1
|
Ramphal Y, Tegally H, San JE, Reichmuth ML, Hofstra M, Wilkinson E, Baxter C, de Oliveira T, Moir M. Understanding the Transmission Dynamics of the Chikungunya Virus in Africa. Pathogens 2024; 13:605. [PMID: 39057831 PMCID: PMC11279734 DOI: 10.3390/pathogens13070605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The Chikungunya virus (CHIKV) poses a significant global public health concern, especially in Africa. Since its first isolation in Tanzania in 1953, CHIKV has caused recurrent outbreaks, challenging healthcare systems in low-resource settings. Recent outbreaks in Africa highlight the dynamic nature of CHIKV transmission and the challenges of underreporting and underdiagnosis. Here, we review the literature and analyse publicly available cases, outbreaks, and genomic data, providing insights into the epidemiology, genetic diversity, and transmission dynamics of CHIKV in Africa. Our analyses reveal the circulation of geographically distinct CHIKV genotypes, with certain regions experiencing a disproportionate burden of disease. Phylogenetic analysis of sporadic outbreaks in West Africa suggests repeated emergence of the virus through enzootic spillover, which is markedly different from inferred transmission dynamics in East Africa, where the virus is often introduced from Asian outbreaks, including the recent reintroduction of the Indian Ocean lineage from the Indian subcontinent to East Africa. Furthermore, there is limited evidence of viral movement between these two regions. Understanding the history and transmission dynamics of outbreaks is crucial for effective public health planning. Despite advances in surveillance and research, diagnostic and surveillance challenges persist. This review and secondary analysis highlight the importance of ongoing surveillance, research, and collaboration to mitigate the burden of CHIKV in Africa and improve public health outcomes.
Collapse
Affiliation(s)
- Yajna Ramphal
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Houriiyah Tegally
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | | | | | - Marije Hofstra
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Eduan Wilkinson
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Cheryl Baxter
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | | | - Tulio de Oliveira
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal, Durban 4001, South Africa
| | - Monika Moir
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| |
Collapse
|
2
|
Poungou N, Sevidzem SL, Koumba AA, Koumba CRZ, Mbehang P, Onanga R, Zahouli JZB, Maganga GD, Djogbénou LS, Borrmann S, Adegnika AA, Becker SC, Mavoungou JF, Nguéma RM. Mosquito-Borne Arboviruses Occurrence and Distribution in the Last Three Decades in Central Africa: A Systematic Literature Review. Microorganisms 2023; 12:4. [PMID: 38276174 PMCID: PMC10819313 DOI: 10.3390/microorganisms12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 01/27/2024] Open
Abstract
Arboviruses represent a real public health problem globally and in the Central African subregion in particular, which represents a high-risk zone for the emergence and re-emergence of arbovirus outbreaks. Furthermore, an updated review on the current arbovirus burden and associated mosquito vectors is lacking for this region. To contribute to filling this knowledge gap, the current study was designed with the following objectives: (i) to systematically review data on the occurrence and distribution of arboviruses and mosquito fauna; and (ii) to identify potential spillover mosquito species in the Central African region in the last 30 years. A web search enabled the documentation of 2454 articles from different online databases. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) and the quality of reporting of meta-analyses (QUORUM) steps for a systematic review enabled the selection of 164 articles that fulfilled our selection criteria. Of the six arboviruses (dengue virus (DENV), chikungunya virus (CHIKV), yellow fever virus (YFV), Zika virus (ZIKV), Rift Valley fever virus (RVFV), and West Nile virus (WNV)) of public health concern studied, the most frequently reported were chikungunya and dengue. The entomological records showed >248 species of mosquitoes regrouped under 15 genera, with Anopheles (n = 100 species), Culex (n = 56 species), and Aedes (n = 52 species) having high species diversity. Three genera were rarely represented, with only one species included, namely, Orthopodomyia, Lutzia, and Verrallina, but individuals of the genera Toxorhinchites and Finlayas were not identified at the species level. We found that two Aedes species (Ae. aegypti and Ae. albopictus) colonised the same microhabitat and were involved in major epidemics of the six medically important arboviruses, and other less-frequently identified mosquito genera consisted of competent species and were associated with outbreaks of medical and zoonotic arboviruses. The present study reveals a high species richness of competent mosquito vectors that could lead to the spillover of medically important arboviruses in the region. Although epidemiological studies were found, they were not regularly documented, and this also applies to vector competence and transmission studies. Future studies will consider unpublished information in dissertations and technical reports from different countries to allow their information to be more consistent. A regional project, entitled "Ecology of Arboviruses" (EcoVir), is underway in three countries (Gabon, Benin, and Cote d'Ivoire) to generate a more comprehensive epidemiological and entomological data on this topic.
Collapse
Affiliation(s)
- Natacha Poungou
- Ecole Doctorale Regionale en Infectiologie Tropical de Franceville (EDR), University of Science and Technique of Masuku (USTM), Franceville P.O. Box 943, Gabon;
- Laboratoire d’Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville P.O. Box 1177, Gabon
| | - Silas Lendzele Sevidzem
- Laboratoire d’Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville P.O. Box 1177, Gabon
| | - Aubin Armel Koumba
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| | - Christophe Roland Zinga Koumba
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| | - Phillipe Mbehang
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| | - Richard Onanga
- Center of Interdisciplinary Medical Analysis of Franceville (CIRMF), Franceville P.O. Box 769, Gabon
| | - Julien Zahouli Bi Zahouli
- Centre d’Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouaké 01 BPV 18, Côte d’Ivoire
| | - Gael Darren Maganga
- Center of Interdisciplinary Medical Analysis of Franceville (CIRMF), Franceville P.O. Box 769, Gabon
| | - Luc Salako Djogbénou
- Université d’Abomey-Calavi, Institut Régional de Santé Publique, Ouidah P.O. Box 384, Benin
| | - Steffen Borrmann
- Institute for Tropical Medicine (ITM), University of Tübingen, 72074 Tübingen, Germany
| | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné P.O. Box 242, Gabon
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Jacques François Mavoungou
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| | - Rodrigue Mintsa Nguéma
- Laboratoire d’Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville P.O. Box 1177, Gabon
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| |
Collapse
|
3
|
Kawonga F, Misinzo G, Pemba DF. Serological and molecular evidence of chikungunya virus infection among febrile outpatients seeking healthcare in Northern Malawi. Infect Ecol Epidemiol 2023; 13:2229573. [PMID: 37387776 PMCID: PMC10304438 DOI: 10.1080/20008686.2023.2229573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/21/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction: Despite global evidence of chikungunya fever (CHIKF) in humans that is caused by chikungunya virus (CHIKV), little is known about the occurrence of CHIKF in Malawi. This study was conducted to determine the seroprevalence of CHIKF and to molecularly confirm the presence of CHIKV ribonucleic acid (RNA) among febrile outpatients seeking health care at Mzuzu Central Hospital in the Northern Region of Malawi. Methods: Enzyme-immunosorbent assay (ELISA) was used to detect the presence or absence of specific antibodies against CHIKV. Reversetranscription polymerase chain reaction (RT-PCR) was conducted on randomly selected anti-CHIKV IgM-positive samples to detect CHIKV RNA. Results: Out of 119 CHIKF suspected samples analyzed, 73 tested positive for anti-CHIKV IgM antibodies, with an overall seroprevalence of 61.3%. Most of the CHIKV infected individuals presented with joint pain, abdominal pain, vomiting and nose bleeding with seroprevalence of 45.2%, 41.1%, 16.4% and 12.3%, respectively. All the randomly selected samples that were positive for CHIKV anti-IgM by ELISAhad detectable CHIKV RNA by RT-PCR. Conclusion: The presence of anti-CHIKV IgM antibodies suggests the presence of recent CHIKV infection. We therefore recommend for the inclusion of CHIKF as the differential diagnosis in febrile ill patients in Mzuzu city, Malawi.
Collapse
Affiliation(s)
- Flywell Kawonga
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
- SACIDS African Centre of Excellence for Infectious Diseases of Humans and Animals, Sokoine University of Agriculture, Morogoro, Tanzania
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Gerald Misinzo
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
- SACIDS African Centre of Excellence for Infectious Diseases of Humans and Animals, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Dylo Foster Pemba
- Vector Borne Disease Laboratory, University of Malawi, Zomba, Malawi
| |
Collapse
|
4
|
Costa LB, Barreto FKDA, Barreto MCA, dos Santos THP, de Andrade MDMO, Farias LABG, de Freitas ARR, Martinez MJ, Cavalcanti LPDG. Epidemiology and Economic Burden of Chikungunya: A Systematic Literature Review. Trop Med Infect Dis 2023; 8:301. [PMID: 37368719 PMCID: PMC10302198 DOI: 10.3390/tropicalmed8060301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Chikungunya (CHIK) is a re-emerging viral infection endemic in tropical and subtropical areas. While the typical clinical presentation is an acute febrile syndrome, long-term articular complications and even death can occur. This review characterizes the global epidemiological and economic burden of chikungunya. The search included studies published from 2007 to 2022 in MEDLINE, Embase, LILACS, and SciELO for a thorough evaluation of the literature. Rayyan software was used for data analysis, and data were summarized descriptively and reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Seventy-six publications were included. Chikungunya is widely distributed in the tropics, including Africa, Asia, South America, and Oceania/the Pacific Islands, and co-circulates with other simultaneous arboviruses such as DENV, ZIKV, and YFV. Chikungunya infection can lead to chronic articular manifestations with a significant impact on the quality of life in the long term. In addition, it generates absenteeism and economic and social losses and can cause fatal infections in vulnerable populations, mainly in high-risk patients with co-morbidities and at the extremes of age. Reported costs associated with CHIKV diseases are substantial and vary by region, age group, and public/private delivery of healthcare services. The chikungunya disease burden includes chronicity, severe infections, increased hospitalization risks, and associated mortality. The disease can impact the economy in several spheres, significantly affecting the health system and national economies. Understanding and measuring the full impact of this re-emerging disease is essential.
Collapse
Affiliation(s)
- Lourrany Borges Costa
- Programa de Pós-Graduação em Saúde Coletiva, Universidade Federal do Ceara (UFC), Ceara 60020-181, Brazil; (L.B.C.)
- Faculdade de Medicina, Universidade de Fortaleza (UNIFOR), Ceara 60811-905, Brazil
| | | | | | | | | | - Luís Arthur Brasil Gadelha Farias
- Hospital São Jose de Doenças Infecciosas, Ceara 60455-610, Brazil
- Faculdade de Medicina, Centro Universitário Christus (UNICHRISTUS), Ceara 60192-345, Brazil
| | | | - Miguel Julian Martinez
- Microbiology Department, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Luciano Pamplona de Góes Cavalcanti
- Programa de Pós-Graduação em Saúde Coletiva, Universidade Federal do Ceara (UFC), Ceara 60020-181, Brazil; (L.B.C.)
- Faculdade de Medicina, Centro Universitário Christus (UNICHRISTUS), Ceara 60192-345, Brazil
| |
Collapse
|
5
|
Skalinski LM, Santos AES, Paixão E, Itaparica M, Barreto F, da Conceição Nascimento Costa M, Teixeira MG. Chikungunya seroprevalence in population-based studies: a systematic review and meta-analysis. Arch Public Health 2023; 81:80. [PMID: 37127721 PMCID: PMC10150504 DOI: 10.1186/s13690-023-01081-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Seroprevalence studies about chikungunya infection are usually conducted after epidemics to estimate the magnitude of the attack. This study aimed to estimate the seroprevalence of CHIKV by WHO region, considering the periods of introduction of the virus in these regions and its potential to lead to epidemics. METHODS We systematically reviewed Medline/Pubmed, Embase, Lilacs, Scopus and Web of Science for original articles published up to 2020. Cohort, case-control and cross-sectional studies were eligible for inclusion, based on the results of laboratory diagnosis of previous or previous and recent infection. Those conducted with symptomatic individuals were excluded. RESULTS 596 articles were identified, 197 full-text were reviewed and 64 were included, resulting in 71 seroprevalences. Most were cross-sectional studies (92%), between 2001 and 2020 (92%), with population of all ages (55%), conducted in Kenya (10.9%), Brazil (9.4%) and French Polynesia (7.8%). The pooled estimates were 24% (95%CI 19-29; I2 = 99.7%; p < 0.00), being 21% (95%CI 13-30; I2 = 99.5%; p < 0.00) for adults, 7% (95%CI 0-23; I2 = 99.7%; p < 0.00) for children and 30% (95%CI 23-38; I2 = 99.7%; p < 0.00) for all ages. The higher seroprevalences were found in African, the Americas and South-East Asian Regions. CONCLUSIONS The great heterogeneity of seroprevalences points to the persistence of viral circulation. Even where the seroprevalence is high, the population replacement and the absence of vaccines mean that the risk of virus spread and epidemics remains. REGISTRATION PROSPERO CRD42020166227.
Collapse
Affiliation(s)
- Lacita Menezes Skalinski
- Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, s/n, Salobrinho, Ilhéus, CEP 45662-900, BA, Brasil.
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil.
| | - Aline Elena Sacramento Santos
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| | - Enny Paixão
- London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Martha Itaparica
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| | - Florisneide Barreto
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| | | | - Maria Glória Teixeira
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| |
Collapse
|
6
|
Giménez-Richarte Á, de Salazar MO, Arbona C, Giménez-Richarte MP, Collado M, Fernández PL, Quiles F, Clavijo C, Marco P, Ramos-Rincon JM. Prevalence of Chikungunya, Dengue and Zika viruses in blood donors: a systematic literature review and meta-analysis. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2022; 20:267-280. [PMID: 34694219 PMCID: PMC9256504 DOI: 10.2450/2021.0106-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/20/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Blood transfusion centres should understand the epidemiology of emerging diseases that are transmissible through the transfusion of blood components. The risk of transmission of arboviruses through this route has become apparent in recent years. The aim of our study is to summarise the reported prevalence (viraemic rate, seroprevalence and/or antigen detection) of Chikungunya (CHIKV), Dengue (DENV) and Zika (ZIKV) viruses in blood donors according to screening test used and world region. MATERIALS AND METHODS We conducted a systematic literature review and meta-analysis having searched for information in the main bibliographic databases (MEDLINE, Embase, and Scopus). The prevalence for each of the viruses was calculated according to the screening test used and geographic location. RESULTS We included 18 records on CHIKV, 71 on DENV, and 27 on ZIKV. The highest prevalences of RNA for CHIKV were 1.9% in Puerto Rico (2014), 1.0% in Thailand (2009), and 1.0% in French Polynesia (2014-15). The highest prevalences of RNA for DENV were 5.5% in Saudi Arabia (2015-16), 2.3% in Madeira, Portugal (2012-13), and 0.6% in Brazil (2012). The highest prevalences of RNA for ZIKV were 2.8% in French Polynesia (2013-14), 2.7% in Brazil (2015-16), and 1.8% in Martinique (2016). Overall seroprevalence, as assessed by IgG antibodies, was 21.6% for CHIKV, 24.0% for DENV, and 5.1% for ZIKV. DISCUSSION Our study shows a high proportion of donors who are viraemic and asymptomatic, especially during outbreaks, with prevalences surpassing 5% for DENV, 1% for CHIKV, and 2% for ZIKV. These data confirm a clear threat to blood transfusion safety. The elevated seroprevalence for these three arboviruses is also indicative of their wide circulation in populations, correlating with an increased risk of infected but asymptomatic donors. Health centres and institutions must address this threat, especially in tropical regions where the biggest outbreaks occur.
Collapse
Affiliation(s)
| | | | - Cristina Arbona
- Valencian Community Blood Transfusion Centre, Valencian Community, Spain
| | | | - Miriam Collado
- Valencian Community Blood Transfusion Centre, Valencian Community, Spain
| | - Pedro L Fernández
- Valencian Community Blood Transfusion Centre, Valencian Community, Spain
| | - Francisco Quiles
- Valencian Community Blood Transfusion Centre, Valencian Community, Spain
| | - Carlos Clavijo
- Valencian Community Blood Transfusion Centre, Valencian Community, Spain
| | - Pascual Marco
- Service of Haematology, General University Hospital of Alicante-ISABIAL, Alicante, Spain
- Clinical Medicine Department, Miguel Hernandez University of Elche, Alicante, Spain
| | | |
Collapse
|
7
|
Ngatse JA, Ndziessi G, Missamou F, Kinouani R, Hemilembolo M, Pion SD, Bork KA, Abena AA, Boussinesq M, Chesnais CB. Historical overview and geographical distribution of neglected tropical diseases amenable to preventive chemotherapy in the Republic of the Congo: A systematic review. PLoS Negl Trop Dis 2022; 16:e0010560. [PMID: 35816549 PMCID: PMC9302787 DOI: 10.1371/journal.pntd.0010560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 07/21/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Neglected Tropical Diseases amenable to Preventive Chemotherapy (PC-NTDs) affect the poorest populations around the world, especially in Africa. Scientific information on the distribution and level of endemicity of these diseases in the Republic of the Congo (RoC) is scarce in the published literature. We sought to collect all available epidemiological data on PC-NTDs in the RoC to document the historical and current situation and identify challenges in reaching the elimination of NTDs. METHODS We searched Medline and Horizon databases for studies published until to July 4th, 2019, on onchocerciasis, lymphatic filariasis, soil-transmitted helminth infections, schistosomiasis, and trachoma in the RoC. Unpublished reports were also reviewed. We included all epidemiological studies containing community data and excluded case reports. Location, prevalence data, and dates of the studies were extracted. PRINCIPAL FINDINGS We identified 933 records, of which 56 met the inclusion criteria. The articles published before 1960 mainly concerned onchocerciasis and schistosomiasis. Despite a low number over the studied period, since 2005 there has been a steady increase in the number of publications. Most of the studies were cross-sectional and conducted in the general population. Trachoma is endemic in the Sangha and Likouala departments (prevalence of trachomatous inflammation-follicular > 5% in some villages), and further mapping is essential to properly assess the burden of this disease in the country. While the prevalence of soil-transmitted helminths is still high (over 20%) in a large part of Congo, cases of lymphatic filariasis (based on Wuchereria bancrofti antigenaemia and/or microfilaraemia) and onchocerciasis are becoming rare and very focused. To achieve the elimination of PC-NTDs, further intervention is required. CONCLUSIONS Except for trachoma, whose epidemiological situation should be better evaluated, PC-NTDs are endemic in the RoC, and actions to control them have been taken by health authorities. To eliminate PC-NTDs, which are still present in some locations, new mapping surveys are needed, and increased investment in scientific research should be encouraged in the country.
Collapse
Affiliation(s)
- Joseph A. Ngatse
- Faculté des Sciences de la Santé, Université Marien NGOUABI, Brazzaville, République du Congo
- UMI233, Institut de Recherche pour le Développement (IRD)-INSERM U1175-Université de Montpellier, Montpellier, France
| | - Gilbert Ndziessi
- Faculté des Sciences de la Santé, Université Marien NGOUABI, Brazzaville, République du Congo
| | - François Missamou
- Programme National de Lutte contre l’Onchocercose, Brazzaville, République du Congo
| | - Rodrigue Kinouani
- Centre de Recherche Géographique et de Production Cartographique, Brazzaville, République du Congo
| | - Marlhand Hemilembolo
- Programme National de Lutte contre l’Onchocercose, Brazzaville, République du Congo
| | - Sébastien D. Pion
- UMI233, Institut de Recherche pour le Développement (IRD)-INSERM U1175-Université de Montpellier, Montpellier, France
| | - Kirsten A. Bork
- UMI233, Institut de Recherche pour le Développement (IRD)-INSERM U1175-Université de Montpellier, Montpellier, France
| | - Ange A. Abena
- Faculté des Sciences de la Santé, Université Marien NGOUABI, Brazzaville, République du Congo
| | - Michel Boussinesq
- UMI233, Institut de Recherche pour le Développement (IRD)-INSERM U1175-Université de Montpellier, Montpellier, France
| | - Cédric B. Chesnais
- UMI233, Institut de Recherche pour le Développement (IRD)-INSERM U1175-Université de Montpellier, Montpellier, France
| |
Collapse
|
8
|
da Silva Mendes AM, Cilião-Alves DC, Pimentel BMS, Slavov SN, de Araújo WN, Haddad R. Chikungunya virus seroprevalence in asymptomatic blood donors during an outbreak in the Federal District of Brazil. Transfus Med 2022; 32:338-342. [PMID: 35478420 DOI: 10.1111/tme.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 02/04/2022] [Accepted: 04/16/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Chikungunya virus (CHIKV) is a mosquito-borne alphavirus belonging to the Togaviridae family. The symptomatic infection is characterised by acute febrile disease which generally results in severe arthralgia and myalgia, however, most of the CHIKV infections remain asymptomatic. CHIKV RNA detection in asymptomatic volunteers may be responsible for the transfusion transmission of this infection, especially during outbreaks. There is no information for CHIKV seroprevalence among blood donors from the Federal District of Brazil. AIM In early 2019, the Federal District of Brazil experienced a CHIKV outbreak, and this study evaluates the anti-CHIKV IgM and IgG presence in a well characterised cohort of blood donors from this region. METHODOLOGY Blood samples were collected from 450 volunteer blood donors during a CHIKV outbreak and tested for the presence of anti-CHIKV IgG and IgM antibodies using ELISA. RESULTS The CHIKV seroprevalence was 0.89% (n = 4/450) and anti-CHIKV IgM prevalence was 1.11% (n = 5/450). CONCLUSION The obtained results demonstrated that at least some of the blood donors have experienced CHIKV infection which can be related to a hypothetical risk of CHIKV transfusion transmission. More studies are necessary in order to examine the impact of CHIKV on blood transfusion.
Collapse
Affiliation(s)
| | | | | | - Svetoslav Nanev Slavov
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.,Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Wildo Navegantes de Araújo
- Faculty of Ceilândia, University of Brasilia, Brasilia, Brazil.,Center for Tropical Medicine, University of Brasilia, Brasilia, Brazil
| | - Rodrigo Haddad
- Faculty of Ceilândia, University of Brasilia, Brasilia, Brazil.,Center for Tropical Medicine, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
9
|
Adam A, Jassoy C. Epidemiology and Laboratory Diagnostics of Dengue, Yellow Fever, Zika, and Chikungunya Virus Infections in Africa. Pathogens 2021; 10:1324. [PMID: 34684274 PMCID: PMC8541377 DOI: 10.3390/pathogens10101324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
Arbovirus infections are widespread, and their disease burden has increased in the past decade. In Africa, arbovirus infections and fever with unknown etiology are common. Due to the lack of well-established epidemiologic surveillance systems and accurate differential diagnosis in most African countries, little is known about the prevalence of human arbovirus infections in Africa. The aim of this review is to summarize the available epidemiological data and diagnostic laboratory tools of infections with dengue, yellow fever, Zika, and chikungunya viruses, all transmitted by Aedes mosquitoes. Studies indicate that these arboviral infections are endemic in most of Africa. Surveillance of the incidence and prevalence of the infections would enable medical doctors to improve the diagnostic accuracy in patients with typical symptoms. If possible, arboviral diagnostic tests should be added to the routine healthcare systems. Healthcare providers should be informed about the prevalent arboviral diseases to identify possible cases.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Correspondence: (A.A.); (C.J.); Tel.: +49-341-9714314 (C.J.); Fax: +49-341-9714309 (C.J.)
| | - Christian Jassoy
- Institute for Medical Microbiology and Virology, University Hospital and Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| |
Collapse
|
10
|
Manzoor KN, Javed F, Ejaz M, Ali M, Mujaddadi N, Khan AA, Khattak AA, Zaib A, Ahmad I, Saeed WK, Manzoor S. The global emergence of Chikungunya infection: An integrated view. Rev Med Virol 2021; 32:e2287. [PMID: 34428335 DOI: 10.1002/rmv.2287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/08/2022]
Abstract
Chikungunya virus (CHIKV) is one of the emerging viruses around the globe. It belongs to the family Togaviridae and genus Alphavirus and is an arthropod borne virus that transmits by the bite of an infected mosquito, mainly through Aedes aegypti and Aedes albopcitus. It is a spherical, enveloped virus with positive single stranded RNA genome. It was first discovered during 1952-53 in Tanganyika, after which outbreaks were documented in many regions of the world. CHIKV has two transmission cycles; an enzootic sylvatic cycle and an urban cycle. CHIKV genome contains 11,900 nucleotides and two open reading frames and shows great sequence variability. Molecular mechanisms of virus host-cell interactions and the pathogenesis of disease are not fully understood. The disease involves three phases; acute, post-acute and chronic with symptoms including high-grade fever, arthralgia, macupapular rashes and headache. There is no licensed vaccine or specific treatment for CHIKV infection. This lack of specific interventions combined with difficulties in making a precise diagnosis together make the disease difficult to manage. In this review we aim to present the current knowledge of global epidemiology, transmission, structure, various aspects of diagnosis as well as highlight potential antiviral drugs and vaccines against CHIKV.
Collapse
Affiliation(s)
| | - Farakh Javed
- Department of Biomedical Sciences, Pak-Autria Fachhochschule: Institute of Applied Sciences & Technology, Haripur, Pakistan
| | - Muhammad Ejaz
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Mubashar Ali
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Neelam Mujaddadi
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Abid Ali Khan
- Institute of Precision Medicine, Hochschule Furtwangen University, Furtwangen im Schwarzwald, Germany
| | - Aamer Ali Khattak
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Assad Zaib
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Ibrar Ahmad
- Center for Human Genetics, Hazara University, Mansehra, Pakistan
| | - Waqar Khalid Saeed
- Department of Biomedical Sciences, Pak-Autria Fachhochschule: Institute of Applied Sciences & Technology, Haripur, Pakistan
| | - Sobia Manzoor
- Atta-ur-Rehman school of applied biosciences, National University of science and Technology, Islamabad, Pakistan
| |
Collapse
|
11
|
Selhorst P, Makiala-Mandanda S, De Smet B, Mariën J, Anthony C, Binene-Mbuka G, De Weggheleire A, Ilombe G, Kinganda-Lusamaki E, Pukuta-Simbu E, Lubula L, Mbala-Kingebeni P, Nkuba-Ndaye A, Vogt F, Watsenga F, Van Bortel W, Vanlerberghe V, Ariën KK, Ahuka-Mundeke S. Molecular characterization of chikungunya virus during the 2019 outbreak in the Democratic Republic of the Congo. Emerg Microbes Infect 2021; 9:1912-1918. [PMID: 32787529 PMCID: PMC8284967 DOI: 10.1080/22221751.2020.1810135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Early 2019, a chikungunya virus (CHIKV) outbreak hit the Democratic Republic of the Congo (DRC). Though seldomly deadly, this mosquito-borne disease presents as an acute febrile (poly)arthralgia often followed by long-term sequelae. Although Aedes aegypti is the primary vector, an amino acid substitution in the viral envelope gene E1 (A226V) is causing concern as it results in increased transmission by Aedes albopictus, a mosquito with a much wider geographical distribution. Between January and March 2019, we collected human and mosquito samples in Kinshasa and Kongo Central province (Kasangulu and Matadi). Of the patients that were tested within 7 days of symptom onset, 49.7% (87/175) were RT–qPCR positive, while in the mosquito samples CHIKV was found in 1/2 pools in Kinshasa, 5/6 pools in Kasangulu, and 8/26 pools in Matadi. Phylogenetic analysis on whole-genome sequences showed that the circulating strain formed a monophyletic group within the ECSA2 lineage and harboured the A226V mutation. Our sequences did not cluster with sequences from previously reported outbreaks in the DRC nor with other known A226V-containing ECSA2 strains. This indicates a scenario of convergent evolution where A226V was acquired independently in response to a similar selection pressure for transmission by Ae. albopictus. This is in line with our entomological data where we detected Ae. albopictus more frequently than Ae. aegypti in two out of three affected areas. In conclusion, our findings suggest that CHIKV is adapting to the increased presence of Aedes albopictus in DRC.
Collapse
Affiliation(s)
- Philippe Selhorst
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,The Outbreak Research Team, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sheila Makiala-Mandanda
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo.,University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Birgit De Smet
- The Outbreak Research Team, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Joachim Mariën
- The Outbreak Research Team, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Colin Anthony
- Department of Pathology, Institute of Infectious Disease, University of Cape Town, Cape Town, South Africa
| | - Guillaume Binene-Mbuka
- Department of Entomology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Anja De Weggheleire
- The Outbreak Research Team, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Gillon Ilombe
- Department of Entomology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo.,University of Antwerp, Antwerp, Belgium
| | - Eddy Kinganda-Lusamaki
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo.,University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Elisabeth Pukuta-Simbu
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Leopold Lubula
- Direction Generale de Lutte contre la Maladie (DGLM), Kinshasa, Democratic Republic of the Congo
| | - Placide Mbala-Kingebeni
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo.,University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Antoine Nkuba-Ndaye
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo.,University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Florian Vogt
- The Outbreak Research Team, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Francis Watsenga
- Department of Entomology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Wim Van Bortel
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,The Outbreak Research Team, Institute of Tropical Medicine, Antwerp, Belgium
| | - Veerle Vanlerberghe
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Kevin K Ariën
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,University of Antwerp, Antwerp, Belgium
| | - Steve Ahuka-Mundeke
- Department of Virology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo.,University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
12
|
Ushijima Y, Abe H, Nguema Ondo G, Bikangui R, Massinga Loembé M, Zadeh VR, Essimengane JGE, Mbouna AVN, Bache EB, Agnandji ST, Lell B, Yasuda J. Surveillance of the major pathogenic arboviruses of public health concern in Gabon, Central Africa: increased risk of West Nile virus and dengue virus infections. BMC Infect Dis 2021; 21:265. [PMID: 33731022 PMCID: PMC7966894 DOI: 10.1186/s12879-021-05960-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Increasing arbovirus infections have been a global burden in recent decades. Many countries have experienced the periodic emergence of arbovirus diseases. However, information on the prevalence of arboviruses is largely unknown or infrequently updated because of the lack of surveillance studies, especially in Africa. METHODS A surveillance study was conducted in Gabon, Central Africa, on arboviruses, which are a major public health concern in Africa, including: West Nile virus (WNV), dengue virus (DENV), Zika virus (ZIKV), yellow fever virus (YFV), chikungunya virus (CHIKV), and Rift Valley fever virus (RVFV). Serological and molecular assays were performed to investigate past infection history and the current status of infection, using serum samples collected from healthy individuals and febrile patients, respectively. RESULTS The overall seroprevalence during 2014-2017 was estimated to be 25.3% for WNV, 20.4% for DENV, 40.3% for ZIKV, 60.7% for YFV, 61.2% for CHIKV, and 14.3% for RVFV. No significant differences were found in the seroprevalence of any of the viruses between the male and female populations. However, a focus on the mean age in each arbovirus-seropositive individual showed a significantly younger age in WNV- and DENV-seropositive individuals than in CHIKV-seropositive individuals, indicating that WNV and DENV caused a relatively recent epidemic in the region, whereas CHIKV had actively circulated before. Of note, this indication was supported by the detection of both WNV and DENV genomes in serum samples collected from febrile patients after 2016. CONCLUSIONS This study revealed the recent re-emergence of WNV and DENV in Gabon as well as the latest seroprevalence state of the major arboviruses, which indicated the different potential risks of virus infections and virus-specific circulation patterns. This information will be helpful for public health organizations and will enable a rapid response towards these arbovirus infections, thereby preventing future spread in the country.
Collapse
Affiliation(s)
- Yuri Ushijima
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Haruka Abe
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | | | - Rodrigue Bikangui
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Marguerite Massinga Loembé
- African Society for Laboratory Medicine, Addis Ababa, Ethiopia
- Africa Centres for Disease Control and Prevention, Johannesburg, South Africa
| | - Vahid R. Zadeh
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Joseph G. E. Essimengane
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | | | | | - Selidji T. Agnandji
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Bertrand Lell
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
13
|
Wat'senga Tezzo F, Fasine S, Manzambi Zola E, Marquetti MDC, Binene Mbuka G, Ilombe G, Mundeke Takasongo R, Smitz N, Bisset JA, Van Bortel W, Vanlerberghe V. High Aedes spp. larval indices in Kinshasa, Democratic Republic of Congo. Parasit Vectors 2021; 14:92. [PMID: 33522947 PMCID: PMC7852359 DOI: 10.1186/s13071-021-04588-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Dengue, yellow fever, chikungunya and Zika are among the most important emerging infectious vector-borne diseases worldwide. In the Democratic Republic of Congo (DRC), increases in cases of dengue and outbreaks of yellow fever and chikungunya have been reported since 2010. The main vectors of these arboviruses, Aedes aegypti and Aedes albopictus, have been reported in DRC, but there is a lack of detailed information on their presence and spread to guide disease control efforts. METHODS In 2018, two cross-sectional surveys were conducted in Kinshasa province (DRC), one in the rainy (January/February) and one in the dry season (July). Four hundred houses were visited in each of the four selected communes (N'Djili, Mont Ngafula, Lingwala and Kalamu). Within the peri-domestic area of each household, searches were conducted for larval habitats, which were then surveyed for the presence of Aedes larvae and pupae. A subset of the immature specimens were reared to adults for morphological identification followed by DNA barcoding of the specimens to validate identifications. RESULTS The most rural commune (Mont Ngafula) had the highest pupal index (number of Aedes spp. pupae per 100 inspected houses) at 246 (20) pupae/100 houses, and Breteau index (BI; number of containers positive for immature stages of Aedes spp. per 100 households) at 82.2 (19.5) positive containers/100 houses for the rainy (and dry) season, respectively. The BI was 21.5 (4.7), 36.7 (9.8) and 41.7 (7.5) in Kalamu, Lingwala and N'Djili in the rainy (and dry) season, respectively. The house index (number of houses positive for at least one container with immature stages of Aedes spp. per 100 inspected houses) was, on average, across all communes, 27.5% (7.6%); and the container index (number of containers positive for immature stages of Aedes spp. per 100 inspected containers) was 15.0% (10.0%) for the rainy (and dry) season, respectively. The vast majority of Aedes-positive containers were found outside the houses [adjusted odds ratio 27.4 (95% confidence interval 14.9-50.1)]. During the dry season, the most productive containers were the ones used for water storage, whereas in the rainy season rubbish and tires constituted key habitats. Both Ae. aegypti and Ae. albopictus were found. Anopheles larvae were found in different types of Aedes larval habitats, especially during the rainy season. CONCLUSIONS In both surveys and in all communes, the larval indices (BI) were higher than the arbovirus transmission threshold values established by the World Health Organization. Management strategies for controlling Aedes in Kinshasa need to target the key types of containers for Aedes larvae, which are mainly located in outdoor spaces, for larval habitat destruction or reduction.
Collapse
Affiliation(s)
- Francis Wat'senga Tezzo
- Unit of Entomology, Department of Parasitology, National Institute of Biomedical Research, 5345 Avenue De la Démocratie, Gombe, Kinshasa, Democratic Republic of the Congo
| | - Sylvie Fasine
- Unit of Entomology, Department of Parasitology, National Institute of Biomedical Research, 5345 Avenue De la Démocratie, Gombe, Kinshasa, Democratic Republic of the Congo
| | - Emile Manzambi Zola
- Unit of Entomology, Department of Parasitology, National Institute of Biomedical Research, 5345 Avenue De la Démocratie, Gombe, Kinshasa, Democratic Republic of the Congo
| | - Maria Del Carmen Marquetti
- Department of Vector Control, Instituto Medicina Tropical Pedro Kourí (IPK), Avenida Novia del Mediodía, KM 6 1/2, La Lisa, Havana, Cuba
| | - Guillaume Binene Mbuka
- Unit of Entomology, Department of Parasitology, National Institute of Biomedical Research, 5345 Avenue De la Démocratie, Gombe, Kinshasa, Democratic Republic of the Congo
| | - Gillon Ilombe
- Unit of Entomology, Department of Parasitology, National Institute of Biomedical Research, 5345 Avenue De la Démocratie, Gombe, Kinshasa, Democratic Republic of the Congo
| | - Richard Mundeke Takasongo
- Unit of Entomology, Department of Parasitology, National Institute of Biomedical Research, 5345 Avenue De la Démocratie, Gombe, Kinshasa, Democratic Republic of the Congo
| | - Nathalie Smitz
- Department of Biology, Royal Museum for Central Africa (BopCo), Leuvensesteenweg 13-17, Tervuren, Belgium
| | - Juan Andre Bisset
- Department of Vector Control, Instituto Medicina Tropical Pedro Kourí (IPK), Avenida Novia del Mediodía, KM 6 1/2, La Lisa, Havana, Cuba
| | - Wim Van Bortel
- Outbreak Research Team, Institute of Tropical Medicine (ITM), Nationalestraat 155, Antwerp, Belgium
- Unit of Entomology, Biomedical Science Department, Institute of Tropical Medicine (ITM), Nationalestraat 155, Antwerp, Belgium
| | - Veerle Vanlerberghe
- Tropical Infectious Disease Group, Public Health Department, Institute of Tropical Medicine (ITM), Nationalestraat 155, Antwerp, Belgium.
| |
Collapse
|
14
|
Candotti D, Tagny-Tayou C, Laperche S. Challenges in transfusion-transmitted infection screening in Sub-Saharan Africa. Transfus Clin Biol 2021; 28:163-170. [PMID: 33515730 DOI: 10.1016/j.tracli.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In Sub-Saharan Africa, high clinical demand for transfusion faces endemic bloodborne infections and limited resources. Blood screening for transfusion-transmitted bloodborne pathogens is the cornerstone of blood safety. Although there have been substantial improvements over the years, challenges in transfusion-transmitted infection screening that have been identified repeatedly long ago still need to be addressed. Affordability and sustainability of state-of-the-art quality assessed serological and molecular assays, and associated confirmation strategies remain of real concern. In addition, limited resources and infrastructures hamper the development of adequate facilities, quality management, and staff qualification, and exacerbate shortage of reagents and equipment maintenance. It is also important to maintain effort in constituting pools of repeat voluntary non-remunerated donors. Alternative strategies for blood screening that take into account local circumstances might be desirable but they should rely on appropriate field evaluation and careful economic assessment rather than dogma established from high-resource settings.
Collapse
Affiliation(s)
- D Candotti
- Département d'Études des Agents Transmissibles par le Sang, Institut National de la Transfusion Sanguine, Centre National de Référence Risques Infectieux Transfusionnels, 75015 Paris, France.
| | - C Tagny-Tayou
- Department of Hematology, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, BP: 1364, Yaoundé, Cameroon
| | - S Laperche
- Département d'Études des Agents Transmissibles par le Sang, Institut National de la Transfusion Sanguine, Centre National de Référence Risques Infectieux Transfusionnels, 75015 Paris, France
| |
Collapse
|
15
|
Wilson-Bahun TA, Kamgang B, Lenga A, Wondji CS. Larval ecology and infestation indices of two major arbovirus vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazzaville, the capital city of the Republic of the Congo. Parasit Vectors 2020; 13:492. [PMID: 32977841 PMCID: PMC7519569 DOI: 10.1186/s13071-020-04374-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/20/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Invasive mosquito species, such as Aedes albopictus in Congo can affect the distribution of native species, changing the vector composition and pattern of disease transmission. Here, we comparatively establish the geographical distribution and larval habitat preference of Ae. aegypti and Ae. albopictus and the risk of arbovirus disease outbreaks using Stegomyia indices in the city of Brazzaville, the capital of the Republic of the Congo. METHODS Human dwelling surveys of water-holding containers for immature stages of Aedes was carried out in December 2017 in Brazzaville through a random cluster sampling method. A total of 268 human dwellings distributed in 9 boroughs and 27 neighbourhoods were surveyed across the city. RESULTS Overall, 455 potential larval habitats were surveyed. Both Ae. aegypti and Ae. albopictus were collected across the city with an overall high prevalence of Ae. aegypti (53.1%) compared to Ae. albopictus (46.9%). Geographical distribution analysis showed that Ae. aegypti was more abundant (mean = 6.6 ± 1.4) in neighbourhoods located in downtown, while the abundance of Ae. albopictus was low (mean = 3.5 ± 0.6) in suburbs. Peridomestic containers, especially discarded tanks, were the most strongly colonized productive larval habitat for both mosquito species with the prevalence of 56.4% and 53.1% for Ae. aegypti and Ae. albopictus, respectively. Globally, the house index (HI), Breteau index (BI) and container index (CI) were high for Ae. aegypti (26.6%, 38.4% and 22.6%) and Ae. albopictus (33.3%, 49.6% and 26.6%) compared to the transmission risk threshold (5%, 5% and 20%) established by the WHO/PAHO. Overall, pupae-based indices (the pupae index and the pupae per person index) were not significantly different between Ae. aegypti (273.4% and 23.2%) and Ae. albopictus (228.8% and 19.5%). CONCLUSIONS The findings of this study suggest a high risk for transmission of arbovirus diseases in Brazzaville and call for an urgent need to implement vector control strategies against these vectors in the Republic of the Congo.
Collapse
Affiliation(s)
- Theodel A Wilson-Bahun
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon.,Laboratory of Biodiversity and Animal Ecology, Department of Animal Biology and Physiology, Faculty of Sciences and Technology, Marien Ngouabi University, P.O. Box 69, Brazzaville, Congo
| | - Basile Kamgang
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon.
| | - Arsène Lenga
- Laboratory of Biodiversity and Animal Ecology, Department of Animal Biology and Physiology, Faculty of Sciences and Technology, Marien Ngouabi University, P.O. Box 69, Brazzaville, Congo
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon.,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
16
|
Vairo F, Aimè Coussoud-Mavoungou MP, Ntoumi F, Castilletti C, Kitembo L, Haider N, Carletti F, Colavita F, Gruber CEM, Iannetta M, Messina F, Lanini S, Ulrich Judicaël B, Giombini E, Montaldo C, Portella C, Diafouka-Diatela S, Rueca M, Kock R, Bartolini B, Mboera L, Munster V, Fischer R, Seifert S, Muñoz-Fontela C, Escudero-Pérez B, Gomez-Medina S, Nelson EV, Kjia Tungu P, Nicastri E, Puro V, Di Caro A, Capobianchi MR, Mikolo JL, Zumla A, Ippolito G. Chikungunya Outbreak in the Republic of the Congo, 2019-Epidemiological, Virological and Entomological Findings of a South-North Multidisciplinary Taskforce Investigation. Viruses 2020; 12:v12091020. [PMID: 32933109 PMCID: PMC7551106 DOI: 10.3390/v12091020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The Republic of Congo (RoC) declared a chikungunya (CHIK) outbreak on 9 February 2019. We conducted a ONE-Human-Animal HEALTH epidemiological, virological and entomological investigation. Methods: We collected national surveillance and epidemiological data. CHIK diagnosis was based on RT-PCR and CHIKV-specific antibodies. Full CHIKV genome sequences were obtained by Sanger and MinION approaches and Bayesian tree phylogenetic analysis was performed. Mosquito larvae and 215 adult mosquitoes were collected in different villages of Kouilou and Pointe-Noire districts and estimates of Aedes (Ae.) mosquitos' CHIKV-infectious bites obtained. We found two new CHIKV sequences of the East/Central/South African (ECSA) lineage, clustering with the recent enzootic sub-clade 2, showing the A226V mutation. The RoC 2019 CHIKV strain has two novel mutations, E2-T126M and E2-H351N. Phylogenetic suggests a common origin from 2016 Angola strain, from which it diverged around 1989 (95% HPD 1985-1994). The infectious bite pattern was similar for 2017, 2018 and early 2019. One Ae. albopictus pool was RT-PCR positive. The 2019 RoC CHIKV strain seems to be recently introduced or be endemic in sylvatic cycle. Distinct from the contemporary Indian CHIKV isolates and in contrast to the original Central-African strains (transmitted by Ae. aegypti), it carries the A226V mutation, indicating an independent adaptive mutation in response to vector replacement (Ae. albopictus vs Ae. aegypti).
Collapse
Affiliation(s)
- Francesco Vairo
- National Institute for Infectious Diseases ‘Lazzaro Spallanzani’, IRCCS, 00149 Rome, Italy; (F.V.); (C.C.); (F.C.); (F.C.); (C.E.M.G.); (M.I.); (F.M.); (S.L.); (E.G.); (C.M.); (M.R.); (B.B.); (E.N.); (V.P.); (A.D.C.); (M.R.C.)
| | | | - Francine Ntoumi
- Ministry of Science and Technology, Brazzaville CG-BZV, Congo
- University Marien Ngouabi, Brazzaville CG-BZV, Congo
- Institute for Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany;
- Correspondence: (F.N.); (G.I.)
| | - Concetta Castilletti
- National Institute for Infectious Diseases ‘Lazzaro Spallanzani’, IRCCS, 00149 Rome, Italy; (F.V.); (C.C.); (F.C.); (F.C.); (C.E.M.G.); (M.I.); (F.M.); (S.L.); (E.G.); (C.M.); (M.R.); (B.B.); (E.N.); (V.P.); (A.D.C.); (M.R.C.)
| | - Lambert Kitembo
- Ministry of Public Health, Brazzaville CG-BZV, Congo; (L.K.); (B.U.J.); (J.L.M.)
| | - Najmul Haider
- The Royal Veterinary College, University of London, Hawkshead Lane, Hertfordshire NW1 0TU, UK; (N.H.); (R.K.)
| | - Fabrizio Carletti
- National Institute for Infectious Diseases ‘Lazzaro Spallanzani’, IRCCS, 00149 Rome, Italy; (F.V.); (C.C.); (F.C.); (F.C.); (C.E.M.G.); (M.I.); (F.M.); (S.L.); (E.G.); (C.M.); (M.R.); (B.B.); (E.N.); (V.P.); (A.D.C.); (M.R.C.)
| | - Francesca Colavita
- National Institute for Infectious Diseases ‘Lazzaro Spallanzani’, IRCCS, 00149 Rome, Italy; (F.V.); (C.C.); (F.C.); (F.C.); (C.E.M.G.); (M.I.); (F.M.); (S.L.); (E.G.); (C.M.); (M.R.); (B.B.); (E.N.); (V.P.); (A.D.C.); (M.R.C.)
| | - Cesare E. M. Gruber
- National Institute for Infectious Diseases ‘Lazzaro Spallanzani’, IRCCS, 00149 Rome, Italy; (F.V.); (C.C.); (F.C.); (F.C.); (C.E.M.G.); (M.I.); (F.M.); (S.L.); (E.G.); (C.M.); (M.R.); (B.B.); (E.N.); (V.P.); (A.D.C.); (M.R.C.)
| | - Marco Iannetta
- National Institute for Infectious Diseases ‘Lazzaro Spallanzani’, IRCCS, 00149 Rome, Italy; (F.V.); (C.C.); (F.C.); (F.C.); (C.E.M.G.); (M.I.); (F.M.); (S.L.); (E.G.); (C.M.); (M.R.); (B.B.); (E.N.); (V.P.); (A.D.C.); (M.R.C.)
| | - Francesco Messina
- National Institute for Infectious Diseases ‘Lazzaro Spallanzani’, IRCCS, 00149 Rome, Italy; (F.V.); (C.C.); (F.C.); (F.C.); (C.E.M.G.); (M.I.); (F.M.); (S.L.); (E.G.); (C.M.); (M.R.); (B.B.); (E.N.); (V.P.); (A.D.C.); (M.R.C.)
| | - Simone Lanini
- National Institute for Infectious Diseases ‘Lazzaro Spallanzani’, IRCCS, 00149 Rome, Italy; (F.V.); (C.C.); (F.C.); (F.C.); (C.E.M.G.); (M.I.); (F.M.); (S.L.); (E.G.); (C.M.); (M.R.); (B.B.); (E.N.); (V.P.); (A.D.C.); (M.R.C.)
| | - Biez Ulrich Judicaël
- Ministry of Public Health, Brazzaville CG-BZV, Congo; (L.K.); (B.U.J.); (J.L.M.)
| | - Emanuela Giombini
- National Institute for Infectious Diseases ‘Lazzaro Spallanzani’, IRCCS, 00149 Rome, Italy; (F.V.); (C.C.); (F.C.); (F.C.); (C.E.M.G.); (M.I.); (F.M.); (S.L.); (E.G.); (C.M.); (M.R.); (B.B.); (E.N.); (V.P.); (A.D.C.); (M.R.C.)
| | - Chiara Montaldo
- National Institute for Infectious Diseases ‘Lazzaro Spallanzani’, IRCCS, 00149 Rome, Italy; (F.V.); (C.C.); (F.C.); (F.C.); (C.E.M.G.); (M.I.); (F.M.); (S.L.); (E.G.); (C.M.); (M.R.); (B.B.); (E.N.); (V.P.); (A.D.C.); (M.R.C.)
| | | | | | - Martina Rueca
- National Institute for Infectious Diseases ‘Lazzaro Spallanzani’, IRCCS, 00149 Rome, Italy; (F.V.); (C.C.); (F.C.); (F.C.); (C.E.M.G.); (M.I.); (F.M.); (S.L.); (E.G.); (C.M.); (M.R.); (B.B.); (E.N.); (V.P.); (A.D.C.); (M.R.C.)
| | - Richard Kock
- The Royal Veterinary College, University of London, Hawkshead Lane, Hertfordshire NW1 0TU, UK; (N.H.); (R.K.)
| | - Barbara Bartolini
- National Institute for Infectious Diseases ‘Lazzaro Spallanzani’, IRCCS, 00149 Rome, Italy; (F.V.); (C.C.); (F.C.); (F.C.); (C.E.M.G.); (M.I.); (F.M.); (S.L.); (E.G.); (C.M.); (M.R.); (B.B.); (E.N.); (V.P.); (A.D.C.); (M.R.C.)
| | - Leonard Mboera
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 30007, Tanzania;
| | - Vincent Munster
- Virus Ecology Unit, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, Bethesda, MD 20814, USA; (V.M.); (R.F.); (S.S.)
| | - Robert Fischer
- Virus Ecology Unit, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, Bethesda, MD 20814, USA; (V.M.); (R.F.); (S.S.)
| | - Stephanie Seifert
- Virus Ecology Unit, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, Bethesda, MD 20814, USA; (V.M.); (R.F.); (S.S.)
| | - César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Strasse, D-20359 Hamburg, Germany; (C.M.-F.); (B.E.-P.); (S.G.-M.); (E.V.N.)
- German Center for Infection Research (DZIF), Partner Site Hamburg, 38124 Hamburg, Germany
| | - Beatriz Escudero-Pérez
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Strasse, D-20359 Hamburg, Germany; (C.M.-F.); (B.E.-P.); (S.G.-M.); (E.V.N.)
| | - Sergio Gomez-Medina
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Strasse, D-20359 Hamburg, Germany; (C.M.-F.); (B.E.-P.); (S.G.-M.); (E.V.N.)
| | - Emily V. Nelson
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Strasse, D-20359 Hamburg, Germany; (C.M.-F.); (B.E.-P.); (S.G.-M.); (E.V.N.)
| | | | - Emanuele Nicastri
- National Institute for Infectious Diseases ‘Lazzaro Spallanzani’, IRCCS, 00149 Rome, Italy; (F.V.); (C.C.); (F.C.); (F.C.); (C.E.M.G.); (M.I.); (F.M.); (S.L.); (E.G.); (C.M.); (M.R.); (B.B.); (E.N.); (V.P.); (A.D.C.); (M.R.C.)
| | - Vincenzo Puro
- National Institute for Infectious Diseases ‘Lazzaro Spallanzani’, IRCCS, 00149 Rome, Italy; (F.V.); (C.C.); (F.C.); (F.C.); (C.E.M.G.); (M.I.); (F.M.); (S.L.); (E.G.); (C.M.); (M.R.); (B.B.); (E.N.); (V.P.); (A.D.C.); (M.R.C.)
| | - Antonino Di Caro
- National Institute for Infectious Diseases ‘Lazzaro Spallanzani’, IRCCS, 00149 Rome, Italy; (F.V.); (C.C.); (F.C.); (F.C.); (C.E.M.G.); (M.I.); (F.M.); (S.L.); (E.G.); (C.M.); (M.R.); (B.B.); (E.N.); (V.P.); (A.D.C.); (M.R.C.)
| | - Maria Rosaria Capobianchi
- National Institute for Infectious Diseases ‘Lazzaro Spallanzani’, IRCCS, 00149 Rome, Italy; (F.V.); (C.C.); (F.C.); (F.C.); (C.E.M.G.); (M.I.); (F.M.); (S.L.); (E.G.); (C.M.); (M.R.); (B.B.); (E.N.); (V.P.); (A.D.C.); (M.R.C.)
| | - Jacqueline Lydia Mikolo
- Ministry of Public Health, Brazzaville CG-BZV, Congo; (L.K.); (B.U.J.); (J.L.M.)
- Laboratoire National de la Santè Publique, Brazzaville CG-BZV, Congo
| | - Alimuddin Zumla
- Division of Infection and Immunity, Center for Clinical Microbiology, University College London, London WC1E 6BT, UK;
- National Institute of Health Research Biomedical Research Centre at UCL Hospitals, London W1T 7HA, UK
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases ‘Lazzaro Spallanzani’, IRCCS, 00149 Rome, Italy; (F.V.); (C.C.); (F.C.); (F.C.); (C.E.M.G.); (M.I.); (F.M.); (S.L.); (E.G.); (C.M.); (M.R.); (B.B.); (E.N.); (V.P.); (A.D.C.); (M.R.C.)
- Correspondence: (F.N.); (G.I.)
| | | |
Collapse
|
17
|
Chisenga CC, Bosomprah S, Musukuma K, Mubanga C, Chilyabanyama ON, Velu RM, Kim YC, Reyes-Sandoval A, Chilengi R. Sero-prevalence of arthropod-borne viral infections among Lukanga swamp residents in Zambia. PLoS One 2020; 15:e0235322. [PMID: 32609784 PMCID: PMC7329080 DOI: 10.1371/journal.pone.0235322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/03/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The re-emergence of vector borne diseases affecting millions of people in recent years has drawn attention to arboviruses globally. Here, we report on the sero-prevalence of chikungunya virus (CHIKV), dengue virus (DENV), mayaro virus (MAYV) and zika virus (ZIKV) in a swamp community in Zambia. METHODS We collected blood and saliva samples from residents of Lukanga swamps in 2016 during a mass-cholera vaccination campaign. Over 10,000 residents were vaccinated with two doses of Shanchol™ during this period. The biological samples were collected prior to vaccination (baseline) and at specified time points after vaccination. We tested a total of 214 baseline stored serum samples for IgG antibodies against NS1 of DENV and ZIKV and E2 of CHIKV and MAYV on ELISA. We defined sero-prevalence as the proportion of participants with optical density (OD) values above a defined cut-off value, determined using a finite mixture model. RESULTS Of the 214 participants, 79 (36.9%; 95% CI 30.5-43.8) were sero-positive for Chikungunya; 23 (10.8%; 95% CI 6.9-15.7) for Zika, 36 (16.8%; 95% CI 12.1-22.5) for Dengue and 42 (19.6%; 95% CI 14.5-25.6) for Mayaro. Older participants were more likely to have Zika virus whilst those involved with fishing activities were at greater risk of contracting Chikungunya virus. Among all the antigens tested, we also found that Chikungunya saliva antibody titres correlated with baseline serum titres (Spearman's correlation coefficient = 0.222; p = 0.03). CONCLUSION Arbovirus transmission is occurring in Zambia. This requires proper screening tools as well as surveillance data to accurately report on disease burden in Zambia.
Collapse
Affiliation(s)
| | - Samuel Bosomprah
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
- Department of Biostatistics, School of Public Health, University of Ghana, Accra
| | - Kalo Musukuma
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
| | - Cynthia Mubanga
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
| | | | - Rachel M. Velu
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
| | - Young Chan Kim
- The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Oxford, England, United Kingdom
| | - Arturo Reyes-Sandoval
- The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Oxford, England, United Kingdom
| | - Roma Chilengi
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
| |
Collapse
|
18
|
Yougang AP, Kamgang B, Tedjou AN, Wilson-Bahun TA, Njiokou F, Wondji CS. Nationwide profiling of insecticide resistance in Aedes albopictus (Diptera: Culicidae) in Cameroon. PLoS One 2020; 15:e0234572. [PMID: 32555588 PMCID: PMC7302487 DOI: 10.1371/journal.pone.0234572] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
The Asian mosquito, Aedes albopictus (Skuse), is an invasive mosquito which has become one of the most important vectors of dengue, Zika, and chikungunya viruses worldwide. This species was reported for the first time in Cameroon in early 2000s and became the dominant Aedes species in the urban areas in the southern part of Cameroon but remain poorly characterized. Here, we assessed the susceptibility profile of A. albopictus collected throughout Cameroon and investigated the potential resistance mechanisms involved. Immature stages of A. albopictus were collected between March and July 2017 in 15 locations across Cameroon and reared until G1/G2 generation. Larval, adult bioassays, and synergists [piperonyl butoxide (PBO) and diethyl maleate (DEM)] assays were carried out according to WHO recommendations. F1534C mutation was genotyped in field collected adults (Go) using allele specific PCR. All tested populations were susceptible to both larvicides, temephos and Bacillus thuringiensis israelensis (Bti), after larval bioassays. Adult bioassays revealed a high level of resistance of A. albopictus to 4% DDT with mortality rates ranging from 12.42% in Bafang to 75.04% in Kumba. The resistance was reported also in 0.05% deltamethrin, 0.25% permethrin, and 0.1% propoxur in some locations. A loss of susceptibility to 0.1% bendiocarb was found in one of three populations analysed. A full susceptibility to 1% fenitrothion were observed across the country. A full recovery or partial of susceptibility was observed in A. albopictus when pre-exposed to PBO or DEM and then to DDT and permethrin, respectively. The F1534C kdr mutation was not detected in A. albopictus. This study showed that the susceptibility profile of A. albopictus to insecticide vary according to the sampling location and insecticides used. These findings are useful to planning vector control program against arbovirus vectors in Cameroon and can be used as baseline data for further researches.
Collapse
Affiliation(s)
- Aurelie P. Yougang
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Parasitology and Ecology Laboratory, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Basile Kamgang
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
| | - Armel N. Tedjou
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Parasitology and Ecology Laboratory, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Theodel A. Wilson-Bahun
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Laboratory of vertebrate and invertebrate bioecology, Faculty of Science and Technology, Marien-Ngouabi University, Brazzaville, Congo
| | - Flobert Njiokou
- Department of Animal Biology and Physiology, Parasitology and Ecology Laboratory, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Charles S. Wondji
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
19
|
Abstract
Since the identification of chikungunya virus (CHIKV), sporadic cases and outbreaks were reported in several African countries, on the Indian subcontinent, and in south-east Asia. In the last 20 years, there is a growing number of reports of CHIKV infections from African countries, but the overall picture of its circulation at the continent level remains ill-characterized because of under-diagnosis and under-reporting. Moreover, the public health impact of the infection in Africa is generally poorly understood, especially during outbreak situations. Our work has the aim to review available data on CHIKV circulation in Africa to facilitate the understanding of underlying reasons of its increased detection in the African continent.
Collapse
Affiliation(s)
- Gianluca Russo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Subissi
- Directorate Infectious Diseases in Humans Sciensano, Brussels, Belgium
| | - Giovanni Rezza
- Department of Infectious Diseases, Istituto Superiore Di Sanita (ISS), Rome, Italy
| |
Collapse
|
20
|
Suramin Inhibits Chikungunya Virus Replication by Interacting with Virions and Blocking the Early Steps of Infection. Viruses 2020; 12:v12030314. [PMID: 32191995 PMCID: PMC7150963 DOI: 10.3390/v12030314] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that can cause a debilitating disease that is primarily characterized by persistent joint pain. CHIKV has been emerging globally, while neither a vaccine nor antiviral medication is available. The anti-parasitic drug suramin was previously shown to inhibit CHIKV replication. In this study we aimed to obtain more detailed insight into its mechanism of action. We found that suramin interacts with virions and can inhibit virus binding to cells. It also appeared to inhibit post-attachment steps of the infection process, likely by preventing conformational changes of the envelope glycoproteins required for fusion and the progression of infection. Suramin-resistant CHIKV strains were selected and genotyping and reverse genetics experiments indicated that mutations in E2 were responsible for resistance. The substitutions N5R and H18Q were reverse engineered in the E2 glycoprotein in order to understand their role in resistance. The binding of suramin-resistant viruses with these two E2 mutations was inhibited by suramin like that of wild-type virus, but they appeared to be able to overcome the post-attachment inhibitory effect of suramin. Conversely, a virus with a G82R mutation in E2 (implicated in attenuation of vaccine strain 181/25), which renders it dependent on the interaction with heparan sulfate for entry, was more sensitive to suramin than wild-type virus. Using molecular modelling studies, we predicted the potential suramin binding sites on the mature spikes of the chikungunya virion. We conclude that suramin interferes with CHIKV entry by interacting with the E2 envelope protein, which inhibits attachment and also interferes with conformational changes required for fusion.
Collapse
|
21
|
Kamgang B, Wilson-Bahun TA, Yougang AP, Lenga A, Wondji CS. Contrasting resistance patterns to type I and II pyrethroids in two major arbovirus vectors Aedes aegypti and Aedes albopictus in the Republic of the Congo, Central Africa. Infect Dis Poverty 2020; 9:23. [PMID: 32114983 PMCID: PMC7050138 DOI: 10.1186/s40249-020-0637-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/03/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND In the Republic of Congo, with two massive outbreaks of chikungunya observed this decade, little is known about the insecticide resistance profile of the two major arbovirus vectors Aedes aegypti and Aedes albopictus. Here, we established the resistance profile of both species to insecticides and explored the resistance mechanisms to help Congo to better prepare for future outbreaks. METHODS Immature stages of Ae. aegypti and Ae. albopictus were sampled in May 2017 in eight cities of the Republic of the Congo and reared to adult stage. Larval and adult bioassays, and synergist (piperonyl butoxide [PBO]) assays were carried out according to WHO guidelines. F1534C mutation was genotyped in field collected adults in both species and the polymorphism of the sodium channel gene assessed in Ae. aegypti. RESULTS All tested populations were susceptible to temephos after larval bioassays. A high resistance level was observed to 4% DDT in both species countrywide (21.9-88.3% mortality). All but one population (Ae. aegypti from Ngo) exhibited resistance to type I pyrethroid, permethrin, but showed a full susceptibility to type II pyrethroid (deltamethrin) in almost all locations. Resistance was also reported to 1% propoxur in Ae. aegypti likewise in two Ae. albopictus populations (Owando and Ouesso), and the remaining were fully susceptible. All populations of both species were fully susceptible to 1% fenitrothion. A full recovery of susceptibility was observed in Ae. aegypti and Ae. albopictus when pre-exposed to PBO and then to propoxur and permethrin respectively. The F1534C kdr mutation was not detected in either species. The high genetic variability of the portion of sodium channel spanning the F1534C in Ae. aegypti further supported that knockdown resistance probably play no role in the permethrin resistance. CONCLUSIONS Our study showed that both Aedes species were susceptible to organophosphates (temephos and fenitrothion), while for other insecticide classes tested the profile of resistance vary according to the population origin. These findings could help to implement better and efficient strategies to control these species in the Congo in the advent of future arbovirus outbreaks.
Collapse
Affiliation(s)
- Basile Kamgang
- Centre for Research in Infectious Diseases, Department of Medical Entomology, PO Box 15391, Yaoundé, Cameroon.
| | - Theodel A Wilson-Bahun
- Centre for Research in Infectious Diseases, Department of Medical Entomology, PO Box 15391, Yaoundé, Cameroon
- Faculty of Science and Technology, Marien Ngouabi University, Brazzaville, Republic of the Congo
| | - Aurelie P Yougang
- Centre for Research in Infectious Diseases, Department of Medical Entomology, PO Box 15391, Yaoundé, Cameroon
- Department of Animal Biology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Arsene Lenga
- Faculty of Science and Technology, Marien Ngouabi University, Brazzaville, Republic of the Congo
| | - Charles S Wondji
- Centre for Research in Infectious Diseases, Department of Medical Entomology, PO Box 15391, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
22
|
Antonio-Nkondjio C, Ndo C, Njiokou F, Bigoga JD, Awono-Ambene P, Etang J, Ekobo AS, Wondji CS. Review of malaria situation in Cameroon: technical viewpoint on challenges and prospects for disease elimination. Parasit Vectors 2019; 12:501. [PMID: 31655608 PMCID: PMC6815446 DOI: 10.1186/s13071-019-3753-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/18/2019] [Indexed: 11/30/2022] Open
Abstract
Malaria still has a devastating impact on public health and welfare in Cameroon. Despite the increasing number of studies conducted on disease prevalence, transmission patterns or treatment, there are to date, not enough studies summarising findings from previous works in order to identify gaps in knowledge and areas of interest where further evidence is needed to drive malaria elimination efforts. The present study seeks to address these gaps by providing a review of studies conducted so far on malaria in Cameroon since the 1940s to date. Over 250 scientific publications were consulted for this purpose. Although there has been increased scale-up of vector control interventions which significantly reduced the morbidity and mortality to malaria across the country from a prevalence of 41% of the population reporting at least one malaria case episode in 2000 to a prevalence of 24% in 2017, the situation is not yet under control. There is a high variability in disease endemicity between epidemiological settings with prevalence of Plasmodium parasitaemia varying from 7 to 85% in children aged 6 months to 15 years after long-lasting insecticidal nets (LLINs) scale-up. Four species of Plasmodium have been recorded across the country: Plasmodium falciparum, P. malariae, P. ovale and P. vivax. Several primate-infecting Plasmodium spp. are also circulating in Cameroon. A decline of artemisinin-based combinations therapeutic efficacy from 97% in 2006 to 90% in 2016 have been reported. Several mutations in the P. falciparum chloroquine resistance (Pfcrt) and P. falciparum multidrug resistance 1 (Pfmdr1) genes conferring resistance to either 4-amino-quinoleine, mefloquine, halofanthrine and quinine have been documented. Mutations in the Pfdhfr and Pfdhps genes involved in sulfadoxine-pyrimethamine are also on the rise. No mutation associated with artemisinin resistance has been recorded. Sixteen anopheline species contribute to malaria parasite transmission with six recognized as major vectors: An. gambiae, An. coluzzii, An. arabiensis, An. funestus, An. nili and An. moucheti. Studies conducted so far, indicated rapid expansion of DDT, pyrethroid and carbamate resistance in An. gambiae, An. coluzzii, An. arabiensis and An. funestus threatening the performance of LLINs. This review highlights the complex situation of malaria in Cameroon and the need to urgently implement and reinforce integrated control strategies in different epidemiological settings, as part of the substantial efforts to consolidate gains and advance towards malaria elimination in the country.
Collapse
Affiliation(s)
- Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288 Yaoundé, Cameroun
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
- Vector Biology Liverpool School of Tropical medicine Pembroke Place, Liverpool, UK
| | - Cyrille Ndo
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Flobert Njiokou
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Jude D. Bigoga
- Laboratory for Vector Biology and control, National Reference Unit for Vector Control, The Biotechnology Center, Nkolbisson-University of Yaounde I, P.O. Box 3851, Messa, Yaounde, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | - Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288 Yaoundé, Cameroun
| | - Josiane Etang
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288 Yaoundé, Cameroun
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
- Institute for Insect Biotechnology, Justus Liebig University Gießen, Winchester Str. 2, 35394 Gießen, Germany
| | - Albert Same Ekobo
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Charles S. Wondji
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
- Vector Biology Liverpool School of Tropical medicine Pembroke Place, Liverpool, UK
| |
Collapse
|
23
|
Djamouko-Djonkam L, Mounchili-Ndam S, Kala-Chouakeu N, Nana-Ndjangwo SM, Kopya E, Sonhafouo-Chiana N, Talipouo A, Ngadjeu CS, Doumbe-Belisse P, Bamou R, Toto JC, Tchuinkam T, Wondji CS, Antonio-Nkondjio C. Spatial distribution of Anopheles gambiae sensu lato larvae in the urban environment of Yaoundé, Cameroon. Infect Dis Poverty 2019; 8:84. [PMID: 31594541 PMCID: PMC6784347 DOI: 10.1186/s40249-019-0597-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022] Open
Abstract
Background The rapid and unplanned urbanization of African cities is considered to increase the risk of urban malaria transmission. The present study objective was to assess factors influencing the spatio-temporal distribution of Anopheles gambiae s.l. larvae in the city of Yaoundé, Cameroon. Methods All water bodies were checked once every 2 months for the presence of mosquito larvae from March 2017 to May 2018 in 32 districts of Yaoundé. Physico-chemical characteristics including the size, depth, turbidity, pH, temperature, conductivity, sulfates, organophosphates, hydrogen peroxide (H2O2), conductivity, iron and calcium were recorded and analyzed according to anopheline larvae presence or absence. High resolution satellite images from landsat sentinel Enhanced Thematic Mapper were used for spatial mapping of both field and environmental variables. Bivariate and multivariate logistic regression models were used to identify variables closely associated with anopheline larvae distribution. Results A total of 18 696 aquatic habitats were checked and only 2942 sites (15.7%) contained anopheline larvae. A high number of sites with anopheline larvae (≥ 69%) presented late instar larvae (L3, L4 and pupae). Anopheline mosquito larvae were sampled from a variety of breeding sites including puddles (51.6%), tire prints (12.9%), wells (11.7%) and drains (11.3%). Bivariate logistic regression analyses associated anopheline larvae presence with the absence of predators, absence of algae, absence of vegetation and depth of less than 1 m. Conductivity, turbidity, organophosphates, H2O2 and temperature were significantly high in breeding sites with anopheline larvae than in breeding sites without these larvae (P < 0.1). Anopheline species collected included An. coluzzii (91.1%) and An. gambiae s.s. (8.9%). GIS mapping indicated a heterogeneous distribution of anopheline breeding habitats in the city of Yaoundé. Land cover analysis indicated high variability of the city of Yaoundé’s landscape. Conclusions The data confirms adaptation of An. gambiae s.l. to the urban domain in the city of Yaoundé and calls for urgent actions to improve malaria vector control.
Collapse
Affiliation(s)
- Landre Djamouko-Djonkam
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Souleman Mounchili-Ndam
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Nelly Kala-Chouakeu
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Stella Mariette Nana-Ndjangwo
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Edmond Kopya
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Nadége Sonhafouo-Chiana
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Health Sciences University of Buea, P.O. Box 63, Buea, Cameroon
| | - Abdou Talipouo
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Carmene Sandra Ngadjeu
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Patricia Doumbe-Belisse
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Roland Bamou
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Jean Claude Toto
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Timoléon Tchuinkam
- Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| | | | - Christophe Antonio-Nkondjio
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon. .,Vector Biology Liverpool School of Tropical medicine Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
24
|
Proesmans S, Katshongo F, Milambu J, Fungula B, Muhindo Mavoko H, Ahuka-Mundeke S, Inocêncio da Luz R, Van Esbroeck M, Ariën KK, Cnops L, De Smet B, Lutumba P, Van Geertruyden JP, Vanlerberghe V. Dengue and chikungunya among outpatients with acute undifferentiated fever in Kinshasa, Democratic Republic of Congo: A cross-sectional study. PLoS Negl Trop Dis 2019; 13:e0007047. [PMID: 31487279 PMCID: PMC6748445 DOI: 10.1371/journal.pntd.0007047] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 09/17/2019] [Accepted: 08/06/2019] [Indexed: 12/25/2022] Open
Abstract
Background Pathogens causing acute fever, with the exception of malaria, remain largely unidentified in sub-Saharan Africa, given the local unavailability of diagnostic tests and the broad differential diagnosis. Methodology We conducted a cross-sectional study including outpatient acute undifferentiated fever in both children and adults, between November 2015 and June 2016 in Kinshasa, Democratic Republic of Congo. Serological and molecular diagnostic tests for selected arboviral infections were performed on blood, including PCR, NS1-RDT, ELISA and IFA for acute, and ELISA and IFA for past infections. Results Investigation among 342 patients, aged 2 to 68 years (mean age of 21 years), with acute undifferentiated fever (having no clear focus of infection) revealed 19 (8.1%) acute dengue–caused by DENV-1 and/or DENV-2 –and 2 (0.9%) acute chikungunya infections. Furthermore, 30.2% and 26.4% of participants had been infected in the past with dengue and chikungunya, respectively. We found no evidence of acute Zika nor yellow fever virus infections. 45.3% of patients tested positive on malaria Rapid Diagnostic Test, 87.7% received antimalarial treatment and 64.3% received antibacterial treatment. Discussion Chikungunya outbreaks have been reported in the study area in the past, so the high seroprevalence is not surprising. However, scarce evidence exists on dengue transmission in Kinshasa and based on our data, circulation is more important than previously reported. Furthermore, our study shows that the prescription of antibiotics, both antibacterial and antimalarial drugs, is rampant. Studies like this one, elucidating the causes of acute fever, may lead to a more considerate and rigorous use of antibiotics. This will not only stem the ever-increasing problem of antimicrobial resistance, but will–ultimately and hopefully–improve the clinical care of outpatients in low-resource settings. Trial registration ClinicalTrials.gov NCT02656862. Malaria remains one of the most important causes of fever in sub-Saharan Africa. However, its share is declining, since the diagnosis and treatment of malaria have improved significantly over the years. Hence leading to an increase in the number of patients presenting with non-malarial fever. Often, obvious clinical signs and symptoms like cough or diarrhea are absent, probing the question: “What causes the fever?” Previous studies have shown that the burden of arboviral infections–like dengue and chikungunya–in sub-Saharan Africa is underestimated, which is why we screened for four common arboviral infections in patients presenting with ‘undifferentiated fever’ at an outpatient clinic in suburban Kinshasa, Democratic Republic of Congo. Among the patients tested, we found that one in ten presented with an acute arboviral infection and that almost one in three patients had been infected in the past. These findings suggest that clinicians should think about arboviral infections more often, thereby refraining from the prescription of antibiotics, a practice increasingly problematic given the global rise of antimicrobial resistance.
Collapse
Affiliation(s)
| | - Freddy Katshongo
- Institut Supérieur des Techniques Médicales, Kinshasa, Democratic Republic of Congo
| | - John Milambu
- Centre Hospitalier Lisungi, Kinshasa, Democratic Republic of Congo
| | - Blaise Fungula
- Centre Hospitalier Lisungi, Kinshasa, Democratic Republic of Congo
| | - Hypolite Muhindo Mavoko
- University of Antwerp, Antwerp, Belgium.,Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Steve Ahuka-Mundeke
- Université de Kinshasa, Kinshasa, Democratic Republic of Congo.,Institut National de Reserche Biomédicale, Kinshasa, Democratic Republic of Congo
| | | | | | - Kevin K Ariën
- University of Antwerp, Antwerp, Belgium.,Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | - Pascal Lutumba
- Université de Kinshasa, Kinshasa, Democratic Republic of Congo.,Institut National de Reserche Biomédicale, Kinshasa, Democratic Republic of Congo
| | | | | |
Collapse
|
25
|
Nurtop E, Moyen N, Dzia-Lepfoundzou A, Dimi Y, Ninove L, Drexler JF, Gallian P, de Lamballerie X, Priet S. A Report of Zika Virus Seroprevalence in Republic of the Congo. Vector Borne Zoonotic Dis 2019; 20:40-42. [PMID: 31448988 DOI: 10.1089/vbz.2019.2466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Zika virus (ZIKV) is an arthropod-borne RNA virus (arbovirus), belonging to the Spondweni serogroup. ZIKV was first described in Africa in 1947 and remained sporadic until Micronesia outbreak in 2007, which was followed by outbreaks in the Pacific Islands, Latin America, and the Caribbean. Subsequent to the epidemics, ZIKV revealed its severity as virus was sexually transmissible, and it was associated with serious fetal and neurological complications. ZIKV originated from Africa; however, little is known about the epidemiology of the virus in African populations. Following a recent study in Cameroon that evidenced low ZIKV epidemiology associated with a presumptive (peri-)sylvatic transmission, we performed a seroepidemiological study in Republic of the Congo, neighbor of Cameroon. To accomplish this, 386 serum specimens from volunteer blood donors collected in 2011 from rural and urban areas of Republic of the Congo were tested with ZIKV-specific methodology; primary screening with anti-NS1 ZIKV IgG ELISA followed by confirmation with cytopathic effect (CPE)-based virus neutralization test (VNT). ZIKV seropositivity was determined as low as 1.8%, varying slightly between urban and rural areas (1.7% and 3.6%). These results demonstrate that the majority of the population of Republic of the Congo is immunologically naïve against ZIKV with a presumptive (peri-)sylvatic transmission cycle, which emphasizes the importance of surveillance studies in Africa.
Collapse
Affiliation(s)
- Elif Nurtop
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Nanikaly Moyen
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | | | - Yannick Dimi
- Centre National de Transfusion Sanguine, Brazzaville, Republic of the Congo
| | - Laetitia Ninove
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pierre Gallian
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France.,Laboratoire de Virologie, Établissement Français du Sang Provence-Alpes Côte-d'Azur et Corse (EFS), Marseille, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Stéphane Priet
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| |
Collapse
|
26
|
Seruyange E, Ljungberg K, Muvunyi CM, Gahutu JB, Katare S, Nyamusore J, Gwon YD, Evander M, Norder H, Liljeström P, Bergström T. Seroreactivity to Chikungunya and West Nile Viruses in Rwandan Blood Donors. Vector Borne Zoonotic Dis 2019; 19:731-740. [PMID: 31246538 DOI: 10.1089/vbz.2018.2393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Introduction: Chikungunya virus (CHIKV) and West Nile virus (WNV) have previously been reported from several African countries, including those bordering Rwanda where they may have originated. However, there have been no serosurveillance reports from Rwanda regarding these two viral pathogens. In this article, we present the first study of immunoglobulin G (IgG) seroreactivity of CHIKV and WNV in Rwandan blood donor samples. Methods: Blood donors from Rwanda (n = 874) and Sweden (n = 199) were tested for IgG reactivity against CHIKV, using an in-house enzyme-linked immunosorbent assay with the E1 envelope protein fused with p62 as antigen, and against WNV using a commercial kit. Data on mosquito distribution were obtained from the 2012 assessment of yellow fever virus circulation in Rwanda. Results: Seroreactivity to CHIKV was high in Rwanda (63.0%), when compared with Swedish donors, where only 8.5% were IgG positive. However, a cross-reactivity to O'nyong'nyong virus in neutralization test was noted in Rwandan donors. No significant difference in WNV seroreactivity was found (10.4% for Rwandan and 14.1% for Swedish donors). The relatively high seroreactivity to WNV among Swedish donors could partly be explained by cross-reactivity with tick-borne encephalitis virus prevalent in Sweden. Donors from the Eastern Province of Rwanda had the highest IgG reactivity to the two investigated viruses (86.7% for CHIKV and 33.3% for WNV). Five genera of mosquitoes were found in Rwanda where Culex was the most common (82.5%). The vector of CHIKV, Aedes, accounted for 9.6% of mosquitoes and this species was most commonly found in the Eastern Province. Conclusions: Our results showed high seroreactivity to CHIKV in Rwandan donors. The highest IgG reactivity to CHIKV, and to WNV, was found in the Eastern Province, the area reporting the highest number of mosquito vectors for these two viruses. Infection control by eliminating mosquito-breeding sites in population-dense areas is recommended, especially in eastern Rwanda.
Collapse
Affiliation(s)
- Eric Seruyange
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.,Rwanda Military Hospital, Kigali, Rwanda.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Claude Mambo Muvunyi
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Jean Bosco Gahutu
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Swaibu Katare
- National Centre for Blood Transfusion, Rwanda Biomedical Centre, Kigali, Rwanda
| | - José Nyamusore
- Division of Epidemic Surveillance and Response, Rwanda Biomedical Center, Kigali, Rwanda
| | - Yong-Dae Gwon
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Heléne Norder
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
27
|
Tedjou AN, Kamgang B, Yougang AP, Njiokou F, Wondji CS. Update on the geographical distribution and prevalence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae), two major arbovirus vectors in Cameroon. PLoS Negl Trop Dis 2019; 13:e0007137. [PMID: 30883552 PMCID: PMC6438584 DOI: 10.1371/journal.pntd.0007137] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/28/2019] [Accepted: 01/07/2019] [Indexed: 01/02/2023] Open
Abstract
Introduction Arboviral diseases including dengue are increasingly spreading in the tropical/subtropical world including Africa. Updated knowledge on the distribution and abundance of the major vectors Aedes aegypti and Aedes albopictus constitutes crucial surveillance action to prepare African countries such as Cameroon for potential arbovirus outbreaks. Here, we present a nationwide survey in Cameroon to assess the current geographical distribution and prevalence of both vectors including a genetic diversity profiling of Ae. albopictus (invasive species) using mitochondrial DNA. Methods Immature stages of Aedes were collected between March and August 2017 in 29 localities across Cameroon following north-south and east-west transects. Larvae and pupae were collected from several containers in each location, reared to adult and morphologically identified. Genetic diversity of Ae. albopictus from 16 locations were analysed using Cytochrome Oxidase I gene (COI). Results In total, 30,381 immature stages of Aedes with an average of 646.40±414.21 per location were identified across the country comprising 69.3% of Ae. albopictus and 30.7% of Ae. aegypti. Analysis revealed that Ae. aegypti is still distributed nation widely whereas Ae. albopictus is limited to the southern part, around 6°4’N. However, Ae. albopictus is the most prevalent species in all southern locations where both species are sympatric except in Douala where Ae. aegypti is predominant. This suggests that factors such as climate, vegetation, and building density impact the distribution of both species in Cameroon. Mitochondrial DNA analysis revealed a low genetic diversity in Ae. albopictus populations with a major common haplotype resulting in low haplotype diversity ranging from 0.13 to 0.65 and 0.35 for the total sample. Similarly, low nucleotide diversity was also reported varying from 0.0000 to 0.0017 with an overall index of 0.0008. This low genetic polymorphism is consistent with the recent introduction of Ae. albopictus in Cameroon. Conclusion This updated distribution of arbovirus vectors across Cameroon will help in planning vector control programme against possible outbreak of arbovirus related diseases in the country. Aedes albopictus and Ae. aegypti are the most important arbovirus vectors worldwide. Ae. albopictus, native of Asia, was recorded for the first time in early 2000s in Cameroon, central Africa. Previous studies performed a decade ago in Cameroon showed that Ae. albopictus has a geographical distribution limited to the south under 6°N. Whereas the native species Ae. aegypti was present across the country. To update our knowledge in this regards, a nationwide survey was performed in Cameroon to assess the current geographical distribution and prevalence of both vectors including a genetic diversity profiling of Ae. albopictus (invasive species) using mitochondrial DNA. Analysis revealed that Ae. aegypti is still distributed nation widely whereas Ae. albopictus is limited to the southern part, around 6°4’N. However, Ae. albopictus is the most prevalent species in all southern locations where both species are sympatric except in Douala where Ae. aegypti is predominant. This suggests that factors such as climate, vegetation and building density impact the distribution of both species in Cameroon. Mitochondrial DNA analysis revealed a low genetic diversity in Ae. albopictus populations with a major common haplotype detected in almost all locations. This study provides the relevant data that can be helpful to establish the vector surveillance of epidemic arbovirus vectors across the country.
Collapse
Affiliation(s)
- Armel N. Tedjou
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Department of Animal Biology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Basile Kamgang
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- * E-mail:
| | - Aurélie P. Yougang
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Department of Animal Biology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Flobert Njiokou
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Department of Animal Biology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Charles S. Wondji
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
28
|
Simo Tchetgna H, Sem Ouilibona R, Nkili-Meyong AA, Caron M, Labouba I, Selekon B, Njouom R, Leroy EM, Nakoune E, Berthet N. Viral Exploration of Negative Acute Febrile Cases Observed during Chikungunya Outbreaks in Gabon. Intervirology 2019; 61:174-184. [PMID: 30625488 DOI: 10.1159/000495136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/28/2018] [Indexed: 11/19/2022] Open
Abstract
Non-malarial febrile illness outbreaks were documented in 2007 and 2010 in Gabon. After investigation, these outbreaks were attributed to the chikungunya and dengue viruses (CHIKV and DENV). However, for more than half of the samples analyzed, the causative agent was not identified. Given the geographical and ecological position of Gabon, where there is a great animal and microbial diversity, the circulation of other emerging viruses was suspected in these samples lacking aetiology. A total of 436 undiagnosed samples, collected between 2007 and 2013, and originating from 14 urban, suburban, and rural Gabonese locations were selected. These samples were used for viral isolation on newborn mice and VERO cells. In samples with signs of viral replication, cell supernatants and brain suspensions were used to extract nucleic acids and perform real-time RT-PCR targeting specific arboviruses, i.e., CHIKV, DENV, yellow fever, Rift Valley fever, and West Nile and Zika viruses. Virus isolation was conclusive for 43 samples either on newborn mice or by cell culture. Virus identification by RT-PCR led to the identification of CHIKV in 37 isolates. A total of 18 complete genomes and 19 partial sequences containing the E2 and E1 genes of CHIKV were sequenced using next-generation sequencing technology or the Sanger method. Phylogenetic analysis of the complete genomes showed that all the sequences belong to the East Central South Africa lineage. Furthermore, we identified 2 distinct clusters. The first cluster was made up of sequences from the western part of Gabon, whereas the second cluster was made up of sequences from the southern regions, reflecting the way CHIKV spread across the country following its initial introduction in 2007. Similar results were obtained when analyzing the CHIKV genes of the E2 and E1 structural proteins. Moreover, study of the mutations found in the E2 and E1 structural proteins revealed the presence of several mutations that facilitate the adaptation to the Aedes albopictus mosquito, such as E2 I211T and E1 A226V, in all the Gabonese CHIKV strains. Finally, sequencing of 6 additional viral isolates failed to lead to any conclusive identification.
Collapse
Affiliation(s)
| | | | | | - Melanie Caron
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Ingrid Labouba
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | | | | | - Eric M Leroy
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon.,Unité Mixte de Recherche Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (IRD 224 - CNRS 5290 - UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
| | | | - Nicolas Berthet
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon, .,Cellule d'Intervention Biologique d'Urgence, Unité Environnement et risques infectieux, Institut Pasteur, Paris, France, .,Centre National de Recherche Scientifique (CNRS) UMR3569, Paris, France,
| |
Collapse
|
29
|
Simo FBN, Bigna JJ, Well EA, Kenmoe S, Sado FBY, Weaver SC, Moundipa PF, Demanou M. Chikungunya virus infection prevalence in Africa: a contemporaneous systematic review and meta-analysis. Public Health 2019; 166:79-88. [PMID: 30468973 DOI: 10.1016/j.puhe.2018.09.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/20/2018] [Accepted: 09/27/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The (re)emergence of chikungunya virus (CHIKV) in Africa requires better knowledge on the epidemiology of CHIKV infection in the continent for efficient public health strategies. We aimed to describe the epidemiology of CHIKV infection in Africa, a neglected tropical disease (NTD). STUDY DESIGN This was a systematic review with meta-analysis of studies reporting CHIKV infection prevalence. We searched Embase, PubMed, Africa Journal Online and Global Index Medicus to identify observational studies published from January 2000 to September 2017. METHODS We used a random-effect model to pool the prevalence of CHIKV infections reported with their 95% confidence interval (CI). Heterogeneity was assessed via the Chi-squared test on Cochran's Q statistic. Review registration is in PROSPERO CRD42017080395. RESULTS A total of 39 studies (37,881 participants; 18 countries) were included. No study was reported from Southern Africa. Thirty-two (82.0%), seven (18.0%) and no studies had low, moderate and high risk of bias, respectively. Outside outbreak periods, the pooled immunoglobulin M (IgM) and immunoglobulin G (IgG) seroprevalence was 9.7% (95% CI 3.0-19.6; 16 studies) and 16.4% (95% CI 9.1-25.2; 23 studies), respectively. The IgM seroprevalence was lower in Northern Africa, and there was no difference for IgG prevalence across regions in Africa. The IgM and IgG seroprevalences were not different between acute and non-acute febrile participants. The seroprevalence was not associated with GPS coordinates (latitude, longitude and altitude). CONCLUSIONS Although considered a NTD, we find high prevalence of CHIKV infection in Africa. As such, chikungunya fever should deserve more attention from healthcare providers, researchers, policymakers and stakeholders from many sectors.
Collapse
Affiliation(s)
- F B N Simo
- Department of Virology, Reference Laboratory for Chikungunya and Dengue Viruses, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon; Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon.
| | - J J Bigna
- Department of Epidemiology and Public Health, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Street 2005, P.O. Box 1274, Yaoundé, Cameroon; School of Public Health, Faculty of Medicine, University of Paris Sud, 63 Rue Gabriel Péri, 94270, Le Kremlin-Bicêtre, France.
| | - E A Well
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, P.O. Box 1364, Yaoundé, Cameroon.
| | - S Kenmoe
- Department of Virology, Reference Laboratory for Chikungunya and Dengue Viruses, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon.
| | - F B Y Sado
- Department of Virology, Reference Laboratory for Chikungunya and Dengue Viruses, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon.
| | - S C Weaver
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - P F Moundipa
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon.
| | - M Demanou
- Department of Virology, Reference Laboratory for Chikungunya and Dengue Viruses, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon.
| |
Collapse
|
30
|
Kamgang B, Wilson-Bahun TA, Irving H, Kusimo MO, Lenga A, Wondji CS. Geographical distribution of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and genetic diversity of invading population of Ae. albopictus in the Republic of the Congo. Wellcome Open Res 2018; 3:79. [PMID: 30175244 PMCID: PMC6081977 DOI: 10.12688/wellcomeopenres.14659.3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2018] [Indexed: 01/01/2023] Open
Abstract
Background: The arbovirus vector,
Aedes albopictus, originating from Asia, has recently invaded African countries, including the Republic of the Congo, where it was associated with a chikungunya outbreak. Up until now, little was known about its distribution in relation to the native
Aedes aegypti and how the invasion will modify the epidemiology of arboviral diseases. Here, we assessed the current distribution of
Ae. albopictus and
Ae. aegypti in the Republic of the Congo and explored the genetic diversity of the invading species,
Ae. albopictus. Methods: Immature stages of
Aedes were collected in nine locations in the Republic of the Congo in 2017 following a north-south transect and reared to adult stage. Adults were morphologically identified, counted and grouped according to species and location. Genetic diversity of
Ae. albopictus was assessed by analyzing the cytochrome oxidase I (
COI) gene. Results: Ae. albopictus and
Ae. aegypti were found together across the country in all the locations investigated. The invasive species is predominant over the native species in all locations except Brazzaville, suggesting that
Ae. albopictus is displacing
Ae. aegypti across Congo. When comparing the species distributions across the two largest cities, Brazzaville and Pointe Noire,
Ae. albopictus was more prevalent than
Ae. aegypti in the suburbs whereas the opposite situation was reported in the city centre. Mitochondrial DNA analysis revealed very low genetic diversity of
Ae. albopictus with only three haplotypes recorded across the country supporting the recent introduction of this species in the Republic of the Congo. Phylogenetic tree analysis revealed that
Ae. albopictus from Congo originated from other tropical Asian countries such as China, likely as a result of increasing trade links. Conclusion: These findings are important for the implementation of vector control strategies and can serve as a foundation for further research on these vectors in the country.
Collapse
Affiliation(s)
- Basile Kamgang
- Medical Entomology, Centre for Research in Infectious Diseases, Yaounde, P.O. Box 13591, Cameroon
| | - Theodel A Wilson-Bahun
- Medical Entomology, Centre for Research in Infectious Diseases, Yaounde, P.O. Box 13591, Cameroon.,Faculty of Science and Technology, Marien Ngouabi University, Brazzaville, Congo
| | - Helen Irving
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Michael O Kusimo
- Medical Entomology, Centre for Research in Infectious Diseases, Yaounde, P.O. Box 13591, Cameroon
| | - Arsene Lenga
- Faculty of Science and Technology, Marien Ngouabi University, Brazzaville, Congo
| | - Charles S Wondji
- Medical Entomology, Centre for Research in Infectious Diseases, Yaounde, P.O. Box 13591, Cameroon.,Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
31
|
Mascarenhas M, Garasia S, Berthiaume P, Corrin T, Greig J, Ng V, Young I, Waddell L. A scoping review of published literature on chikungunya virus. PLoS One 2018; 13:e0207554. [PMID: 30496207 PMCID: PMC6264817 DOI: 10.1371/journal.pone.0207554] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Chikungunya virus (CHIKV) has caused several major epidemics globally over the last two decades and is quickly expanding into new areas. Although this mosquito-borne disease is self-limiting and is not associated with high mortality, it can lead to severe, chronic and disabling arthritis, thereby posing a heavy burden to healthcare systems. The two main vectors for CHIKV are Aedes aegypti and Aedes albopictus (Asian tiger mosquito); however, many other mosquito species have been described as competent CHIKV vectors in scientific literature. With climate change, globalization and unfettered urban planning affecting many areas, CHIKV poses a significant public health risk to many countries. A scoping review was conducted to collate and categorize all pertinent information gleaned from published scientific literature on a priori defined aspects of CHIKV and its competent vectors. After developing a sensitive and specific search algorithm for the research question, seven databases were searched and data was extracted from 1920 relevant articles. Results show that CHIKV research is reported predominantly in areas after major epidemics have occurred. There has been an upsurge in CHIKV publications since 2011, especially after first reports of CHIKV emergence in the Americas. A list of hosts and vectors that could potentially be involved in the sylvatic and urban transmission cycles of CHIKV has been compiled in this scoping review. In addition, a repository of CHIKV mutations associated with evolutionary fitness and adaptation has been created by compiling and characterizing these genetic variants as reported in scientific literature.
Collapse
Affiliation(s)
- Mariola Mascarenhas
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Sophiya Garasia
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Philippe Berthiaume
- National Microbiology Laboratory at St. Hyacinthe, Public Health Agency of Canada, St. Hyacinthe, Quebec, Canada
| | - Tricia Corrin
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Judy Greig
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Victoria Ng
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Ian Young
- School of Occupational and Public Health, Ryerson University, Toronto, Ontario, Canada
| | - Lisa Waddell
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| |
Collapse
|
32
|
Weimer A, Tagny CT, Tapko JB, Gouws C, Tobian AAR, Ness PM, Bloch EM. Blood transfusion safety in sub-Saharan Africa: A literature review of changes and challenges in the 21st century. Transfusion 2018; 59:412-427. [PMID: 30615810 DOI: 10.1111/trf.14949] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Access to a safe, adequate blood supply has proven challenging in sub-Saharan Africa, where systemic deficiencies spanning policy, collections, testing, and posttransfusion surveillance have long been recognized. Progress in transfusion safety in the early 2000s was in large part due to intervention by the World Health Organization and other foreign governmental bodies, coupled with an influx of external funding. STUDY DESIGN AND METHODS A review of the literature was conducted to identify articles pertaining to blood safety in sub-Saharan Africa from January 2009 to March 2018. The search was directed toward addressing the major elements of the blood safety chain, in the countries comprising the World Health Organization African region. Of 1380 articles, 531 met inclusion criteria and 136 articles were reviewed. RESULTS External support has been associated with increased recruitment of voluntary donors and expanded testing for the major transfusion-transmitted infections (TTIs). However, the rates of TTIs among donors remain high. Regional education and training initiatives have been implemented, and a tiered accreditation process has been adopted. However, a general decline in funding for transfusion safety (2009 onwards) has strained the ability to maintain or improve transfusion-related services. Critical areas of need include data collection and dissemination, epidemiological surveillance for TTIs, donor recruitment, quality assurance and oversight (notably laboratory testing), and hemovigilance. CONCLUSION Diminishing external support has been challenging for regional transfusion services. Critical areas of deficiency in regional blood transfusion safety remain. Nonetheless, substantive gains in education, training, and accreditation suggest durable gains in regional capacity.
Collapse
Affiliation(s)
- A Weimer
- Johns Hopkins University School of Medicine, Department of Pathology, Baltimore, Baltimore, MD
| | - C T Tagny
- Hematology and Blood Transfusion service, University Teaching Hospital, Yaoundé, Cameroon
| | - J B Tapko
- African Society of Blood Transfusion, Yaoundé, Cameroon
| | - C Gouws
- Blood Transfusion Service of Namibia, Windhoek, Namibia
| | - A A R Tobian
- Johns Hopkins University School of Medicine, Department of Pathology, Baltimore, Baltimore, MD
| | - P M Ness
- Johns Hopkins University School of Medicine, Department of Pathology, Baltimore, Baltimore, MD
| | - E M Bloch
- Johns Hopkins University School of Medicine, Department of Pathology, Baltimore, Baltimore, MD
| |
Collapse
|
33
|
Kamgang B, Wilson-Bahun TA, Irving H, Kusimo MO, Lenga A, Wondji CS. Geographical distribution of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and genetic diversity of invading population of Ae. albopictus in the Republic of the Congo. Wellcome Open Res 2018; 3:79. [DOI: 10.12688/wellcomeopenres.14659.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2018] [Indexed: 11/20/2022] Open
Abstract
Background:The arbovirus vector,Aedes albopictus,originating from Asia, has recently invaded African countries, including the Republic of the Congo, where it was associated with a chikungunya outbreak. Up until now, little was known about its distribution in relation to the nativeAedes aegyptiand how the invasion will modify the epidemiology of arboviral diseases. Here, we assessed the current distribution ofAe. albopictusandAe. aegyptiin the Republic of the Congo and explored the genetic diversity of the invading species,Ae. albopictus.Methods:Immature stages ofAedeswere collected in nine locations in the Republic of the Congo in 2017 following a north-south transect and reared to adult stage. Adults were morphologically identified, counted and grouped according to species and location. Genetic diversity ofAe. albopictuswas assessed by analyzing the cytochrome oxidase I (COI) gene.Results:Ae.albopictusandAe. aegyptiwere found together across the country in all the locations investigated. The invasive species is predominant over the native species in all locations except Brazzaville, suggesting thatAe. albopictusis displacingAe. aegyptiacross Congo. When comparing the species distributions across the two largest cities, Brazzaville and Pointe Noire,Ae. albopictuswas more prevalent thanAe. aegyptiin the suburbs whereas the opposite situation was reported in the city centre. Mitochondrial DNA analysis revealed very low genetic diversity ofAe. albopictuswith only three haplotypes recorded across the country supporting the recent introduction of this species in the Republic of the Congo. Phylogenetic tree analysis revealed thatAe. albopictusfrom Congo originated from other tropical Asian countries such as China, likely as a result of increasing trade links.Conclusion:These findings are important for the implementation of vector control strategies and can serve as a foundation for further research on these vectors in the country.
Collapse
|
34
|
Fritzell C, Rousset D, Adde A, Kazanji M, Van Kerkhove MD, Flamand C. Current challenges and implications for dengue, chikungunya and Zika seroprevalence studies worldwide: A scoping review. PLoS Negl Trop Dis 2018; 12:e0006533. [PMID: 30011271 PMCID: PMC6062120 DOI: 10.1371/journal.pntd.0006533] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/26/2018] [Accepted: 05/16/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Arboviral infections are a public health concern and an escalating problem worldwide. Estimating the burden of these diseases represents a major challenge that is complicated by the large number of unapparent infections, especially those of dengue fever. Serological surveys are thus required to identify the distribution of these diseases and measure their impact. Therefore, we undertook a scoping review of the literature to describe and summarize epidemiological practices, findings and insights related to seroprevalence studies of dengue, chikungunya and Zika virus, which have rapidly expanded across the globe in recent years. METHODOLOGY/PRINCIPAL FINDINGS Relevant studies were retrieved through a literature search of MEDLINE, WHOLIS, Lilacs, SciELO and Scopus (2000 to 2018). In total, 1389 publications were identified. Studies addressing the seroprevalence of dengue, chikungunya and/or Zika written in English or French and meeting the inclusion and exclusion criteria were included. In total, 147 studies were included, from which 185 data points were retrieved, as some studies used several different samples. Most of the studies were exclusively conducted on dengue (66.5%), but 16% were exclusively conducted on chikungunya, and 7 were exclusively conducted on Zika; the remainder were conducted on multiple arboviruses. A wide range of designs were applied, but most studies were conducted in the general population (39%) and in households (41%). Although several assays were used, enzyme-linked immunosorbent assays (ELISAs) were the predominant test used (77%). The temporal distribution of chikungunya studies followed the virus during its rapid expansion since 2004. The results revealed heterogeneity of arboviruses seroprevalence between continents and within a given country for dengue, chikungunya and Zika viruses, ranging from 0 to 100%, 76% and 73% respectively. CONCLUSIONS/SIGNIFICANCE Serological surveys provide the most direct measurement for defining the immunity landscape for infectious diseases, but the methodology remains difficult to implement. Overall, dengue, chikungunya and Zika serosurveys followed the expansion of these arboviruses, but there remain gaps in their geographic distribution. This review addresses the challenges for researchers regarding study design biases. Moreover, the development of reliable, rapid and affordable diagnosis tools represents a significant issue concerning the ability of seroprevalence surveys to differentiate infections when multiple viruses co-circulate.
Collapse
Affiliation(s)
- Camille Fritzell
- Epidemiology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Dominique Rousset
- National Reference Laboratory for Arboviruses, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Antoine Adde
- Epidemiology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Mirdad Kazanji
- Epidemiology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | | | - Claude Flamand
- Epidemiology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana
| |
Collapse
|
35
|
Kamgang B, Wilson-Bahun TA, Irving H, Kusimo MO, Lenga A, Wondji CS. Geographical distribution of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and genetic diversity of invading population of Ae. albopictus in the Republic of the Congo. Wellcome Open Res 2018; 3:79. [DOI: 10.12688/wellcomeopenres.14659.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2018] [Indexed: 11/20/2022] Open
Abstract
Background: The arbovirus vector, Aedes albopictus, originating from Asia, has recently invaded African countries, including the Republic of the Congo, where it was associated with a chikungunya outbreak. Up until now, little was known about its distribution in relation to the native Aedes aegypti and how the invasion will modify the epidemiology of arboviral diseases. Here, we assessed the current distribution of Ae. albopictus and Ae. aegypti in the Republic of the Congo and explored the genetic diversity of the invading species, Ae. albopictus. Methods: Immature stages of Aedes were collected in nine locations in the Republic of the Congo in 2017 following a north-south transect and reared to adult stage. Adults were morphologically identified, counted and grouped according to species and location. Genetic diversity of Ae. albopictus was assessed by analyzing the cytochrome oxidase I (COI) gene. Results: Ae. albopictus and Ae. aegypti were found together across the country in all the locations investigated. The invasive species is predominant over the native species in all locations except Brazzaville, suggesting that Ae. albopictus is displacing Ae. aegypti across Congo. When comparing the species distributions across the two largest cities, Brazzaville and Pointe Noire, Ae. albopictus was more prevalent than Ae. aegypti in the suburbs whereas the opposite situation was reported in the city centre. Mitochondrial DNA analysis revealed very low genetic diversity of Ae. albopictus with only three haplotypes recorded across the country supporting the recent introduction of this species in the Republic of the Congo. Phylogenetic tree analysis revealed that Ae. albopictus from Congo originated from other tropical Asian countries such as China, likely as a result of increasing trade links. Conclusion: These findings are important for the implementation of vector control strategies and can serve as a foundation for further research on these vectors in the country.
Collapse
|
36
|
Makiala-Mandanda S, Ahuka-Mundeke S, Abbate JL, Pukuta-Simbu E, Nsio-Mbeta J, Berthet N, Leroy EM, Becquart P, Muyembe-Tamfum JJ. Identification of Dengue and Chikungunya Cases Among Suspected Cases of Yellow Fever in the Democratic Republic of the Congo. Vector Borne Zoonotic Dis 2018; 18:364-370. [PMID: 29768102 DOI: 10.1089/vbz.2017.2176] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
For more than 95% of acute febrile jaundice cases identified through surveillance for yellow fever, a reemerging arthropod-borne viral disease, no etiological exploration is ever done. The aim of this study was to test for other arthropod-borne viruses that can induce the same symptoms in patients enrolled in the yellow fever surveillance in the Democratic Republic of the Congo (DRC). Of 652 patients included in the surveillance of yellow fever in DRC from January 2003 to January 2012, 453 patients that tested negative for yellow fever virus (YFV) immunoglobulin M (IgM) antibodies were selected for the study. Real-time polymerase chain reaction was performed for the detection of dengue, West Nile, Chikungunya, O'nyong-nyong, Rift Valley fever, Zika, and YFV. The average age of patients was 22.1 years. We reported 16 cases (3.5%; confidence interval [CI]: 0.8-5.2) of dengue (serotypes 1 and 2) and 2 cases (0.4%; CI: 0.0-1.0) of Chikungunya. Three patients were co-infected with the two serotypes of dengue virus. Three cases of dengue were found in early July 2010 from the city of Titule (Oriental province) during a laboratory-confirmed outbreak of yellow fever, suggesting simultaneous circulation of dengue and yellow fever viruses. This study showed that dengue and Chikungunya viruses are potential causes of acute febrile jaundice in the DRC and highlights the need to consider dengue and Chikungunya diagnosis in the integrated disease surveillance and response program in the DRC. A prospective study is necessary to establish the epidemiology of these diseases.
Collapse
Affiliation(s)
- Sheila Makiala-Mandanda
- 1 Centre International de Recherches Médicales de Franceville (CIRMF) , Franceville, Gabon .,2 Département de Microbiologie, Cliniques Universitaires de Kinshasa (CUK) , Kinshasa, République Démocratique du Congo
| | - Steve Ahuka-Mundeke
- 2 Département de Microbiologie, Cliniques Universitaires de Kinshasa (CUK) , Kinshasa, République Démocratique du Congo.,3 Institut National de Recherche Biomédicale (INRB) , Kinshasa, République Démocratique du Congo
| | - Jessica L Abbate
- 4 Institut de Recherche pour le Développement (IRD) , Montpellier, France .,5 UMR UMMISCO (UMI 209 IRD-UPMC) , Bondy, France
| | - Elisabeth Pukuta-Simbu
- 3 Institut National de Recherche Biomédicale (INRB) , Kinshasa, République Démocratique du Congo
| | - Justus Nsio-Mbeta
- 6 Direction de Lutte Contre la Maladie (DLM) , Kinshasa, République Démocratique du Congo
| | - Nicolas Berthet
- 1 Centre International de Recherches Médicales de Franceville (CIRMF) , Franceville, Gabon .,7 Centre National de Recherche Scientifique (CNRS) UMR3569 , Paris, France .,8 Unité Environnement et Risques Infectieux, Institut Pasteur, Cellule d'Intervention Biologique d'Urgence , Paris, France
| | - Eric Maurice Leroy
- 1 Centre International de Recherches Médicales de Franceville (CIRMF) , Franceville, Gabon .,4 Institut de Recherche pour le Développement (IRD) , Montpellier, France
| | - Pierre Becquart
- 4 Institut de Recherche pour le Développement (IRD) , Montpellier, France
| | - Jean-Jacques Muyembe-Tamfum
- 2 Département de Microbiologie, Cliniques Universitaires de Kinshasa (CUK) , Kinshasa, République Démocratique du Congo.,3 Institut National de Recherche Biomédicale (INRB) , Kinshasa, République Démocratique du Congo
| |
Collapse
|
37
|
Galán-Huerta K, Martínez-Landeros E, Delgado-Gallegos J, Caballero-Sosa S, Malo-García I, Fernández-Salas I, Ramos-Jiménez J, Rivas-Estilla A. Molecular and Clinical Characterization of Chikungunya Virus Infections in Southeast Mexico. Viruses 2018; 10:248. [DOI: https:/doi.org/10.3390/v10050248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
38
|
Molecular and Clinical Characterization of Chikungunya Virus Infections in Southeast Mexico. Viruses 2018; 10:v10050248. [PMID: 29747416 PMCID: PMC5977241 DOI: 10.3390/v10050248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 12/28/2022] Open
Abstract
Chikungunya fever is an arthropod-borne infection caused by Chikungunya virus (CHIKV). Even though clinical features of Chikungunya fever in the Mexican population have been described before, there is no detailed information. The aim of this study was to perform a full description of the clinical features in confirmed Chikungunya-infected patients and describe the molecular epidemiology of CHIKV. We evaluated febrile patients who sought medical assistance in Tapachula, Chiapas, Mexico, from June through July 2015. Infection was confirmed with molecular and serological methods. Viruses were isolated and the E1 gene was sequenced. Phylogeny reconstruction was inferred using maximum-likelihood and maximum clade credibility approaches. We studied 52 patients with confirmed CHIKV infection. They were more likely to have wrist, metacarpophalangeal, and knee arthralgia. Two combinations of clinical features were obtained to differentiate between Chikungunya fever and acute undifferentiated febrile illness. We obtained 10 CHIKV E1 sequences that grouped with the Asian lineage. Seven strains diverged from the formerly reported. Patients infected with the divergent CHIKV strains showed a broader spectrum of clinical manifestations. We defined the complete clinical features of Chikungunya fever in patients from Southeastern Mexico. Our results demonstrate co-circulation of different CHIKV strains in the state of Chiapas.
Collapse
|
39
|
Calba C, Guerbois-Galla M, Franke F, Jeannin C, Auzet-Caillaud M, Grard G, Pigaglio L, Decoppet A, Weicherding J, Savaill MC, Munoz-Riviero M, Chaud P, Cadiou B, Ramalli L, Fournier P, Noël H, De Lamballerie X, Paty MC, Leparc-Goffart I. Preliminary report of an autochthonous chikungunya outbreak in France, July to September 2017. ACTA ACUST UNITED AC 2018; 22. [PMID: 29019313 PMCID: PMC5709952 DOI: 10.2807/1560-7917.es.2017.22.39.17-00647] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In August 2017, an autochthonous chikungunya case was reported in south-east France. By mid-September, eight additional autochthonous cases were found in the index case's neighbourhood, where the chikungunya virus vector Aedes albopictus was observed. Genomic characterisation identified an East-Central South African (ECSA) lineage strain, probably from the Central African region and carrying an adaptive mutation facilitating transmission by Ae. albopictus. The event confirms we need early case detection and response to contain chikungunya in Europe.
Collapse
Affiliation(s)
- Clémentine Calba
- Regional office of the French National Public Health Agency (Cire Paca-Corse), Marseille, France
| | - Mathilde Guerbois-Galla
- UMR EPV 'Émergence des Pathologies Virales', Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection, Marseille, France.,Armed Forces Biomedical Research Institute, National Reference Laboratory for arboviruses, Marseille, France
| | - Florian Franke
- Regional office of the French National Public Health Agency (Cire Paca-Corse), Marseille, France
| | - Charles Jeannin
- Entente Interdépartementale pour la Démoustication du littoral Méditerranéen (EID Méditerranée), Public mosquito control operator, Montpellier, France
| | | | - Gilda Grard
- UMR EPV 'Émergence des Pathologies Virales', Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection, Marseille, France.,Armed Forces Biomedical Research Institute, National Reference Laboratory for arboviruses, Marseille, France
| | - Lucette Pigaglio
- Regional Health Agency of Provence-Alpes-Côte d'Azur (ARS Paca), Toulon, France
| | - Anne Decoppet
- Regional Health Agency of Provence-Alpes-Côte d'Azur (ARS Paca), Toulon, France
| | - Joel Weicherding
- Regional Health Agency of Provence-Alpes-Côte d'Azur (ARS Paca), Toulon, France
| | | | - Manuel Munoz-Riviero
- Regional Health Agency of Provence-Alpes-Côte d'Azur (ARS Paca), Marseille, France
| | - Pascal Chaud
- Regional office of the French National Public Health Agency (Cire Paca-Corse), Marseille, France
| | - Bernard Cadiou
- Entente Interdépartementale pour la Démoustication du littoral Méditerranéen (EID Méditerranée), Public mosquito control operator, Le Cannet-des-Maures, France
| | - Lauriane Ramalli
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.,Regional office of the French National Public Health Agency (Cire Paca-Corse), Marseille, France
| | | | - Harold Noël
- French National Public Health Agency (Santé publique France), Saint-Maurice, France
| | - Xavier De Lamballerie
- UMR EPV 'Émergence des Pathologies Virales', Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection, Marseille, France
| | - Marie-Claire Paty
- French National Public Health Agency (Santé publique France), Saint-Maurice, France
| | - Isabelle Leparc-Goffart
- UMR EPV 'Émergence des Pathologies Virales', Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection, Marseille, France.,Armed Forces Biomedical Research Institute, National Reference Laboratory for arboviruses, Marseille, France
| |
Collapse
|
40
|
Chikungunya Virus Strains Show Lineage-Specific Variations in Virulence and Cross-Protective Ability in Murine and Nonhuman Primate Models. mBio 2018; 9:mBio.02449-17. [PMID: 29511072 PMCID: PMC5844994 DOI: 10.1128/mbio.02449-17] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging arbovirus capable of causing explosive outbreaks of febrile illness, polyarthritis, and polyarthralgia, inflicting severe morbidity on affected populations. CHIKV can be genetically classified into 3 major lineages: West African (WA); East, Central, and South African (ECSA); Indian Ocean (IOL); and Asian. Additionally, the Indian Ocean (IOL) sublineage emerged within the ECSA clade and the Asian/American sublineage emerged within the Asian clade. While differences in epidemiological and pathological characteristics among outbreaks involving different CHIKV lineages and sublineages have been suggested, few targeted investigations comparing lineage virulence levels have been reported. We compared the virulence levels of CHIKV isolates representing all major lineages and sublineages in the type I interferon receptor-knockout A129 mouse model and found lineage-specific differences in virulence. We also evaluated the cross-protective efficacy of the IOL-derived, live-attenuated vaccine strain CHIKV/IRESv1 against the Asian/American CHIKV isolate YO123223 in both murine and nonhuman primate models, as well as the WA strain SH2830 in a murine model. The CHIKV/IRES vaccine provided protection both in mice and in nonhuman primate cohorts against Caribbean strain challenge and protected mice against WA challenge. Taken together, our data suggest that Asian/American CHIKV strains are less virulent than those in the Asian, ECSA, and WA lineages and that despite differences in virulence, IOL-based vaccine strains offer robust cross-protection against strains from other lineages. Further research is needed to elucidate the genetic basis for variation in CHIKV virulence in the A129 mouse model and to corroborate this variation with human pathogenicity. Chikungunya virus (CHIKV) is a reemerging human pathogen capable of causing debilitating and disfiguring polyarthritis, which can last for months to years after initial fever has resolved. There are four major genetic lineages of CHIKV, as well as two recently emerged sublineages, none of which have been evaluated for differences in virulence. Moreover, the ability of chikungunya vaccines to cross-protect against heterologous CHIKV lineages has not been explored. Therefore, we sought to compare the virulence levels among CHIKV lineages, as well as to evaluate the cross-protective efficacy of the CHIKV/IRESv1 vaccine candidate, in two different models of CHIKV infection. Our results suggest that, although significant differences in virulence were observed among CHIKV lineages, the CHIKV/IRESv1 vaccine elicits cross-lineage protective immunity. These findings provide valuable information for predicting the severity of CHIKV-associated morbidity in future outbreaks, as well as vaccine development considerations.
Collapse
|
41
|
Takaya S, Kutsuna S, Nakayama E, Taniguchi S, Tajima S, Katanami Y, Yamamoto K, Takeshita N, Hayakawa K, Kato Y, Kanagawa S, Ohmagari N. Chikungunya Fever in Traveler from Angola to Japan, 2016. Emerg Infect Dis 2018; 23:156-158. [PMID: 27983938 PMCID: PMC5176218 DOI: 10.3201/eid2301.161395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Simultaneous circulation of multiple arboviruses presents diagnostic challenges. In May 2016, chikungunya fever was diagnosed in a traveler from Angola to Japan. Travel history, incubation period, and phylogenetic analysis indicated probable infection acquisition in Angola, where a yellow fever outbreak is ongoing. Thus, local transmission of chikungunya virus probably also occurs in Angola.
Collapse
|
42
|
Schwameis M, Buchtele N, Wadowski PP, Schoergenhofer C, Jilma B. Chikungunya vaccines in development. Hum Vaccin Immunother 2017; 12:716-31. [PMID: 26554522 PMCID: PMC4964651 DOI: 10.1080/21645515.2015.1101197] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chikungunya virus has become a global health threat, spreading to the industrial world of Europe and the Americas; no treatment or prophylactic vaccine is available. Since the late 1960s much effort has been put into the development of a vaccine, and several heterogeneous strategies have already been explored. Only two candidates have recently qualified to enter clinical phase II trials, a chikungunya virus-like particle-based vaccine and a recombinant live attenuated measles virus-vectored vaccine. This review focuses on the current status of vaccine development against chikungunya virus in humans and discusses the diversity of immunization strategies, results of recent human trials and promising vaccine candidates.
Collapse
Affiliation(s)
- Michael Schwameis
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| | - Nina Buchtele
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| | - Patricia Pia Wadowski
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| | | | - Bernd Jilma
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
43
|
Duncan J, Gordon-Johnson KA, Tulloch-Reid MK, Cunningham-Myrie C, Ernst K, McMorris N, Grant A, Graham M, Chin D, Webster-Kerr K. Chikungunya: important lessons from the Jamaican experience. Rev Panam Salud Publica 2017. [PMID: 28902273 PMCID: PMC6612717 DOI: 10.26633/rpsp.2017.60] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objectives. To describe the clinical presentation of chikungunya virus (CHIKV) illness in adults during the 2014 outbreak in Jamaica and to determine the predictive value of the case definition. Methods. A cross-sectional study was conducted using clinical data from suspected cases of CHIKV that were reported to the Ministry of Health in April – December 2014. In addition, charts were reviewed of all individuals over 15 years of age with suspected CHIKV based on a diagnosis of CHIKV or “acute viral illness” that presented to four major health centers in Jamaica during the week prior to and the peak week of the epidemic. Data abstracted from these charts using a modified CHIKV Case Investigation Form included demographics, clinical findings, and laboratory tests. Results. In 2014, the Ministry of Health of Jamaica received 4 447 notifications of CHIKV infection. PCR testing was conducted on 137 suspected CHIKV cases (56 men and 81 women; median age 28 years) and was positive for 89 (65%) persons. In all, 205 health charts were identified that met the selection criteria (51 men and 154 women, median age 43 years). The most commonly reported symptoms were arthralgia (86%) and fever (76%). Of those who met the epidemiologic case definition for CHIKV as defined by the Pan American Health Organization, only 34% had this diagnosis recorded. Acute viral illness was the most frequently recorded diagnosis (n = 79; 58%). Conclusions. Broader case definitions for acute CHIKV illness may be needed to identify suspected cases during an outbreak. Standardized data collection forms and validation of case definitions may be useful for future outbreaks.
Collapse
Affiliation(s)
| | | | - Marshall K Tulloch-Reid
- Epidemiology Research Unit, Caribbean Institute for Health Research, University of the West Indies, Kingston, Jamaica
| | | | - Kacey Ernst
- Epidemiology and Biostatistics Department, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tuscon, Arizona, United States of America
| | | | | | | | | | | |
Collapse
|
44
|
Zeller H, Van Bortel W, Sudre B. Chikungunya: Its History in Africa and Asia and Its Spread to New Regions in 2013-2014. J Infect Dis 2017; 214:S436-S440. [PMID: 27920169 DOI: 10.1093/infdis/jiw391] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chikungunya virus (CHIKV) is transmitted by Aedes aegypti and Aedes albopictus mosquitoes and causes febrile illness with severe arthralgia in humans. There are 3 circulating CHIKV genotypes, Asia, East/Central/South Africa, and West Africa. CHIKV was first reported in 1953 in Tanzania, and up until the early 2000s, a few outbreaks and sporadic cases of CHIKV were mainly reported in Africa and Asia. However, from 2004 to 2005, a large epidemic spanned from Kenya over to the southwestern Indian Ocean region, India, and Southeast Asia. Identified in 2005, the E1 glycoprotein A226V mutation of the East/Central/South Africa genotype conferred enhanced transmission by the A. albopictus mosquito and has been implicated in CHIKV's further spread in the last decade. In 2013, the Asian CHIKV genotype emerged in the Caribbean and quickly took the Americas by storm. This review will discuss the history of CHIKV as well as its expanding geographic distribution.
Collapse
Affiliation(s)
- Herve Zeller
- Emerging and Vector-borne Diseases Programme, European Centre for Disease Prevention and Control, Solna, Sweden
| | - Wim Van Bortel
- Emerging and Vector-borne Diseases Programme, European Centre for Disease Prevention and Control, Solna, Sweden
| | - Bertrand Sudre
- Emerging and Vector-borne Diseases Programme, European Centre for Disease Prevention and Control, Solna, Sweden
| |
Collapse
|
45
|
Wahid B, Ali A, Rafique S, Idrees M. Global expansion of chikungunya virus: mapping the 64-year history. Int J Infect Dis 2017; 58:69-76. [PMID: 28288924 DOI: 10.1016/j.ijid.2017.03.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that is emerging as a global threat because of the highly debilitating nature of the associated disease and unprecedented magnitude of its spread. Chikungunya originated in Africa and has since spread across the entire globe causing large numbers of epidemics that have infected millions of people in Asia, the Indian subcontinent, Europe, the Americas, and Pacific Islands. Phylogenetic analysis has identified four different genotypes of CHIKV: Asian, West African, East/Central/South African (ECSA), and Indian Ocean Lineage (IOL). In the absence of well-designed epidemiological studies, the aim of this review article was to summarize the global epidemiology of CHIKV and to provide baseline data for future research on the treatment, prevention, and control of this life-threatening disease.
Collapse
Affiliation(s)
- Braira Wahid
- Centre for Applied Molecular Biology, 87 West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Amjad Ali
- Centre for Applied Molecular Biology, 87 West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Shazia Rafique
- Centre for Applied Molecular Biology, 87 West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Idrees
- Centre for Applied Molecular Biology, 87 West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan; Vice Chancellor Hazara University, Mansehra, Pakistan.
| |
Collapse
|
46
|
Burchard GD, Grobusch MP. Central Africa. Infect Dis (Lond) 2017. [DOI: 10.1002/9781119085751.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Martin P. Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
47
|
Severe Chikungunya infection in Northern Mozambique: a case report. BMC Res Notes 2017; 10:88. [PMID: 28179029 PMCID: PMC5299683 DOI: 10.1186/s13104-017-2417-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 02/03/2017] [Indexed: 01/29/2023] Open
Abstract
Background Although Chikungunya virus has rapidly expanded to several countries in sub-Saharan Africa, little attention has been paid to its control and management. Until recently, Chikungunya has been regarded as a benign and self-limiting disease. In this report we describe the first case of severe Chikungunya disease in an adult patient in Pemba, Mozambique. Case presentation A previously healthy 40 year old male of Makonde ethnicity with no known past medical history and resident in Pemba for the past 11 years presented with a severe febrile illness. Despite administration of broad spectrum intravenous antibiotics the patient rapidly deteriorated and became comatose while developing anaemia, thrombocytopenia and later, melaena. Laboratory testing revealed IgM antibodies against Chikungunya virus. Malaria tests were consistently negative. Conclusions This report suggests that Chikungunya might cause unsuspected severe disease in febrile patients in Mozambique and provides insights for the improvement of national protocols for management of febrile patients in Mozambique. We recommend that clinicians should consider Chikungunya in the differential diagnosis of febrile illness in locations where Aedes aegypti mosquitos are abundant.
Collapse
|
48
|
Kumar A, Best C, Benskin G. Epidemiology, Clinical and Laboratory Features and Course of Chikungunya among a Cohort of Children during the First Caribbean Epidemic. J Trop Pediatr 2017; 63:43-49. [PMID: 27516419 DOI: 10.1093/tropej/fmw051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This study describes the epidemiology, the clinical features and the course of confirmed chikungunya among a cohort of children. It is a prospective audit of chikungunya cases among children registered for routine medical care at a primary care center. Children presenting with suspected chikungunya were confirmed using real-time reverse transcription polymerase chain reaction. There were 203 suspected cases of chikungunya; of these, 115 samples were tested and 69 (59.0%) were confirmed. The attack rate of chikungunya was 10.2% and 3.5% for the suspected and confirmed cases, respectively. Only six (8.7%) of the children with confirmed chikungunya required hospitalization. Joint pain was a clinical feature in 68 of 69 (98.6%) and skin rash was seen in 32 (46.4%) confirmed cases. The duration of illness was <2 weeks in 89.9% and less than a week in 62.3% of cases. In conclusion, most children had mild clinical manifestations and recovered fully within 2 weeks.
Collapse
Affiliation(s)
- Alok Kumar
- Faculty of Medical Science, The University of the West Indies, Cave Hill, Barbados .,The Queen Elizabeth Hospital, Barbados.,We Care Medical Center, 30 A, George Street, St. Michael, Barbados
| | - Christine Best
- Faculty of Medical Science, The University of the West Indies, Cave Hill, Barbados.,The Queen Elizabeth Hospital, Barbados
| | | |
Collapse
|
49
|
Chen R, Puri V, Fedorova N, Lin D, Hari KL, Jain R, Rodas JD, Das SR, Shabman RS, Weaver SC. Comprehensive Genome Scale Phylogenetic Study Provides New Insights on the Global Expansion of Chikungunya Virus. J Virol 2016; 90:10600-10611. [PMID: 27654297 PMCID: PMC5110187 DOI: 10.1128/jvi.01166-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022] Open
Abstract
Since the India and Indian Ocean outbreaks of 2005 and 2006, the global distribution of chikungunya virus (CHIKV) and the locations of epidemics have dramatically shifted. First, the Indian Ocean lineage (IOL) caused sustained epidemics in India and has radiated to many other countries. Second, the Asian lineage has caused frequent outbreaks in the Pacific islands and in 2013 was introduced into the Caribbean, followed by rapid spread to nearly all of the neotropics. Further, CHIKV epidemics, as well as exported cases, have been reported in central Africa after a long period of perceived silence. To understand these changes and to anticipate the future of the virus, the exact distribution, genetic diversity, transmission routes, and future epidemic potential of CHIKV require further assessment. To do so, we conducted the most comprehensive phylogenetic analysis to date, examined CHIKV evolution and transmission, and explored distinct genetic factors associated with the emergence of the East/Central/South African (ECSA) lineage, the IOL, and the Asian lineage. Our results reveal contrasting evolutionary patterns among the lineages, with growing genetic diversities observed in each, and suggest that CHIKV will continue to be a major public health threat with the potential for further emergence and spread. IMPORTANCE Chikungunya fever is a reemerging infectious disease that is transmitted by Aedes mosquitoes and causes severe health and economic burdens in affected populations. Since the unprecedented Indian Ocean and Indian subcontinent outbreaks of 2005 and 2006, CHIKV has further expanded its geographic range, including to the Americas in 2013. Its evolution and transmission during and following these epidemics, as well as the recent evolution and spread of other lineages, require optimal assessment. Using newly obtained genome sequences, we provide a comprehensive update of the global distribution of CHIKV genetic diversity and analyze factors associated with recent outbreaks. These results provide a solid foundation for future evolutionary studies of CHIKV that can elucidate emergence mechanisms and also may help to predict future epidemics.
Collapse
Affiliation(s)
- Rubing Chen
- Institute of Human Infections and Immunology and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Vinita Puri
- J. Craig Venter Institute, Rockville, Maryland, USA
| | | | | | | | | | | | - Suman R Das
- J. Craig Venter Institute, Rockville, Maryland, USA
| | | | - Scott C Weaver
- Institute of Human Infections and Immunology and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
50
|
Easy and inexpensive molecular detection of dengue, chikungunya and zika viruses in febrile patients. Acta Trop 2016; 163:32-7. [PMID: 27477452 DOI: 10.1016/j.actatropica.2016.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/11/2016] [Accepted: 07/27/2016] [Indexed: 02/05/2023]
Abstract
Dengue (DENV), chikungunya (CHIKV) and zika (ZIKV) are arthropod-borne viruses (arboviruses) sharing a common vector, the mosquito Aedes aegypti. At initial stages, patients infected with these viruses have similar clinical manifestations, however, the outcomes and clinical management of these diseases are different, for this reason early and accurate identification of the causative virus is necessary. This paper reports the development of a rapid and specific nested-PCR for detection of DENV, CHIKV and ZIKV infection in the same sample. A set of six outer primers targeting the C-preM, E1, and E gene respectively was used in a multiplex one-step RT-PCR assay, followed by the second round of amplification with specific inner primers for each virus. The specificity of the present assay was validated with positive and negative serum samples for viruses and supernatants of infected cells. The assay was tested using clinical samples from febrile patients. In these samples, we detected mono and dual infections and a case of triple co-infection DENV-CHIKV-ZIKV. This assay might be a useful and an inexpensive tool for detection of these infections in regions where these arboviruses co-circulate.
Collapse
|