1
|
Liu B, Liu Z, Li C, Yu H, Wang H. Geographical distribution and ecological niche dynamics of Crassostrea sikamea (Amemiya, 1928) in China's coastal regions under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171061. [PMID: 38373453 DOI: 10.1016/j.scitotenv.2024.171061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Global climate change drives species redistribution, threatening biodiversity and ecosystem heterogeneity. The Kumamoto oyster, Crassostrea sikamea (Amemiya, 1928), one of the most promising aquaculture species because of its delayed reproductive timing, was once prevalent in southern China. In this study, an ensemble species distribution model was employed to analyze the distribution range shift and ecological niche dynamics of C. sikamea along China's coastline under the current and future climate scenarios (RCP 2.6-8.5 covering 2050 s and 2100 s). The model results indicated that the current habitat distribution for C. sikamea consists of a continuous stretch extending from the coastlines of Hainan Province to the northern shores of Jiangsu Province. By the 2050 s, the distribution range will stabilize at its southern end along the coast of Hainan Province, while expanding northward to cover the coastal areas of Shandong Province, showing a more dramatic trend of contraction in the south and invasion in the north by the 2100 s. In RCP8.5, the southern end retracts to the coasts of Guangdong, whereas the northern end covers all of China's coastal areas north of 34°N. C. sikamea can maintain relatively stable ecological niche characteristics, while it may occupy different ecological niche spaces under future climate conditions. Significant niche expansion will occur in lower temperature. We concluded C. sikamea habitats are susceptible to climate change. The rapid northward expansion of C. sikamea may open new possibilities for oyster farming in China, but it will also have important consequences for the ecological balance and biodiversity of receiving areas. It's imperative that we closely examine and strategize to address these repercussions for a win-win situation.
Collapse
Affiliation(s)
- Bingxian Liu
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhenqiang Liu
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao 266071, PR China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, PR China
| | - Cui Li
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Haolin Yu
- University of Chinese Academy of Sciences, Beijing 100049, PR China; Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Haiyan Wang
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chine Academy of Sciences, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Yang R, Yu X, Nie P, Cao R, Feng J, Hu X. Climatic niche and range shifts of grey squirrels (Sciurus carolinensis Gmelin) in Europe: An invasive pest displacing native squirrels. PEST MANAGEMENT SCIENCE 2023; 79:3731-3739. [PMID: 37194192 DOI: 10.1002/ps.7554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND As an invasive pest from North America, grey squirrels (GSs; Sciurus carolinensis Gmelin) are displacing native squirrels in Europe. However, the climatic niche and range dynamics of GSs in Europe remain largely unknown. Through niche and range dynamic models, we investigated climatic niche and range shifts between introduced GSs in Europe and native GSs in North America. RESULTS GSs in North America can survive in more variable climatic conditions and have much wider climatic niche breadth than do GSs in Europe. Based on climate, the potential range of GSs in Europe included primarily Britain, Ireland, and Italy, whereas the potential range of GSs in North America included vast regions of western and southern Europe. If GSs in Europe could occupy the same climatic niche space and potential range as GSs in North America, they would occupy an area ca. 2.45 times the size of their current range. The unfilling ranges of GSs in Europe relative to those of GSs in North America were primarily in France, Italy, Spain, Croatia, and Portugal. CONCLUSION Our observations implied that GSs in Europe have significant invasion potential, and that range projections based on their occurrence records in Europe may underestimate their invasion risk. Given that small niche shifts between GSs in Europe and in North America could lead to large range shifts, niche shifts could be a sensitive indicator in invasion risk assessment. The identified unfilling ranges of the GS in Europe should be prioritized in combating GS invasions in the future. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rujing Yang
- College of Agriculture and Biological Science, Dali University, Dali, China
- Research Center for Agroecology in Erhai Lake Watershed of Dali University, Dali, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali, China
| | - Xiaoli Yu
- College of Agriculture and Biological Science, Dali University, Dali, China
- Research Center for Agroecology in Erhai Lake Watershed of Dali University, Dali, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali, China
| | - Peixiao Nie
- College of Agriculture and Biological Science, Dali University, Dali, China
- Research Center for Agroecology in Erhai Lake Watershed of Dali University, Dali, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali, China
| | - Runyao Cao
- College of Agriculture and Biological Science, Dali University, Dali, China
- Research Center for Agroecology in Erhai Lake Watershed of Dali University, Dali, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali, China
| | - Jianmeng Feng
- College of Agriculture and Biological Science, Dali University, Dali, China
- Research Center for Agroecology in Erhai Lake Watershed of Dali University, Dali, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali, China
| | - Xiaokang Hu
- College of Agriculture and Biological Science, Dali University, Dali, China
- Research Center for Agroecology in Erhai Lake Watershed of Dali University, Dali, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali, China
| |
Collapse
|
3
|
Strubbe D, Jiménez L, Barbosa AM, Davis AJS, Lens L, Rahbek C. Mechanistic models project bird invasions with accuracy. Nat Commun 2023; 14:2520. [PMID: 37130835 PMCID: PMC10154326 DOI: 10.1038/s41467-023-38329-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/26/2023] [Indexed: 05/04/2023] Open
Abstract
Invasive species pose a major threat to biodiversity and inflict massive economic costs. Effective management of bio-invasions depends on reliable predictions of areas at risk of invasion, as they allow early invader detection and rapid responses. Yet, considerable uncertainty remains as to how to predict best potential invasive distribution ranges. Using a set of mainly (sub)tropical birds introduced to Europe, we show that the true extent of the geographical area at risk of invasion can accurately be determined by using ecophysiological mechanistic models that quantify species' fundamental thermal niches. Potential invasive ranges are primarily constrained by functional traits related to body allometry and body temperature, metabolic rates, and feather insulation. Given their capacity to identify tolerable climates outside of contemporary realized species niches, mechanistic predictions are well suited for informing effective policy and management aimed at preventing the escalating impacts of invasive species.
Collapse
Affiliation(s)
- Diederik Strubbe
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium.
- Center for Macroecology, Evolution, and Climate (CMEC), GLOBE Institute, University of Copenhagen, 2100, Copenhagen Ø, Denmark.
| | - Laura Jiménez
- School of Life Sciences, University of Hawai'i at Mānoa, 2538 McCarthy Mall, Honolulu, HI, 96822, USA
- Centro de Modelamiento Matemático (CNRS IRL2807), Universidad de Chile, Santiago, Chile
| | - A Márcia Barbosa
- CICGE-Centro de Investigação em Ciências Geo-Espaciais, Alameda do Monte da Virgem, 4430-146, Vila Nova de Gaia, Portugal
| | - Amy J S Davis
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Luc Lens
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium
| | - Carsten Rahbek
- Center for Macroecology, Evolution, and Climate (CMEC), GLOBE Institute, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
4
|
Mukherjee T, Sharma LK, Thakur M, Banerjee D, Chandra K. Whether curse or blessing: A counterintuitive perspective on global pest thrips infestation under climatic change with implications to agricultural economics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161349. [PMID: 36621499 DOI: 10.1016/j.scitotenv.2022.161349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The improvement and application of pest models to predict yield losses is still a challenge for the scientific community. However, pest models were targeted chiefly towards scheduling scouting or pesticide applications to deal with pest infestation. Thysanoptera (thrips) significantly impact the productivity of many economically important crops worldwide. Until now, no comprehensive study is available on the global distribution of pest thrips, as well as on the extent of cropland vulnerability worldwide. Further, nothing is known about the climate change impacts on these insects. Thus the present study was designed to map the global distribution and quantify the extent of cropland vulnerability in the present and future climate scenarios using data of identified pest thrips within the genus, i.e., Thrips, Frankliniella, and Scirtothrips. Our found significant niche contraction under the climate change scenarios and thrips may reside primarily in their thermal tolerance thresholds. About 3,98,160 km2 of cropland globally was found to be affected in the present scenario. However, it may significantly reduce to 5530 Km2 by 2050 and 1990 km2 by 2070. Further, the thrips distribution mostly getting restricted to Eastern North America, the North-western of the Indian sub-continent, and the north of Europe. Among all realms, thrips may lose ground in the Indo-Malayan realm at the most and get restricted to only 27 out of 825 terrestrial ecoregions. The agrarian communities of the infested regions may get benefit if these pests get wiped out, but on the contrary, we may lose species diversity. Moreover, the vacated niche may attract other invasive species, which may seriously impact the species composition and agricultural productivity. The present study findings can be used in making informed decisions about prioritizing future economic and research investments on the thrips in light of anticipated climate change impacts.
Collapse
Affiliation(s)
- Tanoy Mukherjee
- Zoological Survey of India, Kolkata 700053, India-; Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
| | | | | | | | | |
Collapse
|
5
|
Time activity budget and foraging behavior: important determinants of resource sharing and guild structure in wintering waterbirds. EUR J WILDLIFE RES 2023. [DOI: 10.1007/s10344-023-01648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
6
|
Etges MF, Martínez-Lanfranco JA, Guadagnin DL. Spread risk assessment of invasive axis deer using bioclimatic niche models. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Abdulwahab UA, Hammill E, Hawkins CP. Choice of climate data affects the performance and interpretation of species distribution models. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Carlin TF, Bufford JL, Hulme PE, Godsoe WK. Global assessment of three Rumex species reveals inconsistent climatic niche shifts across multiple introduced ranges. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractClimatic niche shifts occur when species occupy different climates in the introduced range than in their native range. Climatic niche shifts are known to occur across a range of taxa, however we do not currently understand whether climatic niche shifts can consistently be predicted across multiple introduced ranges. Using three congeneric weed species, we investigate whether climatic niche shifts in one introduced range are consistent in other ranges where the species has been introduced. We compared the climatic conditions occupied by Rumex conglomeratus, R. crispus, and R. obtusifolius between their native range (Eurasia) and three different introduced ranges (North America, Australia, New Zealand). We considered metrics of niche overlap, expansion, unfilling, pioneering, and similarity to determine whether climatic niche shifts were consistent across ranges and congeners. We found that the presence and direction of climatic niche shifts was inconsistent between introduced ranges for each species. Within an introduced range, however, niche shifts were qualitatively similar among species. North America and New Zealand experienced diverging niche expansion into drier and wetter climates respectively, whilst the niche was conserved in Australia. This work highlights how unique characteristics of an introduced range and local introduction history can drive different niche shifts, and that comparisons between only the native and one introduced range may misrepresent a species’ capacity for niche shifts. However, predictions of climatic niche shifts could be improved by comparing related species in the introduced range rather than relying on the occupied environments of the native range.
Collapse
|
9
|
Desjonquères C, Villén‐Pérez S, De Marco P, Márquez R, Beltrán JF, Llusia D. Acoustic species distribution models (
aSDMs
): A framework to forecast shifts in calling behaviour under climate change. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Camille Desjonquères
- Terrestrial Ecology Group (TEG), Departamento de Ecología Universidad Autónoma de Madrid Madrid Spain
| | - Sara Villén‐Pérez
- Universidad de Alcalá GloCEE – Global Change Ecology and Evolution Research Group Departamento de Ciencias de la Vida 28805, Alcalá de Henares Madrid Spain
| | - Paulo De Marco
- Theory, Metacommunities and Landscape Ecology lab, ICB‐V Universidade Federal de Goiás Goiânia Brazil
| | - Rafael Márquez
- Fonoteca Zoológica & Departamento de Biodiversidad y Biología Evolutiva Museo Nacional de Ciencias Naturales (CSIC) Madrid Spain
| | - Juan F. Beltrán
- Departamento de Zoología Universidad de Sevilla Sevilla Spain
| | - Diego Llusia
- Terrestrial Ecology Group (TEG), Departamento de Ecología Universidad Autónoma de Madrid Madrid Spain
- Centro de Investigación en Biodiversidad y Cambio Global Universidad Autónoma de Madrid Madrid Spain
- Laboratório de Herpetologia e Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas Universidade Federal de Goiás Goiás Brazil
| |
Collapse
|
10
|
Xian X, Zhao H, Wang R, Qiao H, Guo J, Zhang G, Liu W, Wan F. Ecological Niche Shifts Affect the Potential Invasive Risk of Rapistrum rugosum (L.) All. in China. FRONTIERS IN PLANT SCIENCE 2022; 13:827497. [PMID: 35498683 PMCID: PMC9051486 DOI: 10.3389/fpls.2022.827497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Ecological niche is a key concept that links species distributions. Ecological niche shifts are expected to affect the potential invasive risk of alien species. Rapistrum rugosum is an invasive agricultural weed in many countries. Wild populations of R. rugosum have been recorded in China, representing a great threat to the regional crops. Based on distribution records from different regions and relevant environmental variables, the present study predicted the potential distribution and estimated the invasive risk of R. rugosum in China. Ecological niche shifts strongly affected the potential invasive risk of R. rugosum in China. The two most important variables were annual temperature range (Bio7) and mean temperature of the coldest quarter (Bio11). The total suitable habitat for the species covered an area of 287.53 × 104km2 and was mainly distributed in Southwest, Southeast, and Central China. Australia, Canada, Brazil, the United States, and Argentina accounted for over 90% of the inspection records of R. rugosum from Chinese entry ports during 2015-2018. The intercepted R. rugosum was frequently mixed in Glycine max (L.) Merr., Hordeum vulgare L., linseed, Triticum aestivum L., and Sorghum bicolor (L.) Moench. Moreover, 80% interceptions were recorded from Tianjin, Guangdong, Nanjing, and Chengdu customs. Climatic conditions do not limit the establishment capability of R. rugosum in China. Our results provide a theoretical reference for the development of monitoring and control measures for this invasive weed.
Collapse
Affiliation(s)
- Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haoxiang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijie Qiao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guifen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Modeling of Valeriana wallichii Habitat Suitability and Niche Dynamics in the Himalayan Region under Anticipated Climate Change. BIOLOGY 2022; 11:biology11040498. [PMID: 35453699 PMCID: PMC9024540 DOI: 10.3390/biology11040498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
An increase in atmospheric greenhouse gases necessitates the use of species distribution models (SDMs) in modeling suitable habitats and projecting the impact of climate change on the future range shifts of the species. The present study is based on the BIOMOD ensemble approach to map the currently suitable habitats and predict the impact of climate change on the niche shift of Valeriana wallichii. We also studied its niche dynamics using the ecospat package in R software. Values of the area under curve (AUC) and true skill statistics (TSS) were highly significant (>0.9), which shows that the model has run better. From 19 different bioclimatic variables, only 8 were retained after correlation, among which bio_17 (precipitation of driest quarter), bio_1 (annual mean temperature), and bio_12 (annual mean precipitation) received the highest gain. Under future climate change, the suitable habitats will be significantly contracted by −94% (under representative concentration pathway RCP 8.5 for 2070) and −80.22% (under RCP 8.5 for 2050). There is a slight increase in habitat suitability by +16.69% (RCP 4.5 for 2050) and +8.9% (RCP 8.5 for 2050) under future climate change scenarios. The equivalency and similarity tests of niche dynamics show that the habitat suitability for current and future climatic scenarios is comparable but not identical. Principal Component Analysis (PCA) analysis shows that climatic conditions will be severely affected between current and future scenarios. From this study, we conclude that the habitats of Valeriana wallichii are highly vulnerable to climate shifts. This study can be used to alleviate the threat to this plant by documenting the unexplored populations, restoring the degraded habitats through rewilding, and launching species recovery plans in the natural habitats.
Collapse
|
12
|
Using environmental niche models to elucidate drivers of the American bullfrog invasion in California. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Marchessaux G, Lüskow F, Sarà G, Pakhomov EA. Predicting the current and future global distribution of the invasive freshwater hydrozoan Craspedacusta sowerbii. Sci Rep 2021; 11:23099. [PMID: 34845271 PMCID: PMC8629981 DOI: 10.1038/s41598-021-02525-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022] Open
Abstract
The freshwater jellyfish Craspedacusta sowerbii is one of the most widespread invasive species, but its global distribution remains uncertain due to ephemeral appearances and general lack of information in various aquatic environments. The aim of this study was to map current and future distributions (2050 and 2100) using Species Distribution Models allowing to visualize the habitat suitability and make projections of its changes under potential climate change scenarios. Except in Oceania where the range decreased, an expansion of C. sowerbii was projected during the next century under modeled future scenarios being most intensive during the first half of the century. The present study shows that the expansion of C. sowerbii worldwide would be facilitated mainly by precipitation, vapor pressure, and temperature. The predictions showed that this species over the eighty years will invade high-latitude regions in both hemispheres with ecological consequences in already threatened freshwater ecosystems.
Collapse
Affiliation(s)
- Guillaume Marchessaux
- Department of Earth and Marine Science, University of Palermo, Viale delle Scienze, 90128, Palermo, Italy.
| | - Florian Lüskow
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2039-2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Gianluca Sarà
- Department of Earth and Marine Science, University of Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Evgeny A Pakhomov
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2039-2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Hakai Institute, PO Box 309, Heriot Bay, BC, V0P 1H0, Canada
| |
Collapse
|
14
|
Lakoba VT, Atwater DZ, Thomas VE, Strahm BD, Barney JN. A global invader’s niche dynamics with intercontinental introduction, novel habitats, and climate change. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
15
|
Gajdzik L, DeCarlo TM, Koziol A, Mousavi-Derazmahalleh M, Coghlan M, Power MW, Bunce M, Fairclough DV, Travers MJ, Moore GI, DiBattista JD. Climate-assisted persistence of tropical fish vagrants in temperate marine ecosystems. Commun Biol 2021; 4:1231. [PMID: 34711927 PMCID: PMC8553944 DOI: 10.1038/s42003-021-02733-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/01/2021] [Indexed: 11/08/2022] Open
Abstract
Rising temperatures and extreme climate events are propelling tropical species into temperate marine ecosystems, but not all species can persist. Here, we used the heatwave-driven expatriation of tropical Black Rabbitfish (Siganus fuscescens) to the temperate environments of Western Australia to assess the ecological and evolutionary mechanisms that may entail their persistence. Population genomic assays for this rabbitfish indicated little genetic differentiation between tropical residents and vagrants to temperate environments due to high migration rates, which were likely enhanced by the marine heatwave. DNA metabarcoding revealed a diverse diet for this species based on phytoplankton and algae, as well as an ability to feed on regional resources, including kelp. Irrespective of future climate scenarios, these macroalgae-consuming vagrants may self-recruit in temperate environments and further expand their geographic range by the year 2100. This expansion may compromise the health of the kelp forests that form Australia's Great Southern Reef. Overall, our study demonstrates that projected favourable climate conditions, continued large-scale genetic connectivity between populations, and diet versatility are key for tropical range-shifting fish to establish in temperate ecosystems.
Collapse
Affiliation(s)
- Laura Gajdzik
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
- Reef Ecology Laboratory, Red Sea Research Center, King Abdullah University of Science and Technology, 23955, Thuwal, Saudi Arabia.
| | - Thomas M DeCarlo
- College of Natural and Computational Sciences, Hawai'i Pacific University, Honolulu, HI, 96744, USA
| | - Adam Koziol
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1017, Copenhagen, Denmark
| | - Mahsa Mousavi-Derazmahalleh
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Megan Coghlan
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Matthew W Power
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Michael Bunce
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
- Institute of Environmental Science and Research, Kenepuru, Porirua, 5022, New Zealand
| | - David V Fairclough
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, North Beach, WA, 6920, Australia
| | - Michael J Travers
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, North Beach, WA, 6920, Australia
| | - Glenn I Moore
- Collections and Research, Western Australian Museum, Welshpool, WA, 6106, Australia
- School of Biological Sciences, University of Western Australia, Nedlands, WA, 6907, Australia
| | - Joseph D DiBattista
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, 2010, Australia
| |
Collapse
|
16
|
Datta A, Schweiger O, Kühn I. Origin of climatic data can determine the transferability of species distribution models. NEOBIOTA 2020. [DOI: 10.3897/neobiota.59.36299] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Methodological research on species distribution modelling (SDM) has so far largely focused on the choice of appropriate modelling algorithms and variable selection approaches, but the consequences of choosing amongst different sources of environmental data has scarcely been investigated. Bioclimatic variables are commonly used as predictors in SDMs. Currently, several online databases offer the same sets of bioclimatic variables, but they differ in underlying source of raw data and method of data processing (extrapolation and downscaling). In this paper, we asked whether predictive performance and spatial transferability of SDMs are affected by the choice of two different bioclimatic databases viz. WorldClim 2 and Chelsa 1.2. We used presence-absence data of the invasive plant Ageratina adenophora from the Western Himalaya for training SDMs and a set of independently-collected presence-only datasets from the Central and Eastern Himalaya to evaluate the transferability of the SDMs beyond the training range. We found that the performance of SDMs was, to a large degree, affected by the choice of the climatic dataset. Models calibrated on Chelsa 1.2 outperformed WorldClim 2 in terms of internal evaluation on the calibration dataset. However, when the model was transferred beyond the calibration range to the Central and Eastern Himalaya, models based on WorldClim 2 performed substantially better. We recommend that, in addition to the choice of predictor variables, the choice of predictor datasets with these variables should not be based merely on subjective decision whenever several options are available. Instead, such decisions should be based on robust evaluation of the most appropriate dataset for a given geographic region and species being modelled. Moreover, decisions could also depend on the objective of the study, i.e. projecting within the calibration range or beyond. Therefore, a quantitative evaluation of predictor datasets from alternative sources should be routinely performed as an integral part of the modelling procedure.
Collapse
|
17
|
Cunze S, Kochmann J, Klimpel S. Global occurrence data improve potential distribution models for Aedes japonicus japonicus in non-native regions. PEST MANAGEMENT SCIENCE 2020; 76:1814-1822. [PMID: 31814250 DOI: 10.1002/ps.5710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/30/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND There is great interest in modelling the distribution of invasive species, particularly from the point of view of management. However, distribution modelling for invasive species using ecological niche models (ENMs) involves multiple challenges. Owing to the short time span since the introduction or arrival of a non-indigenous species and the associated dispersal limitations, applying regular ENMs at an early stage of the invasion process may result in an underestimation of the potential niche in the new ranges. This topic is dealt with here using the example of Aedes japonicus japonicus, a vector competent mosquito species for a number of diseases. RESULTS We found high niche unfilling for the species' non-native range niches in Europe and North America compared with the native range niche, which can be explained by the early stage of the invasion process. Comparing four different ENMs based on: (i) the European and (ii) the North American non-native range occurrence data, (iii) (derived) native range occurrence data, and (iv) all available occurrence data together, we found large differences in the projected climatic suitability, with the global data model projecting larger areas with climatic suitability. CONCLUSION ENM in biological invasions can be challenging, especially when distribution data are only poorly available. We suggest one possible way to project climatic suitability for Aedes j. japonicus despite poor data availability for the non-native ranges and missing occurrences from the native range. We discuss aspects of the lack of information and the associated implications for modelling. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sarah Cunze
- Institute of Ecology, Evolution and Diversity, Goethe-University, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | - Judith Kochmann
- Institute of Ecology, Evolution and Diversity, Goethe-University, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | - Sven Klimpel
- Institute of Ecology, Evolution and Diversity, Goethe-University, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| |
Collapse
|
18
|
Kingsbury KM, Gillanders BM, Booth DJ, Nagelkerken I. Trophic niche segregation allows range-extending coral reef fishes to co-exist with temperate species under climate change. GLOBAL CHANGE BIOLOGY 2020; 26:721-733. [PMID: 31846164 DOI: 10.1111/gcb.14898] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Changing climate is forcing many terrestrial and marine species to extend their ranges poleward to stay within the bounds of their thermal tolerances. However, when such species enter higher latitude ecosystems, they engage in novel interactions with local species, such as altered predator-prey dynamics and competition for food. Here, we evaluate the trophic overlap between range-extending and local fish species along the east coast of temperate Australia, a hotspot for ocean warming and species range extensions. Stable isotope ratios (δ15 N and δ13 C) of muscle tissue and stomach content analysis were used to quantify overlap of trophic niche space between vagrant tropical and local temperate fish communities along a 730 km (6°) latitudinal gradient. Our study shows that in recipient temperate ecosystems, sympatric tropical and temperate species do not overlap significantly in their diet-even though they forage on broadly similar prey groups-and are therefore unlikely to compete for trophic niche space. The tropical and temperate species we studied, which are commonly found in shallow-water coastal environments, exhibited moderately broad niche breadths and local-scale dietary plasticity, indicating trophic generalism. We posit that because these species are generalists, they can co-exist under current climate change, facilitating the existence of novel community structures.
Collapse
Affiliation(s)
- Kelsey M Kingsbury
- Southern Seas Ecology Laboratories, School of Biological Sciences, and The Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Bronwyn M Gillanders
- Southern Seas Ecology Laboratories, School of Biological Sciences, and The Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| | - David J Booth
- Fish Ecology Lab, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences, and The Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
19
|
Ahmad R, Khuroo AA, Charles B, Hamid M, Rashid I, Aravind NA. Global distribution modelling, invasion risk assessment and niche dynamics of Leucanthemum vulgare (Ox-eye Daisy) under climate change. Sci Rep 2019; 9:11395. [PMID: 31388050 PMCID: PMC6684661 DOI: 10.1038/s41598-019-47859-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 07/25/2019] [Indexed: 11/08/2022] Open
Abstract
In an era of climate change, biological invasions by alien species represent one of the main anthropogenic drivers of global environmental change. The present study, using an ensemble modelling approach, has mapped current and future global distribution of the invasive Leucanthemum vulgare (Ox-eye Daisy) and predicted the invasion hotspots under climate change. The current potential distribution of Ox-eye Daisy coincides well with the actual distribution records, thereby indicating robustness of our model. The model predicted a global increase in the suitable habitat for the potential invasion of this species under climate change. Oceania was shown to be the high-risk region to the potential invasion of this species under both current and future climate change scenarios. The results revealed niche conservatism for Australia and Northern America, but contrastingly a niche shift for Africa, Asia, Oceania and Southern America. The global distribution modelling and risk assessment of Ox-eye Daisy has immediate implications in mitigating its invasion impacts under climate change, as well as predicting the global invasion hotspots and developing region-specific invasion management strategies. Interestingly, the contrasting patterns of niche dynamics shown by this invasive plant species provide novel insights towards disentangling the different operative mechanisms underlying the process of biological invasions at the global scale.
Collapse
Affiliation(s)
- Rameez Ahmad
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, 190006, J & K, India
| | - Anzar A Khuroo
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, 190006, J & K, India.
| | - Bipin Charles
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura, Jakkur PO, Bengaluru, 560064, India
| | - Maroof Hamid
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, 190006, J & K, India
| | - Irfan Rashid
- Biological Invasions Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, J & K, India
| | - N A Aravind
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura, Jakkur PO, Bengaluru, 560064, India
| |
Collapse
|
20
|
Species distribution models with field validation, a key approach for successful selection of receptor sites in conservation translocations. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Louppe V, Leroy B, Herrel A, Veron G. Current and future climatic regions favourable for a globally introduced wild carnivore, the raccoon Procyon lotor. Sci Rep 2019; 9:9174. [PMID: 31235806 PMCID: PMC6591328 DOI: 10.1038/s41598-019-45713-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/12/2019] [Indexed: 11/09/2022] Open
Abstract
Invasive species are considered as one of the major threats to biodiversity and represent a major challenge in the conservation of natural ecosystems, in preventing damage to agricultural production, and human health risks. Environmental Niche Modelling has emerged as a powerful tool to predict the patterns of range expansion of non-native species and to direct effective strategies for managing biological invasions. The raccoon, Procyon lotor, is a wild mesocarnivore presenting a high adaptability and showing successful introduced populations worldwide. Here, we modelled the current and future climatically favourable areas for the raccoon using two protocols, based on data sets filtrated in geographic and environmental spaces. Projections from these models show extensive current favourable geographical areas covering extensive regions of temperate biomes. Moreover, predictions for 2050 reveals extensive new favourable areas north of the current favourable regions. However, the results of the two modeling approaches differ in the extent of predicted favourable spaces. Protocols using geographically filtered data present more conservative forecasts, while protocol using environmental filtration presents forecasts across greater areas. Given the biological characteristics and the ecological requirements of a generalist carnivore such as the raccoon, the latter forecasts appears more relevant and should be privileged in the development of conservation plans for ecosystems.
Collapse
Affiliation(s)
- Vivien Louppe
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 51, 75231, Paris, Cedex 5, France.
| | - Boris Leroy
- Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA UMR 7208), Muséum National d'Histoire Naturelle, Sorbonne Universités, Université de Caen Normandie, Université des Antilles, CNRS, IRD, Paris, France
| | - Anthony Herrel
- Département Adaptations du Vivant (FUNEVOL, UMR 7179), Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Géraldine Veron
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 51, 75231, Paris, Cedex 5, France
| |
Collapse
|
22
|
Ng W, Cândido de Oliveira Silva A, Rima P, Atzberger C, Immitzer M. Ensemble approach for potential habitat mapping of invasive Prosopis spp . in Turkana, Kenya. Ecol Evol 2018; 8:11921-11931. [PMID: 30598787 PMCID: PMC6303778 DOI: 10.1002/ece3.4649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 02/03/2023] Open
Abstract
AIM Prosopis spp. are an invasive alien plant species native to the Americas and well adapted to thrive in arid environments. In Kenya, several remote-sensing studies conclude that the genus is well established throughout the country and is rapidly invading new areas. This research aims to model the potential habitat of Prosopis spp. by using an ensemble model consisting of four species distribution models. Furthermore, environmental and expert knowledge-based variables are assessed. LOCATION Turkana County, Kenya. METHODS We collected and assessed a large number of environmental and expert knowledge-based variables through variable correlation, collinearity, and bias tests. The variables were used for an ensemble model consisting of four species distribution models: (a) logistic regression, (b) maximum entropy, (c) random forest, and (d) Bayesian networks. The models were evaluated through a block cross-validation providing statistical measures. RESULTS The best predictors for Prosopis spp. habitat are distance from water and built-up areas, soil type, elevation, lithology, and temperature seasonality. All species distribution models achieved high accuracies while the ensemble model achieved the highest scores. Highly and moderately suitable Prosopis spp. habitat covers 6% and 9% of the study area, respectively. MAIN CONCLUSIONS Both ensemble and individual models predict a high risk of continued invasion, confirming local observations and conceptions. Findings are valuable to stakeholders for managing invaded area, protecting areas at risk, and to raise awareness.
Collapse
Affiliation(s)
- Wai‐Tim Ng
- Institute for Surveying, Remote Sensing and Land Information (IVFL)University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | | | - Purity Rima
- Kenya Forestry Research Institute (KEFRI) Baringo Sub CentreMarigatKenya
- Faculty of Arts and Humanities Department of Geography, Chuka UniversityChuka Kenya
| | - Clement Atzberger
- Institute for Surveying, Remote Sensing and Land Information (IVFL)University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Markus Immitzer
- Institute for Surveying, Remote Sensing and Land Information (IVFL)University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| |
Collapse
|
23
|
Obiakara MC, Fourcade Y. Climatic niche and potential distribution of Tithonia diversifolia (Hemsl.) A. Gray in Africa. PLoS One 2018; 13:e0202421. [PMID: 30183733 PMCID: PMC6124709 DOI: 10.1371/journal.pone.0202421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/09/2018] [Indexed: 11/19/2022] Open
Abstract
Mexican sunflower, Tithonia diversifolia (Asteraceae), is an invasive tropical plant species native to Central America. It has spread in more than 70 countries across Asia, Africa and Australia. In Africa, this species is known to disturb native crops and plant communities, but its negative impacts remain underestimated. Moreover, its potential invasion risk has not been investigated so far. A fundamental aspect in the identification and prediction of habitats susceptible to biological invasions lies in the ability of an organism to conserve or change its ecological niche as part of the invasion process. Here, we compared the realised climatic niche of T. diversifolia between its Central American and African ranges. In addition, reciprocal distribution models were calibrated on its native and invaded ranges. Models were combined and projected to current and future climatic conditions in Africa to estimate the potential distribution of this species. Niche overlap given by Schoner's D index was low (0.23), equivalency and similarity tests suggested that the climatic niche of T. diversifolia is not similar in both ranges. However the low expansion (U = 0.09) and very high stability (S = 0.92) indices support climatic niche conservatism for this species in Africa, although it has not filled its entire niche so far. Our combined reciprocal models highlight highly suitable areas for this species in humid regions throughout East, Central and West Africa, then in some parts of South Africa and Madagascar. Future projections indicated that the distribution of climatically suitable habitats will likely remain stable.
Collapse
Affiliation(s)
| | - Yoan Fourcade
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
24
|
Species distribution model transferability and model grain size - finer may not always be better. Sci Rep 2018; 8:7168. [PMID: 29740002 PMCID: PMC5940916 DOI: 10.1038/s41598-018-25437-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/20/2018] [Indexed: 11/25/2022] Open
Abstract
Species distribution models have been used to predict the distribution of invasive species for conservation planning. Understanding spatial transferability of niche predictions is critical to promote species-habitat conservation and forecasting areas vulnerable to invasion. Grain size of predictor variables is an important factor affecting the accuracy and transferability of species distribution models. Choice of grain size is often dependent on the type of predictor variables used and the selection of predictors sometimes rely on data availability. This study employed the MAXENT species distribution model to investigate the effect of the grain size on model transferability for an invasive plant species. We modelled the distribution of Rhododendron ponticum in Wales, U.K. and tested model performance and transferability by varying grain size (50 m, 300 m, and 1 km). MAXENT-based models are sensitive to grain size and selection of variables. We found that over-reliance on the commonly used bioclimatic variables may lead to less accurate models as it often compromises the finer grain size of biophysical variables which may be more important determinants of species distribution at small spatial scales. Model accuracy is likely to increase with decreasing grain size. However, successful model transferability may require optimization of model grain size.
Collapse
|
25
|
Manzoor SA, Griffiths G, Iizuka K, Lukac M. Land Cover and Climate Change May Limit Invasiveness of Rhododendron ponticum in Wales. FRONTIERS IN PLANT SCIENCE 2018; 9:664. [PMID: 29868106 PMCID: PMC5968121 DOI: 10.3389/fpls.2018.00664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/30/2018] [Indexed: 05/22/2023]
Abstract
Invasive plant species represent a serious threat to biodiversity precipitating a sustained global effort to eradicate or at least control the spread of this phenomenon. Current distribution ranges of many invasive species are likely to be modified in the future by land cover and climate change. Thus, invasion management can be made more effective by forecasting the potential spread of invasive species. Rhododendron ponticum (L.) is an aggressive invasive species which appears well suited to western areas of the UK. We made use of MAXENT modeling environment to develop a current distribution model and to assess the likely effects of land cover and climatic conditions (LCCs) on the future distribution of this species in the Snowdonia National park in Wales. Six global circulation models (GCMs) and two representative concentration pathways (RCPs), together with a land cover simulation for 2050 were used to investigate species' response to future environmental conditions. Having considered a range of environmental variables as predictors and carried out the AICc-based model selection, we find that under all LCCs considered in this study, the range of R. ponticum in Wales is likely to contract in the future. Land cover and topographic variables were found to be the most important predictors of the distribution of R. ponticum. This information, together with maps indicating future distribution trends will aid the development of mitigation practices to control R. ponticum.
Collapse
Affiliation(s)
- Syed A. Manzoor
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
- *Correspondence: Syed A. Manzoor
| | - Geoffrey Griffiths
- Department of Geography and Environmental Sciences, University of Reading, Reading, United Kingdom
| | - Kotaro Iizuka
- Center for Spatial Information Science, University of Tokyo, Tokyo, Japan
| | - Martin Lukac
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
26
|
Predicting Spatial Distribution of Key Honeybee Pests in Kenya Using Remotely Sensed and Bioclimatic Variables: Key Honeybee Pests Distribution Models. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2017. [DOI: 10.3390/ijgi6030066] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
27
|
Syfert MM, Serbina L, Burckhardt D, Knapp S, Percy DM. Emerging New Crop Pests: Ecological Modelling and Analysis of the South American Potato Psyllid Russelliana solanicola (Hemiptera: Psylloidea) and Its Wild Relatives. PLoS One 2017; 12:e0167764. [PMID: 28052088 PMCID: PMC5214844 DOI: 10.1371/journal.pone.0167764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/18/2016] [Indexed: 11/22/2022] Open
Abstract
Food security is threatened by newly emerging pests with increased invasive potential accelerated through globalization. The Neotropical jumping plant louse Russelliana solanicola Tuthill is currently a localized potato pest and probable vector of plant pathogens. It is an unusually polyphagous species and is widely distributed in and along the Andes. To date, introductions have been detected in eastern Argentina, southern Brazil and Uruguay. Species distribution models (SDMs) and trait comparisons based on contemporary and historical collections are used to estimate the potential spread of R. solanicola worldwide. We also extend our analyses to all described species in the genus Russelliana in order to assess the value of looking beyond pest species to predict pest spread. We investigate the extent to which data on geographical range and environmental niche can be effectively extracted from museum collections for comparative analyses of pest and non-pest species in Russelliana. Our results indicate that R. solanicola has potential for invasion in many parts of the world with suitable environmental conditions that currently have or are anticipated to increase potato cultivation. Large geographical ranges are characteristic of a morphological subgeneric taxon group that includes R. solanicola; this same group also has a larger environmental breadth than other groups within the genus. Ecological modelling using museum collections provides a useful tool for identifying emerging pests and developing integrated pest management programs.
Collapse
Affiliation(s)
- Mindy M. Syfert
- Natural History Museum, Department of Life Sciences, London, United Kingdom
| | - Liliya Serbina
- Naturhistorisches Museum, Basel, Switzerland
- Institut für Natur-, Landschafts- und Umweltschutz der Universität Basel, Basel, Switzerland
| | | | - Sandra Knapp
- Natural History Museum, Department of Life Sciences, London, United Kingdom
| | - Diana M. Percy
- Natural History Museum, Department of Life Sciences, London, United Kingdom
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Camenen E, Porté AJ, Benito Garzón M. American trees shift their niches when invading Western Europe: evaluating invasion risks in a changing climate. Ecol Evol 2016; 6:7263-7275. [PMID: 28725396 PMCID: PMC5513278 DOI: 10.1002/ece3.2376] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 11/10/2022] Open
Abstract
Four North American trees are becoming invasive species in Western Europe: Acer negundo, Prunus serotina, Quercus rubra, and Robinia pseudoacacia. However, their present and future potential risks of invasion have not been yet evaluated. Here, we assess niche shifts between the native and invasive ranges and the potential invasion risk of these four trees in Western Europe. We estimated niche conservatism in a multidimensional climate space using niche overlap Schoener's D, niche equivalence, and niche similarity tests. Niche unfilling and expansion were also estimated in analogous and nonanalogous climates. The capacity for predicting the opposite range between the native and invasive areas (transferability) was estimated by calibrating species distribution models (SDMs) on each range separately. Invasion risk was estimated using SDMs calibrated on both ranges and projected for 2050 climatic conditions. Our results showed that native and invasive niches were not equivalent with low niche overlap for all species. However, significant similarity was found between the invasive and native ranges of Q. rubra and R. pseudoacacia. Niche expansion was lower than 15% for all species, whereas unfilling ranged from 7 to 56% when it was measured using the entire climatic space and between 5 and 38% when it was measured using analogous climate only. Transferability was low for all species. SDMs calibrated over both ranges projected high habitat suitability in Western Europe under current and future climates. Thus, the North American and Western European ranges are not interchangeable irrespective of the studied species, suggesting that other environmental and/or biological characteristics are shaping their invasive niches. The current climatic risk of invasion is especially high for R. pseudoacacia and A. negundo. In the future, the highest risks of invasion for all species are located in Central and Northern Europe, whereas the risk is likely to decrease in the Mediterranean basin.
Collapse
|
29
|
Ray D, Behera MD, Jacob J. Improving spatial transferability of ecological niche model of Hevea brasiliensis using pooled occurrences of introduced ranges in two biogeographic regions of India. ECOL INFORM 2016. [DOI: 10.1016/j.ecoinf.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Bocsi T, Allen JM, Bellemare J, Kartesz J, Nishino M, Bradley BA. Plants' native distributions do not reflect climatic tolerance. DIVERS DISTRIB 2016. [DOI: 10.1111/ddi.12432] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Tierney Bocsi
- Department of Environmental Conservation University of Massachusetts Amherst MA 01003 USA
| | - Jenica M. Allen
- Department of Environmental Conservation University of Massachusetts Amherst MA 01003 USA
- Department of Natural Resources and the Environment University of New Hampshire Durham NH 03824 USA
| | - Jesse Bellemare
- Department of Biological Sciences Smith College Northampton MA 14853 USA
| | - John Kartesz
- Biota of North America Program Chapel Hill NC 27514 USA
| | | | - Bethany A. Bradley
- Department of Environmental Conservation University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|