1
|
Wang Y, Pan R, Hu J. Impact of acute heat stress on mitochondrial function, ultrastructure and cardiolipin distribution in Arabidopsis. ABIOTECH 2024; 5:362-367. [PMID: 39279852 PMCID: PMC11399366 DOI: 10.1007/s42994-024-00151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/20/2024] [Indexed: 09/18/2024]
Abstract
Besides providing energy to sustain life, mitochondria also play crucial roles in stress response and programmed cell death. The mitochondrial hallmark lipid, cardiolipin (CL), is essential to the maintenance of mitochondrial structure and function. However, how mitochondria and CL are involved in stress response is not as well defined in plants as in animal and yeast cells. We previously revealed a role for CL in mitochondrial fission and in heat stress response in Arabidopsis. To further determine the involvement of mitochondria and CL in plant heat response, here we treated Arabidopsis seedlings with varied lengths of acute heat stress. These treatments resulted in decreases in mitochondrial membrane potential, disruption of mitochondrial ultrastructure, accumulation of mitochondrial reactive-oxygen species (ROS), and redistribution of CL to the outer mitochondrial membrane and to a novel type of vesicle. The level of the observed changes correlated with the severeness of the heat stress, indicating the strong relevance of these processes to stress response. Our findings provide the basis for studying mechanisms underpinning the role of mitochondria and CL in plant stress response.
Collapse
Affiliation(s)
- Yukang Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Ronghui Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
2
|
Liu C, Liu Q, Mou Z. Redox signaling and oxidative stress in systemic acquired resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4535-4548. [PMID: 38693779 DOI: 10.1093/jxb/erae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Plants fully depend on their immune systems to defend against pathogens. Upon pathogen attack, plants not only activate immune responses at the infection site but also trigger a defense mechanism known as systemic acquired resistance (SAR) in distal systemic tissues to prevent subsequent infections by a broad-spectrum of pathogens. SAR is induced by mobile signals produced at the infection site. Accumulating evidence suggests that reactive oxygen species (ROS) play a central role in SAR signaling. ROS burst at the infection site is one of the earliest cellular responses following pathogen infection and can spread to systemic tissues through membrane-associated NADPH oxidase-dependent relay production of ROS. It is well known that ROS ignite redox signaling and, when in excess, cause oxidative stress, damaging cellular components. In this review, we summarize current knowledge on redox regulation of several SAR signaling components. We discuss the ROS amplification loop in systemic tissues involving multiple SAR mobile signals. Moreover, we highlight the essential role of oxidative stress in generating SAR signals including azelaic acid and extracellular NAD(P) [eNAD(P)]. Finally, we propose that eNAD(P) is a damage-associated molecular pattern serving as a converging point of SAR mobile signals in systemic tissues.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Qingcai Liu
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Sato H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. Complex plant responses to drought and heat stress under climate change. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1873-1892. [PMID: 38168757 DOI: 10.1111/tpj.16612] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Global climate change is predicted to result in increased yield losses of agricultural crops caused by environmental conditions. In particular, heat and drought stress are major factors that negatively affect plant development and reproduction, and previous studies have revealed how these stresses induce plant responses at physiological and molecular levels. Here, we provide a comprehensive overview of current knowledge concerning how drought, heat, and combinations of these stress conditions affect the status of plants, including crops, by affecting factors such as stomatal conductance, photosynthetic activity, cellular oxidative conditions, metabolomic profiles, and molecular signaling mechanisms. We further discuss stress-responsive regulatory factors such as transcription factors and signaling factors, which play critical roles in adaptation to both drought and heat stress conditions and potentially function as 'hubs' in drought and/or heat stress responses. Additionally, we present recent findings based on forward genetic approaches that reveal natural variations in agricultural crops that play critical roles in agricultural traits under drought and/or heat conditions. Finally, we provide an overview of the application of decades of study results to actual agricultural fields as a strategy to increase drought and/or heat stress tolerance. This review summarizes our current understanding of plant responses to drought, heat, and combinations of these stress conditions.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Junya Mizoi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuraoka, Setagara-ku, Tokyo, 156-8502, Japan
| |
Collapse
|
4
|
Li W, Liu Z, Huang Y, Zheng J, Yang Y, Cao Y, Ding L, Meng Y, Shan W. Phytophthora infestans RXLR effector Pi23014 targets host RNA-binding protein NbRBP3a to suppress plant immunity. MOLECULAR PLANT PATHOLOGY 2024; 25:e13416. [PMID: 38279850 PMCID: PMC10777756 DOI: 10.1111/mpp.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/29/2024]
Abstract
Phytophthora infestans is a destructive oomycete that causes the late blight of potato and tomato worldwide. It secretes numerous small proteins called effectors in order to manipulate host cell components and suppress plant immunity. Identifying the targets of these effectors is crucial for understanding P. infestans pathogenesis and host plant immunity. In this study, we show that the virulence RXLR effector Pi23014 of P. infestans targets the host nucleus and chloroplasts. By using a liquid chromatogrpahy-tandem mass spectrometry assay and co-immunoprecipitation assasys, we show that it interacts with NbRBP3a, a putative glycine-rich RNA-binding protein. We confirmed the co-localization of Pi23014 and NbRBP3a within the nucleus, by using bimolecular fluorescence complementation. Reverse transcription-quantitative PCR assays showed that the expression of NbRBP3a was induced in Nicotiana benthamiana during P. infestans infection and the expression of marker genes for multiple defence pathways were significantly down-regulated in NbRBP3-silenced plants compared with GFP-silenced plants. Agrobacterium tumefaciens-mediated transient overexpression of NbRBP3a significantly enhanced plant resistance to P. infestans. Mutations in the N-terminus RNA recognition motif (RRM) of NbRBP3a abolished its interaction with Pi23014 and eliminated its capability to enhance plant resistance to leaf colonization by P. infestans. We further showed that silencing NbRBP3 reduced photosystem II activity, reduced host photosynthetic efficiency, attenuated Pi23014-mediated suppression of cell death triggered by P. infestans pathogen-associated molecular pattern elicitor INF1, and suppressed plant immunity.
Collapse
Affiliation(s)
- Wanyue Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Zeming Liu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuli Huang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Jie Zheng
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yang Yang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yimeng Cao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Liwen Ding
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuling Meng
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Weixing Shan
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
5
|
Arif Y, Singh P, Mir AR, Alam P, Hayat S. Insights into salicylic acid-mediated redox homeostasis, carbohydrate metabolism and secondary metabolite involvement in improvement of photosynthetic performance, enzyme activities, ionomics, and yield in different varieties of Abelmoschus esculentus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108047. [PMID: 37748371 DOI: 10.1016/j.plaphy.2023.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/27/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Salicylic acid (SA) is a well-known signaling molecule and phenolic plant hormone. However, the optimal concentration of SA required for beneficial effects may vary across different plant species. The objective of this study was to investigate the effects of salicylic acid (SA) on two different varieties of Abelmoschus esculentus (Sakata-713 and Neelam) in order to determine the optimal concentration of SA and its impact on the growth, physiology, and biochemical processes of the plants. We conducted an experiment applying different SA concentrations (0, 10-4, 10-5, 10-6, 10-7 M) at 25 days after sowing (DAS) and evaluated various plant parameters at different stages. To evaluate various parameters sampling was performed at 30 and 45 DAS; yield traits were calculated at 60 DAS. The results indicate that SA application increased cell division, trichome number, chlorophyll content, photosynthesis, gas exchange traits, and elemental status which further boosted plants growth and yield traits. SA application stimulated activity of several enzymes that participate in carboxylation/decarboxylation homeostasis (carbonic anhydrase), nitrogen metabolism (nitrate reductase), Calvin cycle (Rubisco), TCA cycle (succinate dehydrogenase and fumarase) and secondary metabolism (phenylalanine lyase). A gradual increase in the production of secondary metabolites (total phenol, total flavonoid, anthocyanin) and carbon metabolism (total reducing sugars, starch, glucose, fructose, sucrose) was observed. Notably, SA treatment also played a vital role in maintaining a balanced equilibrium between reactive oxygen species (ROS) and the scavenging system (catalase, peroxidase, superoxide dismutase). Based on our results, the optimal concentration of SA was determined to be 10-5 M, as it yielded the most favourable outcomes among the different concentrations tested. Moreover, when comparing the two varieties of okra, Sakata-713 exhibited a more promising response to SA treatment compared to Neelam.
Collapse
Affiliation(s)
- Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Priyanka Singh
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Anayat Rasool Mir
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Saudi Arabia
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
6
|
Mahati K, Padmasree K. Brassinolide promotes interaction between chloroplasts and mitochondria during the optimization of photosynthesis by the mitochondrial electron transport chain in mesophyll cell protoplasts of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1099474. [PMID: 37113597 PMCID: PMC10126290 DOI: 10.3389/fpls.2023.1099474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
The current experimental data unveils the role of brassinolide (BL), a phytohormone of class brassinosteroids (BRs), in augmenting the cross-talk between the mitochondrial electron transport chain (mETC) and chloroplasts to strengthen the efficiency of the Calvin-Benson cycle (CBC) for higher assimilation of carbon dioxide in the mesophyll cell protoplasts (MCP) of Arabidopsis thaliana. The outcome of total respiration (TR) and photosynthetic carbon assimilation (PCA) was monitored as O2 uptake under dark and NaHCO3-dependent O2 evolution under light, respectively, after pre-incubation of MCP at a broad spectrum of BL concentration from 0.05 pM to 5 pM at 25 °C and optimum light intensity of 1000 μmol m-2 s-1. The addition of optimal concentration (0.5 pM) of BL to MCP stimulated the (i) TR, (ii) PCA, and (iii) para-benzoquinone-dependent O2 evolution (PSII activity). Further, in response to BL, the enzyme activity or transcript levels of redox-regulated CBC enzymes and glucose-6-phosphate raised considerably. Also, the addition of BL to MCP remarkably accelerated the capacity of the cytochrome oxidase (COX) and alternative oxidase (AOX) pathways concurrently with an increase in total cellular pyruvate and reactive oxygen species (ROS) levels. Besides, malate valve components (Malate, Chl-MDH, M-MDH) increased in response to BL. At the same time, the cellular redox ratios of pyridine nucleotides (NADPH and NADH) were kept low in the presence of BL. However, BL could not keep up the CBC activity of photosynthesis along with its associated light-activated enzymes/transcripts when mETC through COX or AOX pathway is restricted by antimycin A (AA) or salicylhydroxamic acid (SHAM), respectively. In contrast, adding BL to MCP under restricted mETC showed aggravation in total cellular ROS, pyruvate, malate, and redox ratio of pyridine nucleotides with a concomitant increase in transcripts associated with malate valve and antioxidant systems. These results suggest that BL enhances the PCA by coordinating in cross-talk of chloroplasts and mitochondria to regulate the cellular redox ratio or ROS through the involvement of COX and AOX pathways along with the malate valve and antioxidant systems.
Collapse
|
7
|
Inada N. A Guide to Plant Intracellular Temperature Imaging using Fluorescent Thermometers. PLANT & CELL PHYSIOLOGY 2023; 64:7-18. [PMID: 36039974 DOI: 10.1093/pcp/pcac123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/06/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
All aspects of plant physiology are influenced by temperature. Changes in environmental temperature alter the temperatures of plant tissues and cells, which then affect various cellular activities, such as gene expression, protein stability and enzyme activities. In turn, changes in cellular activities, which are associated with either exothermic or endothermic reactions, can change the local temperature in cells and tissues. In the past 10 years, a number of fluorescent probes that detect temperature and enable intracellular temperature imaging have been reported. Intracellular temperature imaging has revealed that there is a temperature difference >1°C inside cells and that the treatment of cells with mitochondrial uncoupler or ionomycin can cause more than a 1°C intracellular temperature increase in mammalian cultured cells. Thermogenesis mechanisms in brown adipocytes have been revealed with the aid of intracellular temperature imaging. While there have been no reports on plant intracellular temperature imaging thus far, intracellular temperature imaging is expected to provide a new way to analyze the mechanisms underlying the various activities of plant cells. In this review, I will first summarize the recent progress in the development of fluorescent thermometers and their biological applications. I will then discuss the selection of fluorescent thermometers and experimental setup for the adaptation of intracellular temperature imaging to plant cells. Finally, possible applications of intracellular temperature imaging to investigate plant cell functions will be discussed.
Collapse
Affiliation(s)
- Noriko Inada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka, 599-8531 Japan
- School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka, 599-8531 Japan
| |
Collapse
|
8
|
Ding Y, Fan B, Zhu C, Chen Z. Shared and Related Molecular Targets and Actions of Salicylic Acid in Plants and Humans. Cells 2023; 12:219. [PMID: 36672154 PMCID: PMC9856608 DOI: 10.3390/cells12020219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Salicylic acid (SA) is a phenolic compound produced by all plants that has an important role in diverse processes of plant growth and stress responses. SA is also the principal metabolite of aspirin and is responsible for many of the anti-inflammatory, cardioprotective and antitumor activities of aspirin. As a result, the number of identified SA targets in both plants and humans is large and continues to increase. These SA targets include catalases/peroxidases, metabolic enzymes, protein kinases and phosphatases, nucleosomal and ribosomal proteins and regulatory and signaling proteins, which mediate the diverse actions of SA in plants and humans. While some of these SA targets and actions are unique to plants or humans, many others are conserved or share striking similarities in the two types of organisms, which underlie a host of common biological processes that are regulated or impacted by SA. In this review, we compare shared and related SA targets and activities to highlight the common nature of actions by SA as a hormone in plants versus a therapeutic agent in humans. The cross examination of SA targets and activities can help identify new actions of SA and better explain their underlying mechanisms in plants and humans.
Collapse
Affiliation(s)
- Yuanyuan Ding
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baofang Fan
- Department of Botany and Plant Pathology and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| |
Collapse
|
9
|
Butsanets PA, Shugaeva NA, Shugaev AG. Identification of Mitochondrial Alternative Oxidase Genes in Lupinus luteus and the Effect of Salicylic Acid on Their Expression. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022060048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Wang J, Xu G, Ning Y, Wang X, Wang GL. Mitochondrial functions in plant immunity. TRENDS IN PLANT SCIENCE 2022; 27:1063-1076. [PMID: 35659746 DOI: 10.1016/j.tplants.2022.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are energy factories of cells and are important for intracellular interactions with other organelles. Emerging evidence indicates that mitochondria play essential roles in the response to pathogen infection. During infection, pathogens deliver numerous enzymes and effectors into host cells, and some of these effectors target mitochondria, altering mitochondrial morphology, metabolism, and functions. To defend against pathogen attack, mitochondria are actively involved in changing intracellular metabolism, hormone-mediated signaling, and signal transduction, producing reactive oxygen species and reactive nitrogen species and triggering programmed cell death. Additionally, mitochondria coordinate with other organelles to integrate and amplify diverse immune signals. In this review, we summarize recent advances in understanding how mitochondria function in plant immunity and how pathogens target mitochondria for host defense suppression.
Collapse
Affiliation(s)
- Jiyang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guojuan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
11
|
Martin RE, Postiglione AE, Muday GK. Reactive oxygen species function as signaling molecules in controlling plant development and hormonal responses. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102293. [PMID: 36099672 PMCID: PMC10475289 DOI: 10.1016/j.pbi.2022.102293] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS) serve as second messengers in plant signaling pathways to remodel plant growth and development. New insights into how enzymatic ROS-producing machinery is regulated by hormones or localized during development have provided a framework for understanding the mechanisms that control ROS accumulation patterns. Signaling-mediated increases in ROS can then modulate the activity of proteins through reversible oxidative modification of specific cysteine residues. Plants also control the synthesis of antioxidants, including plant-specialized metabolites, to further define when, where, and how much ROS accumulate. The availability of sophisticated imaging capabilities, combined with a growing tool kit of ROS detection technologies, particularly genetically encoded biosensors, sets the stage for improved understanding of ROS as signaling molecules.
Collapse
Affiliation(s)
- R Emily Martin
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA; Department of Biology and the Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Anthony E Postiglione
- Department of Biology and the Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Gloria K Muday
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA; Department of Biology and the Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
12
|
Jardim-Messeder D, Margis-Pinheiro M, Sachetto-Martins G. Salicylic acid and adenine nucleotides regulate the electron transport system and ROS production in plant mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148559. [PMID: 35413247 DOI: 10.1016/j.bbabio.2022.148559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Although mitochondria have a central role in energy transduction and reactive oxygen species (ROS) production, the regulatory mechanisms and their involvement in plant stress signaling are not fully established. The phytohormone salicylic acid (SA) is an important regulator of mitochondria-mediated ROS production and defense signaling. The role of SA and adenine nucleotides in the regulation of the mitochondrial succinate dehydrogenase (SDH) complex activity and ROS production was analyzed using WT, RNAi SDH1-1 and disrupted stress response 1 (dsr1) mutants, which show a point mutation in SDH1 subunit and are defective in SA signaling. Our results showed that SA and adenine nucleotides regulate SDH complex activity by distinct patterns, contributing to increased SDH-derived ROS production. As previously demonstrated, SA induces the succinate-quinone reductase activity of SDH complex, acting at or near the ubiquinone binding site. On the other hand, here we demonstrated that adenine nucleotides, such as AMP, ADP and ATP, induce the SDH activity provided by the SDH1 subunit. The regulation of SDH activity by adenine nucleotides is dependent on mitochondrial integrity and is prevented by atractyloside, an inhibitor of adenine nucleotide translocator (ANT), suggesting that the regulatory mechanism occurs on the mitochondrial matrix side of the inner mitochondrial membrane, and not in the intermembrane space, as previously suggested. On the other hand, in the intermembrane space, ADP and ATP limit mitochondrial oxygen consumption by a mechanism that appears to be related to cytochrome bc1 complex inhibition. Altogether, these results indicate that SA signaling and adenine nucleotides regulate the mitochondrial electron transport system and mitochondria-derived ROS production by direct effect in the electron transport system complexes, bringing new insights into mechanisms with direct implications in plant development and responses to different environmental responses, serving as a starting point for future physiological explorations.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Márcia Margis-Pinheiro
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Yang Y, Zhao Y, Zhang Y, Niu L, Li W, Lu W, Li J, Schäfer P, Meng Y, Shan W. A mitochondrial RNA processing protein mediates plant immunity to a broad spectrum of pathogens by modulating the mitochondrial oxidative burst. THE PLANT CELL 2022; 34:2343-2363. [PMID: 35262740 PMCID: PMC9134091 DOI: 10.1093/plcell/koac082] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 06/01/2023]
Abstract
Mitochondrial function depends on the RNA processing of mitochondrial gene transcripts by nucleus-encoded proteins. This posttranscriptional processing involves the large group of nuclear-encoded pentatricopeptide repeat (PPR) proteins. Mitochondrial processes represent a crucial part in animal immunity, but whether mitochondria play similar roles in plants remains unclear. Here, we report the identification of RESISTANCE TO PHYTOPHTHORA PARASITICA 7 (AtRTP7), a P-type PPR protein, in Arabidopsis thaliana and its conserved function in immunity to diverse pathogens across distantly related plant species. RTP7 affects the levels of mitochondrial reactive oxygen species (mROS) by participating in RNA splicing of nad7, which encodes a critical subunit of the mitochondrial respiratory chain Complex I, the largest of the four major components of the mitochondrial oxidative phosphorylation system. The enhanced resistance of rtp7 plants to Phytophthora parasitica is dependent on an elevated mROS burst, but might be independent from the ROS burst associated with plasma membrane-localized NADPH oxidases. Our study reveals the immune function of RTP7 and the defective processing of Complex I subunits in rtp7 plants resulted in enhanced resistance to both biotrophic and necrotrophic pathogens without affecting overall plant development.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yan Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yingqi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Lihua Niu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wanyue Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wenqin Lu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jinfang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Patrick Schäfer
- Institute of Molecular Botany, Ulm University, Ulm 89069, Germany
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | | |
Collapse
|
14
|
Hilleary R. Do mitochondria hold the key to understanding growth-defense tradeoffs? THE PLANT CELL 2022; 34:2118-2119. [PMID: 35349702 PMCID: PMC9134055 DOI: 10.1093/plcell/koac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
|
15
|
Pokotylo I, Hodges M, Kravets V, Ruelland E. A ménage à trois: salicylic acid, growth inhibition, and immunity. TRENDS IN PLANT SCIENCE 2022; 27:460-471. [PMID: 34872837 DOI: 10.1016/j.tplants.2021.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Salicylic acid (SA) is a plant hormone almost exclusively associated with the promotion of immunity. It is also known that SA has a negative impact on plant growth, yet only limited efforts have been dedicated to explain this facet of SA action. In this review, we focus on SA-related reduced growth and discuss whether it is a regulated process and if the role of SA in immunity imperatively comes with growth suppression. We highlight molecular targets of SA that interfere with growth and describe scenarios where SA can improve plant immunity without a growth penalty.
Collapse
Affiliation(s)
- Igor Pokotylo
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NASU, 02094 Kyiv, Ukraine.
| | - Michael Hodges
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR CNRS 9213, Université Paris-Saclay, INRAE, Université d'Evry, Université de Paris, 91190 Gif-sur-Yvette, France
| | - Volodymyr Kravets
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NASU, 02094 Kyiv, Ukraine
| | - Eric Ruelland
- Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue du Docteur Schweitzer, 60203 Compiègne, France.
| |
Collapse
|
16
|
Fuchs P, Bohle F, Lichtenauer S, Ugalde JM, Feitosa Araujo E, Mansuroglu B, Ruberti C, Wagner S, Müller-Schüssele SJ, Meyer AJ, Schwarzländer M. Reductive stress triggers ANAC017-mediated retrograde signaling to safeguard the endoplasmic reticulum by boosting mitochondrial respiratory capacity. THE PLANT CELL 2022; 34:1375-1395. [PMID: 35078237 PMCID: PMC9125394 DOI: 10.1093/plcell/koac017] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/18/2021] [Indexed: 05/16/2023]
Abstract
Redox processes are at the heart of universal life processes, such as metabolism, signaling, or folding of secreted proteins. Redox landscapes differ between cell compartments and are strictly controlled to tolerate changing conditions and to avoid cell dysfunction. While a sophisticated antioxidant network counteracts oxidative stress, our understanding of reductive stress responses remains fragmentary. Here, we observed root growth impairment in Arabidopsis thaliana mutants of mitochondrial alternative oxidase 1a (aox1a) in response to the model thiol reductant dithiothreitol (DTT). Mutants of mitochondrial uncoupling protein 1 (ucp1) displayed a similar phenotype indicating that impaired respiratory flexibility led to hypersensitivity. Endoplasmic reticulum (ER) stress was enhanced in the mitochondrial mutants and limiting ER oxidoreductin capacity in the aox1a background led to synergistic root growth impairment by DTT, indicating that mitochondrial respiration alleviates reductive ER stress. The observations that DTT triggered nicotinamide adenine dinucleotide (NAD) reduction in vivo and that the presence of thiols led to electron transport chain activity in isolated mitochondria offer a biochemical framework of mitochondrion-mediated alleviation of thiol-mediated reductive stress. Ablation of transcription factor Arabidopsis NAC domain-containing protein17 (ANAC017) impaired the induction of AOX1a expression by DTT and led to DTT hypersensitivity, revealing that reductive stress tolerance is achieved by adjusting mitochondrial respiratory capacity via retrograde signaling. Our data reveal an unexpected role for mitochondrial respiratory flexibility and retrograde signaling in reductive stress tolerance involving inter-organelle redox crosstalk.
Collapse
Affiliation(s)
- Philippe Fuchs
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Finja Bohle
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - José Manuel Ugalde
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Elias Feitosa Araujo
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - Berivan Mansuroglu
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Cristina Ruberti
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - Stephan Wagner
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| |
Collapse
|
17
|
Akter S, Khan MS, Smith EN, Flashman E. Measuring ROS and redox markers in plant cells. RSC Chem Biol 2021; 2:1384-1401. [PMID: 34704044 PMCID: PMC8495998 DOI: 10.1039/d1cb00071c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/28/2021] [Indexed: 01/05/2023] Open
Abstract
Reactive oxygen species (ROS) are produced throughout plant cells as a by-product of electron transfer processes. While highly oxidative and potentially damaging to a range of biomolecules, there exists a suite of ROS-scavenging antioxidant strategies that maintain a redox equilibrium. This balance can be disrupted in the event of cellular stress leading to increased ROS levels, which can act as a useful stress signal but, in excess, can result in cell damage and death. As crop plants become exposed to greater degrees of multiple stresses due to climate change, efforts are ongoing to engineer plants with greater stress tolerance. It is therefore important to understand the pathways underpinning ROS-mediated signalling and damage, both through measuring ROS themselves and other indicators of redox imbalance. The highly reactive and transient nature of ROS makes this challenging to achieve, particularly in a way that is specific to individual ROS species. In this review, we describe the range of chemical and biological tools and techniques currently available for ROS and redox marker measurement in plant cells and tissues. We discuss the limitations inherent in current methodology and opportunities for advancement.
Collapse
Affiliation(s)
- Salma Akter
- Department of Chemistry, University of Oxford Oxford UK
- Faculty of Biological Sciences, University of Dhaka Dhaka 1000 Bangladesh
| | - Mohammad Shahneawz Khan
- Department of Chemistry, University of Oxford Oxford UK
- Faculty of Biological Sciences, University of Dhaka Dhaka 1000 Bangladesh
| | | | | |
Collapse
|
18
|
Izquierdo Y, Muñiz L, Vicente J, Kulasekaran S, Aguilera V, López Sánchez A, Martínez-Ayala A, López B, Cascón T, Castresana C. Oxylipins From Different Pathways Trigger Mitochondrial Stress Signaling Through Respiratory Complex III. FRONTIERS IN PLANT SCIENCE 2021; 12:705373. [PMID: 34394161 PMCID: PMC8358658 DOI: 10.3389/fpls.2021.705373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Plant oxylipins are signaling molecules produced from fatty acids by oxidative pathways, mainly initiated by 9- and 13-lipoxygenases (9-LOX and 13-LOX), alpha-dioxygenases or non-enzymatic oxidation. Oxylipins from the 9-LOX pathway induce oxidative stress and control root development and plant defense. These activities have been associated with mitochondrial processes, but precise cellular targets and pathways remain unknown. In order to study oxylipin signaling, we previously generated a collection of Arabidopsis thaliana mutants that were insensitive to the 9-LOX products 9(S)-hydroxy-10,12, 15-octadecatrienoic acid (9-HOT) and its ketone derivative 9-KOT (noxy mutants). Here, we describe noxy1, noxy3, noxy5, noxy23, and noxy54 mutants, all affected in nucleus-encoded mitochondrial proteins, and use them to study the role of mitochondria in oxylipin signaling. Functional and phenotypic analyses showed that noxy plants displayed mitochondrial aggregation, reduced respiration rates and resistance to the complex III inhibitor Antimycin A (AA), thus indicating a close similarity of the oxylipin signaling and mitochondrial stress. Application of 9-HOT and 9-KOT protected plants against subsequent mitochondrial stress, whereas they boosted root growth reduction when applied in combination with complex III inhibitors but did not with inhibitors of other respiratory complexes. A similar effect was caused by linear-chain oxylipins from 13-LOX or non-enzymatic pathways having α,β-unsaturated hydroxyl or keto groups in their structure. Studies to investigate 9-HOT and 9-KOT activity indicated that they do not reduce respiration rates, but their action is primarily associated with enhanced ROS responses. This was supported by the results showing that 9-HOT or 9-KOT combined with AA amplified the expression of oxylipin- and ROS-responding genes but not of the AA marker AOX1a, thus implying the activation of a specific mitochondria retrograde signaling pathway. Our results implicate mitochondrial complex III as a hub in the signaling activity of multiple oxylipin pathways and point at downstream ROS responses as components of oxylipin function.
Collapse
Affiliation(s)
- Yovanny Izquierdo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Luis Muñiz
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Jorge Vicente
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Satish Kulasekaran
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Verónica Aguilera
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ana López Sánchez
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ada Martínez-Ayala
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Bran López
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Tomás Cascón
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Carmen Castresana
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
19
|
Wrzesińska B, Zmienko A, Vu LD, De Smet I, Obrępalska-Stęplowska A. Multiple cellular compartments engagement in Nicotiana benthamiana-peanut stunt virus-satRNA interactions revealed by systems biology approach. PLANT CELL REPORTS 2021; 40:1247-1267. [PMID: 34028582 PMCID: PMC8233301 DOI: 10.1007/s00299-021-02706-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE PSV infection changed the abundance of host plant's transcripts and proteins associated with various cellular compartments, including ribosomes, chloroplasts, mitochondria, the nucleus and cytosol, affecting photosynthesis, translation, transcription, and splicing. Virus infection is a process resulting in numerous molecular, cellular, and physiological changes, a wide range of which can be analyzed due to development of many high-throughput techniques. Plant RNA viruses are known to replicate in the cytoplasm; however, the roles of chloroplasts and other cellular structures in the viral replication cycle and in plant antiviral defense have been recently emphasized. Therefore, the aim of this study was to analyze the small RNAs, transcripts, proteins, and phosphoproteins affected during peanut stunt virus strain P (PSV-P)-Nicotiana benthamiana interactions with or without satellite RNA (satRNA) in the context of their cellular localization or functional connections with particular cellular compartments to elucidate the compartments most affected during pathogenesis at the early stages of infection. Moreover, the processes associated with particular cell compartments were determined. The 'omic' results were subjected to comparative data analyses. Transcriptomic and small RNA (sRNA)-seq data were obtained to provide new insights into PSV-P-satRNA-plant interactions, whereas previously obtained proteomic and phosphoproteomic data were used to broaden the analysis to terms associated with cellular compartments affected by virus infection. Based on the collected results, infection with PSV-P contributed to changes in the abundance of transcripts and proteins associated with various cellular compartments, including ribosomes, chloroplasts, mitochondria, the nucleus and the cytosol, and the most affected processes were photosynthesis, translation, transcription, and mRNA splicing. Furthermore, sRNA-seq and phosphoproteomic analyses indicated that kinase regulation resulted in decreases in phosphorylation levels. The kinases were associated with the membrane, cytoplasm, and nucleus components.
Collapse
Affiliation(s)
- Barbara Wrzesińska
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection, National Research Institute, 20 Władysława Węgorka Street, 60-318, Poznan, Poland
| | - Agnieszka Zmienko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Noskowskiego Street, 61-704, Poznan, Poland
- Faculty of Computing Science, Institute of Computing Science, Poznań University of Technology, 2 Piotrowo Street, 60-965, Poznan, Poland
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Aleksandra Obrępalska-Stęplowska
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection, National Research Institute, 20 Władysława Węgorka Street, 60-318, Poznan, Poland.
| |
Collapse
|
20
|
Xu Z, Zhang R, Yang M, Law YS, Sun F, Hon NL, Ngai SM, Lim BL. A Balance between the Activities of Chloroplasts and Mitochondria Is Crucial for Optimal Plant Growth. Antioxidants (Basel) 2021; 10:935. [PMID: 34207819 PMCID: PMC8228383 DOI: 10.3390/antiox10060935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 01/16/2023] Open
Abstract
Energy metabolism in plant cells requires a balance between the activities of chloroplasts and mitochondria, as they are the producers and consumers of carbohydrates and reducing equivalents, respectively. Recently, we showed that the overexpression of Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2), a phosphatase dually anchored on the outer membranes of chloroplasts and mitochondria, can boost the plant growth and seed yield of Arabidopsis thaliana by coordinating the activities of both organelles. However, when AtPAP2 is solely overexpressed in chloroplasts, the growth-promoting effects are less optimal, indicating that active mitochondria are required for dissipating excess reducing equivalents from chloroplasts to maintain the optimal growth of plants. It is even more detrimental to plant productivity when AtPAP2 is solely overexpressed in mitochondria. Although these lines contain high level of adenosine triphosphate (ATP), they exhibit low leaf sucrose, low seed yield, and early senescence. These transgenic lines can be useful tools for studying how hyperactive chloroplasts or mitochondria affect the physiology of their counterparts and how they modify cellular metabolism and plant physiology.
Collapse
Affiliation(s)
- Zhou Xu
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Z.X.); (R.Z.); (M.Y.); (Y.-S.L.); (F.S.)
| | - Renshan Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Z.X.); (R.Z.); (M.Y.); (Y.-S.L.); (F.S.)
| | - Meijing Yang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Z.X.); (R.Z.); (M.Y.); (Y.-S.L.); (F.S.)
| | - Yee-Song Law
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Z.X.); (R.Z.); (M.Y.); (Y.-S.L.); (F.S.)
| | - Feng Sun
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Z.X.); (R.Z.); (M.Y.); (Y.-S.L.); (F.S.)
| | - Ngai Lung Hon
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (N.L.H.); (S.M.N.)
| | - Sai Ming Ngai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (N.L.H.); (S.M.N.)
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Z.X.); (R.Z.); (M.Y.); (Y.-S.L.); (F.S.)
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
21
|
Sasidharan R, Schippers JHM, Schmidt RR. Redox and low-oxygen stress: signal integration and interplay. PLANT PHYSIOLOGY 2021; 186:66-78. [PMID: 33793937 PMCID: PMC8154046 DOI: 10.1093/plphys/kiaa081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 05/21/2023]
Abstract
Plants are aerobic organisms relying on oxygen to serve their energy needs. The amount of oxygen available to sustain plant growth can vary significantly due to environmental constraints or developmental programs. In particular, flooding stress, which negatively impacts crop productivity, is characterized by a decline in oxygen availability. Oxygen fluctuations result in an altered redox balance and the formation of reactive oxygen/nitrogen species (ROS/RNS) during the onset of hypoxia and upon re-oxygenation. In this update, we provide an overview of the current understanding of the impact of redox and ROS/RNS on low-oxygen signaling and adaptation. We first focus on the formation of ROS and RNS during low-oxygen conditions. Following this, we examine the impact of hypoxia on cellular and organellar redox systems. Finally, we describe how redox and ROS/RNS participate in signaling events during hypoxia through potential post-translational modifications (PTMs) of hypoxia-relevant proteins. The aim of this update is to define our current understanding of the field and to provide avenues for future research directions.
Collapse
Affiliation(s)
- Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Jos H M Schippers
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland 06466, Germany
| | - Romy R Schmidt
- Faculty of Biology, Plant Biotechnology Group, Bielefeld University, Bielefeld 33615, Germany
- Author for communication:
| |
Collapse
|
22
|
Mota APZ, Brasileiro ACM, Vidigal B, Oliveira TN, da Cunha Quintana Martins A, Saraiva MADP, de Araújo ACG, Togawa RC, Grossi-de-Sá MF, Guimaraes PM. Defining the combined stress response in wild Arachis. Sci Rep 2021; 11:11097. [PMID: 34045561 PMCID: PMC8160017 DOI: 10.1038/s41598-021-90607-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/11/2021] [Indexed: 02/04/2023] Open
Abstract
Nematodes and drought are major constraints in tropical agriculture and often occur simultaneously. Plant responses to these stresses are complex and require crosstalk between biotic and abiotic signaling pathways. In this study, we explored the transcriptome data of wild Arachis species subjected to drought (A-metaDEG) and the root-knot nematode Meloidogyne arenaria (B-metaDEG) via meta-analysis, to identify core-stress responsive genes to each individual and concurrent stresses in these species. Transcriptome analysis of a nematode/drought bioassay (cross-stress) showed that the set of stress responsive DEGs to concurrent stress is distinct from those resulting from overlapping A- and B-metaDEGs, indicating a specialized and unique response to combined stresses in wild Arachis. Whilst individual biotic and abiotic stresses elicit hormone-responsive genes, most notably in the jasmonic and abscisic acid pathways, combined stresses seem to trigger mainly the ethylene hormone pathway. The overexpression of a cross-stress tolerance candidate gene identified here, an endochitinase-encoding gene (AsECHI) from Arachis stenosperma, reduced up to 30% of M. incognita infection and increased post-drought recovery in Arabidopsis plants submitted to both stresses. The elucidation of the network of cross-stress responsive genes in Arachis contributes to better understanding the complex regulation of biotic and abiotic responses in plants facilitating more adequate crop breeding for combined stress tolerance.
Collapse
Affiliation(s)
- Ana Paula Zotta Mota
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.8532.c0000 0001 2200 7498Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil ,grid.8183.20000 0001 2153 9871Present Address: CIRAD, UMR AGAP, 34398 Montpellier, France ,grid.463758.b0000 0004 0445 8705Present Address: AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Ana Cristina Miranda Brasileiro
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Bruna Vidigal
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Thais Nicolini Oliveira
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Andressa da Cunha Quintana Martins
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Mario Alfredo de Passos Saraiva
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Ana Claudia Guerra de Araújo
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Roberto C. Togawa
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Maria Fatima Grossi-de-Sá
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil ,grid.411952.a0000 0001 1882 0945Universidade Católica de Brasília (UCB)-Genomic Sciences and Biotechnology, Brasilia, DF Brazil
| | - Patricia Messenberg Guimaraes
- grid.460200.00000 0004 0541 873XEMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF Brazil ,grid.468194.6National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| |
Collapse
|
23
|
Sun Y, Liang W, Cheng H, Wang H, Lv D, Wang W, Liang M, Miao C. NADPH Oxidase-derived ROS promote mitochondrial alkalization under salt stress in Arabidopsis root cells. PLANT SIGNALING & BEHAVIOR 2021; 16:1856546. [PMID: 33315520 PMCID: PMC7889232 DOI: 10.1080/15592324.2020.1856546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The plasma membrane NADPH Oxidase-derived ROS as signaling molecules play crucial roles in salt stress response. As the motor organelle of cells, mitochondria are also important for salt tolerance. However, the possible interaction between NADPH Oxidase-derived ROS and mitochondria is not well studied. Here, a transgenic Arabidopsis expressing mitochondrial matrix-targeted pH-sensitive indicator cpYFP was used to monitor the pH dynamics in root cells under salt stress. A significant alkalization in mitochondria was observed when the root was exposed to NaCl or KCl, but not osmotic stress such as isotonic mannitol. Interestingly, when pretreated with the NADPH Oxidase inhibitor DPI, the mitochondrial alkalization in root cells was largely abolished. Genetic evidence further showed that salt-induced mitochondrial alkalization was significantly reduced in the loss of function mutant atrbohF . Pretreatment with endocytosis-related inhibitor PAO or TyrA23, which inhibited the ROS accumulation under salt treatment, almost abolished this effect. Furthermore, [Ca2+]cyt increase might also play important roles by affecting ROS generation to mediate salt-induced mitochondrial alkalization as indicated by treatment with plasma membrane Ca2+ channel inhibitor LaCl3 and mitochondrial Ca2+ uniporter inhibitor Ruthenium Red. Together, these results suggest that the plasma membrane NADPH Oxidase-derived ROS promote the mitochondrial alkalization under salt treatment, providing a possible link between different cellular compartments under salt stress.
Collapse
Affiliation(s)
- Yanfeng Sun
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Weihong Liang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Hui Cheng
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Huan Wang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Dong Lv
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Wei Wang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Modan Liang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Chen Miao
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
24
|
Marti L, Savatin DV, Gigli-Bisceglia N, de Turris V, Cervone F, De Lorenzo G. The intracellular ROS accumulation in elicitor-induced immunity requires the multiple organelle-targeted Arabidopsis NPK1-related protein kinases. PLANT, CELL & ENVIRONMENT 2021; 44:931-947. [PMID: 33314180 DOI: 10.1111/pce.13978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 05/22/2023]
Abstract
Recognition at the plasma membrane of danger signals (elicitors) belonging to the classes of the microbe/pathogen- and damage-associated molecular patterns is a key event in pathogen sensing by plants and is associated with a rapid activation of immune responses. Different cellular compartments, including plasma membrane, chloroplasts, nuclei and mitochondria, are involved in the immune cellular program. However, how pathogen sensing is transmitted throughout the cell remains largely to be uncovered. Arabidopsis NPK1-related Proteins (ANPs) are mitogen-activated protein kinase kinase kinases previously shown to have a role in immunity. In this article, we studied the in vivo intracellular dynamics of ANP1- and ANP3-GFP fusions and found that under basal physiological conditions both proteins are present in the cytosol, while ANP3 is also localized in mitochondria. After elicitor perception, both proteins are present also in the plastids and nuclei, revealing a localization pattern that is so far unique. The N-terminal region of the protein kinases is responsible for their localization in mitochondria and plastids. Moreover, we found that the localization of ANPs coincides with the sites of elicitor-induced ROS accumulation and that plants lacking ANP function do not accumulate intracellular ROS.
Collapse
Affiliation(s)
- Lucia Marti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | | | - Nora Gigli-Bisceglia
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | | | - Felice Cervone
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| |
Collapse
|
25
|
Wang Z, Rong D, Chen D, Xiao Y, Liu R, Wu S, Yamamuro C. Salicylic acid promotes quiescent center cell division through ROS accumulation and down-regulation of PLT1, PLT2, and WOX5. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:583-596. [PMID: 33017089 DOI: 10.1111/jipb.13020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/30/2020] [Indexed: 05/13/2023]
Abstract
Salicylic acid (SA) plays a crucial role in plant immunity. However, its function in plant development is poorly understood. The quiescent center (QC), which maintains columella stem cells (CSCs) in the root apical meristem and typically exhibits low levels of cell division, is critical for root growth and development. Here, we show that the Arabidopsis thaliana SA overaccumulation mutant constitutively activated cell death 1 (cad1), which exhibits increased cell division in the QC, is rescued by additional mutations in genes encoding the SA biosynthetic enzyme SALICYLIC ACID INDUCTION DEFFICIENT2 (SID2) or the SA receptor NONEXPRESSER OF PR GENES1 (NPR1), indicating that QC cell division in the cad1 mutant is promoted by the NPR1-dependent SA signaling pathway. The application of exogenous SA also promoted QC cell division in wild-type plants in a dose-dependent manner and largely suppressed the expression of genes involved in QC maintenance, including those encoding the APETALA2 (AP2) transcription factors PLETHORA1 (PLT1) and PLT2, as well as the homeodomain transcription factor WUSCHEL-RELATED HOMEOBOX5 (WOX5). Moreover, we showed that SA promotes reactive oxygen species (ROS) production, which is necessary for the QC cell division phenotype in the cad1 mutant. These results provide insight into the function of SA in QC maintenance.
Collapse
Affiliation(s)
- Zhuqing Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Duoyan Rong
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Hunan Engineering Research Centre of Lily Germplasm Resource in Novation and Deep Processing, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Dixing Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yang Xiao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Renyi Liu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuang Wu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chizuko Yamamuro
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
26
|
Popov VN, Syromyatnikov MY, Fernie AR, Chakraborty S, Gupta KJ, Igamberdiev AU. The uncoupling of respiration in plant mitochondria: keeping reactive oxygen and nitrogen species under control. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:793-807. [PMID: 33245770 DOI: 10.1093/jxb/eraa510] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Plant mitochondrial respiration involves the operation of various alternative pathways. These pathways participate, both directly and indirectly, in the maintenance of mitochondrial functions though they do not contribute to energy production, being uncoupled from the generation of an electrochemical gradient across the mitochondrial membrane and thus from ATP production. Recent findings suggest that uncoupled respiration is involved in reactive oxygen species (ROS) and nitric oxide (NO) scavenging, regulation, and homeostasis. Here we discuss specific roles and possible functions of uncoupled mitochondrial respiration in ROS and NO metabolism. The mechanisms of expression and regulation of the NDA-, NDB- and NDC-type non-coupled NADH and NADPH dehydrogenases, the alternative oxidase (AOX), and the uncoupling protein (UCP) are examined in relation to their involvement in the establishment of the stable far-from-equilibrium state of plant metabolism. The role of uncoupled respiration in controlling the levels of ROS and NO as well as inducing signaling events is considered. Secondary functions of uncoupled respiration include its role in protection from stress factors and roles in biosynthesis and catabolism. It is concluded that uncoupled mitochondrial respiration plays an important role in providing rapid adaptation of plants to changing environmental factors via regulation of ROS and NO.
Collapse
Affiliation(s)
- Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Mikhail Y Syromyatnikov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Subhra Chakraborty
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| |
Collapse
|
27
|
Liao Y, Cui R, Xu X, Cheng Q, Li X. Jasmonic Acid- and Ethylene-Induced Mitochondrial Alternative Oxidase Stimulates Marssonina brunnea Defense in Poplar. PLANT & CELL PHYSIOLOGY 2021; 61:2031-2042. [PMID: 32946565 DOI: 10.1093/pcp/pcaa117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/03/2020] [Indexed: 05/23/2023]
Abstract
Mitochondrial processes are implicated in plant response to biotic stress caused by viruses, actinomyces, bacteria and pests, but their function in defense against fungal invasion remains unclear. Here, we investigated the role and regulation of mitochondrial alternative oxidase (AOX) in response to black spot disease caused by the hemibiotrophic fungus Marssonina brunnea in poplar. M. brunnea inoculation induced the transcription of the AOX1a gene in the mitochondrial electron transport chain and of jasmonic acid (JA) and ethylene (ET) biosynthetic genes, with the accumulation of these phytohormones in poplar leaf, while inhibiting the transcript amount of the mitochondrial cytochrome c oxidase gene (COX6b) and genes related to salicylic acid (SA). Enhanced AOX reduced poplar susceptibility to M. brunnea with a higher ATP/ADP ratio while the repressed AOX caused the reverse effect. Exogenous JA and 1-aminocyclopropane-1-carboxylic acid (ACC, a biosynthetic precursor of ET) inhibited the transcript amount of COX6b and consequently increased the ratio of AOX pathway to total respiration. Furthermore, the transcription of CYS C1 and CYS D1 genes catalyzing cyanide metabolism was induced, while the cysteine (CYS) substrate levels reduced upon M. brunnea inoculation; exogenous JA and ACC mimicked the effect of M. brunnea infection on cysteine. Exogenous SA enhanced, while JA and ACC reduced, poplar susceptibility to M. brunnea. Moreover, inhibiting AOX completely prohibited JA- and ET-increased tolerance to M. brunnea in poplar. These observations indicate that the JA- and ET-induced mitochondrial AOX pathway triggers defense against M. brunnea in poplar. This effect probably involves cyanide. These findings deepen our understanding of plant-pathogenic fungi interactions.
Collapse
Affiliation(s)
- Yangwenke Liao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Rongrong Cui
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Xin Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Qiang Cheng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Xiaogang Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu 210037, China
| |
Collapse
|
28
|
Guo HM, Li HC, Zhou SR, Xue HW, Miao XX. Deficiency of mitochondrial outer membrane protein 64 confers rice resistance to both piercing-sucking and chewing insects in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1967-1982. [PMID: 32542992 DOI: 10.1111/jipb.12983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
The brown planthopper (BPH) and striped stem borer (SSB) are the most devastating insect pests in rice (Oryza sativa) producing areas. Screening for endogenous resistant genes is the most practical strategy for rice insect-resistance breeding. Forty-five mutants showing high resistance against BPH were identified in a rice T-DNA insertion population (11,000 putative homozygous lines) after 4 years of large-scale field BPH-resistance phenotype screening. Detailed analysis showed that deficiency of rice mitochondrial outer membrane protein 64 (OM64) gene resulted in increased resistance to BPH. Mitochondrial outer membrane protein 64 protein is located in the outer mitochondrial membrane by subcellular localization and its deficiency constitutively activated hydrogen peroxide (H2 O2 ) signaling, which stimulated antibiosis and tolerance to BPH. The om64 mutant also showed enhanced resistance to SSB, a chewing insect, which was due to promotion of Jasmonic acid biosynthesis and related responses. Importantly, om64 plants presented no significant changes in rice yield-related characters. This study confirmed OM64 as a negative regulator of rice herbivore resistance through regulating H2 O2 production. Mitochondrial outer membrane protein 64 is a potentially efficient candidate to improve BPH and SSB resistance through gene deletion. Why the om64 mutant was resistant to both piercing-sucking and chewing insects via a gene deficiency in mitochondria is discussed.
Collapse
Affiliation(s)
- Hui-Min Guo
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hai-Chao Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shi-Rong Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xue-Xia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
29
|
Nunn AVW, Guy GW, Brysch W, Botchway SW, Frasch W, Calabrese EJ, Bell JD. SARS-CoV-2 and mitochondrial health: implications of lifestyle and ageing. Immun Ageing 2020; 17:33. [PMID: 33292333 PMCID: PMC7649575 DOI: 10.1186/s12979-020-00204-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Infection with SARs-COV-2 displays increasing fatality with age and underlying co-morbidity, in particular, with markers of the metabolic syndrome and diabetes, which seems to be associated with a "cytokine storm" and an altered immune response. This suggests that a key contributory factor could be immunosenescence that is both age-related and lifestyle-induced. As the immune system itself is heavily reliant on mitochondrial function, then maintaining a healthy mitochondrial system may play a key role in resisting the virus, both directly, and indirectly by ensuring a good vaccine response. Furthermore, as viruses in general, and quite possibly this new virus, have also evolved to modulate immunometabolism and thus mitochondrial function to ensure their replication, this could further stress cellular bioenergetics. Unlike most sedentary modern humans, one of the natural hosts for the virus, the bat, has to "exercise" regularly to find food, which continually provides a powerful adaptive stimulus to maintain functional muscle and mitochondria. In effect the bat is exposed to regular hormetic stimuli, which could provide clues on how to resist this virus. In this paper we review the data that might support the idea that mitochondrial health, induced by a healthy lifestyle, could be a key factor in resisting the virus, and for those people who are perhaps not in optimal health, treatments that could support mitochondrial function might be pivotal to their long-term recovery.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK.
| | | | | | - Stanley W Botchway
- UKRI, STFC, Central Laser Facility, & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX110QX, UK
| | - Wayne Frasch
- School of Life Sciences, Arizona State University, Tempe, USA
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jimmy D Bell
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| |
Collapse
|
30
|
Mencia R, Céccoli G, Fabro G, Torti P, Colombatti F, Ludwig-Müller J, Alvarez ME, Welchen E. OXR2 Increases Plant Defense against a Hemibiotrophic Pathogen via the Salicylic Acid Pathway. PLANT PHYSIOLOGY 2020; 184:1112-1127. [PMID: 32727912 PMCID: PMC7536703 DOI: 10.1104/pp.19.01351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 05/03/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) OXIDATION RESISTANCE2 (AtOXR2) is a mitochondrial protein belonging to the Oxidation Resistance (OXR) protein family, recently described in plants. We analyzed the impact of AtOXR2 in Arabidopsis defense mechanisms against the hemibiotrophic bacterial pathogen Pseudomonas syringae oxr2 mutant plants are more susceptible to infection by the pathogen and, conversely, plants overexpressing AtOXR2 (oeOXR2 plants) show enhanced disease resistance. Resistance in these plants is accompanied by higher expression of WRKY transcription factors, induction of genes involved in salicylic acid (SA) synthesis, accumulation of free SA, and overall activation of the SA signaling pathway. Accordingly, defense phenotypes are dependent on SA synthesis and SA perception pathways, since they are lost in isochorismate synthase1/salicylic acid induction deficient2 and nonexpressor of pathogenesis-related genes1 (npr1) mutant backgrounds. Overexpression of AtOXR2 leads to faster and stronger oxidative burst in response to the bacterial flagellin peptide flg22 Moreover, AtOXR2 affects the nuclear localization of the transcriptional coactivator NPR1, a master regulator of SA signaling. oeOXR2 plants have increased levels of total glutathione and a more oxidized cytosolic redox cellular environment under normal growth conditions. Therefore, AtOXR2 contributes to establishing plant protection against infection by P. syringae acting on the activity of the SA pathway.
Collapse
Affiliation(s)
- Regina Mencia
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Gabriel Céccoli
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Georgina Fabro
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Pablo Torti
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Francisco Colombatti
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | | | - Maria Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
31
|
Nunn AVW, Guy GW, Botchway SW, Bell JD. From sunscreens to medicines: Can a dissipation hypothesis explain the beneficial aspects of many plant compounds? Phytother Res 2020; 34:1868-1888. [PMID: 32166791 PMCID: PMC7496984 DOI: 10.1002/ptr.6654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/16/2020] [Accepted: 02/16/2020] [Indexed: 12/17/2022]
Abstract
Medicine has utilised plant‐based treatments for millennia, but precisely how they work is unclear. One approach is to use a thermodynamic viewpoint that life arose by dissipating geothermal and/or solar potential. Hence, the ability to dissipate energy to maintain homeostasis is a fundamental principle in all life, which can be viewed as an accretion system where layers of complexity have built upon core abiotic molecules. Many of these compounds are chromophoric and are now involved in multiple pathways. Plants have further evolved a plethora of chromophoric compounds that can not only act as sunscreens and redox modifiers, but also have now become integrated into a generalised stress adaptive system. This could be an extension of the dissipative process. In animals, many of these compounds are hormetic, modulating mitochondria and calcium signalling. They can also display anti‐pathogen effects. They could therefore modulate bioenergetics across all life due to the conserved electron transport chain and proton gradient. In this review paper, we focus on well‐described medicinal compounds, such as salicylic acid and cannabidiol and suggest, at least in animals, their activity reflects their evolved function in plants in relation to stress adaptation, which itself evolved to maintain dissipative homeostasis.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| | | | - Stanley W Botchway
- STFC, UKRI & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Jimmy D Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| |
Collapse
|
32
|
Poór P. Effects of Salicylic Acid on the Metabolism of Mitochondrial Reactive Oxygen Species in Plants. Biomolecules 2020; 10:E341. [PMID: 32098073 PMCID: PMC7072379 DOI: 10.3390/biom10020341] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 01/16/2023] Open
Abstract
Different abiotic and biotic stresses lead to the production and accumulation of reactive oxygen species (ROS) in various cell organelles such as in mitochondria, resulting in oxidative stress, inducing defense responses or programmed cell death (PCD) in plants. In response to oxidative stress, cells activate various cytoprotective responses, enhancing the antioxidant system, increasing the activity of alternative oxidase and degrading the oxidized proteins. Oxidative stress responses are orchestrated by several phytohormones such as salicylic acid (SA). The biomolecule SA is a key regulator in mitochondria-mediated defense signaling and PCD, but the mode of its action is not known in full detail. In this review, the current knowledge on the multifaceted role of SA in mitochondrial ROS metabolism is summarized to gain a better understanding of SA-regulated processes at the subcellular level in plant defense responses.
Collapse
Affiliation(s)
- Péter Poór
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
33
|
Dabral S, Varma A, Choudhary DK, Bahuguna RN, Nath M. Biopriming with Piriformospora indica ameliorates cadmium stress in rice by lowering oxidative stress and cell death in root cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109741. [PMID: 31600651 DOI: 10.1016/j.ecoenv.2019.109741] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/25/2019] [Accepted: 09/28/2019] [Indexed: 05/24/2023]
Abstract
Piriformospora indica is known for plant growth promotion and abiotic stress alleviation potential in several agricultural crops. However, a systemic analysis is warranted to explore potential application of this important fungus to augment heavy metal tolerance in rice. The present study explores potential of P. indica in ameliorating the effect of cadmium (Cd) stress in rice cultivars N22 and IR64. Seedlings inoculated with P. indica recorded significantly higher root-shoot length and biomass as compared to non-inoculated plants under control and Cd stress, respectively. Moreover, P. indica inoculated stressed roots accumulated more Cd as compared to non-inoculated stressed roots in both the varieties. Interestingly, cell death and reactive oxygen species (ROS) accumulation were significantly lower in the inoculated plant roots as compare with non-inoculated roots under Cd stress. The results emphasized significantly higher accumulation of Cd in fungal spores could reduce ROS accumulation in root cells resulting in lower cell death.
Collapse
Affiliation(s)
- Surbhi Dabral
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Devendra Kumar Choudhary
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India.
| | - Rajeev Nayan Bahuguna
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India; Center for Advance Studies on Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India.
| | - Manoj Nath
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India; ICAR-Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh, 173213, India.
| |
Collapse
|
34
|
Kapoor D, Singh S, Kumar V, Romero R, Prasad R, Singh J. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.plgene.2019.100182] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Tsai WA, Weng SH, Chen MC, Lin JS, Tsai WS. Priming of Plant Resistance to Heat Stress and Tomato Yellow Leaf Curl Thailand Virus With Plant-Derived Materials. FRONTIERS IN PLANT SCIENCE 2019; 10:906. [PMID: 31354773 PMCID: PMC6640737 DOI: 10.3389/fpls.2019.00906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/26/2019] [Indexed: 05/21/2023]
Abstract
Plants are often simultaneously exposed to diverse environmental stresses, and can tune suitable responses to them through hormones. Salicylic acid (SA) and jasmonic acid (JA) signaling pathways are known to enhance resistance against heat stress and tomato yellow leaf curl Thailand virus (TYLCTHV) infection. However, there is limited information regarding alternative natural priming agents against heat stress and viruses. In this study, two plant-derived priming agents, eugenol and anise oil, were tested for their roles in conferring thermotolerance and virus resistance in tomato plants. Under heat stress, the survival rates and average fresh weight were higher in plants treated with eugenol or anise oil than in control plants. These two priming agents were further tested for antiviral activities. After TYLCTHV infection, the disease incidence and relative abundance of TYLCTHV were lower in anise oil- and eugenol-treated plants than in control plants. Further analyses revealed that a few SA, JA, and RNA silencing genes were enhanced in the former. Moreover, SA, JA, and H2O2 contents increased considerably after eugenol and anise oil treatments. Our findings imply that anise oil and eugenol initiated SA- and JA-mediated defenses to promote thermotolerance and antiviral responses of tomato plants.
Collapse
Affiliation(s)
- Wei-An Tsai
- Hualien District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Hualien City, Taiwan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Sung-Hsia Weng
- Hualien District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Hualien City, Taiwan
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Ming-Cheng Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Shih Tsai
- Department of Plant Medicine, National Chiayi University, Chiayi City, Taiwan
| |
Collapse
|
36
|
Poór P, Patyi G, Takács Z, Szekeres A, Bódi N, Bagyánszki M, Tari I. Salicylic acid-induced ROS production by mitochondrial electron transport chain depends on the activity of mitochondrial hexokinases in tomato (Solanum lycopersicum L.). JOURNAL OF PLANT RESEARCH 2019; 132:273-283. [PMID: 30758749 PMCID: PMC7196940 DOI: 10.1007/s10265-019-01085-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/20/2018] [Indexed: 05/21/2023]
Abstract
The growth regulator, salicylic acid (SA) plays an important role in the induction of cell death in plants. Production of reactive oxygen species (ROS) by mitochondrial electron transport chain (mtETC), cytochrome c (cyt c) release from mitochondria and loss of mitochondrial integrity can be observed during cell death execution in plant tissues. The aim of this work was to study the putative role of hexokinases (HXKs) in the initiation of cell death using tomato (Solanum lycopersicum L.) leaves and mitochondria isolated from plants exposed to a sublethal, 0.1 mM and a cell death-inducing, 1 mM concentrations of SA. Both treatments enhanced ROS and nitric oxide (NO) production in the leaves, which contributed to a concentration-dependent loss of membrane integrity. Images prepared by transmission electron microscopy showed swelling and disorganisation of mitochondrial cristae and vacuolization of mitochondria after SA exposure. Using post-embedding immunohistochemistry, cyt c release from mitochondria was also detected after 1 mM SA treatment. Both SA treatments decreased the activity and transcript levels of HXKs in the leaves and the total mtHXK activity in the mitochondrial fraction. The role of mitochondrial hexokinases (mtHXKs) in ROS and NO production of isolated mitochondria was investigated by the addition of HXK substrate, glucose (Glc) and a specific HXK inhibitor, N-acetylglucosamine (NAG) to the mitochondrial suspension. Both SA treatments enhanced ROS production by mtETC in the presence of succinate and ADP, which was slightly inhibited by Glc and increased significantly by NAG in control and in 0.1 mM SA-treated mitochondria. These changes were not significant at 1 mM SA, which caused disorganisation of mitochondrial membranes. Thus the inhibition of mtHXK activity can contribute to the mitochondrial ROS production, but it is not involved in NO generation in SA-treated leaf mitochondria suggesting that SA can promote cell death by suppressing mtHXK transcription and activity.
Collapse
Affiliation(s)
- Péter Poór
- Department of Plant Biology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.
| | - Gábor Patyi
- Department of Plant Biology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Zoltán Takács
- Department of Plant Biology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - András Szekeres
- Department of Microbiology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Irma Tari
- Department of Plant Biology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| |
Collapse
|
37
|
Thankam FG, Chandra IS, Kovilam AN, Diaz CG, Volberding BT, Dilisio MF, Radwan MM, Gross RM, Agrawal DK. Amplification of Mitochondrial Activity in the Healing Response Following Rotator Cuff Tendon Injury. Sci Rep 2018; 8:17027. [PMID: 30451947 PMCID: PMC6242817 DOI: 10.1038/s41598-018-35391-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial function following rotator cuff tendon injury (RCI) influences the tendon healing. We examined the mitochondrial morphology and function under hypoxia in the shoulder tendon tissue from surgically-induced tenotomy-RCI rat model and cultured swine tenocytes. The tendon tissue was collected post-injury on 3-5 (Group-A), 10-12 (Group-B), and 22-24 (Group-C), days and the corresponding contralateral tendons were used as control for each group. There was higher protein expression of citrate synthase (P < 0.0001) [10.22 MFI (mean fluorescent intensity)] and complex-1 (P = 0.0008) (7.86 MFI) in Group-A and Group-B that decreased in Group-C [(P = 0.0201) (5.78 MFI and (P = 0.7915) (2.32 MFI), respectively] compared to control tendons. The ratio of BAX:Bcl2 (Bcl2 associated x protein:B cell lymphoma 2) in RCI tendons increased by 50.5% (Group-A) and 68.4% (Group-B) and decreased by 25.8% (Group-C) compared to normoxic controls. Hypoxia increased β-tubulin expression (P = 0067) and reduced PGC1-α (P = 0412) expression in the isolated swine tenocytes with no effect on the protein expression of Complex-1 (P = 7409) and citrate synthase (P = 0.3290). Also, the hypoxic tenocytes exhibited about 4-fold increase in mitochondrial superoxide (P < 0.0001), altered morphology and mitochondrial pore integrity, and increase in mitochondrial density compared to normoxic controls. These findings suggest the critical role of mitochondria in the RCI healing response.
Collapse
Affiliation(s)
- Finosh G Thankam
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Isaiah S Chandra
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Anuradha N Kovilam
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Connor G Diaz
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Benjamin T Volberding
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Matthew F Dilisio
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Mohamed M Radwan
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - R Michael Gross
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Devendra K Agrawal
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA.
| |
Collapse
|
38
|
Han G, Liu K, Li L, Li X, Zhao P. The effects of hyperbaric oxygen therapy on neuropathic pain via mitophagy in microglia. Mol Pain 2018; 13:1744806917710862. [PMID: 28580811 PMCID: PMC5464519 DOI: 10.1177/1744806917710862] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Hyperbaric oxygen (HBO) therapy has been suggested to palliate neuropathic pain, but the mechanisms involved are not well understood. This study explored the involvement of microglial mitophagy via HBO relative to neuropathic pain therapy. Materials and methods A total of 80 male Sprague Dawley rats were randomly divided into two groups: a normal group (n = 40) and a mitophagy inhibitor group (n = 40) in which the mitophagy inhibitor cyclosporin A (CsA) was administrated prior to chronic constriction injury (CCI). Groups (n = 10 rats per group) consisted of the following: control (C), sham operation (S), sciatic nerve with chronic constriction injury (CCI), and a CCI plus HBO treatment (CCI + HBO). Pain-related behaviors were evaluated using mechanical withdraw tendency and thermal withdraw latency analysis. Mitochondrial membrane potential was measured, and Western blot was employed to assess expression of NIX and BNIP3. Immunofluorescence changes in neuron protein (NESTIN) and mitochondria inner or outer layer proteins (TIM23, TOM20) were examined. Results HBO significantly ameliorated pain-related behaviors, which were downregulated by mitophagy inhibitors (P < 0.05). Mitochondrial membrane potential indexes were decreased after HBO therapy, but were reversed in the mitophagy inhibitor group (P < 0.05). HBO upregulated NIX and BNIP3 expression, which did not occur in the CCI group (P < 0.05). However, expression was reduced when mitophagy inhibitors were administered. Immunofluorescence examination showed that mitophagy in microglia was induced by CCI, which was upregulated after HBO treatment. This phenomenon was not observed in the mitophagy inhibitor group. Conclusions HBO therapy palliated CCI-induced neuropathic pain in rats by upregulating microglial mitophagy. These results could serve as guidelines to improve neuropathic pain therapy using HBO to maximize therapeutic efficiency.
Collapse
Affiliation(s)
- Guang Han
- Department of Anesthesiology, Shengjing Hospital, China Medical University
| | - Kun Liu
- Department of Anesthesiology, Shengjing Hospital, China Medical University
| | - Lu Li
- Department of Anesthesiology, Shengjing Hospital, China Medical University
| | - Xingyue Li
- Department of Anesthesiology, Shengjing Hospital, China Medical University
| | | |
Collapse
|
39
|
Czarnocka W, Karpiński S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 2018; 122:4-20. [PMID: 29331649 DOI: 10.1016/j.freeradbiomed.2018.01.011] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/17/2017] [Accepted: 01/09/2018] [Indexed: 01/11/2023]
Abstract
In the natural environment, plants are exposed to a variety of biotic and abiotic stress conditions that trigger rapid changes in the production and scavenging of reactive oxygen species (ROS). The production and scavenging of ROS is compartmentalized, which means that, depending on stimuli type, they can be generated and eliminated in different cellular compartments such as the apoplast, plasma membrane, chloroplasts, mitochondria, peroxisomes, and endoplasmic reticulum. Although the accumulation of ROS is generally harmful to cells, ROS play an important role in signaling pathways that regulate acclimatory and defense responses in plants, such as systemic acquired acclimation (SAA) and systemic acquired resistance (SAR). However, high accumulations of ROS can also trigger redox homeostasis disturbance which can lead to cell death, and in consequence, to a limitation in biomass and yield production. Different ROS have various half-lifetimes and degrees of reactivity toward molecular components such as lipids, proteins, and nucleic acids. Thus, they play different roles in intra- and extra-cellular signaling. Despite their possible damaging effect, ROS should mainly be considered as signaling molecules that regulate local and systemic acclimatory and defense responses. Over the past two decades it has been proven that ROS together with non-photochemical quenching (NPQ), hormones, Ca2+ waves, and electrical signals are the main players in SAA and SAR, two physiological processes essential for plant survival and productivity in unfavorable conditions.
Collapse
Affiliation(s)
- Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; The Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Radzików, 05-870 Błonie, Poland.
| |
Collapse
|
40
|
Liu R, Cao P, Ren A, Wang S, Yang T, Zhu T, Shi L, Zhu J, Jiang AL, Zhao MW. SA inhibits complex III activity to generate reactive oxygen species and thereby induces GA overproduction in Ganoderma lucidum. Redox Biol 2018; 16:388-400. [PMID: 29631100 PMCID: PMC5953243 DOI: 10.1016/j.redox.2018.03.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/28/2022] Open
Abstract
Ganoderma lucidum has high commercial value because it produces many active compounds, such as ganoderic acids (GAs). Salicylic acid (SA) was previously reported to induce the biosynthesis of GA in G. lucidum. In this study, we found that SA induces GA biosynthesis by increasing ROS production, and further research found that NADPH oxidase-silenced strains exhibited a partial reduction in the response to SA, resulting in the induction of increased ROS production. Furthermore, the localization of ROS shows that mitochondria are sources of ROS production in response to SA treatment. An additional analysis focused on the relationship between SA-induced ROS production and mitochondrial functions, and the results showed that inhibitors of mitochondrial complexes I and II exert approximately 40–50% superimposed inhibitory effects on the respiration rate and H2O2 content when co-administered with SA. However, no obvious superimposed inhibition effects were observed in the sample co-treated with mitochondrial complex III inhibitor and SA, implying that the inhibitor of mitochondrial complex III and SA might act on the same site in mitochondria. Additional experiments revealed that complex III activity was decreased 51%, 62% and 75% after treatment with 100, 200, and 400 µM SA, respectively. Our results highlight the finding that SA inhibits mitochondrial complex III activity to increase ROS generation. In addition, inhibition of mitochondrial complex III caused ROS accumulation, which plays an essential role in SA-mediated GA biosynthesis in G. lucidum. This conclusion was also demonstrated in complex III-silenced strains. To the best of our knowledge, this study provides the first demonstration that SA inhibits complex III activity to increase the ROS levels and thereby regulate secondary metabolite biosynthesis. Mitochondria as a source of salicylic acid (SA) induced reactive oxygen species (ROS) production in Ganoderma lucidum. SA induces the accumulation of ganoderic acids in Ganoderma lucidum by mitochondria ROS overproduction. SA inhibits mitochondrial complex III activity to increase ROS and thereby induces ganoderic acids biosynthesis.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Pengfei Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Shengli Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Tao Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ting Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ai-Liang Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ming-Wen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
41
|
Alternative oxidase functions in the excess excitation energy-induced resistance to pathogen infection. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Sedlářová M, Luhová L. Re-Evaluation of Imaging Methods of Reactive Oxygen and Nitrogen Species in Plants and Fungi: Influence of Cell Wall Composition. Front Physiol 2017; 8:826. [PMID: 29114232 PMCID: PMC5660854 DOI: 10.3389/fphys.2017.00826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/06/2017] [Indexed: 11/13/2022] Open
Abstract
Developmental transitions and stress reactions in both eukaryotes and prokaryotes are tightly linked with fast and localized modifications in concentrations of reactive oxygen and nitrogen species (ROS and RNS). Fluorescent microscopic analyses are widely applied to detect localized production of ROS and RNS in vivo. In this mini-review we discuss the biological characteristics of studied material (cell wall, extracellular matrix, and tissue complexity) and its handling (concentration of probes, effect of pressure, and higher temperature) which influence results of histochemical staining with "classical" fluorochromes. Future perspectives of ROS and RNS imaging with newly designed probes are briefly outlined.
Collapse
Affiliation(s)
- Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
43
|
Alber NA, Sivanesan H, Vanlerberghe GC. The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain. PLANT, CELL & ENVIRONMENT 2017; 40:1074-1085. [PMID: 27987212 DOI: 10.1111/pce.12884] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 05/03/2023]
Abstract
The plant mitochondrial electron transport chain (ETC) is bifurcated such that electrons from ubiquinol are passed to oxygen via the usual cytochrome path or through alternative oxidase (AOX). We previously showed that knockdown of AOX in transgenic tobacco increased leaf concentrations of nitric oxide (NO), implying that an activity capable of generating NO had been effected. Here, we identify the potential source of this NO. Treatment of leaves with antimycin A (AA, Qi -site inhibitor of Complex III) increased NO amount more than treatment with myxothiazol (Myxo, Qo -site inhibitor) despite both being equally effective at inhibiting respiration. Comparison of nitrate-grown wild-type with AOX knockdown and overexpression plants showed a negative correlation between AOX amount and NO amount following AA. Further, Myxo fully negated the ability of AA to increase NO amount. With ammonium-grown plants, neither AA nor Myxo strongly increased NO amount in any plant line. When these leaves were supplied with nitrite alongside the AA or Myxo, then the inhibitor effects across lines mirrored that of nitrate-grown plants. Hence the ETC, likely the Q-cycle of Complex III generates NO from nitrite, and AOX reduces this activity by acting as a non-energy-conserving electron sink upstream of Complex III.
Collapse
Affiliation(s)
- Nicole A Alber
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C1A4, Canada
| | - Hampavi Sivanesan
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C1A4, Canada
| | - Greg C Vanlerberghe
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C1A4, Canada
| |
Collapse
|
44
|
Belt K, Huang S, Thatcher LF, Casarotto H, Singh KB, Van Aken O, Millar AH. Salicylic Acid-Dependent Plant Stress Signaling via Mitochondrial Succinate Dehydrogenase. PLANT PHYSIOLOGY 2017; 173:2029-2040. [PMID: 28209841 PMCID: PMC5373042 DOI: 10.1104/pp.16.00060] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/14/2017] [Indexed: 05/19/2023]
Abstract
Mitochondria are known for their role in ATP production and generation of reactive oxygen species, but little is known about the mechanism of their early involvement in plant stress signaling. The role of mitochondrial succinate dehydrogenase (SDH) in salicylic acid (SA) signaling was analyzed using two mutants: disrupted in stress response1 (dsr1), which is a point mutation in SDH1 identified in a loss of SA signaling screen, and a knockdown mutant (sdhaf2) for SDH assembly factor 2 that is required for FAD insertion into SDH1. Both mutants showed strongly decreased SA-inducible stress promoter responses and low SDH maximum capacity compared to wild type, while dsr1 also showed low succinate affinity, low catalytic efficiency, and increased resistance to SDH competitive inhibitors. The SA-induced promoter responses could be partially rescued in sdhaf2, but not in dsr1, by supplementing the plant growth media with succinate. Kinetic characterization showed that low concentrations of either SA or ubiquinone binding site inhibitors increased SDH activity and induced mitochondrial H2O2 production. Both dsr1 and sdhaf2 showed lower rates of SA-dependent H2O2 production in vitro in line with their low SA-dependent stress signaling responses in vivo. This provides quantitative and kinetic evidence that SA acts at or near the ubiquinone binding site of SDH to stimulate activity and contributes to plant stress signaling by increased rates of mitochondrial H2O2 production, leading to part of the SA-dependent transcriptional response in plant cells.
Collapse
Affiliation(s)
- Katharina Belt
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia (K.B., S.H., O.V.A., A.H.M.)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Wembley, Washington 6913, Australia (L.F.T., H.C., K.B.S.); and
- University of Western Australia Institute of Agriculture, University of Western Australia, Crawley, Washington 6009, Australia (K.B.S.)
| | - Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia (K.B., S.H., O.V.A., A.H.M.)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Wembley, Washington 6913, Australia (L.F.T., H.C., K.B.S.); and
- University of Western Australia Institute of Agriculture, University of Western Australia, Crawley, Washington 6009, Australia (K.B.S.)
| | - Louise F Thatcher
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia (K.B., S.H., O.V.A., A.H.M.)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Wembley, Washington 6913, Australia (L.F.T., H.C., K.B.S.); and
- University of Western Australia Institute of Agriculture, University of Western Australia, Crawley, Washington 6009, Australia (K.B.S.)
| | - Hayley Casarotto
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia (K.B., S.H., O.V.A., A.H.M.)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Wembley, Washington 6913, Australia (L.F.T., H.C., K.B.S.); and
- University of Western Australia Institute of Agriculture, University of Western Australia, Crawley, Washington 6009, Australia (K.B.S.)
| | - Karam B Singh
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia (K.B., S.H., O.V.A., A.H.M.)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Wembley, Washington 6913, Australia (L.F.T., H.C., K.B.S.); and
- University of Western Australia Institute of Agriculture, University of Western Australia, Crawley, Washington 6009, Australia (K.B.S.)
| | - Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia (K.B., S.H., O.V.A., A.H.M.)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Wembley, Washington 6913, Australia (L.F.T., H.C., K.B.S.); and
- University of Western Australia Institute of Agriculture, University of Western Australia, Crawley, Washington 6009, Australia (K.B.S.)
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia (K.B., S.H., O.V.A., A.H.M.)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Wembley, Washington 6913, Australia (L.F.T., H.C., K.B.S.); and
- University of Western Australia Institute of Agriculture, University of Western Australia, Crawley, Washington 6009, Australia (K.B.S.)
| |
Collapse
|
45
|
Wang J, Wang Y, Shen L, Qian Y, Yang J, Wang F. Sulfated lentinan induced mitochondrial dysfunction leads to programmed cell death of tobacco BY-2 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 137:27-35. [PMID: 28364801 DOI: 10.1016/j.pestbp.2016.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/18/2016] [Accepted: 09/23/2016] [Indexed: 06/07/2023]
Abstract
Sulphated lentinan (sLTN) is known to act as a resistance inducer by causing programmed cell death (PCD) in tobacco suspension cells. However, the underlying mechanism of this effect is largely unknown. Using tobacco BY-2 cell model, morphological and biochemical studies revealed that mitochondrial reactive oxygen species (ROS) production and mitochondrial dysfunction contribute to sLNT induced PCD. Cell viability, and HO/PI fluorescence imaging and TUNEL assays confirmed a typical cell death process caused by sLNT. Acetylsalicylic acid (an ROS scavenger), diphenylene iodonium (an inhibitor of NADPH oxidases) and protonophore carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (a protonophore and an uncoupler of mitochondrial oxidative phosphorylation) inhibited sLNT-induced H2O2 generation and cell death, suggesting that ROS generation linked, at least partly, to a mitochondrial dysfunction and caspase-like activation. This conclusion was further confirmed by double-stained cells with the mitochondria-specific marker MitoTracker RedCMXRos and the ROS probe H2DCFDA. Moreover, the sLNT-induced PCD of BY-2 cells required cellular metabolism as up-regulation of the AOX family gene transcripts and induction of the SA biosynthesis, the TCA cycle, and miETC related genes were observed. It is concluded that mitochondria play an essential role in the signaling pathway of sLNT-induced ROS generation, which possibly provided new insight into the sLNT-mediated antiviral response, including PCD.
Collapse
Affiliation(s)
- Jie Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 11 Keyuanjing Si Rd., Laoshan District, Qingdao, China
| | - Yaofeng Wang
- Qingyang Oriental Tobacco Company Ltd., Gansu, China
| | - Lili Shen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 11 Keyuanjing Si Rd., Laoshan District, Qingdao, China
| | - Yumei Qian
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 11 Keyuanjing Si Rd., Laoshan District, Qingdao, China
| | - Jinguang Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 11 Keyuanjing Si Rd., Laoshan District, Qingdao, China.
| | - Fenglong Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 11 Keyuanjing Si Rd., Laoshan District, Qingdao, China.
| |
Collapse
|
46
|
Xu L, Zhao H, Ruan W, Deng M, Wang F, Peng J, Luo J, Chen Z, Yi K. ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice. THE PLANT CELL 2017; 29:560-574. [PMID: 28298519 PMCID: PMC5385951 DOI: 10.1105/tpc.16.00665] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/28/2017] [Accepted: 03/10/2017] [Indexed: 05/18/2023]
Abstract
Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice (Oryza sativa) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 (AIM1), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1, likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1 These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes.
Collapse
Affiliation(s)
- Lei Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Hongyu Zhao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Wenyuan Ruan
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Minjuan Deng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fang Wang
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinrong Peng
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Luo
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhixiang Chen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
47
|
Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat Rev Immunol 2017; 17:208-214. [PMID: 28163301 DOI: 10.1038/nri.2016.151] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The innate immune system uses a distinct set of germline-encoded pattern recognition receptors (PRRs) to initiate downstream inflammatory cascades. This recognition system is in stark contrast to the adaptive immune system, which relies on highly variable, randomly generated antigen receptors. A key limitation of the innate immune system's reliance on fixed PRRs is its inflexibility in responding to rapidly evolving pathogens. Recent advances in our understanding of inflammasome activation suggest that the innate immune system also has sophisticated mechanisms for responding to pathogens for which there is no fixed PRR. This includes the recognition of debris from dying cells, known as danger-associated molecular patterns (DAMPs), which can directly activate PRRs in a similar manner to pathogen-associated molecular patterns (PAMPs). Distinct from this, emerging data for the inflammasome components NLRP3 (NOD-, LRR- and pyrin domain-containing 3) and pyrin suggest that they do not directly detect molecular patterns, but instead act as signal integrators that are capable of detecting perturbations in cytoplasmic homeostasis, for example, as initiated by infection. Monitoring these perturbations, which we term 'homeostasis-altering molecular processes' (HAMPs), provides potent flexibility in the capacity of the innate immune system to detect evolutionarily novel infections; however, HAMP sensing may also underlie the sterile inflammation that drives chronic inflammatory diseases.
Collapse
|
48
|
Uppala R, Dudiak B, Beck ME, Bharathi SS, Zhang Y, Stolz DB, Goetzman ES. Aspirin increases mitochondrial fatty acid oxidation. Biochem Biophys Res Commun 2016; 482:346-351. [PMID: 27856258 DOI: 10.1016/j.bbrc.2016.11.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 01/01/2023]
Abstract
The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders.
Collapse
Affiliation(s)
- Radha Uppala
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States
| | - Brianne Dudiak
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States
| | - Megan E Beck
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States
| | - Sivakama S Bharathi
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States
| | - Yuxun Zhang
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States
| | - Donna B Stolz
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Eric S Goetzman
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States.
| |
Collapse
|
49
|
Dong CJ, Cao N, Li L, Shang QM. Quantitative Proteomic Profiling of Early and Late Responses to Salicylic Acid in Cucumber Leaves. PLoS One 2016; 11:e0161395. [PMID: 27551830 PMCID: PMC4995040 DOI: 10.1371/journal.pone.0161395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/04/2016] [Indexed: 11/18/2022] Open
Abstract
Salicylic acid (SA) is an important phytohormone that plays vital regulatory roles in plant growth, development, and stress responses. However, studies on the molecular mechanism of SA, especially during the early SA responses, are lagging behind. In this study, we initiated a comprehensive isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to explore the early and late SA-responsive proteins in leaves of cucumber (Cucumis sativus L.) seedlings. Upon SA application through the roots, endogenous SA accumulated in cucumber leaves. By assaying the changes in marker gene expression and photosynthetic rate, we collected samples at 12 h and 72 h post treatment (hpt) to profile the early and late SA responsiveness, respectively. The iTRAQ assay followed by tandem mass spectrometry revealed 135 differentially expressed proteins (DEPs) at 12 hpt and 301 DEPs at 72 hpt. The functional categories for these SA-responsive proteins included in a variety of biochemical processes, including photosynthesis, redox homeostasis, carbohydrate and energy metabolism, lipid metabolism, transport, protein folding and modification, proteolysis, cell wall organization, and the secondary phenylpropanoid pathway. Conclusively, based on the abundant changes of these DEPs, together with their putative functions, we proposed a possible SA-responsive protein network. It appears that SA could elicit reactive oxygen species (ROS) production via enhancing the photosynthetic electron transferring, and then confer some growth-promoting and stress-priming effects on cells during the late phase, including enhanced photosynthesis and ROS scavenging, altered carbon metabolic flux for the biosynthesis of amino acids and nucleotides, and cell wall reorganization. Overall, the present iTRAQ assay provides higher proteome coverage and deepened our understanding of the molecular basis of SA-responses.
Collapse
Affiliation(s)
- Chun-Juan Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences,Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Beijing, 100081, P.R.China
- * E-mail: (CJD); (QMS)
| | - Ning Cao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences,Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Beijing, 100081, P.R.China
| | - Liang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences,Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Beijing, 100081, P.R.China
| | - Qing-Mao Shang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences,Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Beijing, 100081, P.R.China
- * E-mail: (CJD); (QMS)
| |
Collapse
|
50
|
A 2-Cys peroxiredoxin in response to oxidative stress in the pine wood nematode, Bursaphelenchus xylophilus. Sci Rep 2016; 6:27438. [PMID: 27271000 PMCID: PMC4895224 DOI: 10.1038/srep27438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 05/12/2016] [Indexed: 12/11/2022] Open
Abstract
The pine wood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease that has devastated pine forests in Asia. Parasitic nematodes are known to have evolved antioxidant stress responses that defend against host plant defenses. In this study, the infestation of whitebark pine, Pinus bungean, with B. xylophilus led to a significant increase in plant hydrogen peroxide (H2O2) and salicylic acid levels. Correspondingly, the expression of an antioxidative enzyme, 2-Cysteine peroxiredoxin (BxPrx), was elevated in B. xylophilus following the H2O2 treatments. Recombinant BxPrx, a thermal stabile and pH tolerant enzyme, exhibited high level of antioxidant activity against H2O2, suggesting that it is capable of protecting cells from free radical attacks. Immunohistochemical localization study showed that BxPrx was broadly expressed across different tissues and could be secreted outside the nematode. Finally, the number of BxPrx homologs in both dauer-like and fungi-feeding B. xylophilus were comparable based on bioinformatics analysis of existing EST libraries, indicating a potential role of BxPrx in both propagative and dispersal nematodes. These combined results suggest that BxPrx is a key genetic factor facilitating the infestation and distribution of B. xylophilus within pine hosts, and consequently the spread of pine wilt disease.
Collapse
|