1
|
Virág E, Nagy Á, Tóth BB, Kutasy B, Pallos JP, Szigeti ZM, Máthé C, Kardos G, Hegedűs G. Master Regulatory Transcription Factors in β-Aminobutyric Acid-Induced Resistance (BABA-IR): A Perspective on Phytohormone Biosynthesis and Signaling in Arabidopsis thaliana and Hordeum vulgare. Int J Mol Sci 2024; 25:9179. [PMID: 39273128 PMCID: PMC11395473 DOI: 10.3390/ijms25179179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
The endogenous stress metabolite β-aminobutyric acid (BABA) primes plants for enhanced resistance against abiotic and biotic stress by activating a complex phytohormone signaling network that includes abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and ethylene (ET). In this study, through stringent filtering, we identify 14 master regulatory transcription factors (TFs) from the DOF, AHL, and ERF families that potentially regulate the biosynthesis and signaling of these phytohormones. Transcriptional analysis of BABA-treated Arabidopsis thaliana and Hordeum vulgare suggests that DOF family TFs play a crucial role in stress response regulation in both species. BABA treatment in A. thaliana upregulates the TFs MNB1A and PBF and enhances the expression of the genes ICS1, EDS5, and WIN3 in the SA biosynthesis pathway, potentially boosting NPR1 and PR1 in the SA signaling pathway. Conversely, in H. vulgare, the BABA-induced upregulation of TF DOF5.8 may negatively regulate SA biosynthesis by downregulating ICS1, EDS5, and PR1. Additionally, in A. thaliana, BABA triggers the expression of TF PBF, which may result in the decreased expression of MYC2, a key gene in JA signaling. In contrast, H. vulgare exhibits increased expression of ERF2 TF, which could positively regulate the JA biosynthesis genes LOX and Tify9, along with the COI1 and JAZ genes involved in the JA signaling pathway. These findings offer new perspectives on the transcriptional regulation of phytohormones during plant priming.
Collapse
Affiliation(s)
- Eszter Virág
- Research Institute for Medicinal Plants and Herbs Ltd., 2011 Budakalász, Hungary
- Institute of One Health, Faculty of Health Science, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Ágnes Nagy
- Research Institute for Medicinal Plants and Herbs Ltd., 2011 Budakalász, Hungary
| | - Beáta B Tóth
- Institute of One Health, Faculty of Health Science, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Barbara Kutasy
- Research Institute for Medicinal Plants and Herbs Ltd., 2011 Budakalász, Hungary
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Festetics Str 7, 8360 Keszthely, Hungary
| | - József Péter Pallos
- Research Institute for Medicinal Plants and Herbs Ltd., 2011 Budakalász, Hungary
| | | | - Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Gábor Kardos
- Institute of One Health, Faculty of Health Science, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Géza Hegedűs
- Department of Information Technology and Its Applications, Faculty of Information Technology, University of Pannonia, Gasparich Márk Str. 18/A, 8900 Zalaegerszeg, Hungary
| |
Collapse
|
2
|
Li J, Cai B, Chang S, Yang Y, Zi S, Liu T. Mechanisms associated with the synergistic induction of resistance to tobacco black shank in tobacco by arbuscular mycorrhizal fungi and β-aminobutyric acid. FRONTIERS IN PLANT SCIENCE 2023; 14:1195932. [PMID: 37434599 PMCID: PMC10330952 DOI: 10.3389/fpls.2023.1195932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023]
Abstract
Tobacco black shank (TBS), caused by Phytophthora nicotianae, is one of the most harmful diseases of tobacco. There are many studies have examined the mechanism underlying the induction of disease resistance by arbuscular mycorrhizal fungi (AMF) and β-aminobutyric acid (BABA) alone, but the synergistic effects of AMF and BABA on disease resistance have not yet been studied. This study examined the synergistic effects of BABA application and AMF inoculation on the immune response to TBS in tobacco. The results showed that spraying BABA on leaves could increase the colonization rate of AMF, the disease index of tobacco infected by P.nicotianae treated with AMF and BABA was lower than that of P.nicotianae alone. The control effect of AMF and BABA on tobacco infected by P.nicotianae was higher than that of AMF or BABA and P.nicotianae alone. Joint application of AMF and BABA significantly increased the content of N, P, and K in the leaves and roots, in the joint AMF and BABA treatment than in the sole P. nicotianae treatment. The dry weight of plants treated with AMF and BABA was 22.3% higher than that treated with P.nicotianae alone. In comparison to P. nicotianae alone, the combination treatment with AMF and BABA had increased Pn, Gs, Tr, and root activity, while P. nicotianae alone had reduced Ci, H2O2 content, and MDA levels. SOD, POD, CAT, APX, and Ph activity and expression levels were increased under the combined treatment of AMF and BABA than in P.nicotianae alone. In comparison to the treatment of P.nicotianae alone, the combined use of AMF and BABA increased the accumulation of GSH, proline, total phenols, and flavonoids. Therefore, the joint application of AMF and BABA can enhance the TBS resistance of tobacco plants to a greater degree than the application of either AMF or BABA alone. In summary, the application of defense-related amino acids, combined with inoculation with AMF, significantly promoted immune responses in tobacco. Our findings provide new insights that will aid the development and use of green disease control agents.
Collapse
Affiliation(s)
- Jia Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Kunming, China
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming, China
| | - Bo Cai
- Technical Center of Yunnan Zhongyan Industry Co., Ltd, Kunming, China
| | - Sheng Chang
- Technical Center of Yunnan Zhongyan Industry Co., Ltd, Kunming, China
| | - Ying Yang
- Technical Center of Yunnan Zhongyan Industry Co., Ltd, Kunming, China
| | - Shuhui Zi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Kunming, China
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming, China
| | - Tao Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Kunming, China
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Singh RR, Ameye M, Haesaert G, Deveux M, Spanoghe P, Audenaert K, Rabasse JM, Kyndt T. β-Aminobutyric acid induced phytotoxicity and effectiveness against nematode is stereomer-specific and dose-dependent in tomato. PHYSIOLOGIA PLANTARUM 2023; 175:e13862. [PMID: 36690578 DOI: 10.1111/ppl.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/10/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
β-Aminobutyric acid (BABA) induces resistance to a/biotic stress but is associated with phytotoxicity in some plant species. There are two enantiomers of BABA, the R and S enantiomers. We evaluated the phytotoxicity caused by the RS BABA (racemic mixture of R and S BABA), evaluating the dose-response effect and different modes of application on tomato. Results show that RS BABA-induced phytotoxicity in tomato is dose-dependent and stronger with foliar applications than with soil drench. We further evaluated the phytotoxicity of the two enantiomers separately and observed that BABA-induced phytotoxicity is stereomer-specific. In comparison with less phytotoxic effects induced by S BABA, R BABA induces dose-dependent and systemic phytotoxic symptoms. To investigate the possible physiological causes of this phytotoxicity, we measured levels of oxidative stress and anthocyanins and validated the findings with gene expression analyses. Our results show that high doses of RS and R BABA induce hydrogen peroxide, lipid peroxidation, and anthocyanin accumulation in tomato leaves, while this response is milder and more transient upon S BABA application. Next, we evaluated BABA induced resistance against root-knot nematode Meloidogyne incognita in tomato. BABA-induced resistance was found to be stereomer-specific and dependent on dose and mode of application. R or RS BABA multiple soil drench application at low doses induces resistance to nematodes with less phytotoxic effects. Taken together, our data provide useful knowledge on how BABA can be applied in crop production by enhancing stress tolerance and limiting phytotoxicity.
Collapse
Affiliation(s)
| | - Maarten Ameye
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Geert Haesaert
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Melissa Deveux
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Pieter Spanoghe
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | | | - Tina Kyndt
- Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Quan J, Zheng W, Wu M, Shen Z, Tan J, Li Z, Zhu B, Hong SB, Zhao Y, Zhu Z, Zang Y. Glycine Betaine and β-Aminobutyric Acid Mitigate the Detrimental Effects of Heat Stress on Chinese Cabbage ( Brassica rapa L. ssp. pekinensis) Seedlings with Improved Photosynthetic Performance and Antioxidant System. PLANTS (BASEL, SWITZERLAND) 2022; 11:1213. [PMID: 35567214 PMCID: PMC9105105 DOI: 10.3390/plants11091213] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 05/31/2023]
Abstract
Heat stress is one of the major abiotic factors that limit the growth, development, and productivity of plants. Both glycine betaine (GB) and β-aminobutyric acid (BABA) have received considerable attention due to their roles in stimulating tolerance to diverse abiotic stresses. In order to understand how GB and BABA biostimulants alleviate heat stress in a cool-weather Chinese cabbage (Brassica rapa L. ssp. pekinensis) plant, we investigated the GB- and BABA-primed heat-stressed plants in terms of their morpho-physiological and biochemical traits. Priming with GB (15 mM) and BABA (0.2 mM) was conducted at the third leaf stage by applying foliar sprays daily for 5 days before 5 days of heat stress (45 °C in 16 h light/35 °C in 8 h dark) on Chinese cabbage seedlings. The results indicate that GB and BABA significantly increased chlorophyll content, and the parameters of both gas exchange and chlorophyll fluorescence, of Chinese cabbage under heat stress. Compared with the unprimed heat-stressed control, the dry weights of GB- and BABA-primed plants were significantly increased by 36.36% and 45.45%, respectively. GB and BABA priming also greatly mitigated membrane damage, as indicated by the reduction in malondialdehyde (MDA) and electrolyte leakage through the elevation of proline content, and increased activity levels of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). Taken together, GB and BABA have great potential to enhance the thermotolerance of Chinese cabbage through higher photosynthesis performance, osmoprotection, and antioxidant enzyme activity.
Collapse
Affiliation(s)
- Jin Quan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (J.Q.); (W.Z.); (M.W.); (Z.S.); (J.T.); (Z.L.); (B.Z.); (Z.Z.)
| | - Weiwei Zheng
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (J.Q.); (W.Z.); (M.W.); (Z.S.); (J.T.); (Z.L.); (B.Z.); (Z.Z.)
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (J.Q.); (W.Z.); (M.W.); (Z.S.); (J.T.); (Z.L.); (B.Z.); (Z.Z.)
| | - Zhuojun Shen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (J.Q.); (W.Z.); (M.W.); (Z.S.); (J.T.); (Z.L.); (B.Z.); (Z.Z.)
| | - Jingru Tan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (J.Q.); (W.Z.); (M.W.); (Z.S.); (J.T.); (Z.L.); (B.Z.); (Z.Z.)
| | - Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (J.Q.); (W.Z.); (M.W.); (Z.S.); (J.T.); (Z.L.); (B.Z.); (Z.Z.)
| | - Biao Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (J.Q.); (W.Z.); (M.W.); (Z.S.); (J.T.); (Z.L.); (B.Z.); (Z.Z.)
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX 77058-1098, USA;
| | - Yanting Zhao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Zhujun Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (J.Q.); (W.Z.); (M.W.); (Z.S.); (J.T.); (Z.L.); (B.Z.); (Z.Z.)
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (J.Q.); (W.Z.); (M.W.); (Z.S.); (J.T.); (Z.L.); (B.Z.); (Z.Z.)
| |
Collapse
|
5
|
Mdlalose SP, Raletsena M, Ntushelo K, Bodede O, Modise DM. 1H-NMR-Based Metabolomic Study of Potato Cultivars, Markies and Fianna, Exposed to Different Water Regimes. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.801504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study investigated the effects of varying soil moisture conditions (through either flooding, drought, or provision of a moderate water supply) on the metabolomic profile of two potato cultivars, namely, Markies and Fianna. Representative tubers of the treated plants were collected 91 days after planting. The samples were freeze-dried, and ground to a fine powder in liquid nitrogen. The fine powder of the tuber samples was analyzed by nuclear magnetic resonance spectroscopy (NMR) to identify their metabolomic profiles. The NMR data was analyzed using principal component analysis and orthogonal partial least square-discriminant analysis to identify any variations between the treatments. In both models, plants exposed to drought clearly separated from the plants that received either excess or moderate water (control). The potato tubers that experienced drought and flood treatments had the highest quantities of aspartic acid, asparagine, and isoleucine. Furthermore, the potatoes exposed to either drought or flood had higher levels of valine and leucine (which are essential for plant defense and resistance against plant pathogens). Potato plants can respond metabolically to varying soil moisture stress.
Collapse
|
6
|
Yin X, Liu S, Qin Y, Xing R, Li K, Yu C, Chen X, Li P. Metabonomics analysis of drought resistance of wheat seedlings induced by β-aminobutyric acid-modified chitooligosaccharide derivative. Carbohydr Polym 2021; 272:118437. [PMID: 34420706 DOI: 10.1016/j.carbpol.2021.118437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/30/2021] [Accepted: 07/10/2021] [Indexed: 01/17/2023]
Abstract
Chitooligosaccharide grafted with β-aminobutyric acid based on the idea of bioactive molecular splicing was prepared, and the differences in drought resistance activity before and after grafting were compared. The mechanism was investigated by comparing the differences of the derivative with the Control and Drought about metabolomes. The results showed that the expected derivative was successfully synthesized, named COS-BABA, and had better drought resistance-inducing activity than the raw materials. We suggest that COS-BABA induced drought resistance through second messenger-induced activation of signaling pathways related to traumatic acid and indol-3-lactic acid, which enhanced nucleic acid metabolism to accumulate nucleotides and decreased some amino acids to facilitate protein synthesis. These proteins are regulated to strengthen photosynthesis, resulting in the promotion of carbohydrate metabolism. The accumulation of unsaturated fatty acids stabilized the cell membrane structure and prevented nonstomatal water dissipation. This study provides ideas for the development of more effective drought resistance inducers.
Collapse
Affiliation(s)
- Xiujing Yin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Chunlin Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Xiaolin Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
7
|
Yassin M, Ton J, Rolfe SA, Valentine TA, Cromey M, Holden N, Newton AC. The rise, fall and resurrection of chemical-induced resistance agents. PEST MANAGEMENT SCIENCE 2021; 77:3900-3909. [PMID: 33729685 DOI: 10.1002/ps.6370] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 05/23/2023]
Abstract
Since the discovery that the plant immune system could be augmented for improved deployment against biotic stressors through the exogenous application of chemicals that lead to induced resistance (IR), many such IR-eliciting agents have been identified. Initially it was hoped that these chemical IR agents would be a benign alternative to traditional chemical biocides. However, owing to low efficacy and/or a realization that their benefits sometimes come at the cost of growth and yield penalties, chemical IR agents fell out of favour and were seldom used as crop protection products. Despite the lack of interest in agricultural use, researchers have continued to explore the efficacy and mechanisms of chemical IR. Moreover, as we move away from the approach of 'zero tolerance' toward plant pests and pathogens toward integrated pest management, chemical IR agents could have a place in the plant protection product list. In this review, we chart the rise and fall of chemical IR agents, and then explore a variety of strategies used to improve their efficacy and remediate their negative adverse effects. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Mustafa Yassin
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
- James Hutton Institute, Dundee, UK
| | - Jurriaan Ton
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
| | - Stephen A Rolfe
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
| | | | - Matthew Cromey
- Department of Plant Health, Royal Horticultural Society, Woking, UK
| | - Nicola Holden
- Scotland's Rural Colleges, Craibstone Estate, Aberdeen, UK
| | | |
Collapse
|
8
|
Yadav B, Jogawat A, Rahman MS, Narayan OP. Secondary metabolites in the drought stress tolerance of crop plants: A review. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Jogawat A, Yadav B, Lakra N, Singh AK, Narayan OP. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. PHYSIOLOGIA PLANTARUM 2021; 172:1106-1132. [PMID: 33421146 DOI: 10.1111/ppl.13328] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/08/2020] [Accepted: 01/01/2021] [Indexed: 05/21/2023]
Abstract
Drought stress negatively affects crop performance and weakens global food security. It triggers the activation of downstream pathways, mainly through phytohormones homeostasis and their signaling networks, which further initiate the biosynthesis of secondary metabolites (SMs). Roots sense drought stress, the signal travels to the above-ground tissues to induce systemic phytohormones signaling. The systemic signals further trigger the biosynthesis of SMs and stomatal closure to prevent water loss. SMs primarily scavenge reactive oxygen species (ROS) to protect plants from lipid peroxidation and also perform additional defense-related functions. Moreover, drought-induced volatile SMs can alert the plant tissues to perform drought stress mitigating functions in plants. Other phytohormone-induced stress responses include cell wall and cuticle thickening, root and leaf morphology alteration, and anatomical changes of roots, stems, and leaves, which in turn minimize the oxidative stress, water loss, and other adverse effects of drought. Exogenous applications of phytohormones and genetic engineering of phytohormones signaling and biosynthesis pathways mitigate the drought stress effects. Direct modulation of the SMs biosynthetic pathway genes or indirect via phytohormones' regulation provides drought tolerance. Thus, phytohormones and SMs play key roles in plant development under the drought stress environment in crop plants.
Collapse
Affiliation(s)
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Amit Kumar Singh
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Om Prakash Narayan
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
10
|
Martínez-Aguilar K, Hernández-Chávez JL, Alvarez-Venegas R. Priming of seeds with INA and its transgenerational effect in common bean (Phaseolus vulgaris L.) plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110834. [PMID: 33691968 DOI: 10.1016/j.plantsci.2021.110834] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/04/2021] [Accepted: 01/30/2021] [Indexed: 05/14/2023]
Abstract
Priming is a mechanism of defense that prepares the plant's immune system for a faster and/or stronger activation of cellular defenses against future exposure to different types of stress. This enhanced resistance can be achieved by using inorganic and organic compounds which imitate the biological induction of systemic acquired resistance. INA (2,6 dichloro-isonicotinic acid) was the first synthetic compound created as a resistance inducer for plant-pathogen interactions. However, the use of INA to activate primed resistance in common bean, at the seed stage and during germination, remains experimentally unexplored. Here, we test the hypothesis that INA-seed treatment would induce resistance in common bean plants to Pseudomonas syringae pv. phaseolicola, and that the increased resistance is not accompanied by a tradeoff between plant defense and growth. Additionally, it was hypothesized that treating seeds with INA has a transgenerational priming effect. We provide evidence that seed treatment activates a primed state for disease resistance, in which low nucleosome enrichment and reduced histone activation marks during the priming phase, are associated with a defense-resistant phenotype, characterized by symptom appearance, pathogen accumulation, yield, and changes in gene expression. In addition, the priming status for induced resistance can be inherited to its offspring.
Collapse
|
11
|
Abid G, Ouertani RN, Jebara SH, Boubakri H, Muhovski Y, Ghouili E, Abdelkarim S, Chaieb O, Hidri Y, Kadri S, El Ayed M, Elkahoui S, Barhoumi F, Jebara M. Alleviation of drought stress in faba bean ( Vicia faba L.) by exogenous application of β-aminobutyric acid (BABA). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1173-1186. [PMID: 32549681 PMCID: PMC7266865 DOI: 10.1007/s12298-020-00796-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/07/2020] [Accepted: 03/04/2020] [Indexed: 05/25/2023]
Abstract
Drought stress is one of the most prevalent environmental factors limiting faba bean (Vicia faba L.) crop productivity. β-aminobutyric acid (BABA) is a non-protein amino acid that may be involved in the regulation of plant adaptation to drought stress. The effect of exogenous BABA application on physiological, biochemical and molecular responses of faba bean plants grown under 18% PEG-induced drought stress were investigated. The results showed that the application of 1 mM of BABA improved the drought tolerance of faba bean. The application of BABA increased the leaf relative water content, leaf photosynthesis rate (A), transpiration rate (E), and stomatal conductance (gs), thereby decreased the water use efficiency. Furthermore, exogenous application of BABA decreased production of hydrogen peroxide (H2O2), malondialdehyde and electrolyte leakage levels, leading to less cell membrane damage due to oxidative stress. Regarding osmoprotectants, BABA application enhanced the accumulation of proline, and soluble sugars, which could improve the osmotic adjustment ability of faba bean under drought challenge. Interestingly, mended antioxidant enzyme activities like catalase, guaiacol peroxidase, ascorbate peroxidase and superoxide dismutase and their transcript levels may lead to counteract the damaging effects of oxidative stress and reducing the accumulation of harmful substances in BABA-treated faba bean plants. In addition, exogenous BABA significantly induced the accumulation of drought tolerance-related genes like VfMYB, VfDHN, VfLEA, VfERF, VfNCED, VfWRKY, VfHSP and VfNAC in leaves and roots, suggesting that BABA might act as a signal molecule to regulate the expression of drought tolerance-related genes.
Collapse
Affiliation(s)
- Ghassen Abid
- Laboratory of Legumes, Biotechnology Center of Borj Cedria, University of Tunis El Manar, 901, 2050 Hammam-Lif, Tunisia
| | - Rim Nefissi Ouertani
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj Cedria, University of Tunis El Manar, 901, 2050 Hammam-Lif, Tunisia
| | - Salwa Harzalli Jebara
- Laboratory of Legumes, Biotechnology Center of Borj Cedria, University of Tunis El Manar, 901, 2050 Hammam-Lif, Tunisia
| | - Hatem Boubakri
- Laboratory of Legumes, Biotechnology Center of Borj Cedria, University of Tunis El Manar, 901, 2050 Hammam-Lif, Tunisia
| | - Yordan Muhovski
- Department of Life Sciences, Walloon Agricultural Research Centre, Chaussée de Charleroi, 234, 5030 Gembloux, Belgium
| | - Emna Ghouili
- Laboratory of Legumes, Biotechnology Center of Borj Cedria, University of Tunis El Manar, 901, 2050 Hammam-Lif, Tunisia
| | - Souhir Abdelkarim
- Laboratory of Legumes, Biotechnology Center of Borj Cedria, University of Tunis El Manar, 901, 2050 Hammam-Lif, Tunisia
| | - Oumaima Chaieb
- Laboratory of Legumes, Biotechnology Center of Borj Cedria, University of Tunis El Manar, 901, 2050 Hammam-Lif, Tunisia
| | - Yassine Hidri
- Laboratory of Biotechnology and Bio-Geo Resources Valorization, Olive Tree Institute, University of Sfax, 1087, 3000 Sfax, Tunisia
| | - Safwen Kadri
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, University of Tunis El Manar, 901, 2050 Hammam-Lif, Tunisia
| | - Mohamed El Ayed
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, University of Tunis El Manar, 901, 2050 Hammam-Lif, Tunisia
| | - Salem Elkahoui
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, University of Tunis El Manar, 901, 2050 Hammam-Lif, Tunisia
- Department of Biology, College of Science, University of Ha’il, P. O. Box 2440, Hail, 81451 Kingdom of Saudi Arabia
| | - Fethi Barhoumi
- Laboratory of Legumes, Biotechnology Center of Borj Cedria, University of Tunis El Manar, 901, 2050 Hammam-Lif, Tunisia
| | - Moez Jebara
- Laboratory of Legumes, Biotechnology Center of Borj Cedria, University of Tunis El Manar, 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
12
|
Kolbert Z, Feigl G, Freschi L, Poór P. Gasotransmitters in Action: Nitric Oxide-Ethylene Crosstalk during Plant Growth and Abiotic Stress Responses. Antioxidants (Basel) 2019; 8:E167. [PMID: 31181724 PMCID: PMC6616412 DOI: 10.3390/antiox8060167] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 01/29/2023] Open
Abstract
Since their first description as atmospheric gases, it turned out that both nitric oxide (NO) and ethylene (ET) are multifunctional plant signals. ET and polyamines (PAs) use the same precursor for their synthesis, and NO can be produced from PA oxidation. Therefore, an indirect metabolic link between NO and ET synthesis can be considered. NO signal is perceived primarily through S-nitrosation without the involvement of a specific receptor, while ET signal is sensed by a well-characterized receptor complex. Both NO and ET are synthetized by plants at various developmental stages (e.g., seeds, fruits) and as a response to numerous environmental factors (e.g., heat, heavy metals) and they mutually regulate each other's levels. Most of the growth and developmental processes (e.g., fruit ripening, de-etiolation) are regulated by NO-ET antagonism, while in abiotic stress responses, both antagonistic (e.g., dark-induced stomatal opening, cadmium-induced cell death) and synergistic (e.g., UV-B-induced stomatal closure, iron deficiency-induced expression of iron acquisition genes) NO-ET interplays have been revealed. Despite the numerous pieces of experimental evidence revealing NO-ET relationships in plants, the picture is far from complete. Understanding the mechanisms of NO-ET interactions may contribute to the increment of yield and intensification of stress tolerance of crop plants in changing environments.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary.
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary.
| | - Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao Paulo, Sao Paulo 05422-970, Brazil.
| | - Péter Poór
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary.
| |
Collapse
|
13
|
Heuchera Creme Brulee and Mahogany Medicinal Value under Water Stress and Oligosaccharide (COS) Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4242359. [PMID: 30906414 PMCID: PMC6398046 DOI: 10.1155/2019/4242359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/28/2019] [Indexed: 12/29/2022]
Abstract
Food borne pathogens cause serious human illnesses and diseases and their control using natural bioactive compounds becomes essential for the progress of agricultural and food industries. Developing novel tools to enhance the medicinal values of traditional horticultural medicinal crops is one of the promising methods for achieving food borne pathogens control. In this study, oligosaccharide water solutions were applied to Heuchera Creme Brulee and Mahogany subjected to a normal irrigation interval (2 days) or to prolonged irrigation intervals (6 days) for 6 weeks. Plant morphological, physiological, and metabolic markers associated with the bioactivity of leaf extracts against selected microbes. Oligosaccharide-treated plants showed significant increases in all morphological parameters during normal and prolonged irrigation intervals as compared to those of the controls. Morphological improvement associated with a significant increase in chlorophyll, carbohydrates, proline, K, Ca, phenols, and free and total ascorbate and antioxidants. Superoxide dismutase, catalase, and ascorbate peroxidase activities were higher, while H2O2 accumulated to a lower extent in oligosaccharide-treated plants. These morphological and metabolic changes associated with increased antibacterial and antifungal activities of leaf extracts and their activities were comparable to antibiotics and antifungal agents (minimum inhibitory concentrations values were 0.5 -0.20 mg−1mL for bacteria and 0.08 -0.20 mg−1mL for fungi in Mahogany). The application of oligosaccharide and/or water stress might be of great value for producing natural bioactive compounds for food borne pathogens control.
Collapse
|
14
|
Baccelli I, Glauser G, Mauch-Mani B. The accumulation of β-aminobutyric acid is controlled by the plant's immune system. PLANTA 2017; 246:791-796. [PMID: 28762076 DOI: 10.1007/s00425-017-2751-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/22/2017] [Indexed: 05/18/2023]
Abstract
Endogenous levels of β-aminobutyric acid (BABA) increase after the molecular recognition of pathogen presence. BABA is accumulated differently during resistance or susceptibility to disease. The priming molecule β-aminobutyric acid has been recently shown to be a natural product of plants, and this has provided significance to the previous discovery of a perception mechanism in Arabidopsis. BABA levels were found to increase after abiotic stress or infection with virulent pathogens, but the role of endogenous BABA in defence has remained to be established. To investigate the biological significance of endogenous BABA variations during plant-pathogen interactions, we investigated how infections with virulent, avirulent (AvrRpt2), and non-pathogenic (hrpA) strains of Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), as well as treatment with defence elicitors (Flg22 and AtPep2), affect the accumulation of BABA in Arabidopsis plants. We found that BABA levels increased more rapidly during resistance than susceptibility to Pst DC3000. In addition, BABA was accumulated during PAMP-triggered immunity (PTI) after infection with the non-pathogenic Pst DC3000 hrpA mutant, or treatment with elicitors. Importantly, treatment with Flg22 induced BABA rise in Columbia-0 plants but not in Wassilewskija-0 plants, which naturally possess a non-functional flagellin receptor. These results indicate that BABA levels are controlled by the plant's immune system, thus advancing the understanding of the biological role of plant produced BABA.
Collapse
Affiliation(s)
- Ivan Baccelli
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Brigitte Mauch-Mani
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland.
| |
Collapse
|
15
|
Liu KH, Ding XW, Narsing Rao MP, Zhang B, Zhang YG, Liu FH, Liu BB, Xiao M, Li WJ. Morphological and Transcriptomic Analysis Reveals the Osmoadaptive Response of Endophytic Fungus Aspergillus montevidensis ZYD4 to High Salt Stress. Front Microbiol 2017; 8:1789. [PMID: 28983284 PMCID: PMC5613514 DOI: 10.3389/fmicb.2017.01789] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/05/2017] [Indexed: 11/13/2022] Open
Abstract
Halophilic fungi have evolved unique osmoadaptive strategies, enabling them to thrive in hypersaline habitats. Here, we conduct morphological and transcriptomic response of endophytic fungus (Aspergillus montevidensis ZYD4) in both the presence and absence of salt stress. Under salt stress, the colony morphology of the A. montevidensis ZYD4 changed drastically and exhibited decreased colony pigmentation. Extensive conidiophores development was observed under salt stress; conidiophores rarely developed in the absence of salt stress. Under salt stress, yellow cleistothecium formation was inhibited, while glycerol and compatible sugars continued to accumulate. Among differentially expressed unigenes (DEGs), 733 of them were up-regulated while 1,619 unigenes were down-regulated. We discovered that genes involved in the accumulation of glycerol, the storage of compatible sugars, organic acids, pigment production, and asexual sporulation were differentially regulated under salt stress. These results provide further understanding of the molecular basis of osmoadaptive mechanisms of halophilic endophytic fungi.
Collapse
Affiliation(s)
- Kai-Hui Liu
- School of Biological Science and Engineering, Shaanxi University of TechnologyHanzhong, China
| | - Xiao-Wei Ding
- School of Biological Science and Engineering, Shaanxi University of TechnologyHanzhong, China
| | - Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen UniversityGuangzhou, China
| | - Bo Zhang
- School of Biological Science and Engineering, Shaanxi University of TechnologyHanzhong, China
| | - Yong-Gui Zhang
- School of Biological Science and Engineering, Shaanxi University of TechnologyHanzhong, China
| | - Fei-Hu Liu
- School of Life Sciences, Yunnan UniversityKunming, China
| | - Bing-Bing Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen UniversityGuangzhou, China
| | - Min Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen UniversityGuangzhou, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen UniversityGuangzhou, China.,Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesÜrűmqi, China
| |
Collapse
|
16
|
Shaw AK, Bhardwaj PK, Ghosh S, Azahar I, Adhikari S, Adhikari A, Sherpa AR, Saha SK, Hossain Z. Profiling of BABA-induced differentially expressed genes of Zea mays using suppression subtractive hybridization. RSC Adv 2017. [DOI: 10.1039/c7ra06220f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This study aims to identify differentially expressed transcripts in BABA-primed maize leaves using suppression subtractive hybridization (SSH) strategy. Findings shed new light on the BABA potentiated defense mechanisms in plants.
Collapse
Affiliation(s)
- Arun K. Shaw
- Department of Botany
- West Bengal State University
- Kolkata – 700126
- India
| | - Pardeep K. Bhardwaj
- Plant Bioresources Division
- Institute of Bioresources and Sustainable Development
- Sikkim Centre
- India
| | - Supriya Ghosh
- Department of Botany
- University of Kalyani
- Kalyani 741235
- India
| | - Ikbal Azahar
- Department of Botany
- University of Kalyani
- Kalyani 741235
- India
| | | | - Ayan Adhikari
- Department of Botany
- University of Kalyani
- Kalyani 741235
- India
| | - Ang R. Sherpa
- Department of Botany
- West Bengal State University
- Kolkata – 700126
- India
| | - Samir K. Saha
- Department of Zoology
- West Bengal State University
- Kolkata – 700126
- India
| | - Zahed Hossain
- Department of Botany
- University of Kalyani
- Kalyani 741235
- India
| |
Collapse
|
17
|
Alexandersson E, Mulugeta T, Lankinen Å, Liljeroth E, Andreasson E. Plant Resistance Inducers against Pathogens in Solanaceae Species-From Molecular Mechanisms to Field Application. Int J Mol Sci 2016; 17:E1673. [PMID: 27706100 PMCID: PMC5085706 DOI: 10.3390/ijms17101673] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 12/17/2022] Open
Abstract
This review provides a current summary of plant resistance inducers (PRIs) that have been successfully used in the Solanaceae plant family to protect against pathogens by activating the plant's own defence. Solanaceous species include many important crops such as potato and tomato. We also present findings regarding the molecular processes after application of PRIs, even if the number of such studies still remains limited in this plant family. In general, there is a lack of patterns regarding the efficiency of induced resistance (IR) both between and within solanaceous species. In many cases, a hypersensitivity-like reaction needs to form in order for the PRI to be efficient. "-Omics" studies have already given insight in the complexity of responses, and can explain some of the differences seen in efficacy of PRIs between and within species as well as towards different pathogens. Finally, examples of field applications of PRIs for solanaceous crops are presented and discussed. We predict that PRIs will play a role in future plant protection strategies in Solanaceae crops if they are combined with other means of disease control in different spatial and temporal combinations.
Collapse
Affiliation(s)
- Erik Alexandersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 23053 Alnarp, Sweden.
| | - Tewodros Mulugeta
- Department of Zoological Science, Addis Ababa University, 1176 Addis Ababa, Ethiopia.
| | - Åsa Lankinen
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 23053 Alnarp, Sweden.
| | - Erland Liljeroth
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 23053 Alnarp, Sweden.
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 23053 Alnarp, Sweden.
| |
Collapse
|
18
|
Baccelli I, Mauch-Mani B. Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones. PLANT MOLECULAR BIOLOGY 2016; 91:703-11. [PMID: 26584561 DOI: 10.1007/s11103-015-0406-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/08/2015] [Indexed: 05/26/2023]
Abstract
Plants are exposed to recurring biotic and abiotic stresses that can, in extreme situations, lead to substantial yield losses. With the changing environment, the stress pressure is likely to increase and sustainable measures to alleviate the effect on our crops are sought. Priming plants for better stress resistance is one of the sustainable possibilities to reach this goal. Here, we report on the effects of beta-aminobutyric acid, a priming agent with an exceptionally wide range of action and describe its way of preparing plants to defend themselves against various attacks, among others through the modulation of their hormonal defense signaling, and highlight the special role of abscisic acid in this process.
Collapse
Affiliation(s)
- Ivan Baccelli
- Faculty of Sciences, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2000, Neuchâtel, Switzerland
| | - Brigitte Mauch-Mani
- Faculty of Sciences, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
19
|
Shaw AK, Bhardwaj PK, Ghosh S, Roy S, Saha S, Sherpa AR, Saha SK, Hossain Z. β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2437-53. [PMID: 26416125 DOI: 10.1007/s11356-015-5445-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/16/2015] [Indexed: 05/23/2023]
Abstract
The present study highlights the role of β-aminobutyric acid (BABA) in alleviating drought stress effects in maize (Zea mays L.). Chemical priming was imposed by pretreating 1-week-old plants with 600 μM BABA prior to applying drought stress. Specific activities of key antioxidant enzymes and metabolites (ascorbate and glutathione) levels of ascorbate-glutathione cycle were studied to unravel the priming-induced modulation of plant defense system. Furthermore, changes in endogenous ABA and JA concentrations as well as mRNA expressions of key genes involved in their respective biosynthesis pathways were monitored in BABA-primed (BABA+) and non-primed (BABA-) leaves of drought-challenged plants to better understand the mechanistic insights into the BABA-induced hormonal regulation of plant response to water-deficit stress. Accelerated stomatal closure, high relative water content, and less membrane damage were observed in BABA-primed leaves under water-deficit condition. Elevated APX and SOD activity in non-primed leaves found to be insufficient to scavenge all H2O2 and O2 (·-) resulting in oxidative burst as evident after histochemical staining with NBT and DAB. A higher proline accumulation in non-primed leaves also does not give much protection against drought stress. Increased GR activity supported with the enhanced mRNA and protein expressions might help the BABA-primed plants to maintain a high GSH pool essential for sustaining balanced redox status to counter drought-induced oxidative stress damages. Hormonal analysis suggests that in maize, BABA-potentiated drought tolerance is primarily mediated through JA-dependent pathway by the activation of antioxidant defense systems while ABA biosynthesis pathway also plays an important role in fine-tuning of drought stress response.
Collapse
Affiliation(s)
- Arun K Shaw
- Plant Stress Biology Laboratory, Department of Botany, West Bengal State University, Kolkata, 700126, West Bengal, India
| | - Pardeep K Bhardwaj
- Plant Bioresources Division, Regional Centre of Institute of Bioresources and Sustainable Development, Gangtok, 737102, Sikkim, India
| | - Supriya Ghosh
- Plant Stress Biology Laboratory, Department of Botany, West Bengal State University, Kolkata, 700126, West Bengal, India
| | - Sankhajit Roy
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, West Bengal, India
| | - Suman Saha
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, West Bengal, India
| | - Ang R Sherpa
- Plant Stress Biology Laboratory, Department of Botany, West Bengal State University, Kolkata, 700126, West Bengal, India
| | - Samir K Saha
- Department of Zoology, West Bengal State University, Kolkata, 700126, West Bengal, India
| | - Zahed Hossain
- Department of Botany, University of Kalyani, Nadia, 741235, West Bengal, India.
| |
Collapse
|