1
|
Wang B, Zhang S, Wang H, Wang M, Tao Y, Ye M, Fan Z, Wang Y, Liu L. Identification of EGR4 as a prospective target for inhibiting tumor cell proliferation and a novel biomarker in colorectal cancer. Cancer Gene Ther 2024; 31:871-883. [PMID: 38459370 DOI: 10.1038/s41417-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 03/10/2024]
Abstract
EGR4 (Early Growth Response 4) is a member of the EGR family, involving in tumorigenesis. However, the function and action mechanism of EGR4 in the pathogenesis of colorectal cancer (CRC) remain unclear. To address this, we assessed the prognosis of CRC based on EGR4 using the Kaplan-Meier plotter tool and tissue microarray. The abundance of immunoinfiltration was evaluated through ssGSEA, TISIDB, and TIMER. In vitro experiments involving knockdown or overexpression of EGR4 were performed, and RNA-sequencing was conducted to explore potential mechanisms. Furthermore, we used oxaliplatin and 5-fluorouracil to validate the impact of EGR4 on chemo-resistance. Pan-cancer analysis and tissue microarray showed that EGR4 was highly expressed in CRC and significantly correlated with an unfavorable prognosis. Moreover, EGR4 expression was associated with immunoinfiltration and cancer-associated fibroblasts in the CRC microenvironment. Functional enrichment demonstrated that high-expressional EGR4 were involved in chromatin and nucleosome assembly. Additionally, EGR4 promoted the proliferation of CRC cells. Mechanistically, EGR4 upregulated TNFα to activate the NF-κB signaling pathway, and its knockdown reduced p65 nuclear translocation. Importantly, combining shEGR4 with oxaliplatin and 5-fluorouracil significantly inhibited CRC proliferation. Taken together, these findings provide new insights into the potential prognosis and therapeutic targets of EGR4 in CRC.
Collapse
Affiliation(s)
- Bangting Wang
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining, China
| | - Shijie Zhang
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Haiyang Wang
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Min Wang
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Yuwen Tao
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Mujie Ye
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Zhining Fan
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Yan Wang
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China.
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining, China.
| | - Li Liu
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Jonas K, Prinz F, Ferracin M, Krajina K, Pasculli B, Deutsch A, Madl T, Rinner B, Slaby O, Klec C, Pichler M. MiR-4649-5p acts as a tumor-suppressive microRNA in triple negative breast cancer by direct interaction with PIP5K1C, thereby potentiating growth-inhibitory effects of the AKT inhibitor capivasertib. Breast Cancer Res 2023; 25:119. [PMID: 37803350 PMCID: PMC10559525 DOI: 10.1186/s13058-023-01716-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is a particularly aggressive and difficult-to-treat subtype of breast cancer that requires the development of novel therapeutic strategies. To pave the way for such developments it is essential to characterize new molecular players in TNBC. MicroRNAs (miRNAs) constitute interesting candidates in this regard as they are frequently deregulated in cancer and contribute to numerous aspects of carcinogenesis. METHODS AND RESULTS Here, we discovered that miR-4649-5p, a miRNA yet uncharacterized in breast cancer, is associated with better overall survival of TNBC patients. Ectopic upregulation of the otherwise very low endogenous expression levels of miR-4646-5p significantly decreased the growth, proliferation, and migration of TNBC cells. By performing whole transcriptome analysis and physical interaction assays, we were able to identify the phosphatidylinositol phosphate kinase PIP5K1C as a direct target of miR-4649-5p. Downregulation or pharmacologic inhibition of PIP5K1C phenocopied the growth-reducing effects of miR-4649-5p. PIP5K1C is known to play an important role in migration and cell adhesion, and we could furthermore confirm its impact on downstream PI3K/AKT signaling. Combinations of miR-4649-5p upregulation and PIP5K1C or AKT inhibition, using the pharmacologic inhibitors UNC3230 and capivasertib, respectively, showed additive growth-reducing effects in TNBC cells. CONCLUSION In summary, miR-4649-5p exerts broad tumor-suppressive effects in TNBC and shows potential for combined therapeutic approaches targeting the PIP5K1C/PI3K/AKT signaling axis.
Collapse
Affiliation(s)
- Katharina Jonas
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Non-Coding RNA and Genome Editing in Cancer, Medical University of Graz, Graz, Austria
| | - Felix Prinz
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Non-Coding RNA and Genome Editing in Cancer, Medical University of Graz, Graz, Austria
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Katarina Krajina
- Translational Oncology, II. Med Clinics Hematology and Oncology, Augsburg, Germany
| | - Barbara Pasculli
- Fondazione IRCCS Casa Sollievo della Sofferenza Laboratorio di Oncologia, San Giovanni Rotondo, FG, Italy
| | - Alexander Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Tobias Madl
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Beate Rinner
- Department for Biomedical Research, Medical University of Graz, Graz, Austria
| | - Ondrej Slaby
- Department of Biology, Faculty of Medicine and Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Christiane Klec
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Non-Coding RNA and Genome Editing in Cancer, Medical University of Graz, Graz, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
- Research Unit for Non-Coding RNA and Genome Editing in Cancer, Medical University of Graz, Graz, Austria.
- Translational Oncology, II. Med Clinics Hematology and Oncology, Augsburg, Germany.
| |
Collapse
|
3
|
Golebiewski C, Gastaldi C, Vieu DL, Mari B, Rezzonico R, Bernerd F, Marionnet C. Identification and functional validation of SRC and RAPGEF1 as new direct targets of miR-203, involved in regulation of epidermal homeostasis. Sci Rep 2023; 13:14006. [PMID: 37635193 PMCID: PMC10460794 DOI: 10.1038/s41598-023-40441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
The epidermis is mostly composed of keratinocytes and forms a protecting barrier against external aggressions and dehydration. Epidermal homeostasis is maintained by a fine-tuned balance between keratinocyte proliferation and differentiation. In the regulation of this process, the keratinocyte-specific miR-203 microRNA is of the outmost importance as it promotes differentiation, notably by directly targeting and down-regulating mRNA expression of genes involved in keratinocyte proliferation, such as ΔNp63, Skp2 and Msi2. We aimed at identifying new miR-203 targets involved in the regulation of keratinocyte proliferation/differentiation balance. To this end, a transcriptome analysis of human primary keratinocytes overexpressing miR-203 was performed and revealed that miR-203 overexpression inhibited functions like proliferation, mitosis and cell cycling, and activated differentiation, apoptosis and cell death. Among the down-regulated genes, 24 putative target mRNAs were identified and 8 of them were related to proliferation. We demonstrated that SRC and RAPGEF1 were direct targets of miR-203. Moreover, both were down-regulated during epidermal morphogenesis in a 3D reconstructed skin model, while miR-203 was up-regulated. Finally silencing experiments showed that SRC or RAPGEF1 contributed to keratinocyte proliferation and regulated their differentiation. Preliminary results suggest their involvement in skin carcinoma hyperproliferation. Altogether this data indicates that RAPGEF1 and SRC could be new mediators of miR-203 in epidermal homeostasis regulation.
Collapse
Affiliation(s)
| | - Cécile Gastaldi
- Medical Biology Department, Centre Scientifique de Monaco, Monaco, Principality of Monaco
- LIA BAHN, CSM-UVSQ, Monaco, Principality of Monaco
| | | | - Bernard Mari
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | - Roger Rezzonico
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | | | | |
Collapse
|
4
|
Yamada T, Yamamori Y, Matsuda N, Nagamune H, Ohkura K, Tomoyasu T, Tabata A. Streptolysin S induces pronounced calcium-ion influx-dependent expression of immediate early genes encoding transcription factors. Sci Rep 2023; 13:13720. [PMID: 37608082 PMCID: PMC10444759 DOI: 10.1038/s41598-023-40981-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/19/2023] [Indexed: 08/24/2023] Open
Abstract
Anginosus group streptococci (AGS) are opportunistic human pathogens of the oral cavity. The β-hemolytic subgroup of Streptococcus anginosus subsp. anginosus secretes streptolysin S (SLS) and exhibits not only hemolytic activity but also cytotoxicity toward cultured human cell lines. However, the detailed mechanism of action of SLS and the cellular responses of host cells have not yet been fully clarified. To determine the pathogenic potential of SLS-producing β-hemolytic S. anginosus subsp. anginosus, the SLS-dependent response induced in the human oral squamous cell carcinoma HSC-2 cells was investigated to determine the pathogenic potential of SLS-producing β-hemolytic S. anginosus subsp. anginosus. This study revealed that the Ca2+ influx and the expression of immediate early genes (IEGs) encoding transcription factors such as early growth responses (EGRs) and activator protein-1 (AP-1) were greatly increased in HSC-2 cells incubated with the culture supernatant of SLS-producing β-hemolytic S. anginosus subsp. anginosus. Moreover, this SLS-dependent increase in expression was significantly suppressed by Ca2+ chelation, except for jun. These results suggest that SLS caused Ca2+ influx into the cells following greatly enhanced expression of IEG-encoding transcription factors. The results of this study may help in understanding the pathogenicity of SLS-producing AGS.
Collapse
Affiliation(s)
- Takuya Yamada
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8506, Japan
| | - Yugo Yamamori
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
| | - Nanami Matsuda
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
| | - Hideaki Nagamune
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8506, Japan
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
| | - Kazuto Ohkura
- Division of Clinical Pharmacy and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-Cho, Suzuka, Mie, 513-8670, Japan
| | - Toshifumi Tomoyasu
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8506, Japan
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
| | - Atsushi Tabata
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8506, Japan.
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan.
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan.
| |
Collapse
|
5
|
Sikandar SS, Gulati GS, Antony J, Fetter I, Kuo AH, Ho WHD, Haro-Acosta V, Das S, Steen CB, Pereira TA, Qian D, Beachy PA, Dirbas FM, Red-Horse K, Rabbitts TH, Thiery JP, Newman AM, Clarke MF. Identification of a minority population of LMO2 + breast cancer cells that integrate into the vasculature and initiate metastasis. SCIENCE ADVANCES 2022; 8:eabm3548. [PMID: 36351009 PMCID: PMC10939096 DOI: 10.1126/sciadv.abm3548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Metastasis is responsible for most breast cancer-related deaths; however, identifying the cellular determinants of metastasis has remained challenging. Here, we identified a minority population of immature THY1+/VEGFA+ tumor epithelial cells in human breast tumor biopsies that display angiogenic features and are marked by the expression of the oncogene, LMO2. Higher abundance of LMO2+ basal cells correlated with tumor endothelial content and predicted poor distant recurrence-free survival in patients. Using MMTV-PyMT/Lmo2CreERT2 mice, we demonstrated that Lmo2 lineage-traced cells integrate into the vasculature and have a higher propensity to metastasize. LMO2 knockdown in human breast tumors reduced lung metastasis by impairing intravasation, leading to a reduced frequency of circulating tumor cells. Mechanistically, we find that LMO2 binds to STAT3 and is required for STAT3 activation by tumor necrosis factor-α and interleukin-6. Collectively, our study identifies a population of metastasis-initiating cells with angiogenic features and establishes the LMO2-STAT3 signaling axis as a therapeutic target in breast cancer metastasis.
Collapse
Affiliation(s)
- Shaheen S. Sikandar
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gunsagar S. Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Jane Antony
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Isobel Fetter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Angera H. Kuo
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - William Hai Dang Ho
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Veronica Haro-Acosta
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Soumyashree Das
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Chloé B. Steen
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Thiago Almeida Pereira
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Dalong Qian
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Philip A. Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Frederick M. Dirbas
- Department of Surgery, Stanford Cancer Institute, Stanford University School of Medicine, 875 Blake Wilbur Drive, Rm CC2235, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Terence H. Rabbitts
- Division of Cancer Therapeutics, Institute of Cancer Research, London SM2 5NG, UK
| | - Jean Paul Thiery
- Guangzhou Laboratory, International Biological Island, Guangzhou, Guangdong 510005, China
| | - Aaron M. Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Michael F. Clarke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Drake JM, Lang BJ, Guerrero-Gimenez ME, Bolton J, Dow CA, Calderwood SK, Price JT, Nguyen CH. Regulation of a Novel Splice Variant of Early Growth Response 4 (EGR4-S) by HER+ Signalling and HSF1 in Breast Cancer. Cancers (Basel) 2022; 14:1567. [PMID: 35326716 PMCID: PMC8946690 DOI: 10.3390/cancers14061567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
The zinc finger transcription factor EGR4 has previously been identified as having a critical role in the proliferation of small cell lung cancer. Here, we have identified a novel, shortened splice variant of this transcription factor (EGR4-S) that is regulated by Heat Shock Factor-1 (HSF1). Our findings demonstrate that the shortened variant (EGR4-S) is upregulated with high EGFR, HER2, and H-Rasv12-expressing breast cell lines, and its expression is inhibited in response to HER pathway inhibitors. Protein and mRNA analyses of HER2+ human breast tumours indicated the novel EGR4-S splice variant to be preferentially expressed in tumour tissue and not detectable in patient-matched normal tissue. Knockdown of EGR4-S in the HER2-amplified breast cancer cell line SKBR3 reduced cell growth, suggesting that EGR4-S supports the growth of HER2+ tumour cells. In addition to chemical inhibitors of the HER2 pathway, EGR4-S expression was also found to be suppressed by chemical stressors and the overexpression of HSF1. Under these conditions, reduced EGR4-S levels were associated with the observed lower cell growth rate, but the augmentation of properties associated with higher metastatic potential. Taken together, these findings identify EGR4-S as a potential biomarker for HER2 pathway activation in human tumours that is regulated by HSF1.
Collapse
Affiliation(s)
- Jeremy M Drake
- ProMetTre Cancer Research, Melbourne 3205, Australia
- College of Health and Biomedicine, Victoria University, Melbourne 8001, Australia
| | - Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Martin Eduardo Guerrero-Gimenez
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Mendoza 5500, Argentina
| | - Jack Bolton
- College of Health and Biomedicine, Victoria University, Melbourne 8001, Australia
| | - Christopher A Dow
- Dorevitch Pathology, Western Hospital, Melbourne 3011, Australia
- Department of Medicine, University of Melbourne, Melbourne 3052, Australia
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - John T Price
- College of Health and Biomedicine, Victoria University, Melbourne 8001, Australia
- Institute for Health and Sport, Victoria University, Melbourne 8001, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, Melbourne 8001, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| | - Chau H Nguyen
- College of Health and Biomedicine, Victoria University, Melbourne 8001, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| |
Collapse
|
7
|
Di Persio S, Tekath T, Siebert-Kuss LM, Cremers JF, Wistuba J, Li X, Meyer Zu Hörste G, Drexler HCA, Wyrwoll MJ, Tüttelmann F, Dugas M, Kliesch S, Schlatt S, Laurentino S, Neuhaus N. Single-cell RNA-seq unravels alterations of the human spermatogonial stem cell compartment in patients with impaired spermatogenesis. CELL REPORTS MEDICINE 2021; 2:100395. [PMID: 34622232 PMCID: PMC8484693 DOI: 10.1016/j.xcrm.2021.100395] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/01/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023]
Abstract
Despite the high incidence of male infertility, only 30% of infertile men receive a causative diagnosis. To explore the regulatory mechanisms governing human germ cell function in normal and impaired spermatogenesis (crypto), we performed single-cell RNA sequencing (>30,000 cells). We find major alterations in the crypto spermatogonial compartment with increased numbers of the most undifferentiated spermatogonia (PIWIL4+). We also observe a transcriptional switch within the spermatogonial compartment driven by increased and prolonged expression of the transcription factor EGR4. Intriguingly, the EGR4-regulated chromatin-associated transcriptional repressor UTF1 is downregulated at transcriptional and protein levels. This is associated with changes in spermatogonial chromatin structure and fewer Adark spermatogonia, characterized by tightly compacted chromatin and serving as reserve stem cells. These findings suggest that crypto patients are disadvantaged, as fewer cells safeguard their germline’s genetic integrity. These identified spermatogonial regulators will be highly interesting targets to uncover genetic causes of male infertility. Crypto(zoospermic) men show increased number of PIWIL4+/EGR4+ spermatogonia Crypto undifferentiated spermatogonia over-activate the EGR4 regulatory network The predicted EGR4 target UTF1 is downregulated in crypto spermatogonia Crypto testes show reduced numbers of UTF1+ Adark reserve spermatogonia
Collapse
Affiliation(s)
- Sara Di Persio
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, 48149 Münster, Germany
| | - Tobias Tekath
- Institute of Medical Informatics, University Hospital of Münster, 48149 Münster, Germany
| | - Lara Marie Siebert-Kuss
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, 48149 Münster, Germany
| | - Jann-Frederik Cremers
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital of Münster, 48149 Münster, Germany
| | - Joachim Wistuba
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, 48149 Münster, Germany
| | - Xiaolin Li
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, 48149 Münster, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, 48149 Münster, Germany
| | - Hannes C A Drexler
- Bioanalytical Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Margot Julia Wyrwoll
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital of Münster, 48149 Münster, Germany.,Institute of Reproductive Genetics, University of Münster, 48149 Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, 48149 Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University Hospital of Münster, 48149 Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital of Münster, 48149 Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, 48149 Münster, Germany
| | - Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, 48149 Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, 48149 Münster, Germany
| |
Collapse
|
8
|
Cruz-Ruiz S, Urióstegui-Arcos M, Zurita M. The transcriptional stress response and its implications in cancer treatment. Biochim Biophys Acta Rev Cancer 2021; 1876:188620. [PMID: 34454982 DOI: 10.1016/j.bbcan.2021.188620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Cancer cells require high levels of transcription to survive and maintain their cancerous phenotype. For several years, global transcription inhibitors have been used in the treatment of cancer. However, recent advances in understanding the functioning of the basal transcription machinery and the discovery of new drugs that affect the components of this machinery have generated a new boom in the use of this type of drugs to treat cancer. Inhibiting transcription at the global level in the cell generates a stress situation in which the cancer cell responds by overexpressing hundreds of genes in response to this transcriptional stress. Many of these over-transcribed genes encode factors that may be involved in the selection of cells resistant to the treatment and with a greater degree of malignancy. In this study, we reviewed various examples of substances that inhibit global transcription, as well as their targets, that have a high potential to be used against cancer. We also analysed what kinds of genes are overexpressed in the response to transcriptional stress by different substances and finally we discuss what types of studies are necessary to understand this type of stress response to have more tools to fight cancer.
Collapse
Affiliation(s)
- Samantha Cruz-Ruiz
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico
| | - Maritere Urióstegui-Arcos
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico.
| |
Collapse
|
9
|
Wu J, Chen R, Shen H, Yan T, Qian Y, Zhang Y, Huang Z, Kong P, Pang M, Zhang X. Transcriptome Analysis of Ivosidenib-Mediated Inhibitory Functions on Non-Small Cell Lung Cancer. Front Oncol 2021; 11:626605. [PMID: 33859940 PMCID: PMC8042334 DOI: 10.3389/fonc.2021.626605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/05/2021] [Indexed: 01/22/2023] Open
Abstract
Ivosidenib is an isocitrate dehydrogenase mutant inhibitor that the US Food and Drug Administration recently approved for the treatment of leukemia. Studies suggested that ivosidenib may inhibit the progression of non-small cell lung cancer (NSCLC). In the present study, we explored RNAs and their potential regulatory mechanisms by which ivosidenib treats NSCLC cells. We used MTT assays, Transwell assays, and flow cytometry to measure the anti-tumor effects of ivosidenib in NSCLC cells. We performed whole transcriptome sequencing to determine differentially expressed mRNAs (DE-mRNAs) and non-coding RNAs (ncRNA). We used GO and KEGG pathway enrichment analyses to identify the functions and potential mechanisms. According to miRNA target interactions, we constructed a competing endogenous network. Ivosidenib inhibited the proliferation, invasion, and migration of NSCLC cells and inhibited tumor growth in vivo. We identified 212 DE-mRNAs, four DE-miRNAs, and 206 DE-lncRNAs in ivosidenib-treated NSCLC cells compared to untreated NSCLC cells. DE-mRNAs were significantly enriched in the cancer-associated pathways, including the TGF-β signaling pathway, the PI3K-Akt signaling pathway, the Jak-STAT signaling pathway, the MAPK signaling pathway, the Rap1 signaling pathway, and cell adhesion molecules. Based on the competing endogenous RNA hypothesis, we constructed lncRNA-miRNA-mRNA networks to elucidate the regulatory relationships between mRNA and ncRNA. We found that qRT-PCR results showed corresponding expression trends of differential genes with sequencing data. Our results provide insights into the molecular basis of ivosidenib suppression of NSCLC.
Collapse
Affiliation(s)
- Juan Wu
- Department of Respiratory and Critical Care Medicine, The First Hospital, Shanxi Medical University, Taiyuan, China
| | - Ru Chen
- Department of Respiratory and Critical Care Medicine, The First Hospital, Shanxi Medical University, Taiyuan, China
| | - Huiqing Shen
- Department of Respiratory and Critical Care Medicine, The First Hospital, Shanxi Medical University, Taiyuan, China
| | - Ting Yan
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, China
| | - Yu Qian
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, China
| | - Yaping Zhang
- Department of Respiratory and Critical Care Medicine, The First Hospital, Shanxi Medical University, Taiyuan, China
| | - Zhuoya Huang
- Department of Respiratory and Critical Care Medicine, The First Hospital, Shanxi Medical University, Taiyuan, China
| | - Pengzhou Kong
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, China
| | - Min Pang
- Department of Respiratory and Critical Care Medicine, The First Hospital, Shanxi Medical University, Taiyuan, China
| | - Xinri Zhang
- Department of Respiratory and Critical Care Medicine, The First Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Zhou X, Zhang FY, Liu Y, Wei DX. A Risk Prediction Model for Breast Cancer Based on Immune Genes Related to Early Growth Response Proteins Family. Front Mol Biosci 2021; 7:616547. [PMID: 33614706 PMCID: PMC7887293 DOI: 10.3389/fmolb.2020.616547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022] Open
Abstract
Early growth response proteins (EGRs), a transcriptional regulatory family comprised of EGR1, EGR2, EGR3, and EGR 4, are reportedly involved in a vast array of functions. However, EGRs, as a whole, are rarely studied in breast cancer cases. This research was performed based on public datasets. The results demonstrated that, except EGR4, the other EGRs were differentially expressed genes in breast cancer. Subsequently, this study determined the prognosis significance of the EGR family, higher expression levels of EGRs indicating better overall survival (OS) and disease-free survival (DFS), except EGR4. So we attempted to explore the potential mechanism behind the prognostic value of EGRs. At the DNA level, however, neither DNA methylation status nor genetic alterations of EGRs contributed to the prognosis significance. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that EGRs were involved in several immune-related functions. Afterward, we assessed the correlation between EGRs and the immune system before establishing a risk prediction model with a 14-gene immune signature associated with EGRs, a prognostic nomogram predicting individuals’ 1-, 3-, and 5-year survival probabilities. The risk score was an independent prognosis predictor in the breast cancer cohorts. This study evidenced EGRs’ significance for tumor immunity, demonstrating that the EGR family may be a potential immunotherapeutic target for breast cancer. The 14-gene immune signature is a promising prognostic biomarker in breast cancer.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Breast Surgery, Zibo Maternal and Child Health Hospital, Zibo, China
| | - Fang-Yuan Zhang
- Department of Breast Surgery, Zibo Maternal and Child Health Hospital, Zibo, China
| | - Yan Liu
- Department of Breast Surgery, Zibo Maternal and Child Health Hospital, Zibo, China
| | - Dong-Xin Wei
- Department of Breast Surgery, Zibo Maternal and Child Health Hospital, Zibo, China
| |
Collapse
|
11
|
Gong X, Zou L, Wang M, Zhang Y, Peng S, Zhong M, Zhou J, Li X, Ma X. Gramicidin inhibits cholangiocarcinoma cell growth by suppressing EGR4. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:53-59. [PMID: 31852273 DOI: 10.1080/21691401.2019.1699808] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Gramicidin is a well-known antibiotic and recently was reported to induced tumour cell death, however, little is understood about the molecular mechanism of gramicidin as a therapeutic agent for solid tumours. Here, we investigated the role of gramicidin in cholangiocarcinoma cells. We found that gramicidin A inhibits cholangiocarcinoma cell growth and induced the necrotic cell death. We used next generation sequencing to analyse gene expression profiles of cholangiocarcinoma cells treated with gramicidin. We identified 265 differentially expressed genes in cholangiocarcinoma cells between PBS treatment and gramicidin treatment. EGR4 was confirmed to be a target of gramicidin-induced cell growth inhibition. Furthermore, we demonstrated that downregulation of EGR4 in cholangiocarcinoma cells leads to restraining tumour cell growth. Of note, EGR4 was expressed at highest levels in cholangiocarcinoma tissues among 17 types of human cancers, and EGR4 expression positively correlated with several growth factors associated with cholangiocarcinoma. Our findings ascertain that EGR4 is a potential target in cholangiocarcinoma and suppressing EGR4 by gramicidin establish an essential mechanism for bile duct carcinoma progression.
Collapse
Affiliation(s)
- Xiaoli Gong
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Liming Zou
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Miaomiao Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yingheng Zhang
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuxian Peng
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingtian Zhong
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Jiankui Zhou
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xun Li
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Xiaodong Ma
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| |
Collapse
|
12
|
Uriostegui-Arcos M, Aguayo-Ortiz R, Valencia-Morales MDP, Melchy-Pérez E, Rosenstein Y, Dominguez L, Zurita M. Disruption of TFIIH activities generates a stress gene expression response and reveals possible new targets against cancer. Open Biol 2020; 10:200050. [PMID: 32543350 PMCID: PMC7333893 DOI: 10.1098/rsob.200050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022] Open
Abstract
Disruption of the enzymatic activities of the transcription factor TFIIH by the small molecules Triptolide (TPL) or THZ1 could be used against cancer. Here, we used the MCF10A-ErSrc oncogenesis model to compare the effect of TFIIH inhibitors between transformed cells and their progenitors. We report that tumour cells exhibited highly increased sensitivity to TPL or THZ1 and that the combination of both had a synergic effect. TPL affects the interaction between XPB and p52, causing a reduction in the levels of XPB, p52 and p8, but not other TFIIH subunits. RNA-Seq and RNAPII-ChIP-Seq experiments showed that although the levels of many transcripts were reduced, the levels of a significant number were increased after TPL treatment, with maintained or increased RNAPII promoter occupancy. A significant number of these genes encode for factors that have been related to tumour growth and metastasis, suggesting that transformed cells might rapidly develop resistance to TPL/THZ inhibitors. Some of these genes were also overexpressed in response to THZ1, of which depletion enhances the toxicity of TPL, and are possible new targets against cancer.
Collapse
Affiliation(s)
- Maritere Uriostegui-Arcos
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, Mexico
| | - Rodrigo Aguayo-Ortiz
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - María del Pilar Valencia-Morales
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, Mexico
| | - Erika Melchy-Pérez
- Departamento de Biomedicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, Mexico
| | - Yvonne Rosenstein
- Departamento de Biomedicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, Mexico
| | - Laura Dominguez
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, Mexico
| |
Collapse
|
13
|
Zhang H, Jin Z, Cheng L, Zhang B. Integrative Analysis of Methylation and Gene Expression in Lung Adenocarcinoma and Squamous Cell Lung Carcinoma. Front Bioeng Biotechnol 2020; 8:3. [PMID: 32117905 PMCID: PMC7019569 DOI: 10.3389/fbioe.2020.00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is a highly prevalent type of cancer with a poor 5-year survival rate of about 4-17%. Eighty percent lung cancer belongs to non-small-cell lung cancer (NSCLC). For a long time, the treatment of NSCLC has been mostly guided by tumor stage, and there has been no significant difference between the therapy strategy of lung adenocarcinoma (LUAD) and squamous cell lung carcinoma (SCLC), the two major subtypes of NSCLC. In recent years, important molecular differences between LUAD and SCLC are increasingly identified, indicating that targeted therapy will be more and more histologically specific in the future. To investigate the LUAD and SCLC difference on multi-omics scale, we analyzed the methylation and gene expression data together. With the Boruta method to remove irrelevant features and the MCFS (Monte Carlo Feature Selection) method to identify the significantly important features, we identified 113 key methylation features and 23 key gene expression features. HNF1B and TP63 were found to be dysfunctional on both methylation and gene expression levels. The experimentally determined interaction network suggested that TP63 may play an important role in connecting methylation genes and expression genes. Many of the discovered signature genes have been supported by literature. Our results may provide directions of precision diagnosis and therapy of LUAD and SCLC.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhou Jin
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of Respiration, Hospital of Traditional Chinese Medicine of Zhenhai, Ningbo, China
| | - Ling Cheng
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Bin Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Fei Y, Yu H, Huang S, Chen P, Pan L. Expression and prognostic analyses of early growth response proteins (EGRs) in human breast carcinoma based on database analysis. PeerJ 2019; 7:e8183. [PMID: 31844579 PMCID: PMC6907094 DOI: 10.7717/peerj.8183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background Early growth response proteins (EGRs), as a transcriptional regulatory family, are involved in the process of cell growth, differentiation, apoptosis, and even carcinogenesis. However, the role of EGRs in tumors, their expression levels, and their prognostic value remain unclear. Methods Using the Oncomine database, Kaplan–Meier Plotter, bcGenExMiner v4.2, cBioPortal, and other tools, the association between the survival data of breast carcinoma (BC) patients and transcriptional levels of four EGRs was investigated. Results According to the Oncomine database, in comparison to normal tissues, the expression level of EGR2/3 mRNA in BC tissues was decreased, but there was no difference in the expression level of EGR4 mRNA. On the basis of the Scarff-Bloom-Richardson (SBR) grading system, the downregulated expression level of EGR1/2/3 and upregulated expression level of EGR4 were correlated with an increased histological differentiation level, with significant differences (p < 0.05). Kaplan–Meier curves suggest that a reduction in EGR2/3 mRNA expression is related to recurrence-free survival (RFS) in BC patients. In addition, the mRNA expression level of EGR1/2/3 was related to metastatic relapse-free survival (MRFS) in BC patients with metastatic recurrence (p < 0.05). Conclusion EGR1/2/3 can be utilized as an important factor for evaluating prognosis and may be relevant to diagnosis. EGR4 may play a role in the occurrence and development of BC. The specific function and mechanism of EGRs in BC deserve further study.
Collapse
Affiliation(s)
- Yuchang Fei
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Huan Yu
- Ningbo Yinzhou Second Hospital, Ningbo, Zhejiang Province, China
| | - Shuo Huang
- The Third Clinical Medical Institute of Zhejiang Chinese Medical University, Zhejiang Province, China
| | - Peifeng Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Lei Pan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
15
|
Lin X, Kapoor A, Gu Y, Chow MJ, Xu H, Major P, Tang D. Assessment of biochemical recurrence of prostate cancer (Review). Int J Oncol 2019; 55:1194-1212. [PMID: 31638194 PMCID: PMC6831208 DOI: 10.3892/ijo.2019.4893] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The assessment of the risk of biochemical recurrence (BCR) is critical in the management of males with prostate cancer (PC). Over the past decades, a comprehensive effort has been focusing on improving risk stratification; a variety of models have been constructed using PC-associated pathological features and molecular alterations occurring at the genome, protein and RNA level. Alterations in RNA expression (lncRNA, miRNA and mRNA) constitute the largest proportion of the biomarkers of BCR. In this article, we systemically review RNA-based BCR biomarkers reported in PubMed according to the PRISMA guidelines. Individual miRNAs, mRNAs, lncRNAs and multi-gene panels, including the commercially available signatures, Oncotype DX and Prolaris, will be discussed; details related to cohort size, hazard ratio and 95% confidence intervals will be provided. Mechanistically, these individual biomarkers affect multiple pathways critical to tumorigenesis and progression, including epithelial-mesenchymal transition (EMT), phosphatase and tensin homolog (PTEN), Wnt, growth factor receptor, cell proliferation, immune checkpoints and others. This variety in the mechanisms involved not only validates their associations with BCR, but also highlights the need for the coverage of multiple pathways in order to effectively stratify the risk of BCR. Updates of novel biomarkers and their mechanistic insights are considered, which suggests new avenues to pursue in the prediction of BCR. Additionally, the management of patients with BCR and the potential utility of the stratification of the risk of BCR in salvage treatment decision making for these patients are briefly covered. Limitations will also be discussed.
Collapse
Affiliation(s)
- Xiaozeng Lin
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Anil Kapoor
- The Research Institute of St. Joe's Hamilton, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Yan Gu
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mathilda Jing Chow
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Hui Xu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Pierre Major
- Division of Medical Oncology, Department of Oncology, McMaster University, Hamilton, ON L8V 5C2, Canada
| | - Damu Tang
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
16
|
Wang L, Zhang X, Liu Y, Xu S. Long noncoding RNA FBXL19-AS1 induces tumor growth and metastasis by sponging miR-203a-3p in lung adenocarcinoma. J Cell Physiol 2019; 235:3612-3625. [PMID: 31566718 DOI: 10.1002/jcp.29251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
The pivotal roles of long noncoding RNAs have been reported in various cancers. Recently, FBXL19-AS1 was proposed to be involved in tumor progression. However, its role in lung adenocarcinoma (LUAD) remains elusive. In this study, we observed that FBXL19-AS1 was significantly upregulated in LUAD tissues and high FBXL19-AS1 expression in LUAD was associated with a poor prognosis. Nevertheless, miR-203-3p showed the opposite effect. Moreover, cell viability and apoptosis analysis revealed that FBXL19-AS1 knockdown could arrest LUAD cells in G0/G1 phase and inhibit cell proliferation, migration and invasion in vitro and inhibited LUAD tumor progress in vivo. Mechanistically, we identified FBXL19-AS1 could act as a miR-203a-3p sponge using dual-luciferase reporter assay. In addition, we demonstrated that downregulation of miR-203a-3p reversed growth inhibition of LUAD cells caused by FBXL19-AS1 knockdown. Finally, FBXL19-AS1/miR-203a-3p axis was found to associate with baculoviral IAP repeat-containing protein 5.1-A-like (survivin), distal-less homeobox 5, E2F transcription factor 1, and zinc finger E-box binding homeobox 2 to regulate metastasis in LUAD cells. This study reveals a significance and mechanism of FBXL19-AS1 in LUAD proliferation and metastasis and offers a potential prognostic marker and a therapeutic target for patients with LUAD.
Collapse
Affiliation(s)
- Liming Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xin Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shun Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Li F, Xu Y, Liu RL. SAMD5 mRNA was overexpressed in prostate cancer and can predict biochemical recurrence after radical prostatectomy. Int Urol Nephrol 2019; 51:443-451. [PMID: 30739268 DOI: 10.1007/s11255-019-02096-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE To identify a novel biomarker that can predict biochemical recurrence (BCR) after radical prostatectomy. METHODS The gene expression profile of SAMD5 in prostate cancer was explored based on the oncomine database and The Cancer Genomic Atlas (TCGA). The follow-up information and clinical pathologic variables were extracted from the following cohort study: TCGA_prostate carcinoma. And then, survival analysis was conducted using the Kaplan-Meier plot and Cox's proportional hazard regression model. Furthermore, another independent cohort study: Taylor prostate, was also acquired to validate the predictive effect of SAMD5 on BCR. In addition, the expression profile of SAMD5 in other cancer types was investigated using TCGA dataset. RESULTS SAMD5 mRNA was shown to be up-regulated in multiple microarray datasets of prostate cancer with the strict statistic criteria: p < 0.01 and fold change ≥ 2. In TCGA_PCa cohort study, high expression of SAMD5 was a risk factor for patients on post-operative BCR (HR 2.181, 95%CI 1.199-3.966, p = 0.011) and this predictive ability was independent of Gleason score and pathologic T stage (HR 2.018, 95%CI 1.102-3.698, p = 0.023). In another validating cohort study, the statistic trend was similar, and the pooled analysis by combining the two cohort study further confirmed its prognostic effect. CONCLUSION SAMD5 mRNA was overexpressed in prostate cancer and had powerful prognostic ability on predicting post-operative BCR, independent of Gleason score and pathologic T stage. Its high expression was associated with poor prognosis after RP.
Collapse
Affiliation(s)
- Fei Li
- Department of Urology, National Key Clinical Specialty of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Department of Urology, Rugao City People's Hospital, Rugao City, Jiangsu Province, China
| | - Yong Xu
- Department of Urology, National Key Clinical Specialty of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ran-Lu Liu
- Department of Urology, National Key Clinical Specialty of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
18
|
He S, Lin J, Xu Y, Lin L, Feng J. A positive feedback loop between ZNF205-AS1 and EGR4 promotes non-small cell lung cancer growth. J Cell Mol Med 2018; 23:1495-1508. [PMID: 30556283 PMCID: PMC6349159 DOI: 10.1111/jcmm.14056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/27/2018] [Accepted: 11/05/2018] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidences revealed that long noncoding RNAs (lncRNAs) are frequently implicated in non‐small cell lung cancer (NSCLC). Herein, we reported the identification of a novel NSCLC‐associated functional lncRNA ZNF205 antisense RNA 1 (ZNF205‐AS1). ZNF205‐AS1 was increased in NSCLC tissues and cell lines, and associated with poor prognosis of NSCLC patients. Bioinformatics prediction, combined with experimental verification revealed that early growth response 4 (EGR4) directly bound to ZNF205‐AS1 promoter, increased the promoter activity of ZNF205‐AS1, and activated ZNF205‐AS1 transcription. Intriguingly, ZNF205‐AS1 transcript directly interacted with EGR4 mRNA, increased EGR4 mRNA stability, and up‐regulated EGR4 expression via RNA‐RNA interaction. Thus, ZNF205‐AS1 and EGR4 formed a positive feedback loop. Through regulating EGR4, ZNF205‐AS1 activated its own promoter activity. EGR4 was also increased in NSCLC and the expression of ZNF205‐AS1 was significantly positively correlated with EGR4 in NSCLC tissues. Gain‐of‐function and loss‐of‐function assays demonstrated that both ZNF205‐AS1 and EGR4 promoted NSCLC cell growth in vitro and NSCLC tumour growth in vivo. Concurrently depleting ZNF205‐AS1 and EGR4 more significantly repressed NSCLC tumour growth in vivo. Collectively, our study demonstrated that the positive feedback loop between ZNF205‐AS1 and EGR4 promotes NSCLC growth, and implied that targeting this feedback loop may be promising therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Susu He
- Department of Respiratory Medicine, Taizhou Hospital of Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jian Lin
- Department of Respiratory Medicine, Taizhou Hospital of Wenzhou Medical University, Linhai, Zhejiang, China
| | - Youzu Xu
- Department of Respiratory Medicine, Taizhou Hospital of Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ling Lin
- Department of Respiratory Medicine, Taizhou Hospital of Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jiaxi Feng
- Department of Respiratory Medicine, Taizhou Hospital of Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
19
|
Efremov YR, Proskurina AS, Potter EA, Dolgova EV, Efremova OV, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Cancer Stem Cells: Emergent Nature of Tumor Emergency. Front Genet 2018; 9:544. [PMID: 30505319 PMCID: PMC6250818 DOI: 10.3389/fgene.2018.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
A functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties. It was also found that substantial part of these genes are also known as genes responsible for formation and/or maintenance of the stemness of normal pluri-/multipotent stem cells. These results suggest that the malignancy is simply the ability to maintain the stem cell specific genes expression profile, and, as a consequence, the stemness itself regardless of the controlling effect of stem niches. In the second part of the study, three stress factors combined into the single concept of "generalized cellular stress," which are assumed to activate the expression of these genes, were defined. In addition, possible mechanisms for such activation were identified. The data obtained suggest the existence of a mechanism for the de novo formation of a pluripotent/stem phenotype in the subpopulation of "committed" tumor cells.
Collapse
Affiliation(s)
- Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V Efremova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oleg S Taranov
- The State Research Center of Virology and Biotechnology Vector, Koltsovo, Russia
| | - Aleksandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
20
|
Zhou X, Chen Z, Cai X. Identification of epigenetic modulators in human breast cancer by integrated analysis of DNA methylation and RNA-Seq data. Epigenetics 2018; 13:473-489. [PMID: 29940789 DOI: 10.1080/15592294.2018.1469894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human tumors undergo massive changes in DNA methylation. Recent studies showed that site-specific methylation of CpG sites is determined by the DNA sequence context surrounding the CpG site, which alludes to a possible mechanism for site-specific aberrant DNA methylation in cancer through DNA-binding proteins. In this paper, DNA methylation data and RNA-Seq data of breast tumors and normal tissues in the database of The Cancer Genome Atlas (TCGA) were integrated with information of DNA motifs in seven databases to find DNA-binding proteins and their binding motifs that were involved in aberrant DNA methylation in breast cancer. A total of 42,850 differentially methylated regions (DMRs) that include 77,298 CpG sites were detected in breast cancer. One hundred eight DNA motifs were found to be enriched in DMRs, and 109 genes encoding proteins binding to these motifs were determined. Based on these motifs and genes, 63 methylation modulator genes were identified to regulate differentially methylated CpG sites in breast cancer. A network of these 63 modulator genes and 645 transcription factors was constructed, and 20 network modules were determined. A number of pathways and gene sets related to breast cancer were found to be enriched in these network modules. The 63 methylation modulator genes identified may play an important role in aberrant methylation of CpG sites in breast cancer. They may help to understand site-specific dysregulation of DNA methylation and provide epigenetic markers for breast cancer.
Collapse
Affiliation(s)
- Xin Zhou
- a Department of Electrical and Computer Engineering , University of Miami , Coral Gables , FL , USA
| | - Zhibin Chen
- b Department of Microbiology and Immunology, Miller School of Medicine , University of Miami , Miami , FL , USA.,c Sylvester Comprehensive Cancer Center , University of Miami , Miami , FL , USA
| | - Xiaodong Cai
- a Department of Electrical and Computer Engineering , University of Miami , Coral Gables , FL , USA.,c Sylvester Comprehensive Cancer Center , University of Miami , Miami , FL , USA
| |
Collapse
|
21
|
Dong Z, Wang J, Zhan T, Xu S. Identification of prognostic risk factors for esophageal adenocarcinoma using bioinformatics analysis. Onco Targets Ther 2018; 11:4327-4337. [PMID: 30100738 PMCID: PMC6065599 DOI: 10.2147/ott.s156716] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Purpose Esophageal adenocarcinoma (EAC) is the most common type of esophageal cancer in Western countries. It is usually detected at an advanced stage and has a poor prognosis. The aim of this study was to identify key genes and miRNAs in EAC. Methods The mRNA microarray data sets GSE1420, GSE26886, and GSE92396 and miRNA data set GSE16456 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were obtained using R software. Functional enrichment analysis was performed using the DAVID database. A protein-protein interaction (PPI) network and functional modules were established using the STRING database and visualized by Cytoscape. The targets of the DEMs were predicted using the miRecords database, and overlapping genes between DEGs and targets were identified. The prognosis-related overlapping genes were identified using Kaplan-Meier analysis and Cox proportional hazard analysis based on The Cancer Genome Atlas (TCGA) database. The differential expression of these prognosis-related genes was validated using the expression matrix in the TCGA database. Results Seven hundred and fifteen DEGs were obtained, consisting of 313 upregulated and 402 downregulated genes. The PPI network consisted of 281 nodes; 683 edges were constructed and 3 functional modules were established. Forty-four overlapping genes and 56 miRNA- mRNA pairs were identified. Five genes, FAM46A, RAB15, SLC20A1, IL1A, and ACSL1, were associated with overall survival or relapse-free survival. FAM46A and IL1A were found to be independent prognostic indicators for overall survival, and FAM46A, RAB15, and SLC20A1 were considered independent prognostic indicators for relapse-free survival. Among them, the overexpression of RAB15 and SLC20A1 and lower expression of ACSL1 were also identified in EAC tissues based on the expression matrix in the TCGA database. Conclusion These prognosis-related genes and differentially expressed miRNA have provided potential biomarkers for EAC diagnosis and treatment.
Collapse
Affiliation(s)
- Zhiyu Dong
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China,
| | - Junwen Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China,
| | - Tingting Zhan
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China,
| | - Shuchang Xu
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China,
| |
Collapse
|
22
|
Dong Y, Cao H, Liang Z. A Curated Target Gene Pool Assisting Early Disease Prediction and Patient-Specific Treatment for Small Cell Lung Cancer. J Comput Biol 2018; 25:576-585. [PMID: 29741913 DOI: 10.1089/cmb.2017.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hundreds of genes have been linked to small cell lung cancer (SCLC), presenting multiple levels of connections with the disease. The question is whether these genes are sufficient as genetic biomarkers for the early diagnosis and personalized treatment of SCLC. An SCLC genetic database was developed through comprehensive ResNet relationship data analysis, where 557 SCLC target genes were curated. Multiple levels of associations between these genes and SCLC were studied. Then, a sparse representation-based variable selection (SRVS) was employed for gene selection for four SCLC gene expression data sets, followed by a case-control classification. Results were compared with that of analysis of variance (ANOVA)-based gene selection approaches. Using SRVS, a gene vector was selected for each data set, leading to significant higher classification accuracy compared with randomly selected genes (100%, 77.12%, 100%, and 100%; permutation p values: 0.017, 0.00060, 0.012, and 0.0066). The SRVS method outperformed ANOVA in terms of classification ratio. The genes were selected within the 557 SCLC gene pool, showing data set and method specificity. Our results suggested that for a given SCLC patient group, there might exist a gene vector in the 557 curated SCLC genes that possess significant prediction power. SRVS is effective for identifying the optimum gene subset targeting personalized treatment.
Collapse
Affiliation(s)
- Yan Dong
- 1 Department of Geriatrics, Second People's Hospital of Lianyungang , Lianyungang, China
| | - Hongbao Cao
- 2 Department of Genomics Research, R&D Solutions, Elsevier, Inc. , Rockville, Maryland.,3 Unit on Statistical Genomics , NIMH/NIH, Bethesda, Maryland
| | - Zhigang Liang
- 4 Department of Thoracic Surgery, Ningbo First Hospital , Ningbo, China
| |
Collapse
|
23
|
Sung SR, Song SH, Kang KM, Park JE, Nam YJ, Shin YJ, Cha DH, Seo JT, Yoon TK, Shim SH. Sequence variations of the EGR4 gene in Korean men with spermatogenesis impairment. BMC MEDICAL GENETICS 2017; 18:47. [PMID: 28464846 PMCID: PMC5414287 DOI: 10.1186/s12881-017-0408-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 04/19/2017] [Indexed: 11/17/2022]
Abstract
Background Egr4 is expressed in primary and secondary spermatocytes in adult mouse testes and has a crucial role in regulating germ cell maturation. The functional loss of Egr4 blocks spermatogenesis, significantly reducing the number of spermatozoa that are produced. In this study, we examined whether EGR4 variants are present in Korean men with impaired spermatogenesis. Methods A total 170 Korean men with impaired spermatogenesis and 272 normal controls were screened. The coding regions including exon-intron boundaries of EGR4 were sequenced by PCR-direct sequencing method. Results We identified eight sequence variations in the coding region and 3′-UTR regions of the EGR4 gene. Four were nonsynonymous variants (rs771189047, rs561568849, rs763487015, and rs546250227), three were synonymous variants (rs115948271, rs528939702, and rs7558708), and one variant (rs2229294) was localized in the 3′-UTR. Three nonsynonymous variants [c.65_66InsG (p. Cys23Leufs*37), c.236C > T (p. Pro79Leu), c.1294G > T (p. Val432Leu)] and one synonymous variant [c.1230G > A (p. Thr410)] were not detected in controls. To evaluate the pathogenic effects of nonsynonymous variants, we used seven prediction methods. The c.214C > A (p. Arg72Ser) and c.236C > T (p. Pro79Leu) variants were predicted as “damaging” by SIFT and SNAP2. The c.65_66insG (p. Cys23Leufs*37) variants were predicted as “disease causing” by Mutation Taster, SNPs &GO and SNAP2. The c.867C > G (p. Leu289) variants were predicted as “disease causing” only by Mutation Taster. Conclusion To date, this study is the first to screen the EGR4 gene in relation to male infertility. However, our findings did not clearly explain how nonsynonymous EGR4 variations affect spermatogenesis. Therefore, further studies are required to validate the functional impact of EGR4 variations on spermatogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12881-017-0408-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Se Ra Sung
- Genetics Laboratory, Fertility Center of CHA Gangnam Medical Center, Seoul, South Korea
| | - Seung Hun Song
- Department of Urology, CHA Gangnam Medical Center, Seoul, South Korea
| | - Kyung Min Kang
- Genetics Laboratory, Fertility Center of CHA Gangnam Medical Center, Seoul, South Korea
| | - Ji Eun Park
- Genetics Laboratory, Fertility Center of CHA Gangnam Medical Center, Seoul, South Korea
| | - Yeo Jung Nam
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, South Korea
| | - Yun-Jeong Shin
- Genetics Laboratory, Fertility Center of CHA Gangnam Medical Center, Seoul, South Korea
| | - Dong Hyun Cha
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, Seoul, South Korea
| | - Ju Tae Seo
- Department of Urology, Cheil General Hospital, Seoul, South Korea
| | - Tae Ki Yoon
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, Seoul, South Korea
| | - Sung Han Shim
- Genetics Laboratory, Fertility Center of CHA Gangnam Medical Center, Seoul, South Korea. .,Department of Biomedical Science, College of Life Science, CHA University, Seoul, South Korea.
| |
Collapse
|
24
|
Yagai T, Matsui S, Harada K, Inagaki FF, Saijou E, Miura Y, Nakanuma Y, Miyajima A, Tanaka M. Expression and localization of sterile alpha motif domain containing 5 is associated with cell type and malignancy of biliary tree. PLoS One 2017; 12:e0175355. [PMID: 28388653 PMCID: PMC5384680 DOI: 10.1371/journal.pone.0175355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/07/2017] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CC) is a type of relatively rare neoplasm in adenocarcinoma. The characteristics of CCs as well as biliary epithelial cells are heterogeneous at the different portion of the biliary tree. There are two candidate stem/progenitor cells of the biliary tree, i.e., biliary tree stem/progenitor cell (BTSC) at the peribiliary gland (PBG) of large bile ducts and liver stem/progenitor cell (LPC) at the canals of Hering of peripheral small bile duct. Although previous reports suggest that intrahepatic CC (ICC) can arise from such stem/progenitor cells, the characteristic difference between BTSC and LPC in pathological process needs further investigation, and the etiology of CC remains poorly understood. Here we show that Sterile alpha motif domain containing 5 (SAMD5) is exclusively expressed in PBGs of large bile ducts in normal mice. Using a mouse model of cholestatic liver disease, we demonstrated that SAMD5 expression was upregulated in the large bile duct at the hepatic hilum, the extrahepatic bile duct and PBGs, but not in proliferating intrahepatic ductules, suggesting that SAMD5 is expressed in BTSC but not LPC. Intriguingly, human ICCs and extrahepatic CCs exhibited striking nuclear localization of SAMD5 while the normal hilar large bile duct displayed slight-to-moderate expression in cytoplasm. In vitro experiments using siRNA for SAMD5 revealed that SAMD5 expression was associated with the cell cycle regulation of CC cell lines. Conclusion: SAMD5 is a novel marker for PBG but not LPC in mice. In humans, the expression and location of SAMD5 could become a promising diagnostic marker for the cell type as well as malignancy of bile ducts and CCs.
Collapse
Affiliation(s)
- Tomoki Yagai
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Matsui
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Fuyuki F. Inagaki
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Eiko Saijou
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yasushi Miura
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Life Science and Medical Bio-Science, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yasuni Nakanuma
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Atsushi Miyajima
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Minoru Tanaka
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Laboratory of Stem Cell Regulation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
25
|
Qin X, Wang J, Wang X, Liu F, Jiang B, Zhang Y. Targeting Rabs as a novel therapeutic strategy for cancer therapy. Drug Discov Today 2017; 22:1139-1147. [PMID: 28390930 DOI: 10.1016/j.drudis.2017.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/18/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Rab GTPases constitute the largest family of small GTPases. Rabs regulate not only membrane trafficking but also cell signaling, growth and survival, and development. Increasingly, Rabs and their effectors are shown to be overexpressed or subject to loss-of-function mutations in a variety of disease settings, including cancer progression. This review provides an overview of dysregulated Rab proteins in cancer, and highlights the signaling and secretory pathways in which they operate, with the aim of identifying potential avenues for therapeutic intervention. Recent progress and perspectives for direct and/or indirect targeting of Rabs are also summarized.
Collapse
Affiliation(s)
- Xiaoyu Qin
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Jiongyi Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Xinxin Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Feng Liu
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Bin Jiang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| | - Yanjie Zhang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| |
Collapse
|
26
|
ter Braak B, Wink S, Koedoot E, Pont C, Siezen C, van der Laan JW, van de Water B. Alternative signaling network activation through different insulin receptor family members caused by pro-mitogenic antidiabetic insulin analogues in human mammary epithelial cells. Breast Cancer Res 2015; 17:97. [PMID: 26187749 PMCID: PMC4506606 DOI: 10.1186/s13058-015-0600-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022] Open
Abstract
Introduction Insulin analogues are designed to have improved pharmacokinetic parameters compared to regular human insulin. This provides a sustained control of blood glucose levels in diabetic patients. All novel insulin analogues are tested for their mitogenic side effects, however these assays do not take into account the molecular mode of action of different insulin analogues. Insulin analogues can bind the insulin receptor and the insulin-like growth factor 1 receptor with different affinities and consequently will activate different downstream signaling pathways. Methods Here we used a panel of MCF7 human breast cancer cell lines that selectively express either one of the isoforms of the INSR or the IGF1R. We applied a transcriptomics approach to assess the differential transcriptional programs activated in these cells by either insulin, IGF1 or X10 treatment. Results Based on the differentially expressed genes between insulin versus IGF1 and X10 treatment, we retrieved a mitogenic classifier gene set. Validation by RT-qPCR confirmed the robustness of this gene set. The translational potential of these mitogenic classifier genes was examined in primary human mammary cells and in mammary gland tissue of mice in an in vivo model. The predictive power of the classifier genes was evaluated by testing all commercial insulin analogues in the in vitro model and defined X10 and glargine as the most potent mitogenic insulin analogues. Conclusions We propose that these mitogenic classifier genes can be used to test the mitogenic potential of novel insulin analogues as well as other alternative molecules with an anticipated affinity for the IGF1R. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0600-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bas ter Braak
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.
| | - Steven Wink
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.
| | - Esmee Koedoot
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.
| | - Chantal Pont
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.
| | - Christine Siezen
- Medicines Evaluation Board (MEB), Graadt van Roggenweg 500, Utrecht, 3531 AH, The Netherlands.
| | - Jan Willem van der Laan
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands. .,Medicines Evaluation Board (MEB), Graadt van Roggenweg 500, Utrecht, 3531 AH, The Netherlands. .,Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, The Netherlands.
| | - Bob van de Water
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.
| |
Collapse
|