1
|
Gubas A, Attridge E, Jefferies HB, Nishimura T, Razi M, Kunzelmann S, Gilad Y, Mercer TJ, Wilson MM, Kimchi A, Tooze SA. WIPI2b recruitment to phagophores and ATG16L1 binding are regulated by ULK1 phosphorylation. EMBO Rep 2024; 25:3789-3811. [PMID: 39152217 PMCID: PMC11387628 DOI: 10.1038/s44319-024-00215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 08/19/2024] Open
Abstract
One of the key events in autophagy is the formation of a double-membrane phagophore, and many regulatory mechanisms underpinning this remain under investigation. WIPI2b is among the first proteins to be recruited to the phagophore and is essential for stimulating autophagy flux by recruiting the ATG12-ATG5-ATG16L1 complex, driving LC3 and GABARAP lipidation. Here, we set out to investigate how WIPI2b function is regulated by phosphorylation. We studied two phosphorylation sites on WIPI2b, S68 and S284. Phosphorylation at these sites plays distinct roles, regulating WIPI2b's association with ATG16L1 and the phagophore, respectively. We confirm WIPI2b is a novel ULK1 substrate, validated by the detection of endogenous phosphorylation at S284. Notably, S284 is situated within an 18-amino acid stretch, which, when in contact with liposomes, forms an amphipathic helix. Phosphorylation at S284 disrupts the formation of the amphipathic helix, hindering the association of WIPI2b with membranes and autophagosome formation. Understanding these intricacies in the regulatory mechanisms governing WIPI2b's association with its interacting partners and membranes, holds the potential to shed light on these complex processes, integral to phagophore biogenesis.
Collapse
Affiliation(s)
- Andrea Gubas
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Muscular Dystrophy UK, London, SE1 8QD, UK
| | - Eleanor Attridge
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Harold Bj Jefferies
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Taki Nishimura
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Minoo Razi
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Yuval Gilad
- The Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Adi Kimchi
- The Weizmann Institute of Science, Rehovot, Israel
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
2
|
Kim YJ, Tohyama S, Nagashima T, Nagase M, Hida Y, Hamada S, Watabe AM, Ohtsuka T. A light-controlled phospholipase C for imaging of lipid dynamics and controlling neural plasticity. Cell Chem Biol 2024; 31:1336-1348.e7. [PMID: 38582083 DOI: 10.1016/j.chembiol.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/05/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
Phospholipase C (PLC) is a key enzyme that regulates physiological processes via lipid and calcium signaling. Despite advances in protein engineering, no tools are available for direct PLC control. Here, we developed a novel optogenetic tool, light-controlled PLCβ (opto-PLCβ). Opto-PLCβ uses a light-induced dimer module, which directs an engineered PLC to the plasma membrane in a light-dependent manner. Our design includes an autoinhibitory capacity, ensuring stringent control over PLC activity. Opto-PLCβ triggers reversible calcium responses and lipid dynamics in a restricted region, allowing precise spatiotemporal control of PLC signaling. Using our system, we discovered that phospholipase D-mediated phosphatidic acid contributes to diacylglycerol clearance on the plasma membrane. Moreover, we extended its applicability in vivo, demonstrating that opto-PLCβ can enhance amygdala synaptic plasticity and associative fear learning in mice. Thus, opto-PLCβ offers precise spatiotemporal control, enabling comprehensive investigation of PLC-mediated signaling pathways, lipid dynamics, and their physiological consequences in vivo.
Collapse
Affiliation(s)
- Yeon-Jeong Kim
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Suguru Tohyama
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan
| | - Takashi Nagashima
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan
| | - Masashi Nagase
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan
| | - Yamato Hida
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Shun Hamada
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Ayako M Watabe
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan.
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| |
Collapse
|
3
|
Muth LT, Van Bogaert INA. Let it stick: Strategies and applications for intracellular plasma membrane targeting of proteins in Saccharomyces cerevisiae. Yeast 2024; 41:315-329. [PMID: 38444057 DOI: 10.1002/yea.3933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/07/2024] Open
Abstract
Lipid binding domains and protein lipidations are essential features to recruit proteins to intracellular membranes, enabling them to function at specific sites within the cell. Membrane association can also be exploited to answer fundamental and applied research questions, from obtaining insights into the understanding of lipid metabolism to employing them for metabolic engineering to redirect fluxes. This review presents a broad catalog of membrane binding strategies focusing on the plasma membrane of Saccharomyces cerevisiae. Both lipid binding domains (pleckstrin homology, discoidin-type C2, kinase associated-1, basic-rich and bacterial phosphoinositide-binding domains) and co- and post-translational lipidations (prenylation, myristoylation and palmitoylation) are introduced as tools to target the plasma membrane. To provide a toolset of membrane targeting modules, respective candidates that facilitate plasma membrane targeting are showcased including their in vitro and in vivo properties. The relevance and versatility of plasma membrane targeting modules are further highlighted by presenting a selected set of use cases.
Collapse
Affiliation(s)
- Liv Teresa Muth
- Department of Biotechnology, Centre for Synthetic Biology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
4
|
Weckerly CC, Rahn TA, Ehrlich M, Wills RC, Pemberton JG, Airola MV, Hammond GRV. Nir1-LNS2 is a novel phosphatidic acid biosensor that reveals mechanisms of lipid production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582557. [PMID: 38464273 PMCID: PMC10925316 DOI: 10.1101/2024.02.28.582557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Despite various roles of phosphatidic acid (PA) in cellular functions such as lipid homeostasis and vesicular trafficking, there is a lack of high-affinity tools to study PA in live cells. After analysis of the predicted structure of the LNS2 domain in the lipid transfer protein Nir1, we suspected that this domain could serve as a novel PA biosensor. We created a fluorescently tagged Nir1-LNS2 construct and then performed liposome binding assays as well as pharmacological and genetic manipulations of HEK293A cells to determine how specific lipids affect the interaction of Nir1-LNS2 with membranes. We found that Nir1-LNS2 bound to both PA and PIP2 in vitro. Interestingly, only PA was necessary and sufficient to localize Nir1-LNS2 to membranes in cells. Nir1-LNS2 also showed a heightened responsiveness to PA when compared to biosensors using the Spo20 PA binding domain (PABD). Nir1-LNS2's high sensitivity revealed a modest but discernible contribution of PLD to PA production downstream of muscarinic receptors, which has not been visualized with previous Spo20-based probes. In summary, Nir1-LNS2 emerges as a versatile and sensitive biosensor, offering researchers a new powerful tool for real-time investigation of PA dynamics in live cells.
Collapse
Affiliation(s)
- Claire C Weckerly
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Taylor A Rahn
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Max Ehrlich
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rachel C Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Su YA, Chiu HY, Chang YC, Sung CJ, Chen CW, Tei R, Huang XR, Hsu SC, Lin SS, Wang HC, Lin YC, Hsu JC, Bauer H, Feng Y, Baskin JM, Chang ZF, Liu YW. NME3 binds to phosphatidic acid and mediates PLD6-induced mitochondrial tethering. J Cell Biol 2023; 222:e202301091. [PMID: 37584589 PMCID: PMC10432850 DOI: 10.1083/jcb.202301091] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/10/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles regulated by fission and fusion processes. The fusion of membranes requires elaborative coordination of proteins and lipids and is particularly crucial for the function and quality control of mitochondria. Phosphatidic acid (PA) on the mitochondrial outer membrane generated by PLD6 facilitates the fusion of mitochondria. However, how PA promotes mitochondrial fusion remains unclear. Here, we show that a mitochondrial outer membrane protein, NME3, is required for PLD6-induced mitochondrial tethering or clustering. NME3 is enriched at the contact interface of two closely positioned mitochondria depending on PLD6, and NME3 binds directly to PA-exposed lipid packing defects via its N-terminal amphipathic helix. The PA binding function and hexamerization confer NME3 mitochondrial tethering activity. Importantly, nutrient starvation enhances the enrichment efficiency of NME3 at the mitochondrial contact interface, and the tethering ability of NME3 contributes to fusion efficiency. Together, our findings demonstrate NME3 as a tethering protein promoting selective fusion between PLD6-remodeled mitochondria for quality control.
Collapse
Affiliation(s)
- You-An Su
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Chiu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chieh-Ju Sung
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Wei Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Reika Tei
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Xuang-Rong Huang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shao-Chun Hsu
- Imaging Core, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsien-Chu Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Jui-Cheng Hsu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Hermann Bauer
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Yuxi Feng
- Department of Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Jeremy M. Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Zee-Fen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Lee S, Carrasquillo Rodríguez JW, Merta H, Bahmanyar S. A membrane-sensing mechanism links lipid metabolism to protein degradation at the nuclear envelope. J Cell Biol 2023; 222:e202304026. [PMID: 37382667 PMCID: PMC10309186 DOI: 10.1083/jcb.202304026] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
Lipid composition determines organelle identity; however, whether the lipid composition of the inner nuclear membrane (INM) domain of the ER contributes to its identity is not known. Here, we show that the INM lipid environment of animal cells is under local control by CTDNEP1, the master regulator of the phosphatidic acid phosphatase lipin 1. Loss of CTDNEP1 reduces association of an INM-specific diacylglycerol (DAG) biosensor and results in a decreased percentage of polyunsaturated containing DAG species. Alterations in DAG metabolism impact the levels of the resident INM protein Sun2, which is under local proteasomal regulation. We identify a lipid-binding amphipathic helix (AH) in the nucleoplasmic domain of Sun2 that prefers membrane packing defects. INM dissociation of the Sun2 AH is linked to its proteasomal degradation. We suggest that direct lipid-protein interactions contribute to sculpting the INM proteome and that INM identity is adaptable to lipid metabolism, which has broad implications on disease mechanisms associated with the nuclear envelope.
Collapse
Affiliation(s)
- Shoken Lee
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | - Holly Merta
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Shirin Bahmanyar
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Nishimura T, Lazzeri G, Mizushima N, Covino R, Tooze SA. Unique amphipathic α helix drives membrane insertion and enzymatic activity of ATG3. SCIENCE ADVANCES 2023; 9:eadh1281. [PMID: 37352354 PMCID: PMC10289646 DOI: 10.1126/sciadv.adh1281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/22/2023] [Indexed: 06/25/2023]
Abstract
Autophagosome biogenesis requires a localized perturbation of lipid membrane dynamics and a unique protein-lipid conjugate. Autophagy-related (ATG) proteins catalyze this biogenesis on cellular membranes, but the underlying molecular mechanism remains unclear. Focusing on the final step of the protein-lipid conjugation reaction, the ATG8/LC3 lipidation, we show how the membrane association of the conjugation machinery is organized and fine-tuned at the atomistic level. Amphipathic α helices in ATG3 proteins (AHATG3) have low hydrophobicity and contain less bulky residues. Molecular dynamics simulations reveal that AHATG3 regulates the dynamics and accessibility of the thioester bond of the ATG3~LC3 conjugate to lipids, enabling the covalent lipidation of LC3. Live-cell imaging shows that the transient membrane association of ATG3 with autophagic membranes is governed by the less bulky-hydrophobic feature of AHATG3. The unique properties of AHATG3 facilitate protein-lipid bilayer association, leading to the remodeling of the lipid bilayer required for the formation of autophagosomes.
Collapse
Affiliation(s)
- Taki Nishimura
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gianmarco Lazzeri
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, Frankfurt am Main 60438, Germany
- Goethe University, Frankfurt am Main 60438, Germany
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Roberto Covino
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, Frankfurt am Main 60438, Germany
- Goethe University, Frankfurt am Main 60438, Germany
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
8
|
Nunez G, Zhang K, Mogbheli K, Hollingsworth NM, Neiman AM. Recruitment of the lipid kinase Mss4 to the meiotic spindle pole promotes prospore membrane formation in Saccharomyces cerevisiae. Mol Biol Cell 2023; 34:ar33. [PMID: 36857169 PMCID: PMC10092644 DOI: 10.1091/mbc.e22-11-0515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Spore formation in the budding yeast, Saccharomyces cerevisiae, involves de novo creation of four prospore membranes, each of which surrounds a haploid nucleus resulting from meiosis. The meiotic outer plaque (MOP) is a meiosis-specific protein complex associated with each meiosis II spindle pole body (SPB). Vesicle fusion on the MOP surface creates an initial prospore membrane anchored to the SPB. Ady4 is a meiosis-specific MOP component that stabilizes the MOP-prospore membrane interaction. We show that Ady4 recruits the lipid kinase, Mss4, to the MOP. MSS4 overexpression suppresses the ady4∆ spore formation defect, suggesting that a specific lipid environment provided by Mss4 promotes maintenance of prospore membrane attachment to MOPs. The meiosis-specific Spo21 protein is an essential structural MOP component. We show that the Spo21 N terminus contains an amphipathic helix that binds to prospore membranes. A mutant in SPO21 that removes positive charges from this helix shares phenotypic similarities to ady4∆. We propose that Mss4 generates negatively charged lipids in prospore membranes that enhance binding by the positively charged N terminus of Spo21, thereby providing a mechanism by which the MOP-prospore membrane interaction is stabilized.
Collapse
Affiliation(s)
- Greisly Nunez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Kai Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Kaveh Mogbheli
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Nancy M. Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| |
Collapse
|
9
|
Krishnan H, Basak B, Nath VR, Mishra S, Raghu P. Structural organization of RDGB (retinal degeneration B), a multi-domain lipid transfer protein: a molecular modelling and simulation based approach. J Biomol Struct Dyn 2023; 41:13368-13382. [PMID: 36803287 DOI: 10.1080/07391102.2023.2179545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/20/2023] [Indexed: 02/22/2023]
Abstract
Lipid transfer proteins (LTPs) that shuttle lipids at membrane contact sites (MCS) play an important role in maintaining cellular homeostasis. One such important LTP is the Retinal Degeneration B (RDGB) protein. RDGB is localized at the MCS formed between the endoplasmic reticulum (ER) and the apical plasma membrane (PM) in Drosophila photoreceptors where it transfers phosphatidylinositol (PI) during G-protein coupled phospholipase C signalling. Previously, the C-terminal domains of RDGB have been shown to be essential for its function and accurate localization. In this study, using in-silico integrative modelling we predict the structure of entire RDGB protein in complex with the ER membrane protein VAP. The structure of RDGB has then been used to decipher the structural features of the protein important for its orientation at the contact site. Using this structure, we identify two lysine residues in the C-terminal helix of the LNS2 domain important for interaction with the PM. Using molecular docking, we also identify an unstructured region USR1, immediately c-terminal to the PITP domain that is important for the interaction of RDGB with VAP. Overall the 10.06 nm length of the predicted RDGB-VAP complex spans the distance between the PM and ER and is consistent with the cytoplasmic gap between the ER and PM measured by transmission electron microscopy in photoreceptors. Overall our model explains the topology of the RDGB-VAP complex at this ER-PM contact site and paves the way for analysis of lipid transfer function in this setting.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Harini Krishnan
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bengaluru, India
| | - Bishal Basak
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bengaluru, India
| | - Vaisaly R Nath
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bengaluru, India
| | - Shirish Mishra
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bengaluru, India
| | - Padinjat Raghu
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bengaluru, India
| |
Collapse
|
10
|
Phospholipid synthesis inside phospholipid membrane vesicles. Commun Biol 2022; 5:1016. [PMID: 36167778 PMCID: PMC9515091 DOI: 10.1038/s42003-022-03999-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022] Open
Abstract
Construction of living artificial cells from genes and molecules can expand our understanding of life system and establish a new aspect of bioengineering. However, growth and division of cell membrane that are basis of cell proliferation are still difficult to reconstruct because a high-yielding phospholipid synthesis system has not been established. Here, we developed a cell-free phospholipid synthesis system that combines fatty acid synthesis and cell-free gene expression system synthesizing acyltransferases. The synthesized fatty acids were sequentially converted into phosphatidic acids by the cell-free synthesized acyltransferases. Because the system can avoid the accumulation of intermediates inhibiting lipid synthesis, sub-millimolar phospholipids could be synthesized within a single reaction mixture. We also performed phospholipid synthesis inside phospholipid membrane vesicles, which encapsulated all the components, and showed the phospholipids localized onto the mother membrane. Our approach would be a platform for the construction of self-reproducing artificial cells since the membrane can grow sustainably.
Collapse
|
11
|
Sathanantham P, Zhao W, He G, Murray A, Fenech E, Diaz A, Schuldiner M, Wang X. A conserved viral amphipathic helix governs the replication site-specific membrane association. PLoS Pathog 2022; 18:e1010752. [PMID: 36048900 PMCID: PMC9473614 DOI: 10.1371/journal.ppat.1010752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/14/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Positive-strand RNA viruses assemble their viral replication complexes (VRCs) on specific host organelle membranes, yet it is unclear how viral replication proteins recognize and what motifs or domains in viral replication proteins determine their destinations. We show here that an amphipathic helix, helix B in replication protein 1a of brome mosaic virus (BMV), is necessary for 1a’s localization to the nuclear endoplasmic reticulum (ER) membrane where BMV assembles its VRCs. Helix B is also sufficient to target soluble proteins to the nuclear ER membrane in yeast and plant cells. We further show that an equivalent helix in several plant- and human-infecting viruses of the Alsuviricetes class targets fluorescent proteins to the organelle membranes where they form their VRCs, including ER, vacuole, and Golgi membranes. Our work reveals a conserved helix that governs the localization of VRCs among a group of viruses and points to a possible target for developing broad-spectrum antiviral strategies. Positive-strand RNA viruses [(+)RNA viruses] are the largest viral class that include numerous pathogens causing important diseases in humans, animals, and plants. During their infections, (+)RNA viruses assemble their viral replication complexes (VRCs), where they multiply themselves, at specific organelle membranes. An initial step to form VRCs is to target viral replication proteins to the designated organelle membranes. For brome mosaic virus (BMV), its replication protein 1a is responsible for the VRC formation at the nuclear endoplasmic reticulum (ER) membrane. We show that an amphipathic alpha-helix, helix B, in BMV 1a is necessary for the association of BMV 1a with the nuclear ER membrane and for BMV genome amplification. In addition, Helix B is sufficient to target several soluble proteins to the nuclear ER membrane in yeast and plant cells. BMV belongs to the Alsuviricetes class that includes viruses infecting humans, animals, and plants. We further show that the helix B across members of the Alsuviricetes class is sufficient to target fluorescence proteins to the designated organelle membranes. Our results reveal a conserved feature among a group of viruses in governing the associations with replication site-specific organelle membranes and point to a target to develop broad-spectrum antivirals.
Collapse
Affiliation(s)
- Preethi Sathanantham
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Wenhao Zhao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Guijuan He
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Austin Murray
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Emma Fenech
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Arturo Diaz
- Department of Biology, La Sierra University, Riverside, California, United States of America
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
12
|
Tumor protein D54 binds intracellular nanovesicles via an extended amphipathic region. J Biol Chem 2022; 298:102136. [PMID: 35714773 PMCID: PMC9270247 DOI: 10.1016/j.jbc.2022.102136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Tumor Protein D54 (TPD54) is an abundant cytosolic protein that belongs to the TPD52 family, a family of four proteins (TPD52, 53, 54 and 55) that are overexpressed in several cancer cells. Even though the functions of these proteins remain elusive, recent investigations indicate that TPD54 binds to very small cytosolic vesicles with a diameter of ca. 30 nm, half the size of classical (e.g. COPI and COPII) transport vesicles. Here, we investigated the mechanism of intracellular nanovesicle capture by TPD54. Bioinformatical analysis suggests that TPD54 contains a small coiled-coil followed by four amphipathic helices (AH1-4), which could fold upon binding to lipid membranes. Limited proteolysis, circular dichroism (CD) spectroscopy, tryptophan fluorescence, and cysteine mutagenesis coupled to covalent binding of a membrane sensitive probe showed that binding of TPD54 to small liposomes is accompanied by large structural changes in the amphipathic helix region. Furthermore, site-directed mutagenesis indicated that AH2 and AH3 have a predominant role in TPD54 binding to membranes both in cells and using model liposomes. We found that AH3 has the physicochemical features of an Amphipathic Lipid Packing Sensor (ALPS) motif, which, in other proteins, enables membrane binding in a curvature-dependent manner. Accordingly, we observed that binding of TPD54 to liposomes is very sensitive to membrane curvature and lipid unsaturation. We conclude that TPD54 recognizes nanovesicles through a combination of ALPS-dependent and -independent mechanisms.
Collapse
|
13
|
Selectivity of mTOR-Phosphatidic Acid Interactions Is Driven by Acyl Chain Structure and Cholesterol. Cells 2021; 11:cells11010119. [PMID: 35011681 PMCID: PMC8750377 DOI: 10.3390/cells11010119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/24/2022] Open
Abstract
The need to gain insights into the molecular details of peripheral membrane proteins’ specificity towards phosphatidic acid (PA) is undeniable. The variety of PA species classified in terms of acyl chain length and saturation translates into a complicated, enigmatic network of functional effects that exert a critical influence on cell physiology. As a consequence, numerous studies on the importance of phosphatidic acid in human diseases have been conducted in recent years. One of the key proteins in this context is mTOR, considered to be the most important cellular sensor of essential nutrients while regulating cell proliferation, and which also appears to require PA to build stable and active complexes. Here, we investigated the specific recognition of three physiologically important PA species by the mTOR FRB domain in the presence or absence of cholesterol in targeted membranes. Using a broad range of methods based on model lipid membrane systems, we elucidated how the length and saturation of PA acyl chains influence specific binding of the mTOR FRB domain to the membrane. We also discovered that cholesterol exerts a strong modulatory effect on PA-FRB recognition. Our data provide insight into the molecular details of some physiological effects reported previously and reveal novel mechanisms of fine-tuning the signaling cascades dependent on PA.
Collapse
|
14
|
Hello from the other side: Membrane contact of lipid droplets with other organelles and subsequent functional implications. Prog Lipid Res 2021; 85:101141. [PMID: 34793861 DOI: 10.1016/j.plipres.2021.101141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Lipid droplets (LDs) are ubiquitous organelles that play crucial roles in response to physiological and environmental cues. The identification of several neutral lipid synthesizing and regulatory protein complexes have propelled significant advance on the mechanisms of LD biogenesis in the endoplasmic reticulum (ER). Increasing evidence suggests that distinct proteins and regulatory factors, which localize to membrane contact sites (MCS), are involved not only in interorganellar lipid exchange and transport, but also function in other important cellular processes, including autophagy, mitochondrial dynamics and inheritance, ion signaling and inter-regulation of these MCS. More and more tethers and molecular determinants are associated to MCS and to a diversity of cellular and pathophysiological processes, demonstrating the dynamics and importance of these junctions in health and disease. The conjugation of lipids with proteins in supramolecular complexes is known to be paramount for many biological processes, namely membrane biosynthesis, cell homeostasis, regulation of organelle division and biogenesis, and cell growth. Ultimately, this physical organization allows the contact sites to function as crucial metabolic hubs that control the occurrence of chemical reactions. This leads to biochemical and metabolite compartmentalization for the purposes of energetic efficiency and cellular homeostasis. In this review, we will focus on the structural and functional aspects of LD-organelle interactions and how they ensure signaling exchange and metabolites transfer between organelles.
Collapse
|
15
|
Nakamura TS, Suda Y, Muneshige K, Fujieda Y, Okumura Y, Inoue I, Tanaka T, Takahashi T, Nakanishi H, Gao XD, Okada Y, Neiman AM, Tachikawa H. Suppression of Vps13 adaptor protein mutants reveals a central role for PI4P in regulating prospore membrane extension. PLoS Genet 2021; 17:e1009727. [PMID: 34407079 PMCID: PMC8372973 DOI: 10.1371/journal.pgen.1009727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/20/2021] [Indexed: 01/19/2023] Open
Abstract
Vps13 family proteins are proposed to function in bulk lipid transfer between membranes, but little is known about their regulation. During sporulation of Saccharomyces cerevisiae, Vps13 localizes to the prospore membrane (PSM) via the Spo71–Spo73 adaptor complex. We previously reported that loss of any of these proteins causes PSM extension and subsequent sporulation defects, yet their precise function remains unclear. Here, we performed a genetic screen and identified genes coding for a fragment of phosphatidylinositol (PI) 4-kinase catalytic subunit and PI 4-kinase noncatalytic subunit as multicopy suppressors of spo73Δ. Further genetic and cytological analyses revealed that lowering PI4P levels in the PSM rescues the spo73Δ defects. Furthermore, overexpression of VPS13 and lowering PI4P levels synergistically rescued the defect of a spo71Δ spo73Δ double mutant, suggesting that PI4P might regulate Vps13 function. In addition, we show that an N-terminal fragment of Vps13 has affinity for the endoplasmic reticulum (ER), and ER-plasma membrane (PM) tethers localize along the PSM in a manner dependent on Vps13 and the adaptor complex. These observations suggest that Vps13 and the adaptor complex recruit ER-PM tethers to ER-PSM contact sites. Our analysis revealed that involvement of a phosphoinositide, PI4P, in regulation of Vps13, and also suggest that distinct contact site proteins function cooperatively to promote de novo membrane formation. Vps13 family proteins are conserved lipid transfer proteins that function at organelle contact sites and have been implicated in a number of different neurological diseases. In the yeast Saccharomyces cerevisiae, Vps13 is encoded by a single gene and is localized to various contact sites by interaction with different adaptor proteins and/or lipids, however its regulation is yet to be clarified. We have previously shown that during the developmental process of sporulation, Vps13 is recruited to de novo membrane structures called prospore membranes (PSMs) by a specific adaptor complex, and Vps13 and its adaptors are required for PSM extension. Here we reveal that loss of an adaptor can be overcome by lowering phosphatidylinositol-4-phosphate (PI4P) levels, either by inhibiting PI 4-kinase on the PSM or recruiting PI 4-phospatase to the PSM and that PI4P levels in the PSM affect Vps13 function. Further, we show that Vps13 forms endoplasmic reticulum (ER)-PSM contact sites, that ER-plasma membrane tethering proteins are recruited to ER-PSM contacts, and these proteins may function in conjunction with Vps13. Thus, our work shines light on both the mechanisms of intracellular remodeling and the function of this important class of lipid transfer proteins.
Collapse
Affiliation(s)
- Tsuyoshi S. Nakamura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
| | - Yasuyuki Suda
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Kenji Muneshige
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Fujieda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuuya Okumura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ichiro Inoue
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Tanaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Takahashi
- Laboratory of Glycobiology and Glycotechnology, Department of Applied Biochemistry, School of Engineering, Tokai University, Kanagawa, Japan
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yasushi Okada
- Laboratory for Cell Dynamics Observation, Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
- Department of Physics and Universal Biology Institute, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Physics, Universal Biology Institute, and the International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Hiroyuki Tachikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
16
|
New Era of Diacylglycerol Kinase, Phosphatidic Acid and Phosphatidic Acid-Binding Protein. Int J Mol Sci 2020; 21:ijms21186794. [PMID: 32947951 PMCID: PMC7555651 DOI: 10.3390/ijms21186794] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to generate phosphatidic acid (PA). Mammalian DGK consists of ten isozymes (α–κ) and governs a wide range of physiological and pathological events, including immune responses, neuronal networking, bipolar disorder, obsessive-compulsive disorder, fragile X syndrome, cancer, and type 2 diabetes. DG and PA comprise diverse molecular species that have different acyl chains at the sn-1 and sn-2 positions. Because the DGK activity is essential for phosphatidylinositol turnover, which exclusively produces 1-stearoyl-2-arachidonoyl-DG, it has been generally thought that all DGK isozymes utilize the DG species derived from the turnover. However, it was recently revealed that DGK isozymes, except for DGKε, phosphorylate diverse DG species, which are not derived from phosphatidylinositol turnover. In addition, various PA-binding proteins (PABPs), which have different selectivities for PA species, were recently found. These results suggest that DGK–PA–PABP axes can potentially construct a large and complex signaling network and play physiologically and pathologically important roles in addition to DGK-dependent attenuation of DG–DG-binding protein axes. For example, 1-stearoyl-2-docosahexaenoyl-PA produced by DGKδ interacts with and activates Praja-1, the E3 ubiquitin ligase acting on the serotonin transporter, which is a target of drugs for obsessive-compulsive and major depressive disorders, in the brain. This article reviews recent research progress on PA species produced by DGK isozymes, the selective binding of PABPs to PA species and a phosphatidylinositol turnover-independent DG supply pathway.
Collapse
|
17
|
Moon Y, Jun Y. The Effects of Regulatory Lipids on Intracellular Membrane Fusion Mediated by Dynamin-Like GTPases. Front Cell Dev Biol 2020; 8:518. [PMID: 32671068 PMCID: PMC7326814 DOI: 10.3389/fcell.2020.00518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/02/2020] [Indexed: 12/04/2022] Open
Abstract
Membrane fusion mediates a number of fundamental biological processes such as intracellular membrane trafficking, fertilization, and viral infection. Biological membranes are composed of lipids and proteins; while lipids generally play a structural role, proteins mediate specific functions in the membrane. Likewise, although proteins are key players in the fusion of biological membranes, there is emerging evidence supporting a functional role of lipids in various membrane fusion events. Intracellular membrane fusion is mediated by two protein families: SNAREs and membrane-bound GTPases. SNARE proteins are involved in membrane fusion between transport vesicles and their target compartments, as well as in homotypic fusion between organelles of the same type. Membrane-bound GTPases mediate mitochondrial fusion and homotypic endoplasmic reticulum fusion. Certain membrane lipids, known as regulatory lipids, regulate these membrane fusion events by directly affecting the function of membrane-bound GTPases, instead of simply changing the biophysical and biochemical properties of lipid bilayers. In this review, we provide a summary of the current understanding of how regulatory lipids affect GTPase-mediated intracellular membrane fusion by focusing on the functions of regulatory lipids that directly affect fusogenic GTPases.
Collapse
Affiliation(s)
- Yeojin Moon
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Youngsoo Jun
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
18
|
Moriel-Carretero M. The hypothetical role of phosphatidic acid in subverting ER membranes during SARS-CoV infection. Traffic 2020; 21:545-551. [PMID: 32424954 PMCID: PMC7276787 DOI: 10.1111/tra.12738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022]
Abstract
Positive sense (+) RNA viruses exploit membranes from a variety of cellular organelles to support the amplification of their genomes. This association concurs with the formation of vesicles whose main morphological feature is that of being wrapped by a double membrane. In the case of the SARS‐CoV virus, the outer membrane is not discrete for each vesicle, but seems to be continuous and shared between many individual vesicles, a difference with other +RNA viruses whose nature has remained elusive. I present morphological, biochemical and pharmacological arguments defending the striking analogy of this arrangement and that of entangled, nascent Lipid Droplets whose birth has been aborted by an excess of Phosphatidic Acid. Since Phosphatidic Acid can be targeted with therapeutical purposes, considering this working hypothesis may prove important in tackling SARS‐CoV infection.
Collapse
Affiliation(s)
- María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), University of Montpellier - CNRS, Montpellier, France
| |
Collapse
|
19
|
Lee J, Salsman J, Foster J, Dellaire G, Ridgway ND. Lipid-associated PML structures assemble nuclear lipid droplets containing CCTα and Lipin1. Life Sci Alliance 2020; 3:3/8/e202000751. [PMID: 32461215 PMCID: PMC7266991 DOI: 10.26508/lsa.202000751] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/24/2022] Open
Abstract
PML proteins assemble into noncanonical lipid-associated PML structures (LAPS) on nuclear lipid droplets, which recruit CCTα and Lipin1 for the synthesis of phosphatidylcholine and triacylglycerol. Nuclear lipid droplets (nLDs) form on the inner nuclear membrane by a mechanism involving promyelocytic leukemia (PML), the protein scaffold of PML nuclear bodies. We report that PML structures on nLDs in oleate-treated U2OS cells, referred to as lipid-associated PML structures (LAPS), differ from canonical PML nuclear bodies by the relative absence of SUMO1, SP100, and DAXX. These nLDs were also enriched in CTP:phosphocholine cytidylyltransferase α (CCTα), the phosphatidic acid phosphatase Lipin1, and DAG. Translocation of CCTα onto nLDs was mediated by its α-helical M-domain but was not correlated with its activator DAG. High-resolution imaging revealed that CCTα and LAPS occupied distinct polarized regions on nLDs. PML knockout U2OS (PML KO) cells lacking LAPS had a 40–50% reduction in nLDs with associated CCTα, and residual nLDs were almost devoid of Lipin1 and DAG. As a result, phosphatidylcholine and triacylglycerol synthesis was inhibited in PML KO cells. We conclude that in response to excess exogenous fatty acids, LAPS are required to assemble nLDs that are competent to recruit CCTα and Lipin1.
Collapse
Affiliation(s)
- Jonghwa Lee
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, Canada
| | - Jason Foster
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Graham Dellaire
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada .,Department of Pathology, Dalhousie University, Halifax, Canada
| | - Neale D Ridgway
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada .,Department of Pediatrics, Dalhousie University, Halifax, Canada
| |
Collapse
|
20
|
Balla T, Kim YJ, Alvarez-Prats A, Pemberton J. Lipid Dynamics at Contact Sites Between the Endoplasmic Reticulum and Other Organelles. Annu Rev Cell Dev Biol 2020; 35:85-109. [PMID: 31590585 DOI: 10.1146/annurev-cellbio-100818-125251] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phospholipids are synthesized primarily within the endoplasmic reticulum and are subsequently distributed to various subcellular membranes to maintain the unique lipid composition of specific organelles. As a result, in most cases, the steady-state localization of membrane phospholipids does not match their site of synthesis. This raises the question of how diverse lipid species reach their final membrane destinations and what molecular processes provide the energy to maintain the lipid gradients that exist between various membrane compartments. Recent studies have highlighted the role of inositol phospholipids in the nonvesicular transport of lipids at membrane contact sites. This review attempts to summarize our current understanding of these complex lipid dynamics and highlights their implications for defining future research directions.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
21
|
Tei R, Baskin JM. Spatiotemporal control of phosphatidic acid signaling with optogenetic, engineered phospholipase Ds. J Cell Biol 2020; 219:e201907013. [PMID: 31999306 PMCID: PMC7054994 DOI: 10.1083/jcb.201907013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/09/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Phosphatidic acid (PA) is both a central phospholipid biosynthetic intermediate and a multifunctional lipid second messenger produced at several discrete subcellular locations. Organelle-specific PA pools are believed to play distinct physiological roles, but tools with high spatiotemporal control are lacking for unraveling these pleiotropic functions. Here, we present an approach to precisely generate PA on demand on specific organelle membranes. We exploited a microbial phospholipase D (PLD), which produces PA by phosphatidylcholine hydrolysis, and the CRY2-CIBN light-mediated heterodimerization system to create an optogenetic PLD (optoPLD). Directed evolution of PLD using yeast membrane display and IMPACT, a chemoenzymatic method for visualizing cellular PLD activity, yielded a panel of optoPLDs whose range of catalytic activities enables mimicry of endogenous, physiological PLD signaling. Finally, we applied optoPLD to elucidate that plasma membrane, but not intracellular, pools of PA can attenuate the oncogenic Hippo signaling pathway. OptoPLD represents a powerful and precise approach for revealing spatiotemporally defined physiological functions of PA.
Collapse
Affiliation(s)
| | - Jeremy M. Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| |
Collapse
|
22
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Protein Amphipathic Helix Insertion: A Mechanism to Induce Membrane Fission. Front Cell Dev Biol 2019; 7:291. [PMID: 31921835 PMCID: PMC6914677 DOI: 10.3389/fcell.2019.00291] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
One of the fundamental features of biomembranes is the ability to fuse or to separate. These processes called respectively membrane fusion and fission are central in the homeostasis of events such as those related to intracellular membrane traffic. Proteins that contain amphipathic helices (AHs) were suggested to mediate membrane fission via shallow insertion of these helices into the lipid bilayer. Here we analyze the AH-containing proteins that have been identified as essential for membrane fission and categorize them in few subfamilies, including small GTPases, Atg proteins, and proteins containing either the ENTH/ANTH- or the BAR-domain. AH-containing fission-inducing proteins may require cofactors such as additional proteins (e.g., lipid-modifying enzymes), or lipids (e.g., phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], phosphatidic acid [PA], or cardiolipin). Both PA and cardiolipin possess a cone shape and a negative charge (-2) that favor the recruitment of the AHs of fission-inducing proteins. Instead, PtdIns(4,5)P2 is characterized by an high negative charge able to recruit basic residues of the AHs of fission-inducing proteins. Here we propose that the AHs of fission-inducing proteins contain sequence motifs that bind lipid cofactors; accordingly (K/R/H)(K/R/H)xx(K/R/H) is a PtdIns(4,5)P2-binding motif, (K/R)x6(F/Y) is a cardiolipin-binding motif, whereas KxK is a PA-binding motif. Following our analysis, we show that the AHs of many fission-inducing proteins possess five properties: (a) at least three basic residues on the hydrophilic side, (b) ability to oligomerize, (c) optimal (shallow) depth of insertion into the membrane, (d) positive cooperativity in membrane curvature generation, and (e) specific interaction with one of the lipids mentioned above. These lipid cofactors favor correct conformation, oligomeric state and optimal insertion depth. The most abundant lipid in a given organelle possessing high negative charge (more negative than -1) is usually the lipid cofactor in the fission event. Interestingly, naturally occurring mutations have been reported in AH-containing fission-inducing proteins and related to diseases such as centronuclear myopathy (amphiphysin 2), Charcot-Marie-Tooth disease (GDAP1), Parkinson's disease (α-synuclein). These findings add to the interest of the membrane fission process whose complete understanding will be instrumental for the elucidation of the pathogenesis of diseases involving mutations in the protein AHs.
Collapse
Affiliation(s)
- Mikhail A. Zhukovsky
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | | | | | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
23
|
Nishimura T, Gecht M, Covino R, Hummer G, Surma MA, Klose C, Arai H, Kono N, Stefan CJ. Osh Proteins Control Nanoscale Lipid Organization Necessary for PI(4,5)P 2 Synthesis. Mol Cell 2019; 75:1043-1057.e8. [PMID: 31402097 PMCID: PMC6739424 DOI: 10.1016/j.molcel.2019.06.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/13/2019] [Accepted: 06/25/2019] [Indexed: 11/28/2022]
Abstract
The plasma membrane (PM) is composed of a complex lipid mixture that forms heterogeneous membrane environments. Yet, how small-scale lipid organization controls physiological events at the PM remains largely unknown. Here, we show that ORP-related Osh lipid exchange proteins are critical for the synthesis of phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2], a key regulator of dynamic events at the PM. In real-time assays, we find that unsaturated phosphatidylserine (PS) and sterols, both Osh protein ligands, synergistically stimulate phosphatidylinositol 4-phosphate 5-kinase (PIP5K) activity. Biophysical FRET analyses suggest an unconventional co-distribution of unsaturated PS and phosphatidylinositol 4-phosphate (PI4P) species in sterol-containing membrane bilayers. Moreover, using in vivo imaging approaches and molecular dynamics simulations, we show that Osh protein-mediated unsaturated PI4P and PS membrane lipid organization is sensed by the PIP5K specificity loop. Thus, ORP family members create a nanoscale membrane lipid environment that drives PIP5K activity and PI(4,5)P2 synthesis that ultimately controls global PM organization and dynamics. The Osh lipid exchange proteins are required to maintain PI(4,5)P2 levels in the PM Unsaturated PS and sterols synergistically stimulate PIP5K activity The specificity loop conserved in PIP5Ks serves as a lipid sensor A simulation model of the PIP5K specificity loop embedded in a lipid bilayer
Collapse
Affiliation(s)
- Taki Nishimura
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Michael Gecht
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Roberto Covino
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | | | | | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; PRIME, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| | - Christopher J Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
24
|
The biogenesis of lipid droplets: Lipids take center stage. Prog Lipid Res 2019; 75:100989. [PMID: 31351098 DOI: 10.1016/j.plipres.2019.100989] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 06/27/2019] [Indexed: 11/20/2022]
Abstract
Lipid droplets (LDs) are multi-functional cellular organelles that store energy, and regulate many aspects of cell physiology. However, our understanding of the biogenesis of LDs remains very limited. Originating from the endoplasmic reticulum (ER), LDs are highly unique organelles in that each LD is bounded by a monolayer of amphipathic lipids. Recent progress has unveiled critical roles of non-bilayer lipids in LD formation. For instance, non-bilayer lipids such as lysophospholipids, diacylglycerol and phosphatidic acid (PA) can impact the curvature, surface and line tension of the ER, thereby impacting LD biogenesis. Two well-known regulators of LD formation, FIT2/FITM2 and seipin, have both been implicated in controlling the metabolism and/or distribution of non-bilayer lipids. We summarize and integrate these recent advances and propose that non-bilayer lipids may play a critical role in each step of LD biogenesis.
Collapse
|
25
|
Dopey1-Mon2 complex binds to dual-lipids and recruits kinesin-1 for membrane trafficking. Nat Commun 2019; 10:3218. [PMID: 31324769 PMCID: PMC6642134 DOI: 10.1038/s41467-019-11056-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/14/2019] [Indexed: 11/18/2022] Open
Abstract
Proteins are transported among eukaryotic organelles along the cytoskeleton in membrane carriers. The mechanism regarding the motility of carriers and the positioning of organelles is a fundamental question in cell biology that remains incompletely understood. Here, we find that Dopey1 and Mon2 assemble into a complex and localize to the Golgi, endolysosome and endoplasmic reticulum exit site. The Golgi localization of Dopey1 and Mon2 requires their binding to phosphatidylinositol-4-phosphate and phosphatidic acid, respectively, two lipids known for the biogenesis of membrane carriers and the specification of organelle identities. The N-terminus of Dopey1 further interacts with kinesin-1, a plus-end or centrifugal-direction microtubule motor. Dopey1-Mon2 complex functions as a dual-lipid-regulated cargo-adaptor to recruit kinesin-1 to secretory and endocytic organelles or membrane carriers for centrifugally biased bidirectional transport. Dopey1-Mon2 complex therefore provides an important missing link to coordinate the budding of a membrane carrier and subsequent bidirectional transport along the microtubule. Proteins are transported among eukaryotic organelles along the cytoskeleton in membrane carriers. Here authors find that the Dopey1-Mon2 complex functions as a dual-lipid-regulated cargo-adaptor to recruit kinesin-1 to secretory and endocytic organelles or membrane carriers.
Collapse
|
26
|
Bolomini-Vittori M, Mennens SFB, Joosten B, Fransen J, Du G, van den Dries K, Cambi A. PLD-dependent phosphatidic acid microdomains are signaling platforms for podosome formation. Sci Rep 2019; 9:3556. [PMID: 30837487 PMCID: PMC6401089 DOI: 10.1038/s41598-019-39358-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/22/2019] [Indexed: 01/07/2023] Open
Abstract
Local membrane phospholipid enrichment serves as docking platform for signaling proteins involved in many processes including cell adhesion and migration. Tissue-resident dendritic cells (DCs) assemble actomyosin-based structures called podosomes, which mediate adhesion and degradation of extracellular matrix for migration and antigen sampling. Recent evidence suggested the involvement of phospholipase D (PLD) and its product phosphatidic acid (PA) in podosome formation, but the spatiotemporal control of this process is poorly characterized. Here we determined the role of PLD1 and PLD2 isoforms in regulating podosome formation and dynamics in human primary DCs by combining PLD pharmacological inhibition with a fluorescent PA sensor and fluorescence microscopy. We found that ongoing PLD2 activity is required for the maintenance of podosomes, whereas both PLD1 and PLD2 control the early stages of podosome assembly. Furthermore, we captured the formation of PA microdomains accumulating at the membrane cytoplasmic leaflet of living DCs, in dynamic coordination with nascent podosome actin cores. Finally, we show that both PLD1 and PLD2 activity are important for podosome-mediated matrix degradation. Our results provide novel insight into the isoform-specific spatiotemporal regulation of PLD activity and further our understanding of the role of cell membrane phospholipids in controlling localized actin polymerization and cell protrusion.
Collapse
Affiliation(s)
- Matteo Bolomini-Vittori
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Svenja F B Mennens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Microscopic Imaging Center, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack Fransen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Microscopic Imaging Center, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, USA
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Starr ML, Sparks RP, Arango AS, Hurst LR, Zhao Z, Lihan M, Jenkins JL, Tajkhorshid E, Fratti RA. Phosphatidic acid induces conformational changes in Sec18 protomers that prevent SNARE priming. J Biol Chem 2019; 294:3100-3116. [PMID: 30617180 PMCID: PMC6398130 DOI: 10.1074/jbc.ra118.006552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/31/2018] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic cell homeostasis requires transfer of cellular components among organelles and relies on membrane fusion catalyzed by SNARE proteins. Inactive SNARE bundles are reactivated by hexameric N-ethylmaleimide-sensitive factor, vesicle-fusing ATPase (Sec18/NSF)-driven disassembly that enables a new round of membrane fusion. We previously found that phosphatidic acid (PA) binds Sec18 and thereby sequesters it from SNAREs and that PA dephosphorylation dissociates Sec18 from the membrane, allowing it to engage SNARE complexes. We now report that PA also induces conformational changes in Sec18 protomers and that hexameric Sec18 cannot bind PA membranes. Molecular dynamics (MD) analyses revealed that the D1 and D2 domains of Sec18 contain PA-binding sites and that the residues needed for PA binding are masked in hexameric Sec18. Importantly, these simulations also disclosed that a major conformational change occurs in the linker region between the D1 and D2 domains, which is distinct from the conformational changes that occur in hexameric Sec18 during SNARE priming. Together, these findings indicate that PA regulates Sec18 function by altering its architecture and stabilizing membrane-bound Sec18 protomers.
Collapse
Affiliation(s)
- Matthew L Starr
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Robert P Sparks
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Andres S Arango
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Logan R Hurst
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Zhiyu Zhao
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Muyun Lihan
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Jermaine L Jenkins
- the Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642
| | - Emad Tajkhorshid
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | - Rutilio A Fratti
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
28
|
Yan R, Qian H, Lukmantara I, Gao M, Du X, Yan N, Yang H. Human SEIPIN Binds Anionic Phospholipids. Dev Cell 2018; 47:248-256.e4. [PMID: 30293840 DOI: 10.1016/j.devcel.2018.09.010] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/05/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
The biogenesis of lipid droplets (LDs) and the development of adipocytes are two key aspects of mammalian fat storage. SEIPIN, an integral membrane protein of the endoplasmic reticulum (ER), plays a critical role in both LD formation and adipogenesis. The molecular function of SEIPIN, however, has yet to be elucidated. Here, we report the cryogenic electron microscopy structure of human SEIPIN at 3.8 Å resolution. SEIPIN exists as an undecamer, and this oligomerization state is critical for its physiological function. The evolutionarily conserved lumenal domain of SEIPIN forms an eight-stranded β sandwich fold. Both full-length SEIPIN and its lumenal domain can bind anionic phospholipids including phosphatidic acid. Our results suggest that SEIPIN forms a scaffold that helps maintain phospholipid homeostasis and surface tension of the ER.
Collapse
Affiliation(s)
- Renhong Yan
- Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hongwu Qian
- Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Ivan Lukmantara
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW 2052, Australia
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW 2052, Australia
| | - Nieng Yan
- Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China; Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA.
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
29
|
The Many Faces of Amphipathic Helices. Biomolecules 2018; 8:biom8030045. [PMID: 29976879 PMCID: PMC6164224 DOI: 10.3390/biom8030045] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Amphipathic helices (AHs), a secondary feature found in many proteins, are defined by their structure and by the segregation of hydrophobic and polar residues between two faces of the helix. This segregation allows AHs to adsorb at polar⁻apolar interfaces such as the lipid surfaces of cellular organelles. Using various examples, we discuss here how variations within this general scheme impart membrane-interacting AHs with different interfacial properties. Among the key parameters are: (i) the size of hydrophobic residues and their density per helical turn; (ii) the nature, the charge, and the distribution of polar residues; and (iii) the length of the AH. Depending on how these parameters are tuned, AHs can deform lipid bilayers, sense membrane curvature, recognize specific lipids, coat lipid droplets, or protect membranes from stress. Via these diverse mechanisms, AHs play important roles in many cellular processes.
Collapse
|
30
|
Hofbauer HF, Gecht M, Fischer SC, Seybert A, Frangakis AS, Stelzer EHK, Covino R, Hummer G, Ernst R. The molecular recognition of phosphatidic acid by an amphipathic helix in Opi1. J Cell Biol 2018; 217:3109-3126. [PMID: 29941475 PMCID: PMC6122994 DOI: 10.1083/jcb.201802027] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/28/2018] [Accepted: 06/18/2018] [Indexed: 01/09/2023] Open
Abstract
Phosphatidic acid (PA) lipids have a dual role as building blocks for membrane biogenesis and as active signaling molecules. This study establishes the molecular details of selective PA recognition by the transcriptional regulator Opi1 from baker’s yeast. A key event in cellular physiology is the decision between membrane biogenesis and fat storage. Phosphatidic acid (PA) is an important intermediate at the branch point of these pathways and is continuously monitored by the transcriptional repressor Opi1 to orchestrate lipid metabolism. In this study, we report on the mechanism of membrane recognition by Opi1 and identify an amphipathic helix (AH) for selective binding of PA over phosphatidylserine (PS). The insertion of the AH into the membrane core renders Opi1 sensitive to the lipid acyl chain composition and provides a means to adjust membrane biogenesis. By rational design of the AH, we tune the membrane-binding properties of Opi1 and control its responsiveness in vivo. Using extensive molecular dynamics simulations, we identify two PA-selective three-finger grips that tightly bind the PA phosphate headgroup while interacting less intimately with PS. This work establishes lipid headgroup selectivity as a new feature in the family of AH-containing membrane property sensors.
Collapse
Affiliation(s)
- Harald F Hofbauer
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany .,Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.,Institute of Medical Biochemistry and Molecular Biology, School of Medicine, University of Saarland, Homburg, Germany
| | - Michael Gecht
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany.,Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.,Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Sabine C Fischer
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany.,Physical Biology, Interdisciplinary Center for Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Anja Seybert
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Ernst H K Stelzer
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany.,Physical Biology, Interdisciplinary Center for Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Roberto Covino
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany.,Institute for Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Ernst
- Institute of Medical Biochemistry and Molecular Biology, School of Medicine, University of Saarland, Homburg, Germany
| |
Collapse
|
31
|
Pokotylo I, Kravets V, Martinec J, Ruelland E. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Prog Lipid Res 2018; 71:43-53. [PMID: 29842906 DOI: 10.1016/j.plipres.2018.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/29/2022]
Abstract
Phosphatidic acid (PA) is a simple phospholipid observed in most organisms. PA acts as a key metabolic intermediate and a second messenger that regulates many cell activities. In plants, PA is involved in numerous cell responses induced by hormones, stress inputs and developmental processes. Interestingly, PA production can be triggered by opposite stressors, such as cold and heat, or by hormones that are considered to be antagonistic, such as abscisic acid and salicylic acid. This property questions the specificity of the responses controlled by PA. Are there generic responses to PA, meaning that cell regulation triggered by PA would be always the same, even in opposite physiological situations? Alternatively, do the responses to PA differ according to the physiological context within the cells? If so, the mechanisms that regulate the divergence of PA-controlled reactions are poorly defined. This review summarizes the latest opinions on how PA signalling is directed in plant cells and examines the intrinsic properties of PA that enable its regulatory diversity. We propose a concept whereby PA regulatory messages are perceived as complex "signatures" that take into account their production site, the availability of target proteins and the relevant cellular environments.
Collapse
Affiliation(s)
- Igor Pokotylo
- Université Paris-Est, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France; Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Volodymyr Kravets
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eric Ruelland
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine; CNRS, UMR7618, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France.
| |
Collapse
|
32
|
Protein⁻Phospholipid Interaction Motifs: A Focus on Phosphatidic Acid. Biomolecules 2018; 8:biom8020020. [PMID: 29690573 PMCID: PMC6022864 DOI: 10.3390/biom8020020] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
Cellular membranes are composed of thousands of different lipids usually maintained within a narrow range of concentrations. In addition to their well-known structural and metabolic roles, signaling functions for many lipids have also emerged over the last two decades. The latter largely depend on the ability of particular classes of lipids to interact specifically with a great variety of proteins and to regulate their localization and activity. Among these lipids, phosphatidic acid (PA) plays a unique role in a large repertoire of cellular activities, most likely in relation to its unique biophysical properties. However, until recently, only incomplete information was available to model the interaction between PA and its protein partners. The development of new liposome-based assays as well as molecular dynamic simulation are now providing novel information. We will review the different factors that have shown to modulate the capacity of PA to interact with specific domains in target proteins.
Collapse
|
33
|
Vermeer JE, van Wijk R, Goedhart J, Geldner N, Chory J, Gadella TW, Munnik T. In Vivo Imaging of Diacylglycerol at the Cytoplasmic Leaflet of Plant Membranes. PLANT & CELL PHYSIOLOGY 2017; 58:1196-1207. [PMID: 28158855 PMCID: PMC6200129 DOI: 10.1093/pcp/pcx012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/11/2017] [Indexed: 05/05/2023]
Abstract
Diacylglycerol (DAG) is an important intermediate in lipid biosynthesis and plays key roles in cell signaling, either as a second messenger itself or as a precursor of phosphatidic acid. Methods to identify distinct DAG pools have proven difficult because biochemical fractionation affects the pools, and concentrations are limiting. Here, we validate the use of a genetically encoded DAG biosensor in living plant cells. The sensor is composed of a fusion between yellow fluorescent protein and the C1a domain of protein kinase C (YFP-C1aPKC) that specifically binds DAG, and was stably expressed in suspension-cultured tobacco BY-2 cells and whole Arabidopsis thaliana plants. Confocal imaging revealed that the majority of the YFP-C1aPKC fluorescence did not locate to membranes but was present in the cytosol and nucleus. Treatment with short-chain DAG or PMA (phorbol-12-myristate-13-acetate), a phorbol ester that binds the C1a domain of PKC, caused the recruitment of the biosensor to the plasma membrane. These results indicate that the biosensor works and that the basal DAG concentration in the cytoplasmic leaflet of membranes (i.e. accessible to the biosensor) is in general too low, and confirms that the known pools in plastids, the endoplasmic reticulum and mitochondria are located at the luminal face of these compartments (i.e. inaccessible to the biosensor). Nevertheless, detailed further analysis of different cells and tissues discovered four novel DAG pools, namely at: (i) the trans-Golgi network; (ii) the cell plate during cytokinesis; (iii) the plasma membrane of root epidermal cells in the transition zone, and (iv) the apex of growing root hairs. The results provide new insights into the spatiotemporal dynamics of DAG in plants and offer a new tool to monitor this in vivo.
Collapse
Affiliation(s)
- Joop E.M. Vermeer
- Section of Plant Physiology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
- Department of Plant Molecular Biology, University of Lausanne-Sorge, Lausanne 1015, Switzerland
- Present address: Department of Plant and Microbial Biology, University of Zürich, Zürich 8008, Switzerland
| | - Ringo van Wijk
- Section of Plant Physiology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
- Section of Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Section of Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne-Sorge, Lausanne 1015, Switzerland
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Theodorus W.J. Gadella
- Section of Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
| | - Teun Munnik
- Section of Plant Physiology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
- Section of Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Kassas N, Tanguy E, Thahouly T, Fouillen L, Heintz D, Chasserot-Golaz S, Bader MF, Grant NJ, Vitale N. Comparative Characterization of Phosphatidic Acid Sensors and Their Localization during Frustrated Phagocytosis. J Biol Chem 2017; 292:4266-4279. [PMID: 28115519 DOI: 10.1074/jbc.m116.742346] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/20/2017] [Indexed: 11/06/2022] Open
Abstract
Phosphatidic acid (PA) is the simplest phospholipid naturally existing in living organisms, but it constitutes only a minor fraction of total cell lipids. PA has attracted considerable attention because it is a phospholipid precursor, a lipid second messenger, and a modulator of membrane shape, and it has thus been proposed to play key cellular functions. The dynamics of PA in cells and in subcellular compartments, however, remains an open question. The recent generation of fluorescent probes for PA, by fusing GFP to PA-binding domains, has provided direct evidence for PA dynamics in different intracellular compartments. Here, three PA sensors were characterized in vitro, and their preferences for different PA species in particular lipidic environments were compared. In addition, the localization of PA in macrophages during frustrated phagocytosis was examined using these PA sensors and was combined with a lipidomic analysis of PA in intracellular compartments. The results indicate that the PA sensors display some preferences for specific PA species, depending on the lipid environment, and the localization study in macrophages revealed the complexity of intracellular PA dynamics.
Collapse
Affiliation(s)
- Nawal Kassas
- From the Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 CNRS and Université de Strasbourg, 5 Rue Blaise Pascal, 67084 Strasbourg
| | - Emeline Tanguy
- From the Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 CNRS and Université de Strasbourg, 5 Rue Blaise Pascal, 67084 Strasbourg
| | - Tamou Thahouly
- From the Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 CNRS and Université de Strasbourg, 5 Rue Blaise Pascal, 67084 Strasbourg
| | - Laetitia Fouillen
- the Laboratoire de Biogénèse Membranaire, UMR-5200 CNRS, Plateforme Métabolome, Université de Bordeaux, 33883 Villenave D'Ornon, and
| | - Dimitri Heintz
- the Plateforme Métabolomique, Institut de Biologie Moléculaire des Plantes, UPR-2357 CNRS and Université de Strasbourg, Institut de Botanique, 28 Rue Goethe, 67083 Strasbourg, France
| | - Sylvette Chasserot-Golaz
- From the Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 CNRS and Université de Strasbourg, 5 Rue Blaise Pascal, 67084 Strasbourg
| | - Marie-France Bader
- From the Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 CNRS and Université de Strasbourg, 5 Rue Blaise Pascal, 67084 Strasbourg
| | - Nancy J Grant
- From the Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 CNRS and Université de Strasbourg, 5 Rue Blaise Pascal, 67084 Strasbourg
| | - Nicolas Vitale
- From the Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 CNRS and Université de Strasbourg, 5 Rue Blaise Pascal, 67084 Strasbourg,
| |
Collapse
|
35
|
Philip F, Ha EE, Seeliger MA, Frohman MA. Measuring Phospholipase D Enzymatic Activity Through Biochemical and Imaging Methods. Methods Enzymol 2016; 583:309-325. [PMID: 28063496 DOI: 10.1016/bs.mie.2016.09.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The phospholipase D (PLD) enzymatic superfamily regulates a wide range of cell biological and physiological pathways, including platelet activation, immune responses, cancer, and spermatogenesis. The three main enzymatic actions of the superfamily entail (i) hydrolyzing membrane phospholipids (phosphatidylcholine (PC) and cardiolipin) to generate choline and the second messenger signaling lipid phosphatidic acid (PA), (ii) using ethanol to transphosphatidylate PC to generate the long-lived metabolite phosphatidylethanol, and (iii) hydrolyzing RNA transcripts to generate piRNAs, the third form of endogenous RNAi. We discuss briefly previously published methods for in vitro and in vivo detection and imaging of PA, and focus on production, purification, and in vitro endonuclease activity analysis for human PLD6, a mitochondrial-tethered isoform with roles in fertility, cancer, and neuronal homeostasis.
Collapse
Affiliation(s)
- F Philip
- Center for Developmental Genetics, Stony Brook University School of Medicine, Stony Brook, NY, United States
| | - E E Ha
- Center for Developmental Genetics, Stony Brook University School of Medicine, Stony Brook, NY, United States
| | - M A Seeliger
- Center for Developmental Genetics, Stony Brook University School of Medicine, Stony Brook, NY, United States
| | - M A Frohman
- Center for Developmental Genetics, Stony Brook University School of Medicine, Stony Brook, NY, United States.
| |
Collapse
|
36
|
Wang H, Becuwe M, Housden BE, Chitraju C, Porras AJ, Graham MM, Liu XN, Thiam AR, Savage DB, Agarwal AK, Garg A, Olarte MJ, Lin Q, Fröhlich F, Hannibal-Bach HK, Upadhyayula S, Perrimon N, Kirchhausen T, Ejsing CS, Walther TC, Farese RV. Seipin is required for converting nascent to mature lipid droplets. eLife 2016; 5. [PMID: 27564575 PMCID: PMC5035145 DOI: 10.7554/elife.16582] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/25/2016] [Indexed: 12/16/2022] Open
Abstract
How proteins control the biogenesis of cellular lipid droplets (LDs) is poorly understood. Using Drosophila and human cells, we show here that seipin, an ER protein implicated in LD biology, mediates a discrete step in LD formation-the conversion of small, nascent LDs to larger, mature LDs. Seipin forms discrete and dynamic foci in the ER that interact with nascent LDs to enable their growth. In the absence of seipin, numerous small, nascent LDs accumulate near the ER and most often fail to grow. Those that do grow prematurely acquire lipid synthesis enzymes and undergo expansion, eventually leading to the giant LDs characteristic of seipin deficiency. Our studies identify a discrete step of LD formation, namely the conversion of nascent LDs to mature LDs, and define a molecular role for seipin in this process, most likely by acting at ER-LD contact sites to enable lipid transfer to nascent LDs.
Collapse
Affiliation(s)
- Huajin Wang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States.,Department of Genetics and Complex Diseases, Harvard T H Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Michel Becuwe
- Department of Genetics and Complex Diseases, Harvard T H Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | | | - Chandramohan Chitraju
- Department of Genetics and Complex Diseases, Harvard T H Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Ashley J Porras
- Department of Genetics and Complex Diseases, Harvard T H Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Morven M Graham
- Center for Cellular and Molecular Imaging, Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Xinran N Liu
- Center for Cellular and Molecular Imaging, Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Abdou Rachid Thiam
- Laboratoire de Physique Statistique, École Normale Supérieure, PSL Research University, Université Paris Diderot Sorbonne Paris-Cité, Sorbonne Universités UPMC Univ Paris 06, CNRS UMR 8550, Paris, France
| | - David B Savage
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom
| | - Anil K Agarwal
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, United States
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, United States
| | - Maria-Jesus Olarte
- Department of Genetics and Complex Diseases, Harvard T H Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Qingqing Lin
- Department of Genetics and Complex Diseases, Harvard T H Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Florian Fröhlich
- Department of Genetics and Complex Diseases, Harvard T H Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States.,Molecular Membrane Biology Section, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Hans Kristian Hannibal-Bach
- VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Srigokul Upadhyayula
- Department of Cell Biology, Harvard Medical School, Boston, United States.,Department of Pediatrics, Harvard Medical School, Boston, United States.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Boston, United States
| | - Tomas Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, United States.,Department of Pediatrics, Harvard Medical School, Boston, United States.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| | - Christer S Ejsing
- VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tobias C Walther
- Department of Genetics and Complex Diseases, Harvard T H Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States
| | - Robert V Farese
- Department of Genetics and Complex Diseases, Harvard T H Chan School of Public Health, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States
| |
Collapse
|
37
|
Abstract
Acidic phospholipids are minor membrane lipids but critically important for signaling events. The main acidic phospholipids are phosphatidylinositol phosphates (PIPs also known as phosphoinositides), phosphatidylserine (PS), and phosphatidic acid (PA). Acidic phospholipids are precursors of second messengers of key signaling cascades or are second messengers themselves. They regulate the localization and activation of many proteins, and are involved in virtually all membrane trafficking events. As such, it is crucial to understand the subcellular localization and dynamics of each of these lipids within the cell. Over the years, several techniques have emerged in either fixed or live cells to analyze the subcellular localization and dynamics of acidic phospholipids. In this chapter, we review one of them: the use of genetically encoded biosensors that are based on the expression of specific lipid binding domains (LBDs) fused to fluorescent proteins. We discuss how to design such sensors, including the criteria for selecting the lipid binding domains of interest and to validate them. We also emphasize the care that must be taken during data analysis as well as the main limitations and advantages of this approach.
Collapse
Affiliation(s)
- Matthieu Pierre Platre
- Laboratoire de Reproduction et Développement des Plantes, CNRS, INRA, ENS Lyon, UCBL, Université de Lyon, 46 Allée d'Italie, 69364, Lyon Cedex 07, France
| | - Yvon Jaillais
- Laboratoire de Reproduction et Développement des Plantes, CNRS, INRA, ENS Lyon, UCBL, Université de Lyon, 46 Allée d'Italie, 69364, Lyon Cedex 07, France.
| |
Collapse
|
38
|
Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2709-2716. [PMID: 27480805 DOI: 10.1016/j.bbamem.2016.07.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/12/2016] [Accepted: 07/27/2016] [Indexed: 01/16/2023]
Abstract
Phosphatidic acid (PA) is a crucial membrane phospholipid involved in de novo lipid synthesis and numerous intracellular signaling cascades. The signaling function of PA is mediated by peripheral membrane proteins that specifically recognize PA. While numerous PA-binding proteins are known, much less is known about what drives specificity of PA-protein binding. Previously, we have described the ionization properties of PA, summarized in the electrostatic-hydrogen bond switch, as one aspect that drives the specific binding of PA by PA-binding proteins. Here we focus on membrane curvature stress induced by phosphatidylethanolamine and show that many PA-binding proteins display enhanced binding as a function of negative curvature stress. This result is corroborated by the observation that positive curvature stress, induced by lyso phosphatidylcholine, abolishes PA binding of target proteins. We show, for the first time, that a novel plant PA-binding protein, Arabidopsis Epsin-like Clathrin Adaptor 1 (ECA1) displays curvature-dependence in its binding to PA. Other established PA targets examined in this study include, the plant proteins TGD2, and PDK1, the yeast proteins Opi1 and Spo20, and, the mammalian protein Raf-1 kinase and the C2 domain of the mammalian phosphatidylserine binding protein Lact as control. Based on our observations, we propose that liposome binding assays are the preferred method to investigate lipid binding compared to the popular lipid overlay assays where membrane environment is lost. The use of complex lipid mixtures is important to elucidate further aspects of PA binding proteins.
Collapse
|
39
|
Magdeleine M, Gautier R, Gounon P, Barelli H, Vanni S, Antonny B. A filter at the entrance of the Golgi that selects vesicles according to size and bulk lipid composition. eLife 2016; 5. [PMID: 27458799 PMCID: PMC4961469 DOI: 10.7554/elife.16988] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/12/2016] [Indexed: 12/22/2022] Open
Abstract
When small phosphatidylcholine liposomes are added to perforated cells, they bind preferentially to the Golgi suggesting an exceptional avidity of this organelle for curved membranes without stereospecific interactions. We show that the cis golgin GMAP-210 accounts for this property. First, the liposome tethering properties of the Golgi resembles that of the amphipathic lipid-packing sensor (ALPS) motif of GMAP-210: both preferred small (radius < 40 nm) liposomes made of monounsaturated but not saturated lipids. Second, reducing GMAP-210 levels or redirecting its ALPS motif to mitochondria decreased liposome capture by the Golgi. Extensive mutagenesis analysis suggests that GMAP-210 tethers authentic transport vesicles via the same mechanism whereby the ALPS motif senses lipid-packing defects at the vesicle surface through its regularly spaced hydrophobic residues. We conclude that the Golgi uses GMAP-210 as a filter to select transport vesicles according to their size and bulk lipid composition. DOI:http://dx.doi.org/10.7554/eLife.16988.001
Collapse
Affiliation(s)
- Maud Magdeleine
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Romain Gautier
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Pierre Gounon
- Centre Commun de Microscopie Appliquée, Université Côte d'Azur, Nice, France
| | - Hélène Barelli
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Stefano Vanni
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Bruno Antonny
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
40
|
Miner GE, Starr ML, Hurst LR, Sparks RP, Padolina M, Fratti RA. The Central Polybasic Region of the Soluble SNARE (Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor) Vam7 Affects Binding to Phosphatidylinositol 3-Phosphate by the PX (Phox Homology) Domain. J Biol Chem 2016; 291:17651-63. [PMID: 27365394 DOI: 10.1074/jbc.m116.725366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Indexed: 12/14/2022] Open
Abstract
The yeast vacuole requires four SNAREs to trigger membrane fusion including the soluble Qc-SNARE Vam7. The N-terminal PX domain of Vam7 binds to the lipid phosphatidylinositol 3-phosphate (PI3P) and the tethering complex HOPS (homotypic fusion and vacuole protein sorting complex), whereas the C-terminal SNARE motif forms SNARE complexes. Vam7 also contains an uncharacterized middle domain that is predicted to be a coiled-coil domain with multiple helices. One helix contains a polybasic region (PBR) composed of Arg-164, Arg-168, Lys-172, Lys-175, Arg-179, and Lys-186. Polybasic regions are often associated with nonspecific binding to acidic phospholipids including phosphoinositides. Although the PX (phox homology) domain alone binds PI3P, we theorized that the Vam7 PBR could bind to additional acidic phospholipids enriched at fusion sites. Mutating each of the basic residues in the PBR to an alanine (Vam7-6A) led to attenuated vacuole fusion. The defective fusion of Vam7-6A was due in part to inefficient association with its cognate SNAREs and HOPS, yet the overall vacuole association of Vam7-6A was similar to wild type. Experiments testing the binding of Vam7 to specific signaling lipids showed that mutating the PBR to alanines augmented binding to PI3P. The increased binding to PI3P by Vam7-6A likely contributed to the observed wild type levels of vacuole association, whereas protein-protein interactions were diminished. PI3P binding was inhibited when the PX domain mutant Y42A was introduced into Vam7-6A to make Vam7-7A. Thus the Vam7 PBR affects PI3P binding by the PX domain and in turn affects binding to SNAREs and HOPS to support efficient fusion.
Collapse
Affiliation(s)
- Gregory E Miner
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Matthew L Starr
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Logan R Hurst
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Robert P Sparks
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Mark Padolina
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Rutilio A Fratti
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
41
|
Ganesan S, Shabits BN, Zaremberg V. Tracking Diacylglycerol and Phosphatidic Acid Pools in Budding Yeast. Lipid Insights 2016; 8:75-85. [PMID: 27081314 PMCID: PMC4824325 DOI: 10.4137/lpi.s31781] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/24/2016] [Accepted: 03/05/2016] [Indexed: 02/07/2023] Open
Abstract
Phosphatidic acid (PA) and diacylglycerol (DAG) are key signaling molecules and important precursors for the biosynthesis of all glycerolipids found in eukaryotes. Research conducted in the model organism Saccharomyces cerevisiae has been at the forefront of the identification of the enzymes involved in the metabolism and transport of PA and DAG. Both these lipids can alter the local physical properties of membranes by introducing negative curvature, but the anionic nature of the phosphomonoester headgroup in PA sets it apart from DAG. As a result, the mechanisms underlying PA and DAG interaction with other lipids and proteins are notoriously different. This is apparent from the analysis of the protein domains responsible for recognition and binding to each of these lipids. We review the current evidence obtained using the PA-binding proteins and domains fused to fluorescent proteins for in vivo tracking of PA pools in yeast. In addition, we present original results for visualization of DAG pools in yeast using the C1 domain from mammalian PKCδ. An emerging first cellular map of the distribution of PA and DAG pools in actively growing yeast is discussed.
Collapse
Affiliation(s)
| | - Brittney N Shabits
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
42
|
Rowe ER, Mimmack ML, Barbosa AD, Haider A, Isaac I, Ouberai MM, Thiam AR, Patel S, Saudek V, Siniossoglou S, Savage DB. Conserved Amphipathic Helices Mediate Lipid Droplet Targeting of Perilipins 1-3. J Biol Chem 2016; 291:6664-78. [PMID: 26742848 PMCID: PMC4807253 DOI: 10.1074/jbc.m115.691048] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
Perilipins (PLINs) play a key role in energy storage by orchestrating the activity of lipases on the surface of lipid droplets. Failure of this activity results in severe metabolic disease in humans. Unlike all other lipid droplet-associated proteins, PLINs localize almost exclusively to the phospholipid monolayer surrounding the droplet. To understand how they sense and associate with the unique topology of the droplet surface, we studied the localization of human PLINs inSaccharomyces cerevisiae,demonstrating that the targeting mechanism is highly conserved and that 11-mer repeat regions are sufficient for droplet targeting. Mutations designed to disrupt folding of this region into amphipathic helices (AHs) significantly decreased lipid droplet targetingin vivoandin vitro Finally, we demonstrated a substantial increase in the helicity of this region in the presence of detergent micelles, which was prevented by an AH-disrupting missense mutation. We conclude that highly conserved 11-mer repeat regions of PLINs target lipid droplets by folding into AHs on the droplet surface, thus enabling PLINs to regulate the interface between the hydrophobic lipid core and its surrounding hydrophilic environment.
Collapse
Affiliation(s)
- Emily R Rowe
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Michael L Mimmack
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Antonio D Barbosa
- the Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Afreen Haider
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Iona Isaac
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Myriam M Ouberai
- the Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge CB3 0FF, United Kingdom, and
| | - Abdou Rachid Thiam
- the Laboratoire de Physique Statistique, Ecole Normale Supérieure de Paris, Université Pierre et Marie Curie, Université Paris Diderot, CNRS, 24 Rue Lhomond, 75005 Paris, France
| | - Satish Patel
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Vladimir Saudek
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Symeon Siniossoglou
- the Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - David B Savage
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom,
| |
Collapse
|
43
|
SPO73 and SPO71 Function Cooperatively in Prospore Membrane Elongation During Sporulation in Saccharomyces cerevisiae. PLoS One 2015; 10:e0143571. [PMID: 26605945 PMCID: PMC4659569 DOI: 10.1371/journal.pone.0143571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/08/2015] [Indexed: 01/21/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, cells undergoing sporulation form prospore membranes to surround their meiotic nuclei. The prospore membranes ultimately become the plasma membranes of the new cells. The putative phospholipase Spo1 and the tandem Pleckstrin Homology domain protein Spo71 have previously been shown to be required for prospore membrane development, along with the constitutively expressed Vps13 involved in vacuolar sorting. Here, we utilize genetic analysis, and find that SPO73 is required for proper prospore membrane shape and, like SPO71, is necessary for prospore membrane elongation. Additionally, similar to SPO71, loss of SPO73 partially suppresses spo1Δ. Spo73 localizes to prospore membranes and complexes with Spo71. We also find that phosphatidylserine localizes to the prospore membrane. Our results suggest a model where SPO71 and SPO73 act in opposition to SPO1 to form and elongate prospore membranes, while VPS13 plays a distinct role in prospore membrane development.
Collapse
|
44
|
Grippa A, Buxó L, Mora G, Funaya C, Idrissi FZ, Mancuso F, Gomez R, Muntanyà J, Sabidó E, Carvalho P. The seipin complex Fld1/Ldb16 stabilizes ER-lipid droplet contact sites. J Cell Biol 2015; 211:829-44. [PMID: 26572621 PMCID: PMC4657162 DOI: 10.1083/jcb.201502070] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 10/16/2015] [Indexed: 01/11/2023] Open
Abstract
Mutations in the seipin complex components Fld1 and Ldb16 result in the loss of lipid droplet identity and phospholipid packing defects, revealing a role of this complex in the stabilization of ER–lipid droplet contact sites. Lipid droplets (LDs) are storage organelles consisting of a neutral lipid core surrounded by a phospholipid monolayer and a set of LD-specific proteins. Most LD components are synthesized in the endoplasmic reticulum (ER), an organelle that is often physically connected with LDs. How LD identity is established while maintaining biochemical and physical connections with the ER is not known. Here, we show that the yeast seipin Fld1, in complex with the ER membrane protein Ldb16, prevents equilibration of ER and LD surface components by stabilizing the contact sites between the two organelles. In the absence of the Fld1/Ldb16 complex, assembly of LDs results in phospholipid packing defects leading to aberrant distribution of lipid-binding proteins and abnormal LDs. We propose that the Fld1/Ldb16 complex facilitates the establishment of LD identity by acting as a diffusion barrier at the ER–LD contact sites.
Collapse
Affiliation(s)
- Alexandra Grippa
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Laura Buxó
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Gabriel Mora
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Charlotta Funaya
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Fatima-Zahra Idrissi
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Francesco Mancuso
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Raul Gomez
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Júlia Muntanyà
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Pedro Carvalho
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
45
|
Doucet CM, Esmery N, de Saint-Jean M, Antonny B. Membrane Curvature Sensing by Amphipathic Helices Is Modulated by the Surrounding Protein Backbone. PLoS One 2015; 10:e0137965. [PMID: 26366573 PMCID: PMC4569407 DOI: 10.1371/journal.pone.0137965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022] Open
Abstract
Membrane curvature is involved in numerous biological pathways like vesicle trafficking, endocytosis or nuclear pore complex assembly. In addition to its topological role, membrane curvature is sensed by specific proteins, enabling the coordination of biological processes in space and time. Amongst membrane curvature sensors are the ALPS (Amphipathic Lipid Packing Sensors). ALPS motifs are short peptides with peculiar amphipathic properties. They are found in proteins targeted to distinct curved membranes, mostly in the early secretory pathway. For instance, the ALPS motif of the golgin GMAP210 binds trafficking vesicles, while the ALPS motif of Nup133 targets nuclear pores. It is not clear if, besides curvature sensitivity, ALPS motifs also provide target specificity, or if other domains in the surrounding protein backbone are involved. To elucidate this aspect, we studied the subcellular localization of ALPS motifs outside their natural protein context. The ALPS motifs of GMAP210 or Nup133 were grafted on artificial fluorescent probes. Importantly, ALPS motifs are held in different positions and these contrasting architectures were mimicked by the fluorescent probes. The resulting chimeras recapitulated the original proteins localization, indicating that ALPS motifs are sufficient to specifically localize proteins. Modulating the electrostatic or hydrophobic content of Nup133 ALPS motif modified its avidity for cellular membranes but did not change its organelle targeting properties. In contrast, the structure of the backbone surrounding the helix strongly influenced targeting. In particular, introducing an artificial coiled-coil between ALPS and the fluorescent protein increased membrane curvature sensitivity. This coiled-coil domain also provided membrane curvature sensitivity to the amphipathic helix of Sar1. The degree of curvature sensitivity within the coiled-coil context remains correlated to the natural curvature sensitivity of the helices. This suggests that the chemistry of ALPS motifs is a key parameter for membrane curvature sensitivity, which can be further modulated by the surrounding protein backbone.
Collapse
Affiliation(s)
- Christine M. Doucet
- IPMC, CNRS UMR 7275, 660 route de Valbonne, 06560 –Valbonne, France
- * E-mail:
| | - Nina Esmery
- IPMC, CNRS UMR 7275, 660 route de Valbonne, 06560 –Valbonne, France
| | | | - Bruno Antonny
- IPMC, CNRS UMR 7275, 660 route de Valbonne, 06560 –Valbonne, France
| |
Collapse
|
46
|
Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1450-64. [PMID: 26275961 DOI: 10.1016/j.bbalip.2015.08.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/17/2015] [Accepted: 08/10/2015] [Indexed: 12/31/2022]
Abstract
Yeast Fld1 and Ldb16 resemble mammalian seipin, implicated in neutral lipid storage. Both proteins form a complex at the endoplasmic reticulum-lipid droplet (LD) interface. Malfunction of this complex either leads to LD clustering or to the generation of supersized LD (SLD) in close vicinity to the nuclear envelope, in response to altered phospholipid (PL) composition. We show that similar to mutants lacking Fld1, deletion of LDB16 leads to abnormal proliferation of a subdomain of the nuclear envelope, which is tightly associated with clustered LD. The human lipin-1 ortholog, the PAH1 encoded phosphatidic acid (PA) phosphatase, and its activator Nem1 are highly enriched at this site. The specific accumulation of PA-binding marker proteins indicates a local enrichment of PA in the fld1 and ldb16 mutants. Furthermore, we demonstrate that clustered LD in fld1 or ldb16 mutants are transformed to SLD if phosphatidylcholine synthesis is compromised by additional deletion of the phosphatidylethanolamine methyltransferase, Cho2. Notably, treatment of wild-type cells with oleate induced a similar LD clustering and nuclear membrane proliferation phenotype as observed in fld1 and ldb16 mutants. These data suggest that the Fld1-Ldb16 complex affects PA homeostasis at an LD-forming subdomain of the nuclear envelope. Lack of Fld1-Ldb16 leads to locally elevated PA levels that induce an abnormal proliferation of nER membrane structures and the clustering of associated LD. We suggest that the formation of SLD is a consequence of locally altered PL metabolism at this site.
Collapse
|
47
|
Development of a Novel Tetravalent Synthetic Peptide That Binds to Phosphatidic Acid. PLoS One 2015; 10:e0131668. [PMID: 26147860 PMCID: PMC4493020 DOI: 10.1371/journal.pone.0131668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/05/2015] [Indexed: 01/04/2023] Open
Abstract
We employed a multivalent peptide-library screening technique to identify a peptide motif that binds to phosphatidic acid (PA), but not to other phospholipids such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). A tetravalent peptide with the sequence motif of MARWHRHHH, designated as PAB-TP (phosphatidic acid-binding tetravalent peptide), was shown to bind as low as 1 mol% of PA in the bilayer membrane composed of PC and cholesterol. Kinetic analysis of the interaction between PAB-TP and the membranes containing 10 mol% of PA showed that PAB-TP associated with PA with a low dissociation constant of KD = 38 ± 5 nM. Coexistence of cholesterol or PE with PA in the membrane enhanced the PAB-TP binding to PA by increasing the ionization of the phosphomonoester head group as well as by changing the microenvironment of PA molecules in the membrane. Amino acid replacement analysis demonstrated that the tryptophan residue at position 4 of PAB-TP was involved in the interaction with PA. Furthermore, a series of amino acid substitutions at positions 5 to 9 of PAB-TP revealed the involvement of consecutive histidine and arginine residues in recognition of the phosphomonoester head group of PA. Our results demonstrate that the recognition of PA by PAB-TP is achieved by a combination of hydrophobic, electrostatic and hydrogen-bond interactions, and that the tetravalent structure of PAB-TP contributes to the high affinity binding to PA in the membrane. The novel PA-binding tetravalent peptide PAB-TP will provide insight into the molecular mechanism underlying the recognition of PA by PA-binding proteins that are involved in various cellular events.
Collapse
|