1
|
Bhagar R, Gill SS, Le-Niculescu H, Yin C, Roseberry K, Mullen J, Schmitz M, Paul E, Cooke J, Tracy C, Tracy Z, Gettelfinger AS, Battles D, Yard M, Sandusky G, Shekhar A, Kurian SM, Bogdan P, Niculescu AB. Next-generation precision medicine for suicidality prevention. Transl Psychiatry 2024; 14:362. [PMID: 39242534 PMCID: PMC11379963 DOI: 10.1038/s41398-024-03071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Suicidality remains a clear and present danger in society in general, and for mental health patients in particular. Lack of widespread use of objective and/or quantitative information has hampered treatment and prevention efforts. Suicidality is a spectrum of severity from vague thoughts that life is not worth living, to ideation, plans, attempts, and completion. Blood biomarkers that track suicidality risk provide a window into the biology of suicidality, as well as could help with assessment and treatment. Previous studies by us were positive. Here we describe new studies we conducted transdiagnostically in psychiatric patients, starting with the whole genome, to expand the identification, prioritization, validation and testing of blood gene expression biomarkers for suicidality, using a multiple independent cohorts design. We found new as well as previously known biomarkers that were predictive of high suicidality states, and of future psychiatric hospitalizations related to them, using cross-sectional and longitudinal approaches. The overall top increased in expression biomarker was SLC6A4, the serotonin transporter. The top decreased biomarker was TINF2, a gene whose mutations result in very short telomeres. The top biological pathways were related to apoptosis. The top upstream regulator was prednisolone. Taken together, our data supports the possibility that biologically, suicidality is an extreme stress-driven form of active aging/death. Consistent with that, the top subtypes of suicidality identified by us just based on clinical measures had high stress and high anxiety. Top therapeutic matches overall were lithium, clozapine and ketamine, with lithium stronger in females and clozapine stronger in males. Drug repurposing bioinformatic analyses identified the potential of renin-angiotensin system modulators and of cyclooxygenase inhibitors. Additionally, we show how patient reports for doctors would look based on blood biomarkers testing, personalized by gender. We also integrated with the blood biomarker testing social determinants and psychological measures (CFI-S, suicidal ideation), showing synergy. Lastly, we compared that to machine learning approaches, to optimize predictive ability and identify key features. We propose that our findings and comprehensive approach can have transformative clinical utility.
Collapse
Affiliation(s)
- R Bhagar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S S Gill
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- MindX Sciences, Indianapolis, IN, USA
| | - H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - C Yin
- University of Southern California, Los Angeles, CA, USA
| | - K Roseberry
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Mullen
- IT Core, Indiana University, Indianapolis, IN, USA
| | - M Schmitz
- MindX Sciences, Indianapolis, IN, USA
| | - E Paul
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- VA Medical Center, Indianapolis, IN, USA
| | - J Cooke
- VA Medical Center, Indianapolis, IN, USA
| | - C Tracy
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- VA Medical Center, Indianapolis, IN, USA
| | - Z Tracy
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- VA Medical Center, Indianapolis, IN, USA
| | - A S Gettelfinger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D Battles
- Marion County Coroner's Office, Indianapolis, USA
| | - M Yard
- INBRAIN, Indianapolis, IN, USA
| | | | - A Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Office of the Dean, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - P Bogdan
- University of Southern California, Los Angeles, CA, USA
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
- MindX Sciences, Indianapolis, IN, USA.
- VA Medical Center, Indianapolis, IN, USA.
- INBRAIN, Indianapolis, IN, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Psychiatry, University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|
2
|
Miguel-Hidalgo JJ. Neuroprotective astroglial response to neural damage and its relevance to affective disorders. EXPLORATION OF NEUROPROTECTIVE THERAPY 2023; 3:328-345. [PMID: 37920189 PMCID: PMC10622120 DOI: 10.37349/ent.2023.00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/03/2023] [Indexed: 11/04/2023]
Abstract
Astrocytes not only support neuronal function with essential roles in synaptic neurotransmission, action potential propagation, metabolic support, or neuroplastic and developmental adaptations. They also respond to damage or dysfunction in surrounding neurons and oligodendrocytes by releasing neurotrophic factors and other molecules that increase the survival of the supported cells or contribute to mechanisms of structural and molecular restoration. The neuroprotective responsiveness of astrocytes is based on their ability to sense signals of degeneration, metabolic jeopardy and structural damage, and on their aptitude to locally deliver specific molecules to remedy threats to the molecular and structural features of their cellular partners. To the extent that neuronal and other glial cell disturbances are known to occur in affective disorders, astrocyte responsiveness to those disturbances may help to better understand the roles astrocytes play in affective disorders. The astrocytic sensing apparatus supporting those responses involves receptors for neurotransmitters, purines, cell adhesion molecules and growth factors. Astrocytes also share with the immune system the capacity of responding to cytokines released upon neuronal damage. In addition, in responses to specific signals astrocytes release unique factors such as clusterin or humanin that have been shown to exert potent neuroprotective effects. Astrocytes integrate the signals above to further deliver structural lipids, removing toxic metabolites, stabilizing the osmotic environment, normalizing neurotransmitters, providing anti-oxidant protection, facilitating synaptogenesis and acting as barriers to contain varied deleterious signals, some of which have been described in brain regions relevant to affective disorders and related animal models. Since various of the injurious signals that activate astrocytes have been implicated in different aspects of the etiopathology of affective disorders, particularly in relation to the diagnosis of depression, potentiating the corresponding astrocyte neuroprotective responses may provide additional opportunities to improve or complement available pharmacological and behavioral therapies for affective disorders.
Collapse
|
3
|
Salluzzo M, Vianello C, Abdullatef S, Rimondini R, Piccoli G, Carboni L. The Role of IgLON Cell Adhesion Molecules in Neurodegenerative Diseases. Genes (Basel) 2023; 14:1886. [PMID: 37895235 PMCID: PMC10606101 DOI: 10.3390/genes14101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
In the brain, cell adhesion molecules (CAMs) are critical for neurite outgrowth, axonal fasciculation, neuronal survival and migration, and synapse formation and maintenance. Among CAMs, the IgLON family comprises five members: Opioid Binding Protein/Cell Adhesion Molecule Like (OPCML or OBCAM), Limbic System Associated Membrane Protein (LSAMP), neurotrimin (NTM), Neuronal Growth Regulator 1 (NEGR1), and IgLON5. IgLONs exhibit three N-terminal C2 immunoglobulin domains; several glycosylation sites; and a glycosylphosphatidylinositol anchoring to the membrane. Interactions as homo- or heterodimers in cis and in trans, as well as binding to other molecules, appear critical for their functions. Shedding by metalloproteases generates soluble factors interacting with cellular receptors and activating signal transduction. The aim of this review was to analyse the available data implicating a role for IgLONs in neuropsychiatric disorders. Starting from the identification of a pathological role for antibodies against IgLON5 in an autoimmune neurodegenerative disease with a poorly understood mechanism of action, accumulating evidence links IgLONs to neuropsychiatric disorders, albeit with still undefined mechanisms which will require future thorough investigations.
Collapse
Affiliation(s)
- Marco Salluzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Clara Vianello
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (C.V.); (R.R.)
| | - Sandra Abdullatef
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy; (S.A.); (G.P.)
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (C.V.); (R.R.)
| | - Giovanni Piccoli
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy; (S.A.); (G.P.)
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
4
|
Ranjbar R, Zamanzadeh Z, Ahadi AM. Effects of Venlafaxine on the Size of Brain and Expression of SHANK3, TUBB5 and DDC Genes in BALB/c Mice. PSYCHOPHARMACOLOGY BULLETIN 2023; 53:22-34. [PMID: 37601086 PMCID: PMC10434312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Objectives A growing body of evidence has recently suggested that taking venlafaxine during pregnancy may be linked to increased risk of certain congenital defects. The study aimed to address the effects of venlafaxine use during pregnancy on the development of the brain in mice. Experimental design Fourteen female BALB/c mice were randomly divided into two equally-sized groups: venlafaxine-treated and control. After mating, pregnant mice of venlafaxine-treated group were orally received the venlafaxine 35 mg/kg/day throughout pregnancy, while pregnant control mice did not receive any treatment. All pups were killed on postnatal day 21 and brain images were quantified using ImageJ software. The mRNA expression levels of SHANK3, TUBB5 and DDC of genes in pups' brain tissue samples were evaluated using quantitative real-time PCR method. Principal observations The mean brain size of pups was significantly smaller in the venlafaxine-treated group than in the control group. Results showed that the mRNA expression levels of SHANK3 and TUBB5 was significantly downregulated in venlafaxine-treated mice compared to control group. Expression of DDC gene didn't showed significant differences between two groups. Conclusions These results provide evidence that use of venlafaxine during pregnancy may affect the brain development in mice and altered the expression of SHANK3 and TUBB5 genes in brain tissue.
Collapse
Affiliation(s)
- Ramesh Ranjbar
- Ranjbar, PhD candidate, Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Zahra Zamanzadeh
- Zamanzadeh, PhD, Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Ali Mohammad Ahadi
- Ahadi, PhD, Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
5
|
Lee J, Kim S, Lee B, Kim YB, Kim KH, Chung G, Lee SJ, Lee S, Sun W, Park HK, Choi SY. Major depression-related factor NEGR1 controls salivary secretion in mouse submandibular glands. iScience 2023; 26:106773. [PMID: 37216094 PMCID: PMC10196562 DOI: 10.1016/j.isci.2023.106773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/26/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Salivary gland cells, which secrete water in response to neuronal stimulation, are closely connected to other neurons. Transcriptomic studies show that salivary glands also express some proteins responsible for neuronal function. However, the physiological functions of these common neuro-exocrine factors in salivary glands are largely unknown. Here, we studied the function of Neuronal growth regulator 1 (NEGR1) in the salivary gland cells. NEGR1 was also expressed in mouse and human salivary glands. The structure of salivary glands of Negr1 knockout (KO) mice was normal. Negr1 KO mice showed tempered carbachol- or thapsigargin-induced intracellular Ca2+ increases and store-operated Ca2+ entry. Of interest, the activity of the large-conductance Ca2+-activated K+ channel (BK channel) was increased, whereas Ca2+-activated Cl- channel ANO1 channel activity was not altered in Negr1 KO mice. Pilocarpine- and carbachol-induced salivation was decreased in Negr1 KO mice. These results suggest that NEGR1 influence salivary secretion though the muscarinic Ca2+ signaling.
Collapse
Affiliation(s)
- Jisoo Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Soohyun Kim
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Boram Lee
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yoo-Bin Kim
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Kwang Hwan Kim
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Gehoon Chung
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Sung Joong Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hee-Kyung Park
- Department of Oral Medicine and Oral Diagnosis, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| |
Collapse
|
6
|
Ryan KM, Doody E, McLoughlin DM. Whole blood mitochondrial DNA copy number in depression and response to electroconvulsive therapy. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110656. [PMID: 36216200 DOI: 10.1016/j.pnpbp.2022.110656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Mitochondrial dysfunction may play a role in various psychiatric conditions. Mitochondrial DNA copy number (mtDNAcn), the ratio of mitochondrial DNA to nuclear DNA, represents an attractive marker of mitochondrial health that is easily measured from stored DNA samples, and has been shown to be altered in depression. In this study, we measured mtDNAcn in whole blood samples from medicated patients with depression (n = 100) compared to healthy controls (n = 89) and determined the relationship between mtDNAcn and depression severity and the therapeutic response to electroconvulsive therapy (ECT). We also explored the relationship between mtDNAcn and telomere length and inflammatory markers. Our results show that mtDNAcn was significantly elevated in blood from patients with depression when compared to control samples, and this result survived statistical adjustment for potential confounders (p = 0.002). mtDNAcn was significantly elevated in blood from subgroups of patients with non-psychotic or unipolar depression. There was no difference in mtDNAcn noted in subgroups of ECT remitters/non-remitters or responders/non-responders. Moreover, mtDNAcn was not associated with depression severity, telomere length, or circulating inflammatory marker concentrations. Overall, our results show that mtDNAcn is elevated in blood from patients with depression, though whether this translates to mitochondrial function is unknown. Further work is required to clarify the contribution of mitochondria and mtDNA to the pathophysiology of depression and the therapeutic response to antidepressant treatments.
Collapse
Affiliation(s)
- Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, James Street, Dublin 8, Ireland
| | - Eimear Doody
- Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, James Street, Dublin 8, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, James Street, Dublin 8, Ireland.
| |
Collapse
|
7
|
Abstract
OBJECTIVE Depression is among the most pervasive and debilitating neuropsychiatric sequelae experienced by patients following a traumatic brain injury (TBI). While the individual mechanisms underlying depression and TBI have been widely studied, the neurobiological bases of depression after TBI remain largely unknown. This article highlights the potential mechanisms of action implicated in depression after TBI. RESULTS We review putative mechanisms of action including neuroinflammation, neuroendocrine dysregulation, metabolic abnormalities, and neurotransmitter and circuitry dysfunction. We also identify the current limitations in the field and propose directions for future research. CONCLUSION An improved understanding of the underlying mechanisms will aid the development of precision-guided and personalized treatments for patients suffering from depression after TBI.
Collapse
Affiliation(s)
- Aava Bushra Jahan
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, US.,Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, US
| | - Kaloyan Tanev
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, US
| |
Collapse
|
8
|
Kaare M, Jayaram M, Jagomäe T, Singh K, Kilk K, Mikheim K, Leevik M, Leidmaa E, Varul J, Nõmm H, Rähn K, Visnapuu T, Plaas M, Lilleväli K, Schäfer MKE, Philips MA, Vasar E. Depression-Associated Negr1 Gene-Deficiency Induces Alterations in the Monoaminergic Neurotransmission Enhancing Time-Dependent Sensitization to Amphetamine in Male Mice. Brain Sci 2022; 12:1696. [PMID: 36552158 PMCID: PMC9776224 DOI: 10.3390/brainsci12121696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
In GWAS studies, the neural adhesion molecule encoding the neuronal growth regulator 1 (NEGR1) gene has been consistently linked with both depression and obesity. Although the linkage between NEGR1 and depression is the strongest, evidence also suggests the involvement of NEGR1 in a wide spectrum of psychiatric conditions. Here we show the expression of NEGR1 both in tyrosine- and tryptophan hydroxylase-positive cells. Negr1-/- mice show a time-dependent increase in behavioral sensitization to amphetamine associated with increased dopamine release in both the dorsal and ventral striatum. Upregulation of transcripts encoding dopamine and serotonin transporters and higher levels of several monoamines and their metabolites was evident in distinct brain areas of Negr1-/- mice. Chronic (23 days) escitalopram-induced reduction of serotonin and dopamine turnover is enhanced in Negr1-/- mice, and escitalopram rescued reduced weight of hippocampi in Negr1-/- mice. The current study is the first to show alterations in the brain monoaminergic systems in Negr1-deficient mice, suggesting that monoaminergic neural circuits contribute to both depressive and obesity-related phenotypes linked to the human NEGR1 gene.
Collapse
Affiliation(s)
- Maria Kaare
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Mohan Jayaram
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Toomas Jagomäe
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Centre, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Katyayani Singh
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kalle Kilk
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Kaie Mikheim
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Marko Leevik
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53129 Bonn, Germany
| | - Jane Varul
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Helis Nõmm
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kristi Rähn
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Tanel Visnapuu
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Mario Plaas
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Centre, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Kersti Lilleväli
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Michael K. E. Schäfer
- Department of Anesthesiology, Focus Program Translational Neurosciences, Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
- Focus Program Translational Neurosciences, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Mari-Anne Philips
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
9
|
Postsynaptic Proteins at Excitatory Synapses in the Brain—Relationship with Depressive Disorders. Int J Mol Sci 2022; 23:ijms231911423. [PMID: 36232725 PMCID: PMC9569598 DOI: 10.3390/ijms231911423] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Depressive disorders (DDs) are an increasingly common health problem that affects all age groups. DDs pathogenesis is multifactorial. However, it was proven that stress is one of the most important environmental factors contributing to the development of these conditions. In recent years, there has been growing interest in the role of the glutamatergic system in the context of pharmacotherapy of DDs. Thus, it has become increasingly important to explore the functioning of excitatory synapses in pathogenesis and pharmacological treatment of psychiatric disorders (including DDs). This knowledge may lead to the description of new mechanisms of depression and indicate new potential targets for the pharmacotherapy of illness. An excitatory synapse is a highly complex and very dynamic structure, containing a vast number of proteins. This review aimed to discuss in detail the role of the key postsynaptic proteins (e.g., NMDAR, AMPAR, mGluR5, PSD-95, Homer, NOS etc.) in the excitatory synapse and to systematize the knowledge about changes that occur in the clinical course of depression and after antidepressant treatment. In addition, a discussion on the potential use of ligands and/or modulators of postsynaptic proteins at the excitatory synapse has been presented.
Collapse
|
10
|
Gołyszny M, Zieliński M, Paul-Samojedny M, Filipczyk Ł, Pałasz A, Obuchowicz E. Escitalopram alters the hypothalamic OX system but does not affect its up-regulation induced by early-life stress in adult rats. Neurosci Res 2022; 180:58-71. [PMID: 35219722 DOI: 10.1016/j.neures.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/07/2022] [Accepted: 02/23/2022] [Indexed: 01/06/2023]
Abstract
We hypothesized that there is a relationship between the orexinergic system (OX) alterations and changes elicited by escitalopram or venlafaxine in adult rats subjected to maternal separation (MS). This animal model of childhood adversity induces long-lasting consequences in adult physiology and behavior. Male Wistar rats from the control and MS groups were injected with escitalopram or venlafaxine (10 mg/kg) IP from postnatal day (PND) 69-89. Adult rats were subjected to behavioral assessment, estimation of hypothalamic-pituitary-adrenal (HPA) axis activity and analysis of the OX system (quantitative PCR and immunohistochemistry) in the hypothalamus and amygdala. MS caused anxiety- and depressive-like behavior, endocrine stress-related response, and up-regulation of the OX system in the hypothalamus. Escitalopram, but not venlafaxine, increased the activity of hypothalamic OX system in the control rats and both drugs had no effect on OXs in the MS group. The disturbed signaling of the OX pathway may be significant for harmful long-term consequences of early-life stress. Our data show that the normal brain and brain altered by MS respond differently to escitalopram. Presumably, anti-anxiety and antidepressant effects of this drug do not depend on the activity of hypothalamic OX system.
Collapse
Affiliation(s)
- Miłosz Gołyszny
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland.
| | - Michał Zieliński
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland
| | - Monika Paul-Samojedny
- Department of Medical Genetics, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jedności 8, Sosnowiec 41-200, Poland
| | - Łukasz Filipczyk
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland
| | - Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland
| |
Collapse
|
11
|
Petschner P, Baksa D, Hullam G, Torok D, Millinghoffer A, Deakin JFW, Bagdy G, Juhasz G. A replication study separates polymorphisms behind migraine with and without depression. PLoS One 2021; 16:e0261477. [PMID: 34972135 PMCID: PMC8719675 DOI: 10.1371/journal.pone.0261477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022] Open
Abstract
The largest migraine genome-wide association study identified 38 candidate loci. In this study we assessed whether these results replicate on a gene level in our European cohort and whether effects are altered by lifetime depression. We tested SNPs of the loci and their vicinity with or without interaction with depression in regression models. Advanced analysis methods such as Bayesian relevance analysis and a neural network based classifier were used to confirm findings. Main effects were found for rs2455107 of PRDM16 (OR = 1.304, p = 0.007) and five intergenic polymorphisms in 1p31.1 region: two of them showed risk effect (OR = 1.277, p = 0.003 for both rs11209657 and rs6686879), while the other three variants were protective factors (OR = 0.4956, p = 0.006 for both rs12090642 and rs72948266; OR = 0.4756, p = 0.005 for rs77864828). Additionally, 26 polymorphisms within ADGRL2, 2 in REST, 1 in HPSE2 and 33 mostly intergenic SNPs from 1p31.1 showed interaction effects. Among clumped results representing these significant regions, only rs11163394 of ADGRL2 showed a protective effect (OR = 0.607, p = 0.002), all other variants were risk factors (rs1043215 of REST with the strongest effect: OR = 6.596, p = 0.003). Bayesian relevance analysis confirmed the relevance of intergenic rs6660757 and rs12128399 (p31.1), rs1043215 (REST), rs1889974 (HPSE2) and rs11163394 (ADGRL2) from depression interaction results, and the moderate relevance of rs77864828 and rs2455107 of PRDM16 from main effect analysis. Both main and interaction effect SNPs could enhance predictive power with the neural network based classifier. In summary, we replicated p31.1, PRDM16, REST, HPSE2 and ADGRL2 genes with classic genetic and advanced analysis methods. While the p31.1 region and PRDM16 are worthy of further investigations in migraine in general, REST, HPSE2 and ADGRL2 may be prime candidates behind migraine pathophysiology in patients with comorbid depression.
Collapse
Affiliation(s)
- Peter Petschner
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Daniel Baksa
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabor Hullam
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Andras Millinghoffer
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Semmelweis University, Budapest, Hungary
| | - J. F. William Deakin
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Mingardi J, La Via L, Tornese P, Carini G, Trontti K, Seguini M, Tardito D, Bono F, Fiorentini C, Elia L, Hovatta I, Popoli M, Musazzi L, Barbon A. miR-9-5p is involved in the rescue of stress-dependent dendritic shortening of hippocampal pyramidal neurons induced by acute antidepressant treatment with ketamine. Neurobiol Stress 2021; 15:100381. [PMID: 34458512 PMCID: PMC8379501 DOI: 10.1016/j.ynstr.2021.100381] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Converging clinical and preclinical evidence demonstrates that depressive phenotypes are associated with synaptic dysfunction and dendritic simplification in cortico-limbic glutamatergic areas. On the other hand, the rapid antidepressant effect of acute ketamine is consistently reported to occur together with the rescue of dendritic atrophy and reduction of spine number induced by chronic stress in the hippocampus and prefrontal cortex of animal models of depression. Nevertheless, the molecular mechanisms underlying these morphological alterations remain largely unknown. Here, we found that miR-9-5p levels were selectively reduced in the hippocampus of rats vulnerable to Chronic Mild Stress (CMS), while acute subanesthetic ketamine restored its levels to basal condition in just 24h; miR-9-5p expression inversely correlated with the anhedonic phenotype. A decrease of miR-9-5p was reproduced in an in vitro model of stress, based on primary hippocampal neurons incubated with the stress hormone corticosterone. In both CMS animals and primary neurons, decreased miR-9-5p levels were associated with dendritic simplification, while treatment with ketamine completely rescued the changes. In vitro modulation of miR-9-5p expression showed a direct role of miR-9-5p in regulating dendritic length and spine density in mature primary hippocampal neurons. Among the putative target genes tested, Rest and Sirt1 were validated as biological targets in primary neuronal cultures. Moreover, in line with miR-9-5p changes, REST protein expression levels were remarkably increased in both CMS vulnerable animals and corticosterone-treated neurons, while ketamine completely abolished this alteration. Finally, the shortening of dendritic length in corticosterone-treated neurons was shown to be partly rescued by miR-9-5p overexpression and dependent on REST protein expression. Overall, our data unveiled the functional role of miR-9-5p in the remodeling of dendritic arbor induced by stress/corticosterone in vulnerable animals and its rescue by acute antidepressant treatment with ketamine.
Collapse
Affiliation(s)
- Jessica Mingardi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Tornese
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Kalevi Trontti
- Sleep Well Research Program, Department of Psychology and Logopedics, and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mara Seguini
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Daniela Tardito
- Department of Technical and Applied Sciences, eCampus University, Novedrate, Italy
| | - Federica Bono
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Leonardo Elia
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, MI, Italy
| | - Iiris Hovatta
- Sleep Well Research Program, Department of Psychology and Logopedics, and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
13
|
Zhang F, Rao S, Cao H, Zhang X, Wang Q, Xu Y, Sun J, Wang C, Chen J, Xu X, Zhang N, Tian L, Yuan J, Wang G, Cai L, Xu M, Baranova A. Genetic evidence suggests posttraumatic stress disorder as a subtype of major depressive disorder. J Clin Invest 2021; 132:145942. [PMID: 33905376 PMCID: PMC8803333 DOI: 10.1172/jci145942] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) and posttraumatic stress disorder (PTSD) are highly comorbid and exhibit strong correlations with one another. We aimed to investigate mechanisms of underlying relationships between PTSD and three kinds of depressive phenotypes, namely, MDD, depressed affect (DAF), and depression (DEP, including both MDD and the broad definition of depression). METHODS Genetic correlations between PTSD and the depressive phenotypes were tested using linkage disequilibrium score regression. Polygenic overlap analysis was used to estimate shared and trait-specific causal variants across a pair of traits. Causal relationships between PTSD and the depressive phenotypes were investigated using Mendelian randomization. Shared genomic loci between PTSD and MDD were identified using cross-trait meta-analysis. RESULTS Genetic correlations of PTSD with the depressive phenotypes were in the range of 0.71~0.80. The estimated numbers of causal variants were 14,565, 12,965, 10,565, and 4,986 for MDD, DEP, DAF, and PTSD, respectively. In each case, causal variants contributing to PTSD were completely or largely covered by causal variants defining each of the depressive phenotypes. Mendelian randomization analysis indicates that the genetically determined depressive phenotypes confer a causal effect on PTSD (b = 0.21~0.31). Notably, genetically determined PTSD confers a causal effect on DEP (b = 0.14) and DAF (b = 0.15), but not MDD. Cross-trait meta-analysis of MDD and PTSD identifies 47 genomic loci, including 29 loci shared between PTSD and MDD. CONCLUSION Evidence from shared genetics suggests that PTSD is a subtype of MDD. This study provides support to the efforts in reducing diagnostic heterogeneity in psychiatric nosology. FUNDING The National Key Research and Development Program of China (2018YFC1314300) and the National Natural Science Foundation of China (81471364 and 81971255).
Collapse
Affiliation(s)
- Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Fairfax, United States of America
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jing Sun
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chun Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xijia Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Tian
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Jianmin Yuan
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Guoqiang Wang
- Department of Psychiatry, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Lei Cai
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disor, Shanghai Jiao Tong University, Shanghai, China
| | - Mingqing Xu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disor, Shanghai Jiao Tong University, Shanghai, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, United States of America
| |
Collapse
|
14
|
Puścian A, Winiarski M, Łęski S, Charzewski Ł, Nikolaev T, Borowska J, Dzik JM, Bijata M, Lipp HP, Dziembowska M, Knapska E. Chronic fluoxetine treatment impairs motivation and reward learning by affecting neuronal plasticity in the central amygdala. Br J Pharmacol 2021; 178:672-688. [PMID: 33171527 DOI: 10.1111/bph.15319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE The therapeutic effects of fluoxetine are believed to be due to increasing neuronal plasticity and reversing some learning deficits. Nevertheless, a growing amount of evidence shows adverse effects of this drug on cognition and some forms of neuronal plasticity. EXPERIMENTAL APPROACH To study the effects of chronic fluoxetine treatment, we combine an automated assessment of motivation and learning in mice with an investigation of neuronal plasticity in the central amygdala and basolateral amygdala. We use immunohistochemistry to visualize neuronal types and perineuronal nets, along with DI staining to assess dendritic spine morphology. Gel zymography is used to test fluoxetine's impact on matrix metalloproteinase-9, an enzyme involved in synaptic plasticity. KEY RESULTS We show that chronic fluoxetine treatment in non-stressed mice increases perineuronal nets-dependent plasticity in the basolateral amygdala, while impairing MMP-9-dependent plasticity in the central amygdala. Further, we illustrate how the latter contributes to anhedonia and deficits of reward learning. Behavioural impairments are accompanied by alterations in morphology of dendritic spines in the central amygdala towards an immature state, most likely reflecting animals' inability to adapt. We strengthen the link between the adverse effects of fluoxetine and its influence on MMP-9 by showing that behaviour of MMP-9 knockout animals remains unaffected by the drug. CONCLUSION AND IMPLICATIONS Chronic fluoxetine treatment differentially affects various forms of neuronal plasticity, possibly explaining its opposing effects on brain and behaviour. These findings are of immediate clinical relevance since reported side effects of fluoxetine pose a potential threat to patients.
Collapse
Affiliation(s)
- Alicja Puścian
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Winiarski
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Szymon Łęski
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Charzewski
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Nikolaev
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Borowska
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jakub M Dzik
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Hans-Peter Lipp
- Institute of Evolutionary Medicine, University of Zurich, Zurich, CH-8057, Switzerland
| | | | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
15
|
Giménez-Palomo A, Dodd S, Anmella G, Carvalho AF, Scaini G, Quevedo J, Pacchiarotti I, Vieta E, Berk M. The Role of Mitochondria in Mood Disorders: From Physiology to Pathophysiology and to Treatment. Front Psychiatry 2021; 12:546801. [PMID: 34295268 PMCID: PMC8291901 DOI: 10.3389/fpsyt.2021.546801] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are cellular organelles involved in several biological processes, especially in energy production. Several studies have found a relationship between mitochondrial dysfunction and mood disorders, such as major depressive disorder and bipolar disorder. Impairments in energy production are found in these disorders together with higher levels of oxidative stress. Recently, many agents capable of enhancing antioxidant defenses or mitochondrial functioning have been studied for the treatment of mood disorders as adjuvant therapy to current pharmacological treatments. A better knowledge of mitochondrial physiology and pathophysiology might allow the identification of new therapeutic targets and the development and study of novel effective therapies to treat these specific mitochondrial impairments. This could be especially beneficial for treatment-resistant patients. In this article, we provide a focused narrative review of the currently available evidence supporting the involvement of mitochondrial dysfunction in mood disorders, the effects of current therapies on mitochondrial functions, and novel targeted therapies acting on mitochondrial pathways that might be useful for the treatment of mood disorders.
Collapse
Affiliation(s)
- Anna Giménez-Palomo
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Seetal Dodd
- Deakin University, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia.,Department of Psychiatry, Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Anmella
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Andre F Carvalho
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Brazil.,Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Isabella Pacchiarotti
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Eduard Vieta
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Michael Berk
- School of Medicine, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Allen J, Caruncho HJ, Kalynchuk LE. Severe life stress, mitochondrial dysfunction, and depressive behavior: A pathophysiological and therapeutic perspective. Mitochondrion 2020; 56:111-117. [PMID: 33220501 DOI: 10.1016/j.mito.2020.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 01/11/2023]
Abstract
Mitochondria are responsible for providing our cells with energy, as well as regulating oxidative stress and apoptosis, and considerable evidence demonstrates that mitochondria-related alterations are prevalent during chronic stress and depression. Here, we discuss how chronic stress may induce depressive behavior by potentiating mitochondrial allostatic load, which ultimately decreases energy production, elevates the generation of harmful reactive oxygen species, damages mitochondrial DNA and increases membrane permeability and pro-apoptotic factor release. We also discuss how mitochondrial insults can exacerbate the immune response, contributing to depressive symptomology. Furthermore, we illustrate how depression symptoms are associated with specific mitochondrial defects, and how targeting of these defects with pharmacological agents may be a promising avenue for the development of novel, more efficacious antidepressants. In summary, this review supports the notion that severe psychosocial stress induces mitochondrial dysfunction, thereby increasing the vulnerability to developing depressive symptoms.
Collapse
Affiliation(s)
- Josh Allen
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
17
|
Wang JL, Wang Y, Gao TT, Liu L, Wang YJ, Guan W, Chen TT, Zhao J, Zhang Y, Jiang B. Venlafaxine protects against chronic stress-related behaviors in mice by activating the mTORC1 signaling cascade. J Affect Disord 2020; 276:525-536. [PMID: 32871684 DOI: 10.1016/j.jad.2020.07.096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Recent studies have suggested the role of mammalian target of rapamycin complex 1 (mTORC1) in the pathophysiology of depression. Although venlafaxine was thought to be a serotonin and norepinephrine reuptake inhibitor (SNRI), its pharmacological mechanism remain elusive. In this study, the effects of venlafaxine on the mTORC1 system were studied in both chronic unpredictable mild stress (CUMS) and chronic social defeat stress (CSDS) models. METHOD First, we examined whether repeated venlafaxine treatment reversed the effects of CUMS and CSDS on the mTORC1 signaling cascade in both the hippocampus and medial prefrontal cortex (mPFC). Second, several selective pharmacological inhibitors of the mTORC1 system, including rapamycin, LY294002 and U0126, were used together to determine whether the protective effects of venlafaxine against the CUMS and CSDS models were prevented by mTORC1 system blockade. Finally, genetic knockdown of mTORC1 by mTORC1-shRNA was further adopted to test whether mTORC1 was necessary for the anti-stress effects of venlafaxine in mice. RESULT Our results showed that the decreasing effects of CUMS and CSDS on the mTORC1 signaling cascade in the hippocampus and mPFC were restored by venlafaxine, and the use of rapamycin, LY294002, U0126 and mTORC1-shRNA fully abolished the anti-stress actions of venlafaxine in mice. CONCLUSION The mTORC1 system is involved in the pharmacological mechanism of venlafaxine.
Collapse
Affiliation(s)
- Jin-Liang Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Yuan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ting-Ting Gao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ling Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ying-Jie Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ting-Ting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Jie Zhao
- Department of Pharmacy, The Sixth People's Hospital of Nantong, Nantong 226011, Jiangsu, China
| | - Yin Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China.
| |
Collapse
|
18
|
Mitochondria under the spotlight: On the implications of mitochondrial dysfunction and its connectivity to neuropsychiatric disorders. Comput Struct Biotechnol J 2020; 18:2535-2546. [PMID: 33033576 PMCID: PMC7522539 DOI: 10.1016/j.csbj.2020.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/30/2022] Open
Abstract
Neuropsychiatric disorders (NPDs) such as bipolar disorder (BD), schizophrenia (SZ) and mood disorder (MD) are hard to manage due to overlapping symptoms and lack of biomarkers. Risk alleles of BD/SZ/MD are emerging, with evidence suggesting mitochondrial (mt) dysfunction as a critical factor for disease onset and progression. Mood stabilizing treatments for these disorders are scarce, revealing the need for biomarker discovery and artificial intelligence approaches to design synthetically accessible novel therapeutics. Here, we show mt involvement in NPDs by associating 245 mt proteins to BD/SZ/MD, with 7 common players in these disease categories. Analysis of over 650 publications suggests that 245 NPD-linked mt proteins are associated with 800 other mt proteins, with mt impairment likely to rewire these interactions. High dosage of mood stabilizers is known to alleviate manic episodes, but which compounds target mt pathways is another gap in the field that we address through mood stabilizer-gene interaction analysis of 37 prescriptions and over-the-counter psychotropic treatments, which we have refined to 15 mood-stabilizing agents. We show 26 of the 245 NPD-linked mt proteins are uniquely or commonly targeted by one or more of these mood stabilizers. Further, induced pluripotent stem cell-derived patient neurons and three-dimensional human brain organoids as reliable BD/SZ/MD models are outlined, along with multiomics methods and machine learning-based decision making tools for biomarker discovery, which remains a bottleneck for precision psychiatry medicine.
Collapse
|
19
|
Blanco I, Conant K. Extracellular matrix remodeling with stress and depression: Studies in human, rodent and zebrafish models. Eur J Neurosci 2020; 53:3879-3888. [PMID: 32673433 DOI: 10.1111/ejn.14910] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 01/17/2023]
Abstract
Emerging evidence suggests that extracellular matrix (ECM) alterations occur with stress. Specifically, increases in perineuronal net (PNN) deposition have been observed in rodents exposed to chronic corticosterone or persistent social defeat stress. The PNN is a specific form of ECM that is predominantly localized to parvalbumin (PV)-expressing inhibitory interneurons where it modulates neuronal excitability and brain oscillations that are influenced by the same. Consistent with a role for ECM changes in contributing to the depressive phenotype, recent studies have demonstrated that monoamine reuptake inhibitor type antidepressants can reduce PNN deposition, improve behavior and stimulate changes in gamma oscillatory power that may be important to mood and memory. The present review will highlight studies in humans, rodents and zebrafish that have examined stress, PNN deposition and/or gamma oscillations with a focus on potential cellular and molecular underpinnings.
Collapse
Affiliation(s)
- Ismary Blanco
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
20
|
Depression-Associated Gene Negr1-Fgfr2 Pathway Is Altered by Antidepressant Treatment. Cells 2020; 9:cells9081818. [PMID: 32751911 PMCID: PMC7464991 DOI: 10.3390/cells9081818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
The Negr1 gene has been significantly associated with major depression in genetic studies. Negr1 encodes for a cell adhesion molecule cleaved by the protease Adam10, thus activating Fgfr2 and promoting neuronal spine plasticity. We investigated whether antidepressants modulate the expression of genes belonging to Negr1-Fgfr2 pathway in Flinders sensitive line (FSL) rats, in a corticosterone-treated mouse model of depression, and in mouse primary neurons. Negr1 and Adam10 were the genes mostly affected by antidepressant treatment, and in opposite directions. Negr1 was down-regulated by escitalopram in the hypothalamus of FSL rats, by fluoxetine in the hippocampal dentate gyrus of corticosterone-treated mice, and by nortriptyline in hippocampal primary neurons. Adam10 mRNA was increased by nortriptyline administration in the hypothalamus, by escitalopram in the hippocampus of FSL rats, and by fluoxetine in mouse dorsal dentate gyrus. Similarly, nortriptyline increased Adam10 expression in hippocampal cultures. Fgfr2 expression was increased by nortriptyline in the hypothalamus of FSL rats and in hippocampal neurons. Lsamp, another IgLON family protein, increased in mouse dentate gyrus after fluoxetine treatment. These findings suggest that Negr1-Fgfr2 pathway plays a role in the modulation of synaptic plasticity induced by antidepressant treatment to promote therapeutic efficacy by rearranging connectivity in corticolimbic circuits impaired in depression.
Collapse
|
21
|
Negr1 controls adult hippocampal neurogenesis and affective behaviors. Mol Psychiatry 2019; 24:1189-1205. [PMID: 30651602 DOI: 10.1038/s41380-018-0347-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023]
Abstract
Recent genome-wide association studies on major depressive disorder have implicated neuronal growth regulator 1 (Negr1), a GPI-anchored cell adhesion molecule in the immunoglobulin LON family. Although Negr1 has been shown to regulate neurite outgrowth and synapse formation, the mechanism through which this protein affects mood disorders is still largely unknown. In this research, we characterized Negr1-deficient (negr1-/-) mice to elucidate the function of Negr1 in anxiety and depression. We found that anxiety- and depression-like behaviors increased in negr1-/- mice compared with wild-type mice. In addition, negr1-/- mice had decreased adult hippocampal neurogenesis compared to wild-type mice. Concurrently, both LTP and mEPSC in the dentate gyrus (DG) region were severely compromised in negr1-/- mice. In our effort to elucidate the underlying molecular mechanisms, we found that lipocalin-2 (Lcn2) expression was decreased in the hippocampus of negr1-/- mice compared to wild-type mice. Heterologous Lcn2 expression in the hippocampal DG of negr1-/- mice rescued anxiety- and depression-like behaviors and restored neurogenesis and mEPSC frequency to their normal levels in these mice. Furthermore, we discovered that Negr1 interacts with leukemia inhibitory factor receptor (LIFR) and modulates LIF-induced Lcn2 expression. Taken together, our data uncovered a novel mechanism of mood regulation by Negr1 involving an interaction between Negr1 and LIFR along with Lcn2 expression.
Collapse
|
22
|
Belinskaia DA, Belinskaia MA, Barygin OI, Vanchakova NP, Shestakova NN. Psychotropic Drugs for the Management of Chronic Pain and Itch. Pharmaceuticals (Basel) 2019; 12:ph12020099. [PMID: 31238561 PMCID: PMC6631469 DOI: 10.3390/ph12020099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
Clinical observations have shown that patients with chronic neuropathic pain or itch exhibit symptoms of increased anxiety, depression and cognitive impairment. Such patients need corrective therapy with antidepressants, antipsychotics or anticonvulsants. It is known that some psychotropic drugs are also effective for the treatment of neuropathic pain and pruritus syndromes due to interaction with the secondary molecular targets. Our own clinical studies have identified antipruritic and/or analgesic efficacy of the following compounds: tianeptine (atypical tricyclic antidepressant), citalopram (selective serotonin reuptake inhibitor), mianserin (tetracyclic antidepressant), carbamazepine (anticonvulsant), trazodone (serotonin antagonist and reuptake inhibitor), and chlorprothixene (antipsychotic). Venlafaxine (serotonin-norepinephrine reuptake inhibitor) is known to have an analgesic effect too. The mechanism of such effect of these drugs is not fully understood. Herein we review and correlate the literature data on analgesic/antipruritic activity with pharmacological profile of these compounds.
Collapse
Affiliation(s)
- Daria A Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Mariia A Belinskaia
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Oleg I Barygin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Nina P Vanchakova
- Department of Pedagogy and Psychology, Faculty of Postgraduate Education, First Pavlov State Medical University, L'va Tolstogo str. 6-8, St. Petersburg 197022, Russia.
| | - Natalia N Shestakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| |
Collapse
|
23
|
Alaiyed S, Conant K. A Role for Matrix Metalloproteases in Antidepressant Efficacy. Front Mol Neurosci 2019; 12:117. [PMID: 31133801 PMCID: PMC6517485 DOI: 10.3389/fnmol.2019.00117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/24/2019] [Indexed: 01/10/2023] Open
Abstract
Major depressive disorder is a debilitating condition that affects approximately 15% of the United States population. Though the neurophysiological mechanisms that underlie this disorder are not completely understood, both human and rodent studies suggest that excitatory/inhibitory (E/I) balance is reduced with the depressive phenotype. In contrast, antidepressant efficacy in responsive individuals correlates with increased excitatory neurotransmission in select brain regions, suggesting that the restoration of E/I balance may improve mood. Enhanced excitatory transmission can occur through mechanisms including increased dendritic arborization and synapse formation in pyramidal neurons. Reduced activity of inhibitory neurons may also contribute to antidepressant efficacy. Consistent with this possibility, the fast-acting antidepressant ketamine may act by selective inhibition of glutamatergic input to GABA releasing parvalbumin (PV)-expressing interneurons. Recent work has also shown that a negative allosteric modulator of the GABA-A receptor α subunit can improve depression-related behavior. PV-expressing interneurons are thought to represent critical pacemakers for synchronous network events. These neurons also represent the predominant GABAergic neuronal population that is enveloped by the perineuronal net (PNN), a lattice-like structure that is thought to stabilize glutamatergic input to this cell type. Disruption of the PNN reduces PV excitability and increases pyramidal cell excitability. Various antidepressant medications increase the expression of matrix metalloproteinases (MMPs), enzymes that can increase pyramidal cell dendritic arborization and spine formation. MMPs can also cleave PNN proteins to reduce PV neuron-mediated inhibition. The present review will focus on mechanisms that may underlie antidepressant efficacy, with a focus on monoamines as facilitators of increased matrix metalloprotease (MMP) expression and activation. Discussion will include MMP-dependent effects on pyramidal cell structure and function, as well as MMP-dependent effects on PV expressing interneurons. We conclude with discussion of antidepressant use for those at risk for Alzheimer’s disease, and we also highlight areas for further study.
Collapse
Affiliation(s)
- Seham Alaiyed
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC, United States
| | - Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
24
|
Sun Q, Yuan F, Yuan R, Ren D, Zhu Y, Bi Y, Hu J, Guo Z, Xu F, Niu W, Ma G, Wu X, Yang F, Wang L, Li X, Yu T, He L, He G. GRIK4 and GRM7 gene may be potential indicator of venlafaxine treatment reponses in Chinese of Han ethnicity. Medicine (Baltimore) 2019; 98:e15456. [PMID: 31083176 PMCID: PMC6531186 DOI: 10.1097/md.0000000000015456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Venlafaxine is one of commonly prescribed antidepressants for major depressive disorder (MDD). Accumulated evidence implicates the involvement of glutamatergic receptors in the pathophysiology of MDD and antidepressant treatment.By using 193 MDD patients who have been taking venlafaxine for 6 weeks, we investigated whether single nucleotide polymorphisms (SNPs) in glutamate ionotropic receptor kainate type subunit 4 (GRIK4), glutamate ionotropic receptor AMPA type subunit 1 (GRIA1) and glutamate metabotropic receptor 7 (GRM7) were associated with treatment response. 14 SNPs were selected randomly depended on association studies. Efficacy of treatment was determined by 17-item of Hamilton Rating Scale. Allele and genotype frequencies were compared between responders and non-responders.After adjusting by the false discovery rate (FDR), rs6589847 and rs56275759 in GRIK4 and rs9870680 in GRM7 showed associating with venlafaxine treatment response at week 6. (FDR: P = .018, P = .042, and P = .040, respectively).Our results indicated that genetic variants in the GRIK4 and GRM7 may associate with the treatment response in MDD patients treated by venlafaxine.
Collapse
Affiliation(s)
- Qianqian Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Ruixue Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Decheng Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhao Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaxin Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenming Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Weibo Niu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Gaini Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Fengping Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Gonda X, Petschner P, Eszlari N, Sutori S, Gal Z, Koncz S, Anderson IM, Deakin B, Juhasz G, Bagdy G. Effects of Different Stressors Are Modulated by Different Neurobiological Systems: The Role of GABA-A Versus CB1 Receptor Gene Variants in Anxiety and Depression. Front Cell Neurosci 2019; 13:138. [PMID: 31024264 PMCID: PMC6467241 DOI: 10.3389/fncel.2019.00138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
Environmental stress and its interaction with genetic variation are key contributors in the development of depression and anxiety, yet there is a failure to identify replicable genetic variants and gene-interaction effects in the background of these psychiatric symptoms. Recently it has been reported that 5-HTTLPR and NOSI interact with financial but not other types of recent stressors in the development of depression. In the present study we investigated the interaction of GABRA6 rs3219151 and CNR1 rs7766029 in interaction with different types of recent life events on the presence of depression and anxiety in a large general population sample. 2191 participants completed the List of Threatening Experiences questionnaire which covers four categories of stressful life events (financial problems, illness/personal problems, intimate relationships, and social network) experienced over the previous year and the Brief Symptom Inventory for depression and anxiety symptoms. Participants were genotyped for rs3219151 and rs7766029. Data were analyzed with linear regression models with age and gender as covariates. Results indicated that CNR1 rs7766029 interacted significantly with financial but not other types of life events both in case of depression and anxiety symptoms. In contrast, GABRA6 rs3219151 showed a significant interaction with social network related life events in case of anxiety and with illness/personal problem-related life events in case of depression. Our results suggest that the psychological impact of different types of recent stress may be differentially modulated by distinct molecular genetic pathways. Furthermore, in case of certain genetic variants, the occurring psychiatric symptom may depend on the type of stress experienced.
Collapse
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.,MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Peter Petschner
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.,Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Sara Sutori
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Zsofia Gal
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Szabolcs Koncz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Ian M Anderson
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, United Kingdom
| | - Bill Deakin
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, United Kingdom.,Greater Manchester Mental Health NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Gabriella Juhasz
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, United Kingdom.,SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Budapest, Hungary
| | - Gyorgy Bagdy
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.,Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
Singh K, Jayaram M, Kaare M, Leidmaa E, Jagomäe T, Heinla I, Hickey MA, Kaasik A, Schäfer MK, Innos J, Lilleväli K, Philips MA, Vasar E. Neural cell adhesion molecule Negr1 deficiency in mouse results in structural brain endophenotypes and behavioral deviations related to psychiatric disorders. Sci Rep 2019; 9:5457. [PMID: 30932003 PMCID: PMC6443666 DOI: 10.1038/s41598-019-41991-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Neuronal growth regulator 1 (NEGR1) belongs to the immunoglobulin (IgLON) superfamily of cell adhesion molecules involved in cortical layering. Recent functional and genomic studies implicate the role of NEGR1 in a wide spectrum of psychiatric disorders, such as major depression, schizophrenia and autism. Here, we investigated the impact of Negr1 deficiency on brain morphology, neuronal properties and social behavior of mice. In situ hybridization shows Negr1 expression in the brain nuclei which are central modulators of cortical-subcortical connectivity such as the island of Calleja and the reticular nucleus of thalamus. Brain morphological analysis revealed neuroanatomical abnormalities in Negr1−/− mice, including enlargement of ventricles and decrease in the volume of the whole brain, corpus callosum, globus pallidus and hippocampus. Furthermore, decreased number of parvalbumin-positive inhibitory interneurons was evident in Negr1−/− hippocampi. Behaviorally, Negr1−/− mice displayed hyperactivity in social interactions and impairments in social hierarchy. Finally, Negr1 deficiency resulted in disrupted neurite sprouting during neuritogenesis. Our results provide evidence that NEGR1 is required for balancing the ratio of excitatory/inhibitory neurons and proper formation of brain structures, which is prerequisite for adaptive behavioral profiles. Therefore, Negr1−/− mice have a high potential to provide new insights into the neural mechanisms of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia. .,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.
| | - Mohan Jayaram
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Maria Kaare
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, University of Bonn, Sigmund-Freud-Str.25, 53127, Bonn, Germany
| | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Indrek Heinla
- Department of Psychology, UiT The Arctic University of Norway, Postboks 6050 Langnes, 9037, Tromso, Norway
| | - Miriam A Hickey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Michael K Schäfer
- Department for Anesthesiology, University Medical Center and Focus Program Translational Neuroscience (FTN), Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| |
Collapse
|
27
|
Liu T, Zhou J, Cui H, Li P, Luo J, Li T, He F, Wang Y, Tang T. iTRAQ-based quantitative proteomics reveals the neuroprotection of rhubarb in experimental intracerebral hemorrhage. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:244-254. [PMID: 30502478 DOI: 10.1016/j.jep.2018.11.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 10/26/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhubarb is a traditional Chinese medicine(TCM), that possesses neuroprotective, anti-inflammatory, antibacterial, antioxidative, purgative and anticancer properties, and has been used to treat intracerebral hemorrhage (ICH) and many other diseases. AIMS OF THE STUDY This study aimed to investigate the changes of brain protein in ICH rats treated with rhubarb and to explore the multi-target mechanism of rhubarb in the treatment of ICH via bioinformatics analysis of differentially expressed proteins (DEPs). MATERIALS AND METHODS Rats were subjected to collagenase-induced ICH and then treated orally with 3 or 12 g/kg rhubarb daily for 2 days following ICH. After sacrifice, total protein of brain tissue was extracted, and isobaric tag for relative and absolute quantification (iTRAQ)-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was employed to quantitatively identify of the DEPs in two treatment groups compared with the vehicle group. The DEPs were analyzed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and STRING databases. Bioinformatics Analysis Tool for Molecular mechanism of TCM (BATMAN-TCM) was used to predict the target of rhubarb and western blotting was used for verification. RESULTS In total, 1356 proteins were identified with a 1% false discovery rate (FDR). Among them, 55 DEPs were significantly altered in the sham, vehicle, low dose rhubarb group (LDR, 3 g/kg), and high dose rhubarb group (HDR, 12 g/kg). Enrichment analysis of GO annotations indicated that rhubarb mainly regulated expression of some neuron projection proteins involved in the response to drug and nervous system development. The dopaminergic synapse pathway was found to be the most significant DEP in the combined analysis of the KEGG and BATMAN-TCM databases. Based on the results of the STRING analysis, oxidative stress (OS), calcium binding protein regulation, vascularization, and energy metabolism were important in the rhubarb therapeutic process. CONCLUSION Rhubarb achieves its effects mainly through the dopaminergic synapse pathway in ICH treatment. The ICH-treating mechanisms of rhubarb may also involve anti-OS, calcium binding protein regulation, angiogenic regulation, and energy metabolism improvement. This study adds new evidence to clinical applications of rhubarb for ICH.
Collapse
Affiliation(s)
- Tao Liu
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China; Department of Gerontology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, 830000 Urumqi, China
| | - Jing Zhou
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Hanjin Cui
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Pengfei Li
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Jiekun Luo
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Teng Li
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Feng He
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Yang Wang
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China; National Research Center of geriatrics, Xiangya Hospital, Central South University, China.
| | - Tao Tang
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China; National Research Center of geriatrics, Xiangya Hospital, Central South University, China.
| |
Collapse
|
28
|
Alaiyed S, Bozzelli PL, Caccavano A, Wu JY, Conant K. Venlafaxine stimulates PNN proteolysis and MMP-9-dependent enhancement of gamma power; relevance to antidepressant efficacy. J Neurochem 2019; 148:810-821. [PMID: 30697747 DOI: 10.1111/jnc.14671] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/30/2018] [Accepted: 01/23/2019] [Indexed: 01/15/2023]
Abstract
Drugs that target monoaminergic transmission represent a first-line treatment for major depression. Though a full understanding of the mechanisms that underlie antidepressant efficacy is lacking, evidence supports a role for enhanced excitatory transmission. This can occur through two non-mutually exclusive mechanisms. The first involves increased function of excitatory neurons through relatively direct mechanisms such as enhanced dendritic arborization. Another mechanism involves reduced inhibitory function, which occurs with the rapid antidepressant ketamine. Consistent with this, GABAergic interneuron-mediated cortical inhibition is linked to reduced gamma oscillatory power, a rhythm also diminished in depression. Remission of depressive symptoms correlates with restoration of gamma power. As a result of strong excitatory input, reliable GABA release, and fast firing, PV-expressing neurons (PV neurons) represent critical pacemakers for synchronous oscillations. PV neurons also represent the predominant GABAergic population enveloped by perineuronal nets (PNNs), lattice-like structures that localize glutamatergic input. Disruption of PNNs reduces PV excitability and enhances gamma activity. Studies suggest that monoamine reuptake inhibitors reduce integrity of the PNN. Mechanisms by which these inhibitors reduce PNN integrity, however, remain largely unexplored. A better understanding of these issues might encourage development of therapeutics that best up-regulate PNN-modulating proteases. We observe that the serotonin/norepinephrine reuptake inhibitor venlafaxine increases hippocampal matrix metalloproteinase (MMP)-9 levels as determined by ELISA and concomitantly reduces PNN integrity in murine hippocampus as determined by analysis of sections following their staining with a fluorescent PNN-binding lectin. Moreover, venlafaxine-treated mice (30 mg/kg/day) show an increase in carbachol-induced gamma power in ex vivo hippocampal slices as determined by local field potential recording and Matlab analyses. Studies with mice deficient in matrix metalloproteinase 9 (MMP-9), a protease linked to PNN disruption in other settings, suggest that MMP-9 contributes to venlafaxine-enhanced gamma power. In conclusion, our results support the possibility that MMP-9 activity contributes to antidepressant efficacy through effects on the PNN that may in turn enhance neuronal population dynamics involved in mood and/or memory. Cover Image for this issue: doi: 10.1111/jnc.14498.
Collapse
Affiliation(s)
- Seham Alaiyed
- Departments of Pharmacology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - P Lorenzo Bozzelli
- Departments of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA.,Departments of Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Adam Caccavano
- Departments of Pharmacology, Georgetown University Medical Center, Washington, District of Columbia, USA.,Departments of Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Jian Young Wu
- Departments of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA.,Departments of Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Katherine Conant
- Departments of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA.,Departments of Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
29
|
Amare AT, Schubert KO, Tekola-Ayele F, Hsu YH, Sangkuhl K, Jenkins G, Whaley RM, Barman P, Batzler A, Altman RB, Arolt V, Brockmöller J, Chen CH, Domschke K, Hall-Flavin DK, Hong CJ, Illi A, Ji Y, Kampman O, Kinoshita T, Leinonen E, Liou YJ, Mushiroda T, Nonen S, Skime MK, Wang L, Kato M, Liu YL, Praphanphoj V, Stingl JC, Bobo WV, Tsai SJ, Kubo M, Klein TE, Weinshilboum RM, Biernacka JM, Baune BT. The association of obesity and coronary artery disease genes with response to SSRIs treatment in major depression. J Neural Transm (Vienna) 2019; 126:35-45. [PMID: 30610379 DOI: 10.1007/s00702-018-01966-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/18/2018] [Indexed: 01/22/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are first-line antidepressants for the treatment of major depressive disorder (MDD). However, treatment response during an initial therapeutic trial is often poor and is difficult to predict. Heterogeneity of response to SSRIs in depressed patients is partly driven by co-occurring somatic disorders such as coronary artery disease (CAD) and obesity. CAD and obesity may also be associated with metabolic side effects of SSRIs. In this study, we assessed the association of CAD and obesity with treatment response to SSRIs in patients with MDD using a polygenic score (PGS) approach. Additionally, we performed cross-trait meta-analyses to pinpoint genetic variants underpinnings the relationship of CAD and obesity with SSRIs treatment response. First, PGSs were calculated at different p value thresholds (PT) for obesity and CAD. Next, binary logistic regression was applied to evaluate the association of the PGSs to SSRIs treatment response in a discovery sample (ISPC, N = 865), and in a replication cohort (STAR*D, N = 1,878). Finally, a cross-trait GWAS meta-analysis was performed by combining summary statistics. We show that the PGSs for CAD and obesity were inversely associated with SSRIs treatment response. At the most significant thresholds, the PGS for CAD and body mass index accounted 1.3%, and 0.8% of the observed variability in treatment response to SSRIs, respectively. In the cross-trait meta-analyses, we identified (1) 14 genetic loci (including NEGR1, CADM2, PMAIP1, PARK2) that are associated with both obesity and SSRIs treatment response; (2) five genetic loci (LINC01412, PHACTR1, CDKN2B, ATXN2, KCNE2) with effects on CAD and SSRIs treatment response. Our findings implicate that the genetic variants of CAD and obesity are linked to SSRIs treatment response in MDD. A better SSRIs treatment response might be achieved through a stratified allocation of treatment for MDD patients with a genetic risk for obesity or CAD.
Collapse
Affiliation(s)
- Azmeraw T Amare
- Discipline of Psychiatry, School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
- South Australian Academic Health Science and Translation Centre, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Klaus Oliver Schubert
- Discipline of Psychiatry, School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
- Northern Adelaide Local Health Network, Mental Health Services, Adelaide, SA, Australia
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, National Institute of Child Health and Human Development, Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yi-Hsiang Hsu
- HSL Institute for Aging Research, Harvard Medical School, Boston, MA, USA
- Program for Quantitative Genomics, Harvard School of Public Health, Boston, MA, USA
| | - Katrin Sangkuhl
- Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Gregory Jenkins
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ryan M Whaley
- Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Poulami Barman
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Anthony Batzler
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Russ B Altman
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Volker Arolt
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Göttingen, Göttingen, Germany
| | - Chia-Hui Chen
- Department of Psychiatry, Taipei Medical University-Shuangho Hospital, New Taipei City, Taiwan
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Chen-Jee Hong
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ari Illi
- Department of Psychiatry, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Yuan Ji
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Olli Kampman
- Department of Psychiatry, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Department of Psychiatry, Seinäjoki Hospital District, Seinäjoki, Finland
| | | | - Esa Leinonen
- Department of Psychiatry, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Department of Psychiatry, Tampere University Hospital, Tampere, Finland
| | - Ying-Jay Liou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Taisei Mushiroda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Shinpei Nonen
- Department of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Michelle K Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Masaki Kato
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Verayuth Praphanphoj
- Center for Medical Genetics Research, Department of Mental Health, Ministry of Public Health Bangkok, Rajanukul Institute, Bangkok, Thailand
| | - Julia C Stingl
- Research Division Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - William V Bobo
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Teri E Klein
- Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Richard M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.
| |
Collapse
|
30
|
Petschner P, Balogh N, Adori C, Tamasi V, Kumar S, Juhasz G, Bagdy G. Downregulation of the Vitamin D Receptor Regulated Gene Set in the Hippocampus After MDMA Treatment. Front Pharmacol 2018; 9:1373. [PMID: 30559663 PMCID: PMC6287013 DOI: 10.3389/fphar.2018.01373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/08/2018] [Indexed: 11/13/2022] Open
Abstract
The active ingredient of ecstasy, ±3,4-methylenedioxymethamphetamine (MDMA), in addition to its initial reinforcing effects, induces selective and non-selective brain damage. Evidences suggest that the hippocampus (HC), a central region for cognition, may be especially vulnerable to impairments on the long-run, nevertheless, transcription factors that may precede and regulate such chronic changes remained uninvestigated in this region. In the current study, we used gene-set enrichment analysis (GSEA) to reveal possible transcription factor candidates responsible for enhanced vulnerability of HC after MDMA administration. Dark Agouti rats were intraperitoneally injected with saline or 15 mg/kg MDMA. Three weeks later HC gene expression was measured by Illumina whole-genome beadarrays and GSEA was performed with MSigDB transcription factor sets. The number of significantly altered genes on the genome level (significance < 0.001) in up/downregulated sets was also counted. MDMA upregulated one, and downregulated 13 gene sets in the HC of rats, compared to controls, including Pax4, Pitx2, FoxJ2, FoxO1, Oct1, Sp3, AP3, FoxO4, and vitamin D receptor (VDR)-regulated sets (q-value <0.05). VDR-regulated set contained the second highest number of significantly altered genes, including among others, Camk2n2, Gria3, and Grin2a. Most identified transcription factors are implicated in the response to ischemia confirming that serious hypoxia/ischemia occurs in the HC after MDMA administration, which may contribute to the selective vulnerability of this brain region. Moreover, our results also raise the possibility that vitamin D supplementation, in addition to the commonly used antioxidants, could be a potential alternative method to attenuate MDMA-induced chronic hippocampal impairments.
Collapse
Affiliation(s)
- Peter Petschner
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary.,MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Noemi Balogh
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | - Csaba Adori
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | - Viola Tamasi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Sahel Kumar
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary.,SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.,NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary.,MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| |
Collapse
|
31
|
Yuan R, Yuan F, Ren D, Zhu Y, Bi Y, Hu J, Guo Z, Xu F, Niu W, Wu X, Cao Y, Yang F, Wang L, Li W, Xu Y, He L, Yu T, He G, Li X. HTR1A and HTR2A variants may not predict venlafaxine treatment response in China Han population with major depressive disorder. Psychiatry Res 2018; 270:1179-1180. [PMID: 30366640 DOI: 10.1016/j.psychres.2018.10.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 08/29/2018] [Accepted: 10/13/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Ruixue Yuan
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Fan Yuan
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Decheng Ren
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Yuhao Zhu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Yan Bi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Jiaxin Hu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Zhenming Guo
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Fei Xu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Weibo Niu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Xi Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Yanfei Cao
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Fengping Yang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Lu Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Weidong Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Lin He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Chinese Academy of Sciences, Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, 320 Yueyang Road, Shanghai 200031, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China
| | - Tao Yu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China.
| | - Guang He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China.
| | - Xingwang Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, 600 South Wan Ping Road, Shanghai 200030, China.
| |
Collapse
|
32
|
Clabault H, Cohen M, Vaillancourt C, Sanderson JT. Effects of selective serotonin-reuptake inhibitors (SSRIs) in JEG-3 and HIPEC cell models of the extravillous trophoblast. Placenta 2018; 72-73:62-73. [PMID: 30501883 DOI: 10.1016/j.placenta.2018.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/14/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Between 2 and 10% of pregnant women are treated with selective serotonin-reuptake inhibitors (SSRIs) for depression. The extravillous trophoblasts (evTBs), which migrate and invade maternal tissues, are crucial for embryo implantation and remodeling of maternal spiral arteries. Poor migration/invasion of evTBs can cause serious pregnancy complications, yet the effects of SSRIs on these processes has never been studied. To determine the effects of five SSRIs (fluoxetine, norfluoxetine, citalopram, sertraline and venlafaxine) on migration/invasion, we used JEG-3 and HIPEC cells as evTB models. METHODS Cells were treated with increasing concentrations (0.03-10 μM) of SSRIs. Cell proliferation was monitored using an impedance-based system and cell cycle by flow cytometry. Migration was determined using a scratch test, and metalloproteinase (MMP) activities, by zymography. Invasion markers were determined by RT-qPCR. RESULTS Fluoxetine and sertraline (10 μM) significantly decreased cell proliferation by 94% and by 100%, respectively, in JEG-3 cells, and by 58.6% and 100%, respectively, in HIPEC cells. Norfluoxetine increased MMP-9 activity in JEG-3 cells by 2.0% at 0.03 μM and by 43.9% at 3 μM, but decreased MMP-9 activity in HIPEC cells by 63.7% at 3 μM. Sertraline at 0.03 μM increased mRNA level of TIMP-1 in JEG-3 cells by 36% and that of ADAM-10 by 85% and 115% at 0.3 and 3 μM, respectively. In HIPEC cells, venlafaxine at 0.03 and 0.3 μM, increased ADAM-10 mRNA levels by 156% and 167%, respectively. DISCUSSION This study shows that SSRIs may affect evTBs homeostasis at therapeutic levels and provides guidance for future research.
Collapse
Affiliation(s)
- Hélène Clabault
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada; BioMed Research Centre, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Marie Cohen
- Department of Gynecology Obstetrics, Faculty of Medicine, Université de Genève, 1 rue Michel Servet, 1205, Geneva, Switzerland
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada; BioMed Research Centre, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| | - J Thomas Sanderson
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
33
|
Gonda X, Petschner P, Eszlari N, Baksa D, Edes A, Antal P, Juhasz G, Bagdy G. Genetic variants in major depressive disorder: From pathophysiology to therapy. Pharmacol Ther 2018; 194:22-43. [PMID: 30189291 DOI: 10.1016/j.pharmthera.2018.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In spite of promising preclinical results there is a decreasing number of new registered medications in major depression. The main reason behind this fact is the lack of confirmation in clinical studies for the assumed, and in animals confirmed, therapeutic results. This suggests low predictive value of animal studies for central nervous system disorders. One solution for identifying new possible targets is the application of genetics and genomics, which may pinpoint new targets based on the effect of genetic variants in humans. The present review summarizes such research focusing on depression and its therapy. The inconsistency between most genetic studies in depression suggests, first of all, a significant role of environmental stress. Furthermore, effect of individual genes and polymorphisms is weak, therefore gene x gene interactions or complete biochemical pathways should be analyzed. Even genes encoding target proteins of currently used antidepressants remain non-significant in genome-wide case control investigations suggesting no main effect in depression, but rather an interaction with stress. The few significant genes in GWASs are related to neurogenesis, neuronal synapse, cell contact and DNA transcription and as being nonspecific for depression are difficult to harvest pharmacologically. Most candidate genes in replicable gene x environment interactions, on the other hand, are connected to the regulation of stress and the HPA axis and thus could serve as drug targets for depression subgroups characterized by stress-sensitivity and anxiety while other risk polymorphisms such as those related to prominent cognitive symptoms in depression may help to identify additional subgroups and their distinct treatment. Until these new targets find their way into therapy, the optimization of current medications can be approached by pharmacogenomics, where metabolizing enzyme polymorphisms remain prominent determinants of therapeutic success.
Collapse
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Kutvolgyi Clinical Centre, Semmelweis University, Budapest, Hungary; NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.
| | - Peter Petschner
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Daniel Baksa
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Andrea Edes
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Peter Antal
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; Neuroscience and Psychiatry Unit, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Gyorgy Bagdy
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
34
|
Petschner P, Tamasi V, Adori C, Kirilly E, Ando RD, Tothfalusi L, Bagdy G. Gene expression analysis indicates reduced memory and cognitive functions in the hippocampus and increase in synaptic reorganization in the frontal cortex 3 weeks after MDMA administration in Dark Agouti rats. BMC Genomics 2018; 19:580. [PMID: 30071829 PMCID: PMC6090855 DOI: 10.1186/s12864-018-4929-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/05/2018] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is a widely used entactogenic drug known to impair cognitive functions on the long-run. Both hippocampal and frontal cortical regions have well established roles in behavior, memory formation and other cognitive tasks and damage of these regions is associated with altered behavior and cognitive functions frequently described in otherwise healthy MDMA users. Meanwhile, in post-traumatic stress disorder (PTSD) patients seem to benefit from therapeutic application of the drug, where damage in hippocampal cue extinction may play a role. The aim of this study was to examine the hippocampus, frontal cortex and dorsal raphe of Dark Agouti rats with gene expression arrays (Illumina RatRef bead arrays) looking for possible mechanisms and new candidates contributing to the consequences of a single dose of MDMA (15 mg/kg) 3 weeks earlier. RESULTS The number of differentially expressed genes in the hippocampus, frontal cortex and the dorsal raphe were 481, 155, and 15, respectively. Gene set enrichment analysis of the microarray data revealed reduced expression of 'memory' and 'cognition', 'dendrite development' and 'regulation of synaptic plasticity' gene sets in the hippocampus, parallel to the downregulation of CaMK II subunits, glutamate-, CB1 cannabinoid- and EphA4, EphA5, EphA6 receptors. Downregulated gene sets in the frontal cortex were related to protein synthesis, chromatin organization, transmembrane transport processes, while 'dendrite development', 'regulation of synaptic plasticity' and 'positive regulation of synapse assembly' gene sets were upregulated besides elevated levels of a CaMK II subunit and NMDA2B glutamate receptor. Changes in the dorsal raphe region were mild and in most cases not significant. CONCLUSION The present data raise the possibility of new synapse formation / synaptic reorganization in the frontal cortex 3 weeks after a single neurotoxic dose of MDMA. In contrast, a prolonged depression of new neurite formation in the hippocampus is proposed by downregulations of members in long-term potentiation pathway and synaptic plasticity emphasizing the particular vulnerability of this brain region and proposing a mechanism responsible for cognitive problems in healthy individuals. At the same time, these results underpin benefits of MDMA in PTSD, where the drug may help memory extinction.
Collapse
Affiliation(s)
- Peter Petschner
- Department of Pharmacodynamics, Semmelweis University, Nagyvarad ter 4., Budapest, H-1089, Hungary.,MTA-SE Neuropsychopharmacology & Neurochemistry Research Group, Nagyvarad ter 4., Budapest, H-1089, Hungary
| | - Viola Tamasi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvarad ter 4., Budapest, H-1089, Hungary
| | - Csaba Adori
- Department of Pharmacodynamics, Semmelweis University, Nagyvarad ter 4., Budapest, H-1089, Hungary.,4 Retzius Laboratory, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden
| | - Eszter Kirilly
- Department of Pharmacodynamics, Semmelweis University, Nagyvarad ter 4., Budapest, H-1089, Hungary
| | - Romeo D Ando
- Department of Pharmacodynamics, Semmelweis University, Nagyvarad ter 4., Budapest, H-1089, Hungary
| | - Laszlo Tothfalusi
- Department of Pharmacodynamics, Semmelweis University, Nagyvarad ter 4., Budapest, H-1089, Hungary
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Semmelweis University, Nagyvarad ter 4., Budapest, H-1089, Hungary. .,MTA-SE Neuropsychopharmacology & Neurochemistry Research Group, Nagyvarad ter 4., Budapest, H-1089, Hungary. .,NAP-2-SE New Antidepressant Target Research Group, Semmelweis University, Nagyvarad ter 4., Budapest, H-1089, Hungary.
| |
Collapse
|
35
|
Allen J, Romay-Tallon R, Brymer KJ, Caruncho HJ, Kalynchuk LE. Mitochondria and Mood: Mitochondrial Dysfunction as a Key Player in the Manifestation of Depression. Front Neurosci 2018; 12:386. [PMID: 29928190 PMCID: PMC5997778 DOI: 10.3389/fnins.2018.00386] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Human and animal studies suggest an intriguing link between mitochondrial diseases and depression. Although depression has historically been linked to alterations in monoaminergic pharmacology and adult hippocampal neurogenesis, new data increasingly implicate broader forms of dampened plasticity, including plasticity within the cell. Mitochondria are the cellular powerhouse of eukaryotic cells, and they also regulate brain function through oxidative stress and apoptosis. In this paper, we make the case that mitochondrial dysfunction could play an important role in the pathophysiology of depression. Alterations in mitochondrial functions such as oxidative phosphorylation (OXPHOS) and membrane polarity, which increase oxidative stress and apoptosis, may precede the development of depressive symptoms. However, the data in relation to antidepressant drug effects are contradictory: some studies reveal they have no effect on mitochondrial function or even potentiate dysfunction, whereas other studies show more beneficial effects. Overall, the data suggest an intriguing link between mitochondrial function and depression that warrants further investigation. Mitochondria could be targeted in the development of novel antidepressant drugs, and specific forms of mitochondrial dysfunction could be identified as biomarkers to personalize treatment and aid in early diagnosis by differentiating between disorders with overlapping symptoms.
Collapse
Affiliation(s)
- Josh Allen
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Kyle J Brymer
- Department of Psychology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
36
|
El-Kashef DH, Sharawy MH. Venlafaxine mitigates cisplatin-induced nephrotoxicity via down-regulating apoptotic pathway in rats. Chem Biol Interact 2018; 290:110-118. [PMID: 29852128 DOI: 10.1016/j.cbi.2018.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/11/2018] [Accepted: 05/28/2018] [Indexed: 10/16/2022]
Abstract
The antidepressant venlafaxine, a norepinephrine and serotonin reuptake inhibitor, is recently identified for its anti-inflammatory role against many experimental models. In this study, the effect of venlafaxine against cisplatin-induced nephrotoxicity and bladder rings hypersensitivity towards acetylcholine were explored. Single injection of cisplatin (7 mg/kg, ip) in Sprague-Dawley rats instigated nephrotoxicity evidenced by hindering renal function (changes in kidney/body weight ratio, serum creatinine, BUN, albumin and urinary total protein levels which were supported by histopathology). In addition, cisplatin caused a profound oxidative stress, inflammation and apoptosis. Treatment with venlafaxine (50 mg/kg, po) managed to alleviate the nephrotoxicity indices and rehabilitate the antioxidant parameters (MDA, GSH, SOD and CAT) in addition to retaining NOx levels to the normal levels. Moreover, venlafaxine caused a decline in LDH and NF-κB levels supporting its anti-inflammatory effect. Additionally, the antiapoptotic effect was demonstrated by increasing Bcl-2, suppressing p53 and Bax renal levels, decreasing caspase-3 expression and by flow cytometry (annexin V and PI) that showed an increase in viable cells and a decrease in early apoptotic and necrotic cells. Furthermore, venlafaxine ameliorated bladder rings hyperreactivity to acetylcholine and improved histopathologic findings. In brief, venlafaxine ameliorated nephrotoxicity and bladder rings hyperreactivity caused by cisplatin through acting as an antioxidant, anti-inflammatory and antiapoptotic agent.
Collapse
Affiliation(s)
- Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
37
|
Li C, Liu F, Peng H, Huang Y, Song X, Xie Q, Li Y, Liu Y. The positive effect of venlafaxine on central motor conduction. Clin Neurol Neurosurg 2018; 167:65-69. [PMID: 29454182 DOI: 10.1016/j.clineuro.2018.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/02/2018] [Accepted: 02/11/2018] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Using the triple stimulation technique (TST) and conventional transcranial magnetic stimulation (TMS), this study was designed to investigate the effect of venlafaxine on central motor conduction in healthy adults. PATIENTS AND METHODS In this crossover, self-controlled trial, eight healthy adult volunteers were randomly divided into groups A and B. In group A, the volunteers were administered 1 venlafaxine capsule once daily for 7 consecutive days, followed by a 3-day break. Next, volunteers in this group received 1 placebo capsule once daily for 7 consecutive days. Group B received the treatments in the opposite order. The index finger tapping test, grip strength test, TST and conventional TMS examination for each hand were recorded before and one week after the administration of venlafaxine or placebo. RESULTS Compared to the placebo stage, in the venlafaxine stage, the number of index finger taps was significantly increased for both hands, and the TST amplitude and area ratios were significantly increased. The improvement in the TST amplitude ratio was significantly and positively correlated with the improvements in performance on the index finger tapping test. CONCLUSION Venlafaxine positively regulates central motor conduction in healthy adults.
Collapse
Affiliation(s)
- Chunyong Li
- Dept. Cerebral Vascular Disease, The General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Avenue, Yuexiu District, Guangzhou, 510010, PR China.
| | - Fuda Liu
- Area 2, Department of Neurology, Jiangmen Central Hospital, No.23, Haibang Street, Beijie, Jiangmen City, Guangdong Province, PR China.
| | - Haiyan Peng
- Dept. Neurology, The General Hospital of Guangzhou Military Command of PLA, No.111, Liuhua Avenue, Yuexiu District, Guangzhou, 510010, PR China.
| | - Yongjun Huang
- Dept. Neurology, The General Hospital of Guangzhou Military Command of PLA, No.111, Liuhua Avenue, Yuexiu District, Guangzhou, 510010, PR China.
| | - Xuezhu Song
- Dept. of Neurology, Shunde Guizhou Hospital, Fushan, Guangdong, PR China.
| | - Qi Xie
- Dept. of Rehabilitation Medicine, The General Hospital of Guangzhou Military Command of PLA, No.111, Liuhua Avenue, Yuexiu, Guangzhou, 510010, PR China.
| | - Yingkai Li
- Dept. of Neurology, The Second People's Hospital of Zhuhai, No. 208, Yuehua Avenue, Zhuhai, Guangdong Province, 510260, PR China.
| | - Yan Liu
- Dept. Cerebral Vascular Disease, The General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Avenue, Yuexiu District, Guangzhou, 510010, PR China.
| |
Collapse
|
38
|
Proteolytic Remodeling of Perineuronal Nets: Effects on Synaptic Plasticity and Neuronal Population Dynamics. Neural Plast 2018. [PMID: 29531525 PMCID: PMC5817213 DOI: 10.1155/2018/5735789] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The perineuronal net (PNN) represents a lattice-like structure that is prominently expressed along the soma and proximal dendrites of parvalbumin- (PV-) positive interneurons in varied brain regions including the cortex and hippocampus. It is thus apposed to sites at which PV neurons receive synaptic input. Emerging evidence suggests that changes in PNN integrity may affect glutamatergic input to PV interneurons, a population that is critical for the expression of synchronous neuronal population discharges that occur with gamma oscillations and sharp-wave ripples. The present review is focused on the composition of PNNs, posttranslation modulation of PNN components by sulfation and proteolysis, PNN alterations in disease, and potential effects of PNN remodeling on neuronal plasticity at the single-cell and population level.
Collapse
|
39
|
Petschner P, Gonda X, Baksa D, Eszlari N, Trivaks M, Juhasz G, Bagdy G. Genes Linking Mitochondrial Function, Cognitive Impairment and Depression are Associated with Endophenotypes Serving Precision Medicine. Neuroscience 2018; 370:207-217. [DOI: 10.1016/j.neuroscience.2017.09.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/01/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022]
|
40
|
Neuroplasticity and second messenger pathways in antidepressant efficacy: pharmacogenetic results from a prospective trial investigating treatment resistance. Eur Arch Psychiatry Clin Neurosci 2017; 267:723-735. [PMID: 28260126 DOI: 10.1007/s00406-017-0766-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 01/14/2017] [Indexed: 02/06/2023]
Abstract
Genes belonging to neuroplasticity, monoamine, circadian rhythm, and transcription factor pathways were investigated as modulators of antidepressant efficacy. The present study aimed (1) to replicate previous findings in an independent sample with treatment-resistant depression (TRD), and (2) to perform a pathway analysis to investigate the possible molecular mechanisms involved. 220 patients with major depressive disorder who were non-responders to a previous antidepressant were treated with venlafaxine for 4-6 weeks and in case of non-response with escitalopram for 4-6 weeks. Symptoms were assessed using the Montgomery Asberg Depression Rating Scale. The phenotypes were response and remission to venlafaxine, non-response (TRDA) and non-remission (TRDB) to neither venlafaxine nor escitalopram. 50 tag SNPs in 14 genes belonging to the pathways of interest were tested for association with phenotypes. Molecular pathways (KEGG database) that included one or more of the genes associated with the phenotypes were investigated also in the STAR*D sample. The associations between ZNF804A rs7603001 and response, CREB1 rs2254137 and remission were replicated, as well as CHL1 rs2133402 and lower risk of TRD. Other CHL1 SNPs were potential predictors of TRD (rs1516340, rs2272522, rs1516338, rs2133402). The MAPK1 rs6928 SNP was consistently associated with all the phenotypes. The protein processing in endoplasmic reticulum pathway (hsa04141) was the best pathway that may explain the mechanisms of MAPK1 involvement in antidepressant response. Signals in genes previously associated with antidepressant efficacy were confirmed for CREB1, ZNF804A and CHL1. These genes play pivotal roles in synaptic plasticity, neural activity and connectivity.
Collapse
|
41
|
Tan RPA, Leshchyns'ka I, Sytnyk V. Glycosylphosphatidylinositol-Anchored Immunoglobulin Superfamily Cell Adhesion Molecules and Their Role in Neuronal Development and Synapse Regulation. Front Mol Neurosci 2017; 10:378. [PMID: 29249937 PMCID: PMC5715320 DOI: 10.3389/fnmol.2017.00378] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023] Open
Abstract
Immunoglobulin superfamily (IgSF) cell adhesion molecules (CAMs) are cell surface glycoproteins that not only mediate interactions between neurons but also between neurons and other cells in the nervous system. While typical IgSF CAMs are transmembrane molecules, this superfamily also includes CAMs, which do not possess transmembrane and intracellular domains and are instead attached to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. In this review, we focus on the role GPI-anchored IgSF CAMs have as signal transducers and ligands in neurons, and discuss their functions in regulation of neuronal development, synapse formation, synaptic plasticity, learning, and behavior. We also review the links between GPI-anchored IgSF CAMs and brain disorders.
Collapse
Affiliation(s)
- Rui P A Tan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
42
|
Shen P, Hu Q, Dong M, Bai S, Liang Z, Chen Z, Li P, Hu Z, Zhong X, Zhu D, Wang H, Xie P. Venlafaxine exerts antidepressant effects possibly by activating MAPK-ERK1/2 and P13K-AKT pathways in the hippocampus. Behav Brain Res 2017; 335:63-70. [PMID: 28797602 DOI: 10.1016/j.bbr.2017.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/31/2017] [Accepted: 08/05/2017] [Indexed: 12/21/2022]
Abstract
Serotonin noradrenaline reuptake inhibitors are effective antidepressant drugs, which include venlafaxine and duloxetine. Venlafaxine is commonly used in a clinical context, but the molecular biological mechanisms behind its effects have not been fully determined. Here, we explored the potential biological effects of venlafaxine on mouse hippocampus. Mice were randomly divided into two groups and injected daily with 0.9% NaCl solution or venlafaxine. A GC-MS-based metabolomic approach was used to identify possible metabolic differences between these groups, and the key proteins involved in the relevant pathways were validated by western blotting. In our experiments, 27 hippocampal metabolites that distinguished the venlafaxine group from the control group were identified. These differential metabolites were subjected to Ingenuity Pathway Analysis, which revealed that they were strongly related to two metabolic pathways (MAPK-ERK1/2 and P13K-AKT signaling pathways). Six key proteins, BDNF, p-c-Raf, p-MAPK, p-MEK, p-AKT, and CREB, were verified by western blotting and the results were consistent with the differential metabolites identified by GC-MS. This study sheds light on the biological mechanisms underlying the effects of venlafaxine.
Collapse
Affiliation(s)
- Peng Shen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Qingchuan Hu
- Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Meixue Dong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Shunjie Bai
- Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Zihong Liang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Department of Neurology, The Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China
| | - Zhi Chen
- Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Pengfei Li
- Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Zicheng Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Xiaogang Zhong
- Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Dan Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China; Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
43
|
Pałasz A, Suszka-Świtek A, Filipczyk Ł, Bogus K, Rojczyk E, Worthington J, Krzystanek M, Wiaderkiewicz R. Escitalopram affects spexin expression in the rat hypothalamus, hippocampus and striatum. Pharmacol Rep 2016; 68:1326-1331. [PMID: 27710862 DOI: 10.1016/j.pharep.2016.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/13/2016] [Accepted: 09/01/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Spexin (SPX) is a recently discovered neuropeptide that exhibits a large spectrum of central and peripheral regulatory activity, especially when considered as a potent anorexigenic factor. It has already been proven that antidepressants, including selective serotonin reuptake inhibitors (SSRI), can modulate peptidergic signaling in various brain structures. Despite these findings, there is so far no information regarding the influence of treatment with the SSRI antidepressant escitalopram on brain SPX expression. METHODS In this current study we measured SPX mRNA and protein expression in the selected brain structures (hypothalamus, hippocampus and striatum) of rats chronically treated with a 10mg/kg dose of escitalopram using quantitative Real-Time PCR and immunohistochemistry. RESULTS Strikingly, long-term (4 week) drug treatment led to the downregulation of SPX expression in the rat hypothalamus. This supports the hypothesis that SPX may be involved in the hypothalamic serotonin-dependent actions of SSRI antidepressants and possibly also in the central mechanism of body mass increase. Conversely, SPX expression increased in the hippocampus and striatum. CONCLUSIONS This is the first report of the effects of a neuropsychiatric medication on SPX expression in animal brain. Our findings shed a new light on the pharmacology of antidepressants and may contribute to a better understanding of the alternative mechanisms responsible for antidepressant action.
Collapse
Affiliation(s)
- Artur Pałasz
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18, Katowice 40-752, Poland.
| | - Aleksandra Suszka-Świtek
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18, Katowice 40-752, Poland
| | - Łukasz Filipczyk
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18, Katowice 40-752, Poland
| | - Katarzyna Bogus
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18, Katowice 40-752, Poland
| | - Ewa Rojczyk
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18, Katowice 40-752, Poland
| | - John Worthington
- Manchester Immunology Group, Faculty of Life Sciences, University of Manchester, Greater Manchester, M13 9PT, UK; Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Marek Krzystanek
- Department and Clinic of Psychiatric Rehabilitation, School of Medicine in Katowice, Medical University of Silesia, Ziolowa 45/47, Katowice 40-635, Poland
| | - Ryszard Wiaderkiewicz
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18, Katowice 40-752, Poland
| |
Collapse
|
44
|
Petschner P, Juhasz G, Tamasi V, Adori C, Tothfalusi L, Hökfelt T, Bagdy G. Chronic venlafaxine treatment fails to alter the levels of galanin system transcripts in normal rats. Neuropeptides 2016; 57:65-70. [PMID: 26891823 DOI: 10.1016/j.npep.2016.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/22/2016] [Accepted: 01/31/2016] [Indexed: 11/16/2022]
Abstract
It is widely accepted that efficacy and speed of current antidepressants' therapeutic effect are far from optimal. Thus, there is a need for the development of antidepressants with new mechanisms of action. The neuropeptide galanin and its receptors (GalR1, GalR2 and GalR3) are among the promising targets. However, it is not clear whether or not the galanin system is involved in the antidepressant effect exerted by the currently much used inhibitors of the reuptake of serotonin and/or noradrenaline. To answer this question we administered the selective serotonin and noradrenaline reuptake inhibitor (SNRI) venlafaxine (40mg/kg/day via osmotic minipumps) to normal rats and examined the levels of the transcripts for galanin and GalR1-3 after a 3-week venlafaxine treatment in the dorsal raphe, hippocampus and frontal cortex. These areas are known to be involved in the effects of antidepressants and in depression itself. Venlafaxine failed to alter the expression of any of the galanin system genes in these areas. Our results show that one of the most efficient, currently used SNRIs does not alter transcript levels of galanin or its three receptors in normal rats. These findings suggest that the pro- and antidepressive-like effects of galanin reported in animal experiments may employ a novel mechanism(s).
Collapse
Affiliation(s)
- Peter Petschner
- Department of Pharmacodynamics, Semmelweis University, H-1089, Nagyvarad ter 4., Budapest, Hungary; MTA-SE Neuropsychopharmacology & Neurochemistry Research Group, H-1089, Nagyvarad ter 4., Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Semmelweis University, H-1089, Nagyvarad ter 4., Budapest, Hungary; MTA-SE Neuropsychopharmacology & Neurochemistry Research Group, H-1089, Nagyvarad ter 4., Budapest, Hungary; MTA-SE-NAP B Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Hungary
| | - Viola Tamasi
- Department of Genetics-, Cell and Immunobiology, Semmelweis University, H-1089, Nagyvarad ter 4., Budapest, Hungary
| | - Csaba Adori
- Department of Pharmacodynamics, Semmelweis University, H-1089, Nagyvarad ter 4., Budapest, Hungary; Retzius Laboratory, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden
| | - Laszlo Tothfalusi
- Department of Pharmacodynamics, Semmelweis University, H-1089, Nagyvarad ter 4., Budapest, Hungary
| | - Tomas Hökfelt
- Retzius Laboratory, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Semmelweis University, H-1089, Nagyvarad ter 4., Budapest, Hungary; MTA-SE Neuropsychopharmacology & Neurochemistry Research Group, H-1089, Nagyvarad ter 4., Budapest, Hungary.
| |
Collapse
|
45
|
Fabbri C, Serretti A. Pharmacogenetics of major depressive disorder: top genes and pathways toward clinical applications. Curr Psychiatry Rep 2015; 17:50. [PMID: 25980509 DOI: 10.1007/s11920-015-0594-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The pharmacogenetics of antidepressants has been not only a challenging but also frustrating research field since its birth in the 1990s. Indeed, great expectations followed the first evidence of familiar aggregation of antidepressant response. Despite the progress from candidate gene studies to genome-wide association studies (GWAS), results fell out the expectations and they were often inconsistent. Anyway, the cumulative evidence supports the involvement of some genes and molecular pathways in antidepressant efficacy. The best single genes are SLC6A4, HTR2A, BDNF, GNB3, FKBP5, ABCB1, and cytochrome P450 genes (CYP2D6 and CYP2C19). Molecular pathways involved in inflammation and neuroplasticity show the greatest support. The first studies evaluating benefits of genotype-guided antidepressant treatments provided encouraging results and confirmed the relevance of SLC6A4, HTR2A, ABCB1, and cytochrome P450 genes. Further progress in genotyping and data analysis would allow to move forward and complete the understanding of antidepressant pharmacogenetics and its translation into clinical applications.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Viale Carlo Pepoli 5, 40123, Bologna, Italy,
| | | |
Collapse
|
46
|
Correction: transcriptional evidence for the role of chronic venlafaxine treatment in neurotrophic signaling and neuroplasticity including also Glutatmatergic- and insulin-mediated neuronal processes. PLoS One 2015; 10:e0123269. [PMID: 25821979 PMCID: PMC4379046 DOI: 10.1371/journal.pone.0123269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
47
|
Zhang X, Li X, Li M, Ren J, Yun K, An Y, Lin L, Zhang H. Venlafaxine increases cell proliferation and regulates DISC1, PDE4B and NMDA receptor 2B expression in the hippocampus in chronic mild stress mice. Eur J Pharmacol 2015; 755:58-65. [PMID: 25769842 DOI: 10.1016/j.ejphar.2015.02.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/19/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
Recent evidence has identified disrupted in schizophrenia-1 (DISC1) as an important genetic risk factor for the development of many psychiatric disorders, including major depressive disorders. In addition, studies using animal models have demonstrated that chronic stress affects hippocampal structure and function. However, the functional effects of chronic stress on DISC1 remain unknown. Using a chronic mild stress (CMS) paradigm, we investigated the effects of CMS on depressive-like behaviors, hippocampal cell proliferation, and hippocampal protein expression of DISC1, phosphodiesterase 4B (PDE4B) and N-methyl-d-aspartate receptor 2B subunit (NMDA receptor 2B), which may be involved in the regulation of DISC1 and neurogenesis. We also examined the effects and possible mechanisms of the antidepressant venlafaxine in CMS mice. CMS increased the expression of DISC1 and PDE4B. Chronic treatment with venlafaxine blocked the increases in these proteins, and also reversed the CMS-induced decrease in neurogenesis and NMDA receptor 2B protein in the hippocampus. These results suggest that DISC1 may play an important role in the etiology of depression and in the action of antidepressants.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaobai Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Min Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jintao Ren
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ke Yun
- Department of Clinical Laboratory, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yan An
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lei Lin
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Hailong Zhang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|