)
| |
Collapse
|
5
|
Soto-Olguín N, Zamora-Chimal J, Delgado-Domínguez J, Becker I. Leishmania mexicana Lipophosphoglycan Activates Dermal γδ T Cells with Participation of TLR2. Acta Parasitol 2023; 68:122-129. [PMID: 36434381 DOI: 10.1007/s11686-022-00639-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/03/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Leishmania transmission by sand flies is detected by dermal cells that recognize ligands, such as lipophosphoglycan (LPG) on the promastigote glycocalyx. Resident dermal cells include γδ T cells, that recognize antigens by TCR or innate receptors, such as TLRs. We analyzed the response of dermal γδ T cells to Leishmania mexicana infections or inoculation of LPG, and whether parasite LPG activates γδ T cells through TLR2. METHODS We stimulated γδ T cells with LPG and analyzed colocalization of LPG and TLR2 by confocal microscopy. Activation of TLR2 was evaluated by IκBα phosphorylation. BALB/c mice were inoculated with L. mexicana or LPG in the dermis of earlobes, and LPG+ TLR2+ γδ T cells were analyzed by flow cytometry. TNF+ γδ T cells were examined in earlobe dermis by confocal microscopy. RESULTS Stimulation with purified LPG showed activation of TLR2 with IκBα phosphorylation in γδ T cells. Inoculation of L. mexicana parasites or LPG into earlobe dermis showed co-expression of LPG+ and TLR2+ in γδ T cells, demonstrating their interaction during infections. A subset of γδ T cells (LPG+ and TLR2-) provided evidence that additional receptors recognize LPG. Inoculation of LPG enhanced overall γδ T cell numbers, including those expressing TNF, whereas infection with the parasite mostly enhanced γδ T cells expressing TNF. CONCLUSION L. mexicana LPG is a ligand recognized by TLR2 on γδ-T cells leading to their activation, although contribution of other receptors cannot be ruled out and need to be analyzed to elucidate their contribution during Leishmania infections.
Collapse
Affiliation(s)
- Nadia Soto-Olguín
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis 148, 06726, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis 148, 06726, Mexico City, Mexico
| | - José Delgado-Domínguez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis 148, 06726, Mexico City, Mexico
| | - Ingeborg Becker
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis 148, 06726, Mexico City, Mexico.
| |
Collapse
|
6
|
Alizadeh Z, Omidnia P, Altalbawy FMA, Gabr GA, Obaid RF, Rostami N, Aslani S, Heidari A, Mohammadi H. Unraveling the role of natural killer cells in leishmaniasis. Int Immunopharmacol 2023; 114:109596. [PMID: 36700775 DOI: 10.1016/j.intimp.2022.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
NK cells are known as frontline responders that are efficient in combating several maladies as well as leishmaniasis caused by Leishmania spp. As such they are being investigated to be used for adoptive transfer therapy and vaccine. In spite of the lack of antigen-specific receptors at their surface, NK cells can selectively recognize pathogens, accomplished by the activation of the receptors on the NK cell surface and also as the result of their effector functions. Activation of NK cells can occur through interaction between TLR-2 expressed on NK cells and. LPG of Leishmania parasites. In addition, NK cell activation can occur by cytokines (e.g., IFN-γ and IL-12) that also lead to producing cytokines and chemokines and lysis of target cells. This review summarizes several evidences that support NK cells activation for controlling leishmaniasis and the potentially lucrative roles of NK cells during leishmaniasis. Furthermore, we discuss strategies of Leishmania parasites in inhibiting NK cell functions. Leishmania LPG can utilizes TLR2 to evade host-immune responses. Also, Leishmania GP63 can directly binds to NK cells and modulates NK cell phenotype. Finally, this review analyzes the potentialities to harness NK cells effectiveness in therapy regimens and vaccinations.
Collapse
Affiliation(s)
- Zahra Alizadeh
- Department of Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Duba 71911, Saudi Arabia
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Narges Rostami
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliehsan Heidari
- Department of Parasitology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
7
|
Cavalcante MKDA, de Freitas e Silva R, Pereira VRA, Brelaz-de-Castro MCA. Opinion Article: NK Cells in Cutaneous Leishmaniasis: Protection or Damage? Front Immunol 2022; 13:933490. [PMID: 35844579 PMCID: PMC9283678 DOI: 10.3389/fimmu.2022.933490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Marton Kaique de Andrade Cavalcante
- Department of Immunology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, Brazil
- Parasitology Laboratory, Federal University of Pernambuco, Vitoria de Santo Antão, Brazil
| | - Rafael de Freitas e Silva
- Department of Immunology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, Brazil
- Department of Natural Sciences, University of Pernambuco, Garanhuns, Brazil
| | | | - Maria Carolina Accioly Brelaz-de-Castro
- Department of Immunology, Aggeu Magalhães Institute - Oswaldo Cruz Foundation, Recife, Brazil
- Parasitology Laboratory, Federal University of Pernambuco, Vitoria de Santo Antão, Brazil
- *Correspondence: Maria Carolina Accioly Brelaz-de-Castro,
| |
Collapse
|
8
|
Carneiro PP, Dórea AS, Oliveira WN, Guimarães LH, Brodskyn C, Carvalho EM, Bacellar O. Blockade of TLR2 and TLR4 Attenuates Inflammatory Response and Parasite Load in Cutaneous Leishmaniasis. Front Immunol 2021; 12:706510. [PMID: 34691019 PMCID: PMC8526941 DOI: 10.3389/fimmu.2021.706510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Human cutaneous leishmaniasis (CL) caused by Leishmania braziliensis is characterized by a pronounced inflammatory response associated with ulcer development. Monocytes/macrophages, the main cells harboring parasites, are largely responsible for parasite control. Toll-like receptor (TLR) signaling leads to the transcription of inflammatory mediators, such as IL-1β and TNF during innate immune response. TLR antagonists have been used in the treatment of inflammatory disease. The neutralization of these receptors may attenuate an exacerbated inflammatory response. We evaluated the ability of TLR2 and TLR4 antagonists to modulate host immune response in L. braziliensis-infected monocytes and cells from CL patient skin lesions. Following TLR2 and TLR4 neutralization, decreased numbers of infected cells and internalized parasites were detected in CL patient monocytes. In addition, reductions in oxidative burst, IL-1β, TNF and CXCL9 production were observed. TNF production by cells from CL lesions also decreased after TLR2 and TLR4 neutralization. The attenuation of host inflammatory response after neutralizing these receptors suggests the potential of TLR antagonists as immunomodulators in association with antimonial therapy in human cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Pedro Paulo Carneiro
- Serviço de Imunologia, Hospital Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Andreza S Dórea
- Serviço de Imunologia, Hospital Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Walker N Oliveira
- Serviço de Imunologia, Hospital Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | | | | | - Edgar M Carvalho
- Goncalo Moniz Institute (IGM), Fiocruz, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - INCT-DT Conselho Nacional de Desenvolvimento Científico e Tecnológico/ Ministério da Ciência e Tecnologia (CNPq/MCT), Salvador, Brazil
| | - Olívia Bacellar
- Serviço de Imunologia, Hospital Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - INCT-DT Conselho Nacional de Desenvolvimento Científico e Tecnológico/ Ministério da Ciência e Tecnologia (CNPq/MCT), Salvador, Brazil
| |
Collapse
|
9
|
de Mesquita TGR, Junior JDES, de Lacerda TC, Queiroz KLGD, Júnior CMDS, Neto JPDM, Gomes LAM, de Souza MLG, Guerra MVDF, Ramasawmy R. Variants of MIRNA146A rs2910164 and MIRNA499 rs3746444 are associated with the development of cutaneous leishmaniasis caused by Leishmania guyanensis and with plasma chemokine IL-8. PLoS Negl Trop Dis 2021; 15:e0009795. [PMID: 34543271 PMCID: PMC8483412 DOI: 10.1371/journal.pntd.0009795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/30/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022] Open
Abstract
Leishmania are intracellular protozoan parasites that cause a wide spectrum of clinical manifestations in genetically susceptible individuals with an insufficient or balanced Th1 immune response to eliminate the parasite. MiRNAs play important regulatory role in numerous biological processes including essential cellular functions. miR146-a acts as an inhibitor of interleukin 1 receptor associated kinase 1 (IRAK1) and tumour necrosis factor (TNF) receptor associated factor 6 (TRAF6) present in the toll-like receptors pathway while miR499a modulates TGF-β and TNF signalling pathways. Here, we investigated whether MIRNA146A rs2910164 and MIRNA499 rs3746444 variants are associated with the development of L. guyanensis (Lg)-cutaneous leishmaniasis (CL). The variants MIR146A rs2910164 and MIR499A rs3746444 were assessed in 850 patients with Lg-CL and 891 healthy controls by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Plasma cytokines were measured using the BioPlex assay. Carriers of rs2910164 CC genotype have 30% higher odds of developing CL (ORadjage/sex = 1.3 [95%CI 0.9–1.8]; Padjage/sex 0.14) compared to individuals with the genotype GG (ORadjage/sex = 0.77 [95%CI 0.56–1.0]; Padjage/sex 0.14) if exposed to Lg-infection. Heterozygous GC individuals also showed lower odds of developing CL (ORadjage/sex = 0.77 [95%CI 0.5–1.1]; Padjage/sex 0.09). Homozygosity for the allele C is suggestive of an association with the development of Lg-CL among exposed individuals to Lg-infection. However, the odds of developing CL associated with the CC genotype was evident only in male individuals (ORadjage = 1.3 [95% CI = 0.9–2.0]; Padjage = 0.06). Individuals homozygous for the G allele tend to have higher plasma IL-8 and CCL5. Similarly, for the MIR499A rs3746444, an association with the G allele was only observed among male individuals (OR = 1.4 [1.0–1.9]; P = 0.009). In a dominant model, individuals with the G allele (GG-GA) when compared to the AA genotype reveals that carriers of the G allele have 40% elevated odds of developing Lg-CL (ORadjage = 1.4 [1.1–1.9]). Individuals with the GG genotype have higher odds of developing Lg-CL (ORadjage/sex = 2.0 [95%CI 0.83–5.0]; Padjage = 0.01. Individuals homozygous for the G allele have higher plasma IL-8. Genetic combinations of both variants revealed that male individuals exposed to Lg bearing three or four susceptible alleles have higher odds of developing Lg-CL (OR = 2.3 [95% CI 1.0–4.7]; p = 0.017). Both MIR146A rs2910164 and MIR499A rs3746444 are associated with the development of Lg-CL and this association is prevalent in male individuals. Leishmaniasis is caused by infection with Leishmania parasites. In regions with the presence of Leishmania parasites, all people do not develop the disease despite similar exposure. Only a proportion of inhabitants progress to the development of disease. Clinical manifestations depend on the vector and Leishmania species, as well the host genetic background and genetically determined immune responses. miRNAs play important roles in regulating gene expression and many biological processes including immune pathways. miR-146a targets TRAF6 and IRAK1 genes, that encode key adaptor molecules downstream of toll-like receptors (TLRs). TLRs are critical in immune response to Leishmania-infection. miR499-a modulates inflammation-related signalling pathways such as TGFβ, TNFα and TLR pathways. In this study, we showed that MIR146A and MIR499A variants are risk factors to developing cutaneous leishmaniasis caused by L. guyanensis in Amazonas state of Brazil. Individuals with these variants are susceptible to the development of CL.
Collapse
Affiliation(s)
- Tirza Gabrielle Ramos de Mesquita
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - José do Espírito Santo Junior
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Amazonas, Brazil
| | - Thais Carneiro de Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Amazonas, Brazil
| | | | | | | | | | | | - Marcus Vinitius de Farias Guerra
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Genomic Health Surveillance Network: Optimization of Assistance and Research in The State of Amazonas–REGESAM, Manaus, Amazonas, Brazil
| | - Rajendranath Ramasawmy
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Amazonas, Brazil
- Genomic Health Surveillance Network: Optimization of Assistance and Research in The State of Amazonas–REGESAM, Manaus, Amazonas, Brazil
- * E-mail:
| |
Collapse
|
10
|
de Araújo Albuquerque LP, da Silva AM, de Araújo Batista FM, de Souza Sene I, Costa DL, Costa CHN. Influence of sex hormones on the immune response to leishmaniasis. Parasite Immunol 2021; 43:e12874. [PMID: 34309860 DOI: 10.1111/pim.12874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
The differences in morbidity and mortality patterns and life expectancy between the sexes are well established in different infectious and parasitic conditions, such as in leishmaniases, in which biological, genetic, sexual and hormonal variations can modulate the immune response indicating greater infectivity, prevalence and clinical severity in men. In this regard, in seeking the understanding of factors related to protection and susceptibility to infection, this review aimed to discuss the influence of sex hormones on the immune response to leishmaniases. In the literature, sex hormone variations promote differences in the innate, humoral and cell-mediated immune response, leading to greater susceptibility, mortality and complications in males. Epidemiological estimates confirm these results, showing a predominance of the disease, in its different clinical forms, in men and suggesting that sexual variations influence immunomodulatory mechanisms since the prevalence of cases comprises the post-puberty and adulthood period. In this perspective, the action of sex hormones has been investigated in different clinical models, highlighting the potential of testosterone in immunosuppression, given its association with greater susceptibility and poor control of parasite load and the induction of cell apoptosis and attenuation of pro-inflammatory signalling pathways. Therefore, hormonal variations influence the immune response among males and females against leishmaniases, in which androgens may present immunosuppressive potential, while steroids present immunomodulatory characteristics.
Collapse
Affiliation(s)
| | - Amanda Miranda da Silva
- Postgraduate Program in Biotechnology, Northeast Network of Biotechnology, Federal University of Piauí, Teresina, Brazil.,Leishmaniasis Laboratory, Federal University of Piauí, Teresina, Brazil
| | | | | | - Dorcas Lamounier Costa
- Maternal and Child Department, Federal University of Piauí and Intelligence Center in Emerging and Neglected Tropical Conditions (CIATEN, Teresina, Brazil
| | - Carlos Henrique Nery Costa
- Community Medicine Department, Federal University of Piauí and Intelligence Center in Emerging and Neglected Tropical Conditions (CIATEN, Teresina, Brazil
| |
Collapse
|
11
|
Attenuating Effects of Dieckol on Endothelial Cell Dysfunction via Modulation of Th17/Treg Balance in the Intestine and Aorta of Spontaneously Hypertensive Rats. Antioxidants (Basel) 2021; 10:antiox10020298. [PMID: 33669285 PMCID: PMC7920082 DOI: 10.3390/antiox10020298] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Disruptions of the Treg/Th17 cell balance and gut barrier function are associated with endothelial dysfunction. Dieckol (DK) obtained from Ecklonia cava and E. cava extract (ECE) decreases blood pressure by reducing inflammation; however, it has not been elucidated whether DK or ECE modulates the Treg/Th17 balance, changes the gut epithelial barrier, or decreases endothelial cell dysfunction. We evaluated the effects of ECE and DK on gut barrier and the Treg/Th17 balance in the intestine and aorta, with regard to endothelial dysfunction, using the spontaneously hypertensive rat (SHR) model. The level of Th17 cells increased and that of Treg cells decreased in the intestine of SHRs compared to normotensive Wistar Kyoto (WKY) rat. These changes were attenuated by ECE or DK treatment. Additionally, the serum IL-17A level increased in SHRs more than WKY; this was decreased by ECE or DK treatment. The level of Treg cells decreased and that of Th17 cells increased in the aorta of SHRs. These changes were attenuated by ECE or DK treatment. The NF-κB and IL-6 levels were increased in SHRs, but these changes were reversed by ECE or DK treatment. Endothelial cell dysfunction, which was evaluated using peNOS/eNOS, nitrate/nitrite ratio, and NADPH oxidase activity, increased in the aorta of SHRs, but was decreased by ECE or DK treatment. The Treg/Th17 balance in the intestine and aorta of SHRs was attenuated and endothelial cell dysfunction was attenuated through the Th17/NF-κB/IL-6 pathway by ECE or DK.
Collapse
|
12
|
Jafarzadeh A, Jafarzadeh S, Sharifi I, Aminizadeh N, Nozari P, Nemati M. The importance of T cell-derived cytokines in post-kala-azar dermal leishmaniasis. Cytokine 2020; 147:155321. [PMID: 33039255 DOI: 10.1016/j.cyto.2020.155321] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Infection with the same species of Leishmania (L)donovani causes different manifestations including visceral leishmaniasis (VL) and post kala-azar dermal leishmaniasis (PKDL), indicating that the host-related immunological parameters perform a decisive role in the pathogenesis of diseases. As PKDL is a reservoir of the parasite, a better understanding of the host immune responses is necessary to restrict the L. donovani transmission. The proper local production of Th1 cell-related cytokines (including IFN-γ, TNF-α and IL-12), Th17 cell-derived cytokines (such as IL-17A, IL-17F and IL-22), and CD8+ cytotoxic T lymphocyte (CTL)-derived IFN-γ are protective against PKDL. However, dominant production of regulatory CD4+ T cell-derived cytokines (such as IL-10 and TGF-β), Th2 cell-derived cytokines (such as IL-4/IL-13), M2 macrophage-derived cytokines (such as IL-4 and IL-10), keratinocyte-derived IL-10, regulatory CD8+ T cell-derived IL-10, and dendritic cell-derived IL-10, IL-27 and IL-21 can contribute to the parasite persistence and PKDL development. Understanding of the T cell-related cytokine network within PKDL lesions gives rise to novel insights concerning the role of each cytokine in the protection or susceptibility to disease. Manipulation of the cytokine network can be considered as an interesting immunotherapeutic strategy for the treatment of L. donovani-mediated PKDL.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Najmeh Aminizadeh
- Department of Histology, School of Medicine, Islamic Azad University Branch of Kerman, Kerman, Iran
| | - Parvin Nozari
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Ikeogu NM, Akaluka GN, Edechi CA, Salako ES, Onyilagha C, Barazandeh AF, Uzonna JE. Leishmania Immunity: Advancing Immunotherapy and Vaccine Development. Microorganisms 2020; 8:E1201. [PMID: 32784615 PMCID: PMC7465679 DOI: 10.3390/microorganisms8081201] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/06/2023] Open
Abstract
Parasitic diseases still constitute a major global health problem affecting billions of people around the world. These diseases are capable of becoming chronic and result in high morbidity and mortality. Worldwide, millions of people die each year from parasitic diseases, with the bulk of those deaths resulting from parasitic protozoan infections. Leishmaniasis, which is a disease caused by over 20 species of the protozoan parasite belonging to the genus Leishmania, is an important neglected disease. According to the World Health Organization (WHO), an estimated 12 million people are currently infected in about 98 countries and about 2 million new cases occur yearly, resulting in about 50,000 deaths each year. Current treatment methods for leishmaniasis are not very effective and often have significant side effects. In this review, we discussed host immunity to leishmaniasis, various treatment options currently being utilized, and the progress of both immunotherapy and vaccine development strategies used so far in leishmaniasis. We concluded with insights into what the future holds toward the fight against this debilitating parasitic disease.
Collapse
Affiliation(s)
- Nnamdi M. Ikeogu
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| | - Gloria N. Akaluka
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| | - Chidalu A. Edechi
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Enitan S. Salako
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| | - Chukwunonso Onyilagha
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Aida F. Barazandeh
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| | - Jude E. Uzonna
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| |
Collapse
|
14
|
Thacker SG, McWilliams IL, Bonnet B, Halie L, Beaucage S, Rachuri S, Dey R, Duncan R, Modabber F, Robinson S, Bilbe G, Arana B, Verthelyi D. CpG ODN D35 improves the response to abbreviated low-dose pentavalent antimonial treatment in non-human primate model of cutaneous leishmaniasis. PLoS Negl Trop Dis 2020; 14:e0008050. [PMID: 32109251 PMCID: PMC7075640 DOI: 10.1371/journal.pntd.0008050] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/16/2020] [Accepted: 01/12/2020] [Indexed: 01/01/2023] Open
Abstract
Cutaneous leishmaniasis (CL) affects the lives of 0.7–1 million people every year causing lesions that take months to heal. These lesions can result in disfiguring scars with psychological, social and economic consequences. Antimonials are the first line of therapy for CL, however the treatment is lengthy and linked to significant toxicities; further, its efficacy is variable and resistant parasites are emerging. Shorter or lower dose antimonial treatment regimens, which would decrease the risk of adverse events and improve patient compliance, have shown reduced efficacy and further increase the risk emergence of antimonial-resistant strains. The progression of lesions in CL is partly determined by the immune response it elicits, and previous studies showed that administration of immunomodulatory type D CpG ODNs, magnifies the immune response to Leishmania and reduces lesion severity in nonhuman primates (NHP) challenged with Leishmania major or Leishmania amazonensis. Here we explored whether the addition of a single dose of immunomodulating CpG ODN D35 augments the efficacy of a short-course, low-dose pentavalent antimonial treatment regimen. Results show that macaques treated with D35 plus 5mg/kg sodium stibogluconate (SbV) for 10 days had smaller lesions and reduced time to re-epithelization after infection with Leishmania major. No toxicities were evident during the studies, even at doses of D35 10 times higher than those used in treatment. Critically, pentavalent antimonial treatment did not modify the ability of D35 to induce type I IFNs. The findings support the efficacy of D35 as adjuvant therapy for shorter, low dose pentavalent antimonial treatment. Cutaneous leishmaniasis is a devastating disease that affects close to a million people every year. Its clinical presentation ranges from small uncomplicated lesions that heal over a few months to debilitating large chronic or recurring lesions that result in disfigurement, stigma, and economic loss. Antimonials are the first line treatment for cutaneous leishmaniasis in most countries, but the lengthy treatment schedules, significant associated toxicities, and the emergence of resistant strains, require the development of alternative strategies. As the immune response is a key determinant of disease course, immunomodulatory therapies could be harnessed to act in concert with antimonials to improve the safety and efficacy of CL treatment. Synthetic oligonucleotide D35 selectively activates plasmacytoid dendritic cells and was previously shown to reduce the severity of L. major and L. amazonensis lesions in rhesus macaques, but its activity in combination with antimonials was unknown. Our studies show that a single subcutaneous dose of innate immune modulator D35 improved the response to a low-dose abbreviated antimonial course, reducing the severity of the lesions and accelerating healing in primates. No toxicities were evident with D35 at doses ten-fold higher than the effective dose. The studies suggest that the combined therapy strategy shows clinical promise.
Collapse
Affiliation(s)
- Seth G Thacker
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ian L. McWilliams
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Beatrice Bonnet
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Lydia Halie
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Serge Beaucage
- Laboratory of Biological Chemistry; Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Swaksha Rachuri
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ranadhir Dey
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Robert Duncan
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Farrokh Modabber
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Stephen Robinson
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Graeme Bilbe
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Byron Arana
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
- * E-mail: (BA); (DV)
| | - Daniela Verthelyi
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (BA); (DV)
| |
Collapse
|
15
|
Cutaneous Leishmaniasis: The Complexity of Host's Effective Immune Response against a Polymorphic Parasitic Disease. J Immunol Res 2019; 2019:2603730. [PMID: 31871953 PMCID: PMC6913332 DOI: 10.1155/2019/2603730] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 10/05/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
This review is aimed at providing a comprehensive outline of the immune response displayed against cutaneous leishmaniasis (CL), the more common zoonotic infection caused by protozoan parasites of the genus Leishmania. Although of polymorphic clinical presentation, classically CL is characterized by leishmaniotic lesions on the face and extremities of the patients, which can be ulcerative, and even after healing can lead to permanent injuries and disfigurement, affecting significantly their psychological, social, and economic well-being. According a report released by the World Health Organization, the disability-adjusted life years (DALYs) lost due to leishmaniasis are close to 2.4 million, annually there are 1.0–1.5 million new cases of CL, and a numerous population is at risk in the endemic areas. Despite its increasing worldwide incidence, it is one of the so-called neglected tropical diseases. Furthermore, this review provides an overview of the existing knowledge of the host innate and acquired immune response to cutaneous species of Leishmania. The use of animal models and of in vitro studies has improved the understanding of parasite-host interplay and the complexity of immune mechanisms involved. The importance of diagnosis accuracy associated with effective patient management in CL reduction is highlighted. However, the multiple factors involved in CL epizoology associated with the unavailability of vaccines or drugs to prevent infection make difficult to formulate an effective strategy for CL control.
Collapse
|
16
|
Draft Genome Sequences of Leishmania ( Leishmania) amazonensis, Leishmania ( Leishmania) mexicana, and Leishmania ( Leishmania) aethiopica, Potential Etiological Agents of Diffuse Cutaneous Leishmaniasis. Microbiol Resour Announc 2019; 8:8/20/e00269-19. [PMID: 31097501 PMCID: PMC6522786 DOI: 10.1128/mra.00269-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We present here the draft genome sequences of Leishmania (Leishmania) amazonensis, Leishmania (Leishmania) mexicana, and Leishmania (Leishmania) aethiopica, potential etiological agents of diffuse cutaneous leishmaniasis (DCL). Sequence data were obtained using PacBio and MiSeq platforms. We present here the draft genome sequences of Leishmania (Leishmania) amazonensis, Leishmania (Leishmania) mexicana, and Leishmania (Leishmania) aethiopica, potential etiological agents of diffuse cutaneous leishmaniasis (DCL). Sequence data were obtained using PacBio and MiSeq platforms. The PacBio assemblies generated using Canu v1.6 are more contiguous than are those in the available data.
Collapse
|
17
|
Sex-Related Differences in Immune Response and Symptomatic Manifestations to Infection with Leishmania Species. J Immunol Res 2019; 2019:4103819. [PMID: 30756088 PMCID: PMC6348913 DOI: 10.1155/2019/4103819] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/22/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Worldwide, an estimated 12 million people are infected with Leishmania spp. and an additional 350 million are at risk of infection. Leishmania are intracellular parasites that cause disease by suppressing macrophage microbicidal responses. Infection can remain asymptomatic or lead to a spectrum of diseases including cutaneous, mucocutaneous, and visceral leishmaniasis. Ultimately, the combination of both pathogen and host factors determines the outcome of infection. Leishmaniasis, as well as numerous other infectious diseases, exhibits sex-related differences that cannot be explained solely in terms of environmental exposure or healthcare access. Furthermore, transcriptomic evidence is revealing that biological sex is a variable impacting physiology, immune response, drug metabolism, and consequently, the progression of disease. Herein, we review the distribution, morbidity, and mortality among male and female leishmaniasis patients. Additionally, we discuss experimental findings and new avenues of research concerning sex-specific responses in cutaneous and visceral leishmaniasis. The limitations of current therapies and the emergence of drug-resistant parasites underscore the need for new treatments that could harness the host immune response. As such, understanding the mechanisms driving the differential immune response and disease outcome of males versus females is a necessary step in the development of safer and more effective treatments against leishmaniasis.
Collapse
|
18
|
Oliaee RT, Sharifi I, Afgar A, Jafarzadeh A, Kareshk AT, Bamorovat M, Sharifi H, Babaei Z, Keyhani A, Keyhani A, Abedi L, Sharifi F. Differential expression of TLRs 2, 4, 9, iNOS and TNF-α and arginase activity in peripheral blood monocytes from glucantime unresponsive and responsive patients with anthroponotic cutaneous leishmaniasis caused by Leishmania tropica. Microb Pathog 2018; 126:368-378. [PMID: 30399441 DOI: 10.1016/j.micpath.2018.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Detection of the mechanism of host/parasite interactions in unresponsive forms of anthroponotic cutaneous leishmaniasis (ACL) caused by Leishmania tropica is helpful for immunotherapy and vaccine development. In the present study, the gene expression of toll-like receptors (TLRs), TNF-α, iNOS and also arginase (ARG) activity in monocytes from Glucantime unresponsive in comparison to responsive patients infected with L. tropica was investigated. METHODS In this case-control study, patients with unresponsive (n = 10) and responsive (n = 10) ACL were recruited. Gene expression of TLR2, TLR4, TLR9, TNF-α and iNOS was analyzed in L. tropica-exposed monocytes. The level of ARG activity in both isolated promastigotes and the lysates of monocytes was also determined. RESULTS L. tropica-exposed monocytes represented higher expression of all three TLRs and TNF-α and lower expression of iNOS compared to unexposed ones in both groups of patients. Results revealed a significant down-regulation of TLR2 and TNF-α and up-regulation of TLR9 expression in unresponsive isolates in comparison to responsive ones. Besides, ARG level showed a significant increase in L. tropica-stimulated monocytes and cultured promastigotes from unresponsive isolates versus responsive ones. CONCLUSIONS The decreased TLR2, TLR4, TNF-α and iNOS and the increased level of TLR9 expression in L. tropica-exposed monocytes from unresponsive isolates and also the increment in ARG activity in their promastigotes and monocytes, might possibly be involved in the severity of the disease and leading to Glucantime unresponsiveness.
Collapse
Affiliation(s)
- Razieh Tavakoli Oliaee
- Department of Medical Parasitology and Mycology, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Tavakoli Kareshk
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Sharifi
- HIV/STI Surveillance Research Center, WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Department of Medical Parasitology and Mycology, Kerman University of Medical Sciences, Kerman, Iran; Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Keyhani
- Department of Medical Parasitology and Mycology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Leili Abedi
- Department of Statistics and Epidemiology, Faculty of Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
19
|
Messlinger H, Sebald H, Heger L, Dudziak D, Bogdan C, Schleicher U. Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites. Front Immunol 2018; 9:24. [PMID: 29472914 PMCID: PMC5810259 DOI: 10.3389/fimmu.2018.00024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022] Open
Abstract
Activated natural killer (NK) cells release interferon (IFN)-γ, which is crucial for the control of intracellular pathogens such as Leishmania. In contrast to experimental murine leishmaniasis, the human NK cell response to Leishmania is still poorly characterized. Here, we investigated the interaction of human blood NK cells with promastigotes of different Leishmania species (Leishmania major, Leishmania mexicana, Leishmania infantum, and Leishmania donovani). When peripheral blood mononuclear cells or purified NK cells and monocytes (all derived from healthy blood donors from Germany without a history of leishmaniasis) were exposed to promastigotes, NK cells showed increased surface expression of the activation marker CD69. The extent of this effect varied depending on the Leishmania species; differences between dermotropic and viscerotropic L. infantum strains were not observed. Upregulation of CD69 required direct contact between monocytes and Leishmania and was partly inhibitable by anti-interleukin (IL)-18. Unexpectedly, IL-18 was undetectable in most of the supernatants (SNs) of monocyte/parasite cocultures. Confocal fluorescence microscopy of non-permeabilized cells revealed that Leishmania-infected monocytes trans-presented IL-18 to NK cells. Native, but not heat-treated SNs of monocyte/Leishmania cocultures also induced CD69 on NK cells, indicating the involvement of a soluble heat-labile factor other than IL-18. A role for the NK cell-activating cytokines IL-1β, IL-2, IL-12, IL-15, IL-21, and IFN-α/β was excluded. The increase of CD69 was not paralleled by NK cell IFN-γ production or enhanced cytotoxicity. However, prior exposure of NK cells to Leishmania parasites synergistically increased their IFN-γ release in response to IL-12, which was dependent on endogenous IL-18. CD1c+ dendritic cells were identified as possible source of Leishmania-induced IL-12. Finally, we observed that direct contact between Leishmania and NK cells reduced the expression of CD56 mRNA and protein on NK cells. We conclude that Leishmania activate NK cells via trans-presentation of IL-18 by monocytes and by a monocyte-derived soluble factor. IL-12 is needed to elicit the IFN-γ-response of NK cells, which is likely to be an important component of the innate control of the parasite.
Collapse
Affiliation(s)
- Helena Messlinger
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Heidi Sebald
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Laboratory of DC Biology, Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of DC Biology, Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrike Schleicher
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
20
|
Abstract
The leishmaniases are diseases caused by pathogenic protozoan parasites of the genus Leishmania. Infections are initiated when a sand fly vector inoculates Leishmania parasites into the skin of a mammalian host. Leishmania causes a spectrum of inflammatory cutaneous disease manifestations. The type of cutaneous pathology is determined in part by the infecting Leishmania species, but also by a combination of inflammatory and anti-inflammatory host immune response factors resulting in different clinical outcomes. This review discusses the distinct cutaneous syndromes described in humans, and current knowledge of the inflammatory responses associated with divergent cutaneous pathologic responses to different Leishmania species. The contribution of key hematopoietic cells in experimental cutaneous leishmaniasis in mouse models are also reviewed and compared with those observed during human infection. We hypothesize that local skin events influence the ensuing adaptive immune response to Leishmania spp. infections, and that the balance between inflammatory and regulatory factors induced by infection are critical for determining cutaneous pathology and outcome of infection.
Collapse
|
21
|
Cunha CF, Ferraz R, Pimentel MIF, Lyra MR, Schubach AO, Da-Cruz AM, Bertho AL. Cytotoxic cell involvement in human cutaneous leishmaniasis: assessments in active disease, under therapy and after clinical cure. Parasite Immunol 2016; 38:244-54. [PMID: 26928901 DOI: 10.1111/pim.12312] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/23/2016] [Indexed: 12/11/2022]
Abstract
Cutaneous leishmaniasis (CL) is an important public health issue worldwide. The control of Leishmania infection depends on cellular immune mechanisms, and the inflammatory response may contribute to pathogenesis. A beneficial role of CD8(+) T lymphocytes has been proposed; nevertheless, other studies suggest a cytotoxic role of CD8(+) T lymphocytes involved in tissue damage, showing controversial role of these cells. The goal of the current study was to understand the immunopathology of CL and determine the profile of cytotoxic cells--such as CD4(+) T, natural killer and natural killer T cells--that might be involved in triggering immunological mechanisms, and may lead to cure or disease progression. The frequencies of cytotoxic cell populations in peripheral blood, obtained from patients with active disease, during treatment and after clinical healing, were assessed by flow cytometry. Cytotoxicity could not be related to a deleterious role in Leishmania braziliensis infection, as patients with active CL showed similar percentages of degranulation to healthy individuals (HI). Cured patients exhibited a lower percentage of degranulating cells, which may be due to a downregulation of the immune response. The understanding of the immunopathological mechanisms involved in CL and the commitment of cytotoxic cells enables improvements in therapeutic strategies.
Collapse
Affiliation(s)
- C F Cunha
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - R Ferraz
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro, RJ, Brazil.,Flow Cytometry Sorting Core, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - M I F Pimentel
- Laboratory of Surveillance for Leishmaniasis, Evandro Chagas National Institute of Infectology (INI), FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - M R Lyra
- Laboratory of Surveillance for Leishmaniasis, Evandro Chagas National Institute of Infectology (INI), FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - A O Schubach
- Laboratory of Surveillance for Leishmaniasis, Evandro Chagas National Institute of Infectology (INI), FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - A M Da-Cruz
- Laboratory of Interdisciplinary Medical Research, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - A L Bertho
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro, RJ, Brazil.,Flow Cytometry Sorting Core, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
22
|
Galdino H, Saar Gomes R, Dos Santos JC, Pessoni LL, Maldaner AE, Marques SM, Gomes CM, Dorta ML, de Oliveira MAP, Joosten LAB, Ribeiro-Dias F. Leishmania (Viannia) braziliensis amastigotes induces the expression of TNFα and IL-10 by human peripheral blood mononuclear cells in vitro in a TLR4-dependent manner. Cytokine 2016; 88:184-192. [PMID: 27649507 DOI: 10.1016/j.cyto.2016.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 11/30/2022]
Abstract
While the role of Toll-like receptors (TLRs) has been investigated in murine models of tegumentary leishmaniasis caused by Leishmania (Viannia) braziliensis, the interaction between TLRs and Leishmania sp. has not been investigated in human cells. The aim of this study was to evaluate the involvement of TLR4 in cytokine production of human peripheral blood mononuclear cells (PBMCs) induced by L. braziliensis, and whether the parasite alters the expression of TLR4 on monocytes/macrophages. Amastigote forms were obtained from mice lesions and PBMCs were isolated from healthy donors. PBMCs were cultured in absence or presence of IFNγ, TLR4 neutralizing antibodies, natural antagonist of TLR4 (Bartonella LPS), TLR4 agonist (E. coli LPS), and amastigote forms. The concentrations of tumor necrosis factor (TNFα) and interleukin 10 (IL-10) were assayed by ELISA and TLR4 expression by flow cytometry. Amastigotes forms of L. braziliensis induced TNFα and IL-10 production only in IFNγ-primed PBMCs. The TNFα and IL-10 production was inhibited by TLR4 neutralization, both with anti-TLR4 antibodies and Bartonella LPS. Interestingly, addition of E. coli LPS further increased TNFα but not IL-10 production induced by L. braziliensis amastigotes. Amastigotes of L. braziliensis strongly reduced membrane TLR4 expression on monocytes/macrophages, apparently by internalization after the infection. The present study reveals that TLR4 drives the production of TNFα and IL-10 induced by L. braziliensis amastigotes and that the parasites decrease TLR4 expression on monocyte surface.
Collapse
Affiliation(s)
- Hélio Galdino
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Rodrigo Saar Gomes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Jessica Cristina Dos Santos
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Department of Internal Medicine, Radboud University Medical Center and Radboud Center of Infectious Diseases (RCI), Nijmegen, The Netherlands
| | - Lívia Lara Pessoni
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Anetícia Eduarda Maldaner
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Stéfanne Madalena Marques
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Clayson Moura Gomes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Miriam Leandro Dorta
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Leo A B Joosten
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Department of Internal Medicine, Radboud University Medical Center and Radboud Center of Infectious Diseases (RCI), Nijmegen, The Netherlands.
| | - Fátima Ribeiro-Dias
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
23
|
Zamora-Chimal J, Fernández-Figueroa EA, Ruiz-Remigio A, Wilkins-Rodríguez AA, Delgado-Domínguez J, Salaiza-Suazo N, Gutiérrez-Kobeh L, Becker I. NKT cell activation by Leishmania mexicana LPG: Description of a novel pathway. Immunobiology 2016; 222:454-462. [PMID: 27523746 DOI: 10.1016/j.imbio.2016.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/16/2016] [Accepted: 08/05/2016] [Indexed: 11/25/2022]
Abstract
NKT cells have been associated with protection against Leishmania donovani, yet their role in infections with Leishmania mexicana has not been addressed, nor has the activation pathway been defined after stimulation with Leishmania mexicana lipophosphoglycan (LPG). We analyzed the activation of NKT cells and their cytokine production in response to Leishmania mexicana LPG. Additionally we compared NKT-cell numbers and cytokine profile in lymph nodes of skin lesions induced by Leishmania mexicana in BALB/c and C57BL/6 mice. We show that LPG activates NKT cells primarily through the indirect pathway, initiating with TLR2 stimulation of dendritic cells (DC), thereby enhancing TLR2, MHC II, and CD86 expressions and IL-12p70 production. This leads to IFN-γ production by NKT cells. C57BL/6 mice showed enhanced DC activation, which correlated with augmented IFN-γ production by NKT cells. Additionally, infected C57BL/6 mice showed elevated percentages of NKT cells with higher IFN-γ and IL-4 production in lymph nodes. We conclude that the response of NKT cells towards Leishmania mexicana LPG initiates with the indirect activation, after binding of LPG to TLR2 in DC. This indirect activation pathway enables NKT cells to produce IFN-γ during the innate phase of Leishmania infection, the magnitude of which differs between mouse strains.
Collapse
Affiliation(s)
- Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis 148, Ciudad de Mexico C.P. 06726, Mexico
| | - Edith A Fernández-Figueroa
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis 148, Ciudad de Mexico C.P. 06726, Mexico
| | - Adriana Ruiz-Remigio
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis 148, Ciudad de Mexico C.P. 06726, Mexico
| | - Arturo A Wilkins-Rodríguez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis 148, Ciudad de Mexico C.P. 06726, Mexico
| | - José Delgado-Domínguez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis 148, Ciudad de Mexico C.P. 06726, Mexico
| | - Norma Salaiza-Suazo
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis 148, Ciudad de Mexico C.P. 06726, Mexico
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis 148, Ciudad de Mexico C.P. 06726, Mexico
| | - Ingeborg Becker
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis 148, Ciudad de Mexico C.P. 06726, Mexico.
| |
Collapse
|
24
|
Fernández-Figueroa EA, Imaz-Rosshandler I, Castillo-Fernández JE, Miranda-Ortíz H, Fernández-López JC, Becker I, Rangel-Escareño C. Down-Regulation of TLR and JAK/STAT Pathway Genes Is Associated with Diffuse Cutaneous Leishmaniasis: A Gene Expression Analysis in NK Cells from Patients Infected with Leishmania mexicana. PLoS Negl Trop Dis 2016; 10:e0004570. [PMID: 27031998 PMCID: PMC4816531 DOI: 10.1371/journal.pntd.0004570] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 03/02/2016] [Indexed: 12/15/2022] Open
Abstract
An important NK-cell inhibition with reduced TNF-α, IFN-γ and TLR2 expression had previously been identified in patients with diffuse cutaneous leishmaniasis (DCL) infected with Leishmania mexicana. In an attempt to pinpoint alterations in the signaling pathways responsible for the NK-cell dysfunction in patients with DCL, this study aimed at identifying differences in the NK-cell response towards Leishmania mexicana lipophosphoglycan (LPG) between patients with localized and diffuse cutaneous leishmaniasis through gene expression profiling. Our results indicate that important genes involved in the innate immune response to Leishmania are down-regulated in NK cells from DCL patients, particularly TLR and JAK/STAT signaling pathways. This down-regulation showed to be independent of LPG stimulation. The study sheds new light for understanding the mechanisms that undermine the correct effector functions of NK cells in patients with diffuse cutaneous leishmaniasis contributing to a better understanding of the pathobiology of leishmaniasis. Leishmaniasis, caused by protozoan parasites is considered a neglected disease. Leishmania mexicana can cause localized or diffuse cutaneous leishmaniasis. Patients with localized cutaneous leishmaniasis contain the parasite within granulomas, whereas patients with diffuse cutaneous leishmaniasis show uncontrolled parasite spread. The cause of this progression remains unknown. However, NK cells have been shown to play an important role since they are among the first to produce cytokines (IFN-γ and TNF-α) that help phagocytic cells to eliminate the intracellular parasite. Previous studies had shown that NK cells of patients with diffuse cutaneous leishmaniasis are unresponsive to Leishmania, yet underlying mechanisms were unknown. The current work aims at understanding how the parasite modulates NK-cell responses through gene expression profiling between patients with localized and diffuse cutaneous leishmaniasis. A highlight of our results is that NK cells of patients with the uncontrolled form of leishmaniasis show down-regulation patterns for genes that regulate the innate immune response through TLR receptors and JAK/STAT signaling pathways at different levels: transcription factors (NF-κB and STAT-1), cytokine receptors (IFN-γR2 and IL-12Rβ2) and cytokines (TNF-α). The alteration of expression levels for genes in immune response signaling pathways could predispose to DCL development and/or be associated with disease severity.
Collapse
Affiliation(s)
| | - Iván Imaz-Rosshandler
- Unidad de Investigación en Medicina Experimental, Centro de Medicina Tropical, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida, D.F., México
| | - Juan E. Castillo-Fernández
- Unidad de Investigación en Medicina Experimental, Centro de Medicina Tropical, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida, D.F., México
| | - Haydee Miranda-Ortíz
- Unidad de Investigación en Medicina Experimental, Centro de Medicina Tropical, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida, D.F., México
| | - Juan C. Fernández-López
- Unidad de Investigación en Medicina Experimental, Centro de Medicina Tropical, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida, D.F., México
| | - Ingeborg Becker
- Computational Genomics, Instituto Nacional de Medicina Genómica, Arenal Tepepan, México D.F., México
- * E-mail: (CRE); (IB)
| | - Claudia Rangel-Escareño
- Unidad de Investigación en Medicina Experimental, Centro de Medicina Tropical, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida, D.F., México
- * E-mail: (CRE); (IB)
| |
Collapse
|
25
|
Treatment of Cutaneous Leishmaniasis Caused by Leishmania aethiopica: A Systematic Review. PLoS Negl Trop Dis 2016; 10:e0004495. [PMID: 26938448 PMCID: PMC4777553 DOI: 10.1371/journal.pntd.0004495] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/07/2016] [Indexed: 11/19/2022] Open
Abstract
Leishmania aethiopica is the etiological agent of cutaneous leishmaniasis (CL) in Ethiopia and can cause severe and complicated cases such as diffuse CL (DCL), mucocutaneous leishmaniasis or extensive CL, requiring systemic treatment. Despite the substantial burden, evidence-based treatment guidelines are lacking. We conducted a systematic review of clinical studies reporting on treatment outcomes of CL due to L aethiopica in order to help identify potentially efficacious medications on CL that can be taken forward for clinical trials. We identified a total of 24 records reporting on 506 treatment episodes of CL presumably due to L aethiopica. The most commonly used drugs were antimonials (n = 201), pentamidine (n = 150) and cryotherapy (n = 103). There were 20 case reports/series, with an overall poor study quality. We only identified two small and/or poor quality randomized controlled trials conducted a long time ago. There were two prospective non-randomized studies reporting on cryotherapy, antimonials and pentamidine. With cryotherapy, cure rates were 60-80%, and 69-85% with antimonials. Pentamidine appeared effective against complicated CL, also in cases non-responsive to antimonials. However, all studies suffered from methodological limitations. Data on miltefosine, paromomycin and liposomal amphotericin B are extremely scarce. Only a few studies are available on DCL. The only potentially effective treatment options for DCL seem to be antimonials with paromomycin in combination or pentamidine, but none have been properly evaluated. In conclusion, the evidence-base for treatment of complicated CL due to L aethiopica is extremely limited. While antimonials remain the most available CL treatment in Ethiopia, their efficacy and safety in CL should be better defined. Most importantly, alternative first line treatments (such as miltefosine or paromomycin) should be explored. High quality trials on CL due to L aethiopica are urgently needed, exploring group sequential methods to evaluate several options in parallel.
Collapse
|
26
|
AKHZARI S, REZVAN H, ZOLHAVARIEH M. Expression of Pro-inflammatory Genes in Lesions and Neutrophils during Leishmania major Infection in BALB/c Mice. IRANIAN JOURNAL OF PARASITOLOGY 2016; 11:534-541. [PMID: 28127365 PMCID: PMC5251182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Leishmaniasis is a worldwide disease prevalent in tropical and sub-tropical countries in the world. Characterization of inflammatory responses produced in cutaneous leishmaniasis has not yet been completed. METHODS The specific primers were designed for ten pro-inflammatory genes including CCL4, CCL3, TNF-α, IL-1α, IL-12P35, IL-12P40, CCL5, CCR5, IL-1β and IFN- γ and their expression were assessed and compared using RT-PCR in the lesion and peripheral blood neutrophils in Leishmania infected BALB/c mice. RESULTS None of the pro-inflammatory genes was expressed in the healthy tissue and except IFN-γ others were down-regulated by the parasite in the lesion in untreated mice. In mice treated with anti-Leishmanial drugs, the expression of the pro-inflammatory genes restarted. The figure of pro-inflammatory gene expression in neutrophils was different was from the lesions in treated and untreated mice. CONCLUSION Leishmania is capable to suppress the expression of pro-inflammatory genes in the lesions but not in neutrophils. The expression of TNF-α in the lesions and down-regulation of IL-1β in neutrophils could be accounted as an indication for healing of cutaneous leishmaniasis. The results open a new window on characterization of Leishmania lesions and clarifying the role of neutrophils in Leishmania infections.
Collapse
Affiliation(s)
- Soheyla AKHZARI
- Dept. of Laboratory Sciences, School of Veterinary Sciences, Bu-Ali Sina University, Hamadan, Iran
| | - Hossein REZVAN
- Dept. of Laboratory Sciences, School of Veterinary Sciences, Bu-Ali Sina University, Hamadan, Iran,Correspondence
| | - Masoud ZOLHAVARIEH
- Dept. of Laboratory Sciences, School of Veterinary Sciences, Bu-Ali Sina University, Hamadan, Iran, Dept. of Clinical Sciences, Faculty of Para-Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|