1
|
Song X, Li Y, Wang C, Zhao Y, Yang S, Guo R, Hu M, Sun M, Zhang G, Li Y, Wang Y, Liu S, Shen Y, Li C, Zhang X, Li J, Fan B, Li B. Efficacy evaluation of a bivalent subunit vaccine against epidemic PEDV heterologous strains with low cross-protection. J Virol 2024; 98:e0130924. [PMID: 39254314 PMCID: PMC11494954 DOI: 10.1128/jvi.01309-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
Variant Porcine epidemic diarrhea virus (PEDV), which causes diarrhea and high mortality in piglets, has become a major pathogen, and co-epidemics of different subtypes of the virus have become a very thorny problem for the clinical prevention and control of PEDV. However, cross-protection between epidemic G2a and G2b subtype strains has not been observed, and there is currently no vaccine against both G2a and G2b strains. In this study, we demonstrate the low cross-protection between G2a and G2b strains with piglet immunization and challenge tests. The trimeric full-length S proteins of G2a and G2b variants were purified and a bivalent subunit vaccine against PEDV G2a/G2b-S was developed. In active and passive immune protection tests, the bivalent subunit vaccine produced high neutralizing antibody titers and S-specific immunoglobulin G (IgG) and IgA titers against both the G2a and G2b strains in piglets and sows. In the attack phase of the viruses, the clinical symptoms and microscopic lesions in the immunized groups were significantly alleviated. Importantly, the PEDV G2a/G2b-S bivalent subunit vaccine conferred effective passive immunity against PEDV G2a and G2b challenges in the form of colostrum-derived antibodies from the immunized sows. In conclusion, our data demonstrate the low cross-protection of PEDV epidemic G2a and G2b strains and show that the G2a/G2b-S bivalent subunit vaccine is protective against both G2a and G2b strains. It is therefore a candidate vaccine for PEDV prevention. IMPORTANCE The detection rate of PEDV G2a subtype strains is currently increasing. Although commercial vaccines are available, most vaccines do not exert an ideal protective effect against these strains. Furthermore, there is no definitive research into the cross-protection between G2a and G2b strains, and no bivalent vaccine provides joint protection against both. Therefore, in this study, we investigated the cross-protection between PEDV G2a and G2b strains and designed a candidate bivalent subunit vaccine combining the trimeric S proteins of the G2a and G2b subtypes. We demonstrate that the cross-protection between strains G2a and G2b is poor and that this bivalent subunit vaccine protects piglets from viral attack by inducing both active and passive immunity. This study emphasizes the effectiveness of the PEDV G2a/G2b-S bivalent subunit vaccine and provides a feasible method for the development of efficient PEDV vaccines.
Collapse
Affiliation(s)
- Xu Song
- School of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yunchuan Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Chuanhong Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Yongxiang Zhao
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shanshan Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Rongli Guo
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Mi Hu
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Min Sun
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Gege Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Yupeng Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Yi Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Shiyu Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Yaoxin Shen
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Chengcheng Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Xuehan Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jizong Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Baochao Fan
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Bin Li
- School of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Mohiuddin M, Deng S, Zhu L, Wang G, Jia A. Genetic evolution and phylogenetic analysis of porcine epidemic diarrhea virus strains circulating in and outside China with reference to a wild type virulent genotype CHYJ130330 reported from Guangdong Province, China. Gut Pathog 2024; 16:21. [PMID: 38589948 PMCID: PMC11003062 DOI: 10.1186/s13099-024-00597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 01/02/2024] [Indexed: 04/10/2024] Open
Abstract
During the last decade, porcine epidemic diarrhea virus has detrimental consequences on swine industry, due to severe outbreaks especially in the suckling piglets. In March 2013, an outbreak was reported on a commercial swine farm in Guangdong Province, Southern China. A wild-type PEDV strain named as CHYJ130330 was identified, complete genome was sequenced and deposited in GenBank (accession no. KJ020932). The molecular epidemiological including evolutionary characteristics and pathogenicity assessment were explored during this study with particular interest and focus to develop this candidate strain for new vaccine. The isolates from China pre- and post-2013 shared 96.5-97.2% and 97-99% nt identity respectively with wild-type CHYJ130330 strain which during experimental studies has demonstrated high virulence and 100% mortality in 104 TCID50 group piglets within 5 days. The 22 reference strains selected from other parts of the world shared 98-99% identity with our sequence except Chinese (CV777) and S. Korean (vir.DR13, SM98 and atten.DR13) strains sharing 96.8, 97.6, 96.6 and 97.1% identity respectively. The phylogenetic tree revealed most strains reported after 2013 in GII genogroup while the prototype (CV777), S.korean and earlier Chinese (JS2008, 85-7mutant, Atten.vaccine, SD-M, LZC and CH/S) were GI Group. The amino acid sequence of CHYJ130330 E and M protein is highly conserved while ORF3 and N protein having 9 and 17 amino acid substitutions respectively in comparison to CV777 strain. The comparison of full length genome and the structural proteins revealed variations signifying that PEDV variant strains are still the main source of outbreaks in spite of continuous vaccination and also explain the variable trend of large scale outbreaks during this decade as compared to sporadic tendency of disease found before 2010. It is evident from this study that Chinese strains display significant level of mixing with the strains reported from other countries. The strain CHYJ130330 was also adapted successfully to Vero cell line and has shown high virulence in piglets. The information/findings will be helpful to develop a strategy for control of PEDV and have also shown that CHYJ130330 strain has strong virulence and is a more popular clinical strain in recent years, which has the potential to be developed into PEDV vaccine.
Collapse
Affiliation(s)
- Mudassar Mohiuddin
- Guangdong Haid Institute of Animal Husbandry and Veterinary, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Pig Raising and Disease Control, Guangzhou, People's Republic of China
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shengchao Deng
- Guangdong Haid Institute of Animal Husbandry and Veterinary, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Pig Raising and Disease Control, Guangzhou, People's Republic of China
| | - Lisai Zhu
- Guangdong Haid Institute of Animal Husbandry and Veterinary, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Pig Raising and Disease Control, Guangzhou, People's Republic of China
| | - Guiping Wang
- Guangdong Haid Institute of Animal Husbandry and Veterinary, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Pig Raising and Disease Control, Guangzhou, People's Republic of China.
| | - Aiqing Jia
- Guangdong Haid Institute of Animal Husbandry and Veterinary, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Pig Raising and Disease Control, Guangzhou, People's Republic of China.
| |
Collapse
|
3
|
Jiang H, Wang T, Kong L, Li B, Peng Q. Reverse Genetics Systems for Emerging and Re-Emerging Swine Coronaviruses and Applications. Viruses 2023; 15:2003. [PMID: 37896780 PMCID: PMC10611186 DOI: 10.3390/v15102003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Emerging and re-emerging swine coronaviruses (CoVs), including porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome-CoV (SADS-CoV), cause severe diarrhea in neonatal piglets, and CoV infection is associated with significant economic losses for the swine industry worldwide. Reverse genetics systems realize the manipulation of RNA virus genome and facilitate the development of new vaccines. Thus far, five reverse genetics approaches have been successfully applied to engineer the swine CoV genome: targeted RNA recombination, in vitro ligation, bacterial artificial chromosome-based ligation, vaccinia virus -based recombination, and yeast-based method. This review summarizes the advantages and limitations of these approaches; it also discusses the latest research progress in terms of their use for virus-related pathogenesis elucidation, vaccine candidate development, antiviral drug screening, and virus replication mechanism determination.
Collapse
Affiliation(s)
- Hui Jiang
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (H.J.); (T.W.)
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Ting Wang
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (H.J.); (T.W.)
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingbao Kong
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (H.J.); (T.W.)
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Qi Peng
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (H.J.); (T.W.)
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| |
Collapse
|
4
|
Mei X, Guo J, Fang P, Ma J, Li M, Fang L. The Characterization and Pathogenicity of a Recombinant Porcine Epidemic Diarrhea Virus Variant ECQ1. Viruses 2023; 15:1492. [PMID: 37515178 PMCID: PMC10383920 DOI: 10.3390/v15071492] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a re-emerging enteropathogenic coronavirus, has become the predominant causative agent of lethal diarrhea in piglets, resulting in huge economic losses in many countries. Furthermore, the rapid variability of this virus has increased the emergence of novel variants with different pathogenicities. In this study, 633 fecal samples collected from diarrheic piglets in China during 2017-2019 were analyzed, and 50.08% (317/633) of these samples were PEDV-positive. The full-length spike (S) genes of 36 samples were sequenced, and a genetic evolution analysis was performed. The results showed that thirty S genes belonged to the GII-a genotype and six S genes belonged to the GII-b genotype. From the PEDV-positive samples, one strain, designated ECQ1, was successfully isolated, and its full-length genome sequence was determined. Interestingly, ECQ1 is a recombinant PEDV between the GII-a (major parent) and GII-b (minor parent) strains, with recombination occurring in the S2 domain of the S gene. The pathogenicity of ECQ1 was assessed in 5-day-old piglets and compared with that of the strain EHuB2, a representative of GII-a PEDV. Although both PEDV strains induced similar fecal viral shedding in the infected piglets, ECQ1 exhibited lower pathogenicity than did EHuB2, as evidenced by reduced mortality and less severe pathological changes in the intestines. These data suggest that PEDV strain ECQ1 is a potential live virus vaccine candidate against porcine epidemic diarrhea.
Collapse
Affiliation(s)
- Xiaowei Mei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiahui Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jun Ma
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mingxiang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
5
|
Chen P, Zhu J, Yu J, Liu R, Lao M, Yu L, Gao F, Jiang Y, Liu C, Tong W, Liu H, Tong G, Zhou Y. Porcine epidemic diarrhea virus strain FJzz1 infection induces type I/III IFNs production through RLRs and TLRs-mediated signaling. Front Immunol 2022; 13:984448. [PMID: 35958569 PMCID: PMC9357978 DOI: 10.3389/fimmu.2022.984448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Interferons (IFNs) including type I/III IFNs are the major components of the host innate immune response against porcine epidemic diarrhea virus (PEDV) infection, and several viral proteins have been identified to antagonize type I/III IFNs productions through diverse strategies. However, the modulation of PEDV infection upon the activation of the host’s innate immune response has not been fully characterized. In this study, we observed that various IFN-stimulated genes (ISGs) were upregulated significantly in a time- and dose-dependent manner in LLC-PK1 cells infected with the PEDV G2 strain FJzz1. The transcriptions of IRF9 and STAT1 were increased markedly in the late stage of FJzz1 infection and the promotion of the phosphorylation and nuclear translocation of STAT1, implicating the activation of the JAK-STAT signaling pathway during FJzz1 infection. In addition, abundant type I/III IFNs were produced after FJzz1 infection. However, type I/III IFNs and ISGs decreased greatly in FJzz1-infected LLC-PK1 cells following the silencing of the RIG-I-like receptors (RLRs), including RIG-I and MDA5, and the Toll-like receptors (TLRs) adaptors, MyD88 and TRIF. Altogether, FJzz1 infection induces the production of type-I/III IFNs in LLC-PK1 cells, in which RLRs and TLRs signaling pathways are involved, followed by the activation of the JAK-STAT signaling cascade, triggering the production of numerous ISGs to exert antiviral effects of innate immunity.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Junrui Zhu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jiarong Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ruilin Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mengqin Lao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Changlong Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Guangzhi Tong, ; Yanjun Zhou,
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Guangzhi Tong, ; Yanjun Zhou,
| |
Collapse
|
6
|
Pewlaoo S, Phanthong S, Kong-Ngoen T, Santajit S, Tunyong W, Buranasinsup S, Kaeoket K, Thavorasak T, Pumirat P, Sookrung N, Chaicumpa W, Indrawattana N. Development of a Rapid Reverse Transcription-Recombinase Polymerase Amplification Couple Nucleic Acid Lateral Flow Method for Detecting Porcine Epidemic Diarrhoea Virus. BIOLOGY 2022; 11:biology11071018. [PMID: 36101399 PMCID: PMC9312133 DOI: 10.3390/biology11071018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Porcine epidemic diarrhea virus infection is an important acute diarrheal disease of swine especially in infected piglets can caused severe diarrhea, dehydration with difficulty in digesting milk curd, leading to death. The diagnosis of this viral infection is essential for monitoring and managing the disease. There is surprisingly little evidence such as easy rapid detection in the field. In this study, we developed rapid the reverse transcription-recombinase polymerase amplification couple nucleic acid lateral flow for Porcine epidemic diarrhea virus detection targeted the membrane gene in the genome sequence of the virus. Herein, the results shown that the established assay is simple and rapid, increases high sensitivity and specificity, and can be applied in the field. Abstract Porcine epidemic diarrhea virus (PEDV) infection is an important acute diarrheal disease of swine that results in economic and industrial losses worldwide. The clinical manifestations in infected piglets are severe diarrhea, dehydration with milk curd indigestion, leading to death. The diagnosis of PEDV is essential for monitoring and managing the disease. PEDV can be detected and identified by serology and the nucleic acid of the virus in clinical samples. Therefore, a novel isothermal amplification and detection technique, reverse transcription-recombinase polymerase amplification couple nucleic acid lateral flow (RT-RPA-NALF) was developed for the rapid detection of PEDV. Qualitative reverse transcription-polymerase chain reaction (RT-qPCR) was established as the gold standard assay to compare results. Specific primer pairs and probes were designed, and RT-RPA conditions were optimized to amplify the M gene of PEDV. The established RT-RPA-NALF assay could finish in 25 min at a temperature of 42 °C and the amplicon interpreted by visual detection. The developed RT-RPA-NALF assay was specific to the M gene of PEDV, did not detect other common swine diarrhea pathogens, and showed minimal detection at 102 TCID50/mL PEDV. The RT-RPA-NALF assay can detect PEDV in 5 simulated fecal samples. Furthermore, in 60 clinical fecal samples, the results of RT-RPA-NALF correlated with RT-qPCR assay, which provides sensitivity of 95.65% and specificity of 100%, with a coincident rate of 98.33%. The rapid RT-RPA-NALF is simple and rapid, increases high sensitivity, and can be used in the field.
Collapse
Affiliation(s)
- Seatthanan Pewlaoo
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.P.); (T.K.-N.); (W.T.); (P.P.)
| | - Siratcha Phanthong
- Siriraj Center of Research Excellence in Allergy and Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.P.); (N.S.)
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.T.); (W.C.)
| | - Thida Kong-Ngoen
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.P.); (T.K.-N.); (W.T.); (P.P.)
| | - Sirijan Santajit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand;
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Witawat Tunyong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.P.); (T.K.-N.); (W.T.); (P.P.)
| | - Shutipen Buranasinsup
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Techit Thavorasak
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.T.); (W.C.)
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.P.); (T.K.-N.); (W.T.); (P.P.)
| | - Nitat Sookrung
- Siriraj Center of Research Excellence in Allergy and Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.P.); (N.S.)
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.T.); (W.C.)
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.P.); (T.K.-N.); (W.T.); (P.P.)
- Correspondence: ; Tel.: +66-2-354-9100 (ext. 1598)
| |
Collapse
|
7
|
Ma L, Lian K, Zhu M, Tang Y, Zhang M. Visual detection of porcine epidemic diarrhea virus by recombinase polymerase amplification combined with lateral flow dipstrip. BMC Vet Res 2022; 18:140. [PMID: 35436883 PMCID: PMC9013981 DOI: 10.1186/s12917-022-03232-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background Porcine epidemic diarrhea virus (PEDV) is one of the most important enteric viruses causing diarrhea in pigs. The establishment of a rapid detection method applicable in field conditions will be conducive to early detection of pathogen and implementation of relevant treatment. A novel nucleic acid amplification method, recombinase polymerase amplification (RPA), has been widely used for infectious disease diagnosis. Results In the present study, a reverse transcription (RT)-RPA assay combined with lateral flow dipstrip (LFD) was established for the visual detection of PEDV by targeting the N gene. The RT-RPA-LFD assay detected as low as 102 copies/µL of PEDV genomic RNA standard. Moreover, the novel RT-RPA-LFD assay did not show cross-reactivity with common swine pathogens, demonstrating high specificity. The performance of the assay for detection of clinical samples was also evaluated. A total number of 86 clinical samples were tested by RT-RPA-LFD and RT-PCR. The detection results of RT-RPA-LFD were compared with those of RT-PCR, with a coincidence rate of 96.5%. Conclusion The newly established RT-RPA-LFD assay in our study had high sensitivity and specificity, with a potential to use in resource-limited areas and countries.
Collapse
Affiliation(s)
- Lei Ma
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China. .,Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang, China.
| | - Kaiqi Lian
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China.,Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang, China
| | - Mengjie Zhu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China.,Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang, China
| | - Yajie Tang
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China.,Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang, China
| | - Mingliang Zhang
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China. .,Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang, China.
| |
Collapse
|
8
|
Tran TX, Lien NTK, Thu HT, Duy ND, Duong BTT, Quyen DV. Changes in the spike and nucleocapsid protein of porcine epidemic diarrhea virus strain in Vietnam-a molecular potential for the vaccine development? PeerJ 2021; 9:e12329. [PMID: 34721997 PMCID: PMC8530102 DOI: 10.7717/peerj.12329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Background Porcine epidemic diarrhea virus (PEDV) is a dangerous virus causing large piglet losses. PEDV spread rapidly between pig farms and caused the death of up to 90% of infected piglets. Current vaccines are only partially effective in providing immunity to suckling due to the rapid dissemination and ongoing evolution of PEDV. Methods In this study, the complete genome of a PEDV strain in Vietnam 2018 (IBT/VN/2018 strain) has been sequenced. The nucleotide sequence of each fragment was assembled to build a continuous complete sequence using the DNASTAR program. The complete nucleotide sequences and amino acid sequences of S, N, and ORF3 genes were aligned and analyzed to detect the mutations. Results The full-length genome was determined with 28,031 nucleotides in length which consisted of the 5'UTR, ORF1ab, S protein, ORF3, E protein, M protein, N protein, and 3'UTR region. The phylogenetic analysis showed that the IBT/VN/2018 strain was highly virulent belonged to the G2b subgroup along with the Northern American and Asian S-INDEL strains. Multiple sequence alignment of deduced amino acids revealed numerous mutations in the S, N, and ORF3 regions including one substitution 766P > L766 in the epitope SS6; two in the S0subdomain (135DN136 > 135SI136 and N144> D144); two in subdomain SHR1 at aa 1009L > M1009 and 1089S > L1089; one at aa 1279P > S1279 in subdomain SHR2 of the S protein; two at aa 364N > I364 and 378N > S378 in the N protein; four at aa 25L > S25, 70I > V70, 107C > F107, and 168D > N168 in the ORF3 protein. We identified two insertions (at aa 59NQGV62 and aa 145N) and one deletion (at aa 168DI169) in S protein. Remarkable, eight amino acid substitutions (294I > M294, 318A > S318, 335V > I335, 361A > T361, 497R > T497, 501SH502 > 501IY502, 506I > T506, 682V > I682, and 777P > L777) were found in SA subdomain. Besides, N- and O-glycosylation analysis of S, N, and ORF3 protein reveals three known sites (25G+, 123N+, and 62V+) and three novel sites (144D+, 1009M+, and 1279L+) in the IBT/VN/2018 strain compared with the vaccine strains. Taken together, the results showed that mutations in the S, N, and ORF3 genes can affect receptor specificity, viral pathogenicity, and the ability to evade the host immune system of the IBT/VN/2018 strain. Our results highlight the importance of molecular characterization of field strains of PEDV for the development of an effective vaccine to control PEDV infections in Vietnam.
Collapse
Affiliation(s)
- Thach Xuan Tran
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Nguyen T K Lien
- Functional of Genomics Lab, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha T Thu
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Nguyen Dinh Duy
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Bui T T Duong
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Dong Van Quyen
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam.,University of Science and Technology of Ha Noi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
9
|
A Virulent PEDV Strain FJzz1 with Genomic Mutations and Deletions at the High Passage Level Was Attenuated in Piglets via Serial Passage In Vitro. Virol Sin 2021; 36:1052-1065. [PMID: 33909220 PMCID: PMC8080196 DOI: 10.1007/s12250-021-00368-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/28/2020] [Indexed: 01/06/2023] Open
Abstract
Highly virulent porcine epidemic diarrhea virus (PEDV) strains re-emerged and circulated in China at the end of 2010, causing significant economic losses in the pork industry worldwide. To understand the genetic dynamics of PEDV during its passage in vitro, the PEDV G2 strain FJzz1 was serially propagated in Vero cells for up to 200 passages. The susceptibility and adaptability of the FJzz1 strain increased gradually as it was serially passaged in vitro. Sequence analysis revealed that amino acid (aa) changes were mainly concentrated in the S glycoprotein, which accounted for 72.22%–85.71% of all aa changes. A continuous aa deletion (55I56G57E → 55K56Δ57Δ) occurred in the N-terminal domain of S1 (S1-NTD). To examine how the aa changes affected its virulence, FJzz1-F20 and FJzz1-F200 were selected to simultaneously evaluate their pathogenicity in suckling piglets. All the piglets in the FJzz1-F20-infected group showed typical diarrhea at 24 h postinfection, and the piglets died successively by 48 h postinfection. However, the clinical signs of the piglets in the FJzz1-F200-infected group were significantly weaker, and no deaths occurred. The FJzz1-F200-infected group also showed a lower level of fecal viral shedding and lower viral loads in the intestinal tissues, and no obvious histopathological lesions. Type I and III interferon were induced in the FJzz1-F200 infection group, together with pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-8. These results indicate that the identified genetic changes may contribute to the attenuation of FJzz1 strain, and the attenuated FJzz1-F200 may have the potential for developing PEDV live-attenuated vaccines.
Collapse
|
10
|
El-Tholoth M, Bai H, Mauk MG, Saif L, Bau HH. A portable, 3D printed, microfluidic device for multiplexed, real time, molecular detection of the porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine deltacoronavirus at the point of need. LAB ON A CHIP 2021; 21:1118-1130. [PMID: 33527920 PMCID: PMC7990716 DOI: 10.1039/d0lc01229g] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and porcine deltacoronavirus (PDCoV) are emerging/reemerging coronaviruses (CoVs) of neonatal pigs that cause great economic losses to pig farms and pork processors. Specific, rapid, and simple multiplex detection of these viruses is critical to enable prompt implementation of appropriate control measures. Conventional methods for molecular diagnosis require skilled personnel and relatively sophisticated equipment, restricting their use in centralized laboratories. We developed a low-cost, rapid, semi-quantitative, field deployable, 3D-printed microfluidic device for auto-distribution of samples and self-sealing and real-time and reverse transcription-loop-mediated isothermal amplification (RT-LAMP), enabling the co-detection of PEDV, TGEV and PDCoV within 30 minutes. Our assay's analytical performance is comparable with a benchtop, real-time RT-LAMP assay and the gold standard quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay with limits of detection of 10 genomic copies per reaction for PEDV and PDCoV, and 100 genomic copies per reaction for TGEV. Evaluation of clinical specimens from diseased pigs with our microfluidic device revealed excellent concordance with both benchtop RT-LAMP and qRT-PCR. Our portable RT-LAMP microfluidic chip will potentially facilitate simple, specific, rapid multiplexed detection of harmful infections in minimally equipped veterinary diagnostic laboratories and on-site in pigs' farms.
Collapse
Affiliation(s)
- Mohamed El-Tholoth
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | | | | | | | | |
Collapse
|
11
|
Expression and Purification of a PEDV-Neutralizing Antibody and Its Functional Verification. Viruses 2021; 13:v13030472. [PMID: 33809239 PMCID: PMC7999980 DOI: 10.3390/v13030472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly infectious and pathogenic virus causing high morbidity and mortality, especially in newborn piglets. There remain problems with contemporary PEDV vaccines, in part because of the rapid variation of PEDV, poor conferred immunity, and numerous side effects. The ability to produce PEDV-neutralizing antibodies suggests that we may be able to increase the success rate of PEDV prevention in piglets using these antibodies. In this study, we produced an anti-PEDV S protein monoclonal antibody (anti-PEDV mAb-2) that neutralized PEDV-CV777 (a G1 strain), PEDV-SDSX16 and PEDV-Aj1102 (two G2 strains). In vivo challenge experiments demonstrated that anti-PEDV mAb-2 inhibited the PEDV infection in piglets. We also produced three HEK293 cell lines that expressed anti-PEDV mAb-2. Overall, our study showed that anti-PEDV mAb-2 produced from hybridoma supernatants effectively inhibited PEDV infection in piglets, and the recombinant HEK293 cell lines expressed anti-PEDV mAb-2 genes.
Collapse
|
12
|
Suda Y, Miyazaki A, Miyazawa K, Shibahara T, Ohashi S. Systemic and intestinal porcine epidemic diarrhea virus-specific antibody response and distribution of antibody-secreting cells in experimentally infected conventional pigs. Vet Res 2021; 52:2. [PMID: 33397461 PMCID: PMC7780908 DOI: 10.1186/s13567-020-00880-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/15/2020] [Indexed: 01/03/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is a coronavirus disease characterized by the rapid spread of severe diarrhea among pigs. PED virus (PEDV) infects and replicates mainly in the epithelial cells of the duodenum, jejunum, ileum and colon. Serum or mucosal IgA antibody levels have been used to predict both vaccine efficacy and the level of protective immunity to enteric infectious diseases in individuals or herds. Details of the B-cell immune response upon PEDV infection, such as the systemic and mucosal PEDV IgA antibody response, the distribution of IgA antibody-secreting cells (ASCs), and their role in virus clearance are not yet clear. In this experimental infection study, we observed similar fluctuations in PEDV IgA antibody levels in serum and intestinal contents of the upper and lower jejunum and ileum, but not fecal samples, over the 4-week experimental course. ASCs that actively secrete PEDV IgA antibody without in vitro stimulation were distributed mainly in the upper jejunum, whereas memory B cells that showed enhanced PEDV IgA antibody production upon in vitro stimulation were observed in mesenteric lymph nodes and the ileum. Our findings will contribute to the development of effective vaccines and diagnostic methods for PEDV.
Collapse
Affiliation(s)
- Yuto Suda
- Kyushu Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 2702 Chuzan, Kagoshima, Kagoshima, 891-0105, Japan. .,Division of Viral Disease and Epidemiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Ayako Miyazaki
- Division of Viral Disease and Epidemiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Kohtaro Miyazawa
- Division of Viral Disease and Epidemiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Tomoyuki Shibahara
- Division of Pathology and Pathophysiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka, 598-8531, Japan
| | - Seiichi Ohashi
- Division of Viral Disease and Epidemiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| |
Collapse
|
13
|
Won H, Lim J, Noh YH, Yoon I, Yoo HS. Efficacy of Porcine Epidemic Diarrhea Vaccines: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2020; 8:vaccines8040642. [PMID: 33147824 PMCID: PMC7712170 DOI: 10.3390/vaccines8040642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Porcine epidemic diarrhea (PED) is a devastating disease that causes considerable economic damage to the global pig industry. Although the causative agent, the porcine epidemic diarrhea virus (PEDV), was identified about a half century ago, there is still much debate on the preventive measures against the disease, especially regarding the PED vaccine. Recent reports on PEDV variants make the vaccination for PEDV more confusing. Therefore, we systematically reviewed published articles on PED and vaccines against the disease and performed a meta-analysis of vaccine efficacy based on the clinical signs, fecal score and survival rates. A total of 299 articles on the efficacy of PED vaccines were found online, and 21 articles were selected that fulfilled all the criteria. A meta-analysis was performed on the 21 articles based on the fecal scores and survival rates. This analysis showed the efficacy of PED vaccines, and no significant differences in the efficacy depending on vaccine type (killed vs. live) or administration route (intramuscular vs. oral) were found. The results from our study suggest that any vaccination against PED is a useful strategy to control the disease regardless of the type of vaccine and administration route.
Collapse
Affiliation(s)
- Hokeun Won
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.W.); (J.L.)
- ChoongAng Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea; (Y.H.N.); (I.Y.)
| | - Jeonggyo Lim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.W.); (J.L.)
- ChoongAng Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea; (Y.H.N.); (I.Y.)
| | - Yun Hee Noh
- ChoongAng Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea; (Y.H.N.); (I.Y.)
| | - Injoong Yoon
- ChoongAng Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea; (Y.H.N.); (I.Y.)
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.W.); (J.L.)
- Bio-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-1263
| |
Collapse
|
14
|
Evaluation of Cross-Protection between G1a- and G2a-Genotype Porcine Epidemic Diarrhea Viruses in Suckling Piglets. Animals (Basel) 2020; 10:ani10091674. [PMID: 32957461 PMCID: PMC7552732 DOI: 10.3390/ani10091674] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Porcine epidemic diarrhea (PED), caused by PED virus (PEDV), is a devastating enteric disease in pigs worldwide. At least two genotypes (G1 and G2) and five subgenotypes (G1a, G1b, G2a, G2b, andG2c) of PEDV strains have been identified. To date, the reports on the antigenicity and immunogenicity of those viruses are limited and the results documented on cross-neutralization among different genotypes and/or subgenotypes of PEDV were inconsistent. This study aimed to observe the comparative pathogenicity and cross-protection between G1a and G2a PEDVs, and thus find a new insight into the antigenicity and immunogenicity of PEDVs. The results of the present study demonstrated that the G2a-based inactivated vaccine could provide sterilizing immunity against both highly virulent homologous and heterologous PEDV challenges. In contrast, the G1a-based inactivated vaccine could induce a sterilizing immune response against challenge of homologous strain CV777 and only provide partial protection for the challenge of a heterologous G2a PEDV CH/JX/01. The findings of this study might explain the underlying mechanism that severe PED and deaths still occurred among the neonatal piglets of which CV777-based PEDV vaccine were administered in China, and imply G2a-based PEDV vaccine used in this study might be a good vaccine candidate for PEDV which may provide solid protection against circulating highly virulent PEDVs. Abstract To date, two genotypes, i.e., genotype 1 (G1) and genotype 2 (G2), of porcine epidemic diarrhea virus (PEDV) have been identified in swine, while the cross protection between the G2a and G1a subgenotypes is undetermined. Hence, in the present study, we attempted to observe a comparative pathogenicity and cross protection of G1a (CV777) and G2a (CH/JX/01) PEDVs. Initially pregnant sows were vaccinated twice with the two kinds of inactivated G1a- and G2a-based PEDV vaccines, respectively and the delivered neonatal piglets were challenged with prototype isolates of G1a and G2a PEDVs, and then the pathogenicity and cross-protection in neonatal piglets were observed. The results showed that CH/JX/01, a highly virulent and dominant G2a PEDV strain currently circulating in China had more severe pathogenicity in vitro and in vivo, and induced more strong immune responses, including higher titers of sIgA in maternal milk than that induced by CV777 PEDV, a prototype of G1a PEDV strain. All piglets from the sows immunized with CH/JX/01 could not only survive when challenged with the homologous PEDV, but also be fully protected when challenged with heterogenous G1a PEDV. In contrast, the piglets from the sows immunized with CV777 could be protected when challenged with homologous PEDV and only partially protected when challenged with heterologous G2a strain of PEDV (CH/JX/01). The findings of this study provide new insights into the pathogenicity, antigenicity, and immunogenicity of currently circulating wild type G2a PEDV, which might be valuable for the development of novel PEDV vaccine candidates with improved efficacy.
Collapse
|
15
|
Zhang E, Wang J, Li Y, Huang L, Wang Y, Yang Q. Comparison of oral and nasal immunization with inactivated porcine epidemic diarrhea virus on intestinal immunity in piglets. Exp Ther Med 2020; 20:1596-1606. [PMID: 32742391 PMCID: PMC7388329 DOI: 10.3892/etm.2020.8828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has proven to be a major problem for the porcine industry worldwide. Conventional injectable vaccines induce effective systemic immune responses but are less effective in preventing PEDV at mucosal invasion sites, including the nasal or oral mucosa. Additionally, antigens delivered orally are easily degraded. Nasal immunization induces intestinal mucosal immune responses, which can aid in blocking viral invasion, and requires fewer antigen inoculation doses. Therefore, nasal immunizations are considered to be a potential approach to overcome viral infections. In the present study, nasal immunization of piglets was performed using inactivated PEDV combined with Bacillus subtilis as an immunopotentiator and the efficacy of nasal immunization was assessed. The results demonstrated that compared with oral immunization, piglets from the nasal immunization group exhibited higher levels of neutralizing antibodies (P<0.01) in the intestine, PEDV-specific immunoglobulin (Ig)G (P<0.01) in serum and PEDV-specific secretory IgA (SIgA) in saliva (P<0.01) and nasal secretions (P<0.01). An increased number of intestinal CD3+ T cells, IgA-secreting cells and intraepithelial lymphocytes (P<0.05) were also observed. Furthermore, the protein expression levels of interleukin-6 and interferon-γ, relative to the control PEDV infection, were also significantly elevated (P<0.05). The results of the present study indicate that nasal immunization is more effective at inducing the intestinal mucosal immune response, and provide new insights into a novel vaccination strategy that may be used to decrease the incidence of PEDV infections.
Collapse
Affiliation(s)
- En Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Jialu Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Lulu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Yongheng Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|
16
|
Complete Genome Sequencing, Molecular Epidemiological, and Pathogenicity Analysis of Pigeon Paramyxoviruses Type 1 Isolated in Guangxi, China during 2012-2018. Viruses 2020; 12:v12040366. [PMID: 32224965 PMCID: PMC7232316 DOI: 10.3390/v12040366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/15/2020] [Accepted: 03/24/2020] [Indexed: 12/27/2022] Open
Abstract
Newcastle disease is an important poultry disease that also affects Columbiform birds. The viruses adapted to pigeons and doves are referred to as pigeon paramyxoviruses 1 (PPMV-1). PPMV-1 are frequently isolated from pigeons worldwide and have the potential to cause disease in chickens. The complete genomes of 18 PPMV-1 isolated in China during 2012–2018 were sequenced by next-generation sequencing (NGS). Comprehensive phylogenetic analyses showed that five of the viruses belong to sub-genotype VI1.2.1.1.2.1 and 13 isolates belong to sub-genotype VI.2.1.1.2.2. The results demonstrate that these sub-genotypes have been predominant in China during the last decade. The viruses of these sub-genotypes have been independently maintained and continuously evolved for over 20 years, and differ significantly from those causing outbreaks worldwide during the 1980s to 2010s. The viral reservoir remains unknown and possibilities of the viruses being maintained in both pigeon farms and wild bird populations are viable. In vivo characterization of the isolates’ pathogenicity estimated mean death times between 62 and 114 h and intracerebral pathogenicity indices between 0.00 and 0.63. Cross-reactivity testing showed minor antigenic differences between the studied viruses and the genotype II LaSota vaccine. These data will facilitate PPMV-1 epidemiology studies, vaccine development, and control of Newcastle disease in pigeons and poultry.
Collapse
|
17
|
Tan Z, Dong W, Ding Y, Ding X, Zhang Q, Jiang L. Changes in cecal microbiota community of suckling piglets infected with porcine epidemic diarrhea virus. PLoS One 2019; 14:e0219868. [PMID: 31310635 PMCID: PMC6634403 DOI: 10.1371/journal.pone.0219868] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/02/2019] [Indexed: 12/15/2022] Open
Abstract
Diarrhea, caused by porcine epidemic diarrhea virus (PEDV), is a catastrophic gastrointestinal disease among suckling piglets, with high infectivity, morbidity, and mortality, causing huge economic losses to the pig industry. In the present study, we investigated the different microbiota from the cecal mucosa and cecal contents between healthy and PEDV-infected piglets. High-throughput 16S rRNA gene sequencing was performed to explore differences. The results revealed that microbial dysbiosis by PEDV infection occurred in the cecal mucosa and contents of suckling piglets at each microbial taxonomic level. The abundance of pathogenic bacteria associated with diseases, including diarrhea, was increased. The abundance of Fusobacterium was 26.71% and 33.91% in cecal mucosa and contents of PEDV-infected group, respectively, whereas that in the healthy groups was 17.85% and 9.88%. The proportion of Proteobacteria in the infected groups was relatively high (24.67% and 22.79%, respectively), whereas that in the healthy group was 13.13% and 11.34% in the cecal mucosa and contents, respectively. Additionally, the proportion of Bacteroidetes in the healthy group (29.89%, 37.32%) was approximately twice that of the PEDV-infected group (15.50%, 15.39%). “Nitrate reduction”, “Human pathogens diarrhea”, “Human pathogens gastroenteritis”, “Nitrite respiration”, and “Nitrite ammonification” were the enriched functional annotation terms in the PEDV-infected groups. Porcine epidemic diarrhea virus infection increased the proportion of harmful bacteria and decreased the proportion of beneficial bacteria in the cecal mucosa and contents of suckling piglets. Our findings suggest that determining the intestinal microbiota might provide a promising method to prevent PEDV and open a new avenue for future research.
Collapse
Affiliation(s)
- Zhen Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- College of Animal Science and Technology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, P.R. China
| | - Wanting Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Yaqun Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Xiangdong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Li Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
18
|
Bao F, Wang L, Zhao X, Lu T, Na AM, Wang X, Cao J, Du Y. Preparation and characterization of a single-domain antibody specific for the porcine epidemic diarrhea virus spike protein. AMB Express 2019; 9:104. [PMID: 31300902 PMCID: PMC6626092 DOI: 10.1186/s13568-019-0834-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/05/2019] [Indexed: 11/10/2022] Open
Abstract
Porcine epidemic diarrhea (PED) is a diarrheal disease of swine caused by porcine epidemic diarrhea virus (PEDV). It is characterized by acute watery diarrhea, dehydration and vomiting in swine of all ages and is especially fatal for neonatal and postweaning piglets. The spike protein of PEDV plays an important role in mediating virus attachment and fusion to target cells, and recent studies also reported that the neutralizing epitopes of the spike protein were mainly located in the S1 subunit, which makes it a candidate for vaccine development and clinical diagnosis. In this study, we successfully constructed an immune phage display single-domain antibody library with a library size of 3.4 × 106. A single-domain antibody, named S7, specific for the spike protein of PEDV was identified from the phage display single-domain antibody library. S7 could be expressed in a soluble form in E. coli, bound to the spike protein of PEDV in ELISA and stained the PEDV virus in Vero cells, but it showed no neutralization activity on PEDV. These results indicated the potent application of the S7 antibody as an imaging probe or as a candidate for the development of a diagnostic assay.
Collapse
|
19
|
Valkó A, Albert E, Cságola A, Varga T, Kiss K, Farkas R, Rónai Z, Biksi I, Dán Á. Isolation and characterisation of porcine epidemic diarrhoea virus in Hungary - Short communication. Acta Vet Hung 2019; 67:307-313. [PMID: 31238732 DOI: 10.1556/004.2019.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Porcine epidemic diarrhoea virus (PEDV) is an emerging enteropathogen, causing great economic losses in the pig industry. After many years of quiescence, PEDV was detected in Hungary in 2016 with a recombination in its S gene. In order to determine the extent of this change, an attempt was made to isolate the recombinant PEDV. This study was extended with a variety of samples collected from three separate farms with newly identified PEDV in 2018. The recombinant PEDV from 2016 was isolated successfully along with three viruses from 2018, and one isolate from the new cases was used for whole genome determination. Whole genome sequence alignment revealed the highest identity with recombinant Hungarian and Slovenian PEDV within the low-pathogenic European viruses. This suggests that these recombinant PEDV are circulating in this area and may spread to other parts of the continent.
Collapse
Affiliation(s)
- Anna Valkó
- 1Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, István u. 2, H-1078 Budapest, Hungary
| | - Ervin Albert
- 2Department and Clinic for Production Animals, University of Veterinary Medicine Budapest, Üllő, Hungary
| | | | - Tünde Varga
- 2Department and Clinic for Production Animals, University of Veterinary Medicine Budapest, Üllő, Hungary
| | | | - Rózsa Farkas
- 5National Food Chain Safety Office, Veterinary Diagnostic Directorate, Budapest, Hungary
| | - Zsuzsanna Rónai
- 5National Food Chain Safety Office, Veterinary Diagnostic Directorate, Budapest, Hungary
| | - Imre Biksi
- 2Department and Clinic for Production Animals, University of Veterinary Medicine Budapest, Üllő, Hungary
| | - Ádám Dán
- 5National Food Chain Safety Office, Veterinary Diagnostic Directorate, Budapest, Hungary
| |
Collapse
|
20
|
Generation, identification, and functional analysis of monoclonal antibodies against porcine epidemic diarrhea virus nucleocapsid. Appl Microbiol Biotechnol 2019; 103:3705-3714. [PMID: 30877355 PMCID: PMC7079923 DOI: 10.1007/s00253-019-09702-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
The variant strains of porcine epidemic diarrhea virus (PEDV) severely threaten the pig industry worldwide and cause up to 100% mortality in suckling piglets. It is critically important and urgent to develop tools for detection of PEDV infection. In this study, we developed six monoclonal antibodies (mAbs) targeting N protein of PEDV and analyzed their applications on enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), western blot assay, and flow cytometry assay. The results demonstrated that all these six mAbs were IgG1 isotype and κ chain. Among these six mAbs, 3F12 recognizes a linear epitope (VAAVKDALKSLGI) while the other five mAbs recognize different conformational epitopes formed by a specific peptide fragment or the full length of N protein. The functional analysis showed that all these six mAbs were applicable to ELISA, western blot, IFA, and flow cytometry assay. In conclusion, we developed six mAbs against PEDV-N protein to facilitate the early detection of PEDV infection using ELISA, western blot, IFA, and flow cytometry.
Collapse
|
21
|
Tsai TL, Su CC, Hsieh CC, Lin CN, Chang HW, Lo CY, Lin CH, Wu HY. Gene Variations in Cis-Acting Elements between the Taiwan and Prototype Strains of Porcine Epidemic Diarrhea Virus Alter Viral Gene Expression. Genes (Basel) 2018; 9:E591. [PMID: 30501108 PMCID: PMC6316102 DOI: 10.3390/genes9120591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 01/30/2023] Open
Abstract
In 2013, the outbreak of porcine epidemic diarrhea (PED) in Taiwan caused serious economic losses. In this study, we examined whether the variations of the cis-acting elements between the porcine epidemic diarrhea virus (PEDV) Taiwan (TW) strain and the prototype strain CV777 alter gene expression. For this aim, we analyzed the variations of the cis-acting elements in the 5' and 3' untranslated regions (UTRs) between the PEDV TW, CV777, and other reference strains. We also determined the previously unidentified transcription regulatory sequence (TRS), a sequence motif required for coronavirus transcription, and found that a nucleotide deletion in the TW strain, in comparison with CV777 strain, immediately downstream of the leader core sequence alters the identity between the leader TRS and the body TRS. Functional analyses using coronavirus defective interfering (DI) RNA revealed that such variations in cis-acting elements for the TW strain compared with the CV777 strain have an influence on the efficiency of gene expression. The current data show for the first time the evolution of PEDV in terms of cis-acting elements and their effects on gene expression, and thus may contribute to our understanding of recent PED outbreaks worldwide.
Collapse
Affiliation(s)
- Tsung-Lin Tsai
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Chen-Chang Su
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Ching-Chi Hsieh
- Division of Chest Medicine, Department of Internal Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan.
| | - Chao-Nan Lin
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan.
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Chen-Yu Lo
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Ching-Houng Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
22
|
Sun J, Li Q, Shao C, Ma Y, He H, Jiang S, Zhou Y, Wu Y, Ba S, Shi L, Fang W, Wang X, Song H. Isolation and characterization of Chinese porcine epidemic diarrhea virus with novel mutations and deletions in the S gene. Vet Microbiol 2018; 221:81-89. [PMID: 29981713 PMCID: PMC7117340 DOI: 10.1016/j.vetmic.2018.05.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 12/03/2022]
Abstract
We successfully isolated two novel PEDV strains, PEDV-LA1 and PEDV-LY4-98 in China. The two novel PEDV isolates shared higher identities with United States strains than with South Korean strains. Three unique amino acid substitutions were identified in the S1 N terminal domain of the PEDV-LY4-98 strain.
Porcine epidemic diarrhea (PEDV) has raised growing concerns in the pig-breeding industry because it has caused significant economic losses. To better understand the molecular epidemiology and genetic diversity of PEDV field isolates, in this study, the complete spike (S) and ORF3 genes of 17 PEDV variants in Zhejiang, China during 2014 to 2017, were characterized and analyzed. Phylogenetic analysis based on the S gene and ORF3 gene of these 17 novel PEDV strains and PEDV reference strains indicated that all the PEDV strains fell into two groups designated G1 and G2. Notably, the strains identified in 2014–2015 were in G2, while the other five strains identified from 2016 to 2017 were in G1. Sequencing and phylogenetic analyses showed that recently prevalent Chinese PEDV field strains shared higher identities with United States strains than with South Korean strains. Compared with classical vaccine strains, a series of deletions and frequently occurring mutations were observed in the receptor binding domains of our PEDV strains. Besides, we successfully isolated and reported the genetic characterization two novel PEDV strains, PEDV-LA1 and PEDV-LY4-98, found on the Chinese mainland, which had significant variations in the S gene. Meanwhile, the virulence of the new mutants may be changed, the PEDV-LY4-98 strain, which has multiple mutations in the signal peptide-encoding fragment of the S gene showed delayed cytopathic effects and smaller plaque size compared with strain PEDV-LA1, which lacks these mutations. Three unique amino acid substitutions (L7, G8, and V9) were identified in the SP-encoding fragment of the S1 N-terminal domain of the PEDV-LY4-98 S protein compared with the S proteins of all the previous PEDV strains. The animal experiment revealed that these two novel strains were high pathogenic to neonatal pigs. Whether these amino acids substitutions and the N-glycosylation site substitutions influence the antigenicity and pathogenicity of PEDV remains to be investigated. Meanwhile, amino acid substitutions in the neutralizing epitopes may have conferred the capacity for immune evasion in these PEDV field strains. This study improves our understanding of ongoing PEDV outbreaks in China, and it will guide further efforts to develop effective measures to control this virus.
Collapse
Affiliation(s)
- Jing Sun
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China
| | - Qunjing Li
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China
| | - Chunyan Shao
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China
| | - Yuanmei Ma
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China
| | - Haijian He
- School of Agricultural and Biological Engineer, Jinhua Polytechnic, Jinhua, Zhejiang, PR China
| | - Sheng Jiang
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China
| | - Yingshan Zhou
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China
| | - Yuan Wu
- School of Agricultural and Biological Engineer, Jinhua Polytechnic, Jinhua, Zhejiang, PR China
| | - Shaobo Ba
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China
| | - Lin Shi
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China
| | - Weihuan Fang
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China; Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, PR China
| | - Xiaodu Wang
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China.
| | - Houhui Song
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China.
| |
Collapse
|
23
|
Assessment of reproductive performance in F 1 sows exposed to the porcine epidemic diarrhea virus at different periods of production stage on farms with different hygienic environments. Anim Reprod Sci 2018; 192:233-241. [PMID: 29567203 DOI: 10.1016/j.anireprosci.2018.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/24/2018] [Accepted: 03/14/2018] [Indexed: 11/23/2022]
Abstract
Porcine epidemic diarrhea (PED) occurred in Japan in 2013 after an interval of 7 years. The present study assessed individual productivity of sows exposed to PED virus at different periods of the production stage. The present study was performed at three commercial farms that had PED outbreak during the month of December 2013. Herd immunization was conducted for all gilts and sows. The production records were obtained for sows that were alive during the PED outbreak at each farm. The sows were categorized into six groups based on the period in which they were exposed to PED virus between days 0-30 (G1), 31-60 (G2), 61-90 (G3), or after 91 days of pregnancy (G4), during lactation (L), and after weaning (W). The control group was assigned based on the records before the period of PED outbreak (uninfected group). The number of sow's records obtained from farms A, B, and C were 1056, 1137, and 1035, respectively. Compared with the uninfected group, there was no reduction in the number of pigs born alive in the G1-G4 groups. Sows of the G4 and L groups, however, had 4-9 pigs fewer pigs weaned, and a 36%-77% greater pre-weaning mortality than the uninfected group (P < 0.05). There was no difference in farrowing rate and number of pigs born alive at subsequent parities among the sow groups. There were no interactions between sow groups and parity for sow productivity.
Collapse
|
24
|
Rasmussen TB, Boniotti MB, Papetti A, Grasland B, Frossard JP, Dastjerdi A, Hulst M, Hanke D, Pohlmann A, Blome S, van der Poel WHM, Steinbach F, Blanchard Y, Lavazza A, Bøtner A, Belsham GJ. Full-length genome sequences of porcine epidemic diarrhoea virus strain CV777; Use of NGS to analyse genomic and sub-genomic RNAs. PLoS One 2018; 13:e0193682. [PMID: 29494671 PMCID: PMC5832266 DOI: 10.1371/journal.pone.0193682] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/15/2018] [Indexed: 11/30/2022] Open
Abstract
Porcine epidemic diarrhoea virus, strain CV777, was initially characterized in 1978 as the causative agent of a disease first identified in the UK in 1971. This coronavirus has been widely distributed among laboratories and has been passaged both within pigs and in cell culture. To determine the variability between different stocks of the PEDV strain CV777, sequencing of the full-length genome (ca. 28kb) has been performed in 6 different laboratories, using different protocols. Not surprisingly, each of the different full genome sequences were distinct from each other and from the reference sequence (Accession number AF353511) but they are >99% identical. Unique and shared differences between sequences were identified. The coding region for the surface-exposed spike protein showed the highest proportion of variability including both point mutations and small deletions. The predicted expression of the ORF3 gene product was more dramatically affected in three different variants of this virus through either loss of the initiation codon or gain of a premature termination codon. The genome of one isolate had a substantially rearranged 5´-terminal sequence. This rearrangement was validated through the analysis of sub-genomic mRNAs from infected cells. It is clearly important to know the features of the specific sample of CV777 being used for experimental studies.
Collapse
Affiliation(s)
- Thomas Bruun Rasmussen
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, Kalvehave, Denmark
| | - Maria Beatrice Boniotti
- IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy
| | - Alice Papetti
- IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy
| | - Béatrice Grasland
- ANSES–Laboratory of Ploufragan-Plouzané –BP 53, Ploufragan, France
- Université Bretagne Loire, Rennes, France
| | - Jean-Pierre Frossard
- Animal and Plant Health Agency, Department of Virology, Weybridge, Addlestone, Surrey, United Kingdom
| | - Akbar Dastjerdi
- Animal and Plant Health Agency, Department of Virology, Weybridge, Addlestone, Surrey, United Kingdom
| | - Marcel Hulst
- Wageningen BioVeterinary Research, Department of Virology, Lelystad, The Netherlands
| | - Dennis Hanke
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald—Insel Riems, Germany
| | - Anne Pohlmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald—Insel Riems, Germany
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald—Insel Riems, Germany
| | | | - Falko Steinbach
- Animal and Plant Health Agency, Department of Virology, Weybridge, Addlestone, Surrey, United Kingdom
| | - Yannick Blanchard
- ANSES–Laboratory of Ploufragan-Plouzané –BP 53, Ploufragan, France
- Université Bretagne Loire, Rennes, France
| | - Antonio Lavazza
- IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy
| | - Anette Bøtner
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, Kalvehave, Denmark
| | - Graham J. Belsham
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, Kalvehave, Denmark
| |
Collapse
|
25
|
Hu H, Jung K, Wang Q, Saif LJ, Vlasova AN. Development of a one-step RT-PCR assay for detection of pancoronaviruses (α-, β-, γ-, and δ-coronaviruses) using newly designed degenerate primers for porcine and avian `fecal samples. J Virol Methods 2018; 256:116-122. [PMID: 29499225 PMCID: PMC7113874 DOI: 10.1016/j.jviromet.2018.02.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/18/2018] [Accepted: 02/26/2018] [Indexed: 11/28/2022]
Abstract
Coronaviruses (CoVs) are critical human and animal pathogens because of their potential to cause severe epidemics of respiratory or enteric diseases. In pigs, the newly emerged porcine deltacoronavirus (PDCoV) and re-emerged porcine epidemic diarrhea virus (PEDV) reported in the US and Asia, as well as the discovery of novel CoVs in wild bats or birds, has necessitated development of improved detection and control measures for these CoVs. Because the previous pancoronavirus (panCoV) RT-PCR established in our laboratory in 2007-2011 did not detect deltacoronaviruses (δ-CoVs) in swine fecal and serum samples, our goal was to develop a new panCoV RT-PCR assay to detect known human and animal CoVs, including δ-CoVs. In this study, we designed a new primer set to amplify a 668 bp-region within the RNA-dependent RNA polymerase (RdRP) gene that encodes the most conserved protein domain of α-, β-, γ-, and δ-CoVs. We established a one-step panCoV RT-PCR assay and standardized the assay conditions. The newly established panCoV RT-PCR assay was demonstrated to have a high sensitivity and specificity. Using a panel of 60 swine biological samples (feces, intestinal contents, and sera) characterized by PEDV, PDCoV and transmissible gastroenteritis virus-specific RT-PCR assays, we demonstrated that sensitivity and specificity of the newly established panCoV RT-PCR assay were 100%. 400 avian fecal (RNA) samples were further tested simultaneously for CoV by the new panCoV RT-PCR and a one-step RT-PCR assay with the δ-CoV nucleocapsid-specific universal primers. Four of 400 avian samples were positive for CoV, three of which were positive for δ-CoV by the conventional RT-PCR. PanCoV RT-PCR fragments for 3 of the 4 CoVs were sequenced. Phylogenetic analysis revealed the presence of one γ-CoV and two δ-CoV in the sequenced samples. The newly designed panCoV RT-PCR assay should be useful for the detection of currently known CoVs in animal biological samples.
Collapse
Affiliation(s)
- Hui Hu
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, 44691, United States; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kwonil Jung
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, 44691, United States
| | - Qiuhong Wang
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, 44691, United States
| | - Linda J Saif
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, 44691, United States.
| | - Anastasia N Vlasova
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, 44691, United States.
| |
Collapse
|
26
|
Huang MZ, Wang SY, Wang H, Cui DA, Yang YJ, Liu XW, Kong XJ, Li JY. Differences in the intestinal microbiota between uninfected piglets and piglets infected with porcine epidemic diarrhea virus. PLoS One 2018; 13:e0192992. [PMID: 29447243 PMCID: PMC5814011 DOI: 10.1371/journal.pone.0192992] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 02/03/2018] [Indexed: 02/02/2023] Open
Abstract
Porcine epidemic diarrhea, a disastrous gastrointestinal disease, causes great financial losses due to its high infectivity, morbidity and mortality in suckling piglets despite the development and application of various vaccines. In this study, high-throughput sequencing was used to explore differences in the intestinal microbiota between uninfected piglets and piglets infected with porcine epidemic diarrhea virus (PEDV). The results revealed that the small intestinal microbiota of suckling piglets infected with PEDV showed low diversity and was dominated by Proteobacteria (49.1%). Additionally, the composition of the small intestinal microbiota of sucking piglets infected with PEDV showed marked differences from that of the uninfected piglets. Some of the taxa showing differences in abundance between uninfected piglets and piglets infected with PEDV were associated with cellular transport and catabolism, energy metabolism, the biosynthesis of other secondary metabolites, and amino acid metabolism as determined through the prediction of microbial function based on the bacterial 16S rRNA gene. Therefore, adjusting the intestinal microbiota might be a promising method for the prevention or treatment of PEDV.
Collapse
Affiliation(s)
- Mei-Zhou Huang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Key Lab of New Animal Drug Project of Gansu Province, Lanzhou, China
- Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou, China
| | - Sheng-Yi Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Key Lab of New Animal Drug Project of Gansu Province, Lanzhou, China
- Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou, China
| | - Hui Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Key Lab of New Animal Drug Project of Gansu Province, Lanzhou, China
- Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou, China
| | - Dong-An Cui
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Key Lab of New Animal Drug Project of Gansu Province, Lanzhou, China
- Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou, China
| | - Ya-Jun Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Key Lab of New Animal Drug Project of Gansu Province, Lanzhou, China
- Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou, China
| | - Xi-Wang Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Key Lab of New Animal Drug Project of Gansu Province, Lanzhou, China
- Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou, China
| | - Xiao-Jun Kong
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Key Lab of New Animal Drug Project of Gansu Province, Lanzhou, China
- Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou, China
| | - Jian-Yong Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Key Lab of New Animal Drug Project of Gansu Province, Lanzhou, China
- Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou, China
- * E-mail:
| |
Collapse
|
27
|
Complete Genome Sequence of a Recombinant Porcine Epidemic Diarrhea Virus Strain, CH/JXJA/2017, Isolated in Jiangxi, China, in 2017. GENOME ANNOUNCEMENTS 2018; 6:6/6/e01590-17. [PMID: 29439052 PMCID: PMC5805890 DOI: 10.1128/genomea.01590-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The full-length genome sequence of a variant of porcine epidemic diarrhea virus (PEDV), that of strain CH/JXJA/2017, was highly homologous to CH/ZMDZY/11, a highly virulent Chinese PEDV strain. CH/JXJA/2017 had a distant relationship with the attenuated CV777 vaccine strain, but the insertion sites of the S1 gene were similar to those of the recombinant strain of CH/ZMDZY/11.
Collapse
|
28
|
Lara-Romero R, Gómez-Núñez L, Cerriteño-Sánchez JL, Márquez-Valdelamar L, Mendoza-Elvira S, Ramírez-Mendoza H, Rivera-Benítez JF. Molecular characterization of the spike gene of the porcine epidemic diarrhea virus in Mexico, 2013-2016. Virus Genes 2017; 54:215-224. [PMID: 29243063 PMCID: PMC7088687 DOI: 10.1007/s11262-017-1528-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/07/2017] [Indexed: 01/10/2023]
Abstract
In Mexico, the first outbreaks suggestive of the circulation of the porcine epidemic diarrhea virus (PEDV) were identified at the beginning of July 2013. To identify the molecular characteristics of the PEDV Spike (S) gene in Mexico, 116 samples of the intestine and diarrhea of piglets with clinical signs of porcine epidemic diarrhea (PED) were obtained. Samples were collected from 14 farms located in six states of Mexico (Jalisco, Puebla, Sonora, Veracruz, Guanajuato, and Michoacán) from 2013 to 2016. To identify PEDV, we used real-time RT-PCR to discriminate between non-INDEL and INDEL strains. We chose samples according to state and year to characterize the S gene. After amplification of the S gene, the obtained products were sequenced and assembled. The complete amino acid sequences of the spike protein were used to perform an epitope analysis, which was used to determine null mutations in regions SS2, SS6, and 2C10 compared to the sequences of G2. A phylogenetic analysis determined the circulation of G2b and INDEL strains in Mexico. However, several mutations were recorded in the collagenase equivalent (COE) region that were related to the change in polarity and charge of the amino acid residues. The PEDV strain circulating in Jalisco in 2016 has an insertion of three amino acids (232LGL234) and one change in the antigenic site of the COE region, and strains from the years 2015 and 2016 changed the index of the surface probability, which could be related to the re-emergence of disease outbreaks.
Collapse
Affiliation(s)
- Rocío Lara-Romero
- Laboratorio de Virología, Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km. 15.5 Carretera México-Toluca, C.P. 05110, Mexico City, Mexico.,Facultad de Estudios Superiores Cuautitlán, UNAM, Cuautitlán, Estado de México, Mexico
| | - Luis Gómez-Núñez
- Laboratorio de Virología, Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km. 15.5 Carretera México-Toluca, C.P. 05110, Mexico City, Mexico
| | | | - Laura Márquez-Valdelamar
- Laboratorio de Secuenciación Genómica de la Biodiversidad y de la Salud, Instituto de Biología, UNAM, Mexico City, Mexico
| | - Susana Mendoza-Elvira
- Laboratorio de Microbiología y Virología de las Enfermedades Respiratorias del Cerdo, Facultad de Estudios Superiores Cuautitlán, UNAM, Cuautitlán, Estado de México, Mexico
| | - Humberto Ramírez-Mendoza
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Mexico City, Mexico
| | - José Francisco Rivera-Benítez
- Laboratorio de Virología, Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km. 15.5 Carretera México-Toluca, C.P. 05110, Mexico City, Mexico.
| |
Collapse
|
29
|
Toyomaki H, Sekiguchi S, Sasaki Y, Sueyoshi M, Makita K. Factors associated with farm-level infection of porcine epidemic diarrhea during the early phase of the epidemic in Japan in 2013 and 2014. Prev Vet Med 2017; 150:77-85. [PMID: 29406087 DOI: 10.1016/j.prevetmed.2017.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 10/27/2017] [Accepted: 12/10/2017] [Indexed: 11/28/2022]
Abstract
The objective of this study was to investigate factors that caused rapid spread during the early phase of the porcine epidemic diarrhea (PED) epidemic in Japan in 2013 and 2014. Anonymized datasets from all pig farms were provided by Kagoshima (709 farms) and Miyazaki Prefectures (506 farms). Semi-parametric survival analysis was conducted using the first 180 days from the first case on December 3, 2013 in Kagoshima Prefecture. To compare the hazard between different farm management types, univariable survival analysis was conducted. As farm sizes varied among different farm types, bivariable survival analysis was conducted for farm size categories and farm density per km2 for each management type. A case-control study using a postal questionnaire survey was conducted in September 2014, and risk factor analysis was performed using generalized linear models with binomial errors. The hazard was significantly higher in farrow-to-finish farms than fattening farms [hazard ratio (HR) = 1.6, p < 0.01], but was not significantly different between reproduction and fattening farms (HR = 1.3, p = 0.16). In separate bivariable survival analyses for each farm type, large- and middle-scale farms had higher hazard than small-scale farms in fattening (HR = 5.8 and 2.6, respectively, both p < 0.01) and reproduction farms (HR = 4.0 and 3.6, respectively, both p < 0.01). In farrow-to-finish farms, large-scale farms had higher hazard than small-scale farms (HR = 2.8, p < 0.01), and higher farm density per km2 was also a risk factor (HR = 7.6, p < 0.01). In the case-control study, questionnaires were returned from 78 PED virus-infected and 91 non-infected farms. The overall response rate was 34%. Risk factors of the final model were occurrence of porcine reproductive and respiratory syndrome in the past 5 years [odds ratio (OR) = 1.97, 95% confidence interval (CI): 0.97-4.00, p = 0.054], use of a common compost station (OR = 2.51, 95%CI: 1.08-5.83, p = 0.03), and use of a pig excrement disposal service (OR = 2.64, 95%CI: 1.05-6.63, p = 0.04). High hazard in farrow-to-finish farms suggested transmission from slaughterhouses to susceptible suckling piglets. Hazard associated with large-scale farms and high density might be due to frequent vehicle entrance and transmission by roads. Improvement of farm hygiene management and avoidance of risky practices associated with contact with pig excrement were keys in preventing invasion of PED virus to a farm.
Collapse
Affiliation(s)
- Haruya Toyomaki
- Veterinary Epidemiology Unit, School of Veterinary Medicine, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, Japan.
| | - Satoshi Sekiguchi
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Japan.
| | - Yosuke Sasaki
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Japan.
| | - Masuo Sueyoshi
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai Nishi, Miyazaki, Japan.
| | - Kohei Makita
- Veterinary Epidemiology Unit, School of Veterinary Medicine, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, Japan.
| |
Collapse
|
30
|
Su Y, Liu Y, Chen Y, Xing G, Hao H, Wei Q, Liang Y, Xie W, Li D, Huang H, Deng R, Zhang G. A novel duplex TaqMan probe-based real-time RT-qPCR for detecting and differentiating classical and variant porcine epidemic diarrhea viruses. Mol Cell Probes 2017; 37:6-11. [PMID: 29104088 DOI: 10.1016/j.mcp.2017.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/11/2017] [Accepted: 10/30/2017] [Indexed: 02/01/2023]
Abstract
Two different genotypes of porcine epidemic diarrhea virus (PEDV), the classical and variant strains, are classified by multiple insertions and deletions in their S genes. It is critical to detect and differentiate two genotypes in the pork industry to prevent PEDV outbreaks. In the present study, a novel duplex TaqMan RT-PCR was developed for detecting and differentiating PEDV strains in China. There was no cross-amplification between the two probes when using standard recombinant plasmids, and the specificity was further confirmed by using other seven non-PEDV swine pathogens. The minimum copies required for the detection of both classical and variant PEDV were 4.8 × 102 DNA copies/reaction. The repeatability of TaqMan RT-PCR was evaluated using standard recombinant plasmids and gave coefficients of variation 0.19-4.93. In recent 5 years, 79 clinical samples were collected from piglets with severe diarrhea in the Central China. Among these clinical samples, 51 were confirmed as PEDV positive by conventional RT-PCR, whereas 63 variant PEDV, 3 co-infections and 1 classical PEDV were confirmed by this duplex TaqMan RT-PCR, with viral loads of 102-108, 102-103, and 104 copies/reaction, respectively. Therefore, the duplex TaqMan RT-PCR could be a useful method for detecting and differentiating variant and classical PEDV strains. The results showed that variant PEDV was prevalent in clinical samples in central China. Moreover, in this study, co-infection by PEDV strains was detected for the first time and might help explain the emergence of the novel recombinant PEDV in recent years.
Collapse
Affiliation(s)
- Yunfang Su
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Yumei Chen
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Huifang Hao
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Yue Liang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Weitao Xie
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Dongliang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, China
| | - Huimin Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225000, China.
| |
Collapse
|
31
|
Sasaki Y, Toyomaki H, Sekiguchi S, Sueyoshi M, Makita K, Otake S, Perez A, Alvarez J. Spatial dynamics of porcine epidemic diarrhea (PED) spread in the southern Kyushu, Japan. Prev Vet Med 2017; 144:81-88. [DOI: 10.1016/j.prevetmed.2017.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/26/2017] [Accepted: 05/31/2017] [Indexed: 11/26/2022]
|
32
|
Furutani A, Kawabata T, Sueyoshi M, Sasaki Y. Impact of porcine epidemic diarrhea on herd and individual Berkshire sow productivity. Anim Reprod Sci 2017; 183:1-8. [PMID: 28683954 PMCID: PMC7126730 DOI: 10.1016/j.anireprosci.2017.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/13/2017] [Accepted: 06/21/2017] [Indexed: 11/30/2022]
Abstract
Porcine epidemic diarrhea (PED) is an emerging disease of pigs in several countries. In the present study, individual sow productivity of Berkshire sows exposed to PED virus at different stages of production was compared. On a commercial farrow-to-finish farm in Kagoshima Prefecture, Japan, the clinical presence of PED was observed in the farrowing barn on January 6, 2014, and all gilts and sows were immunized on January 9, except those in the farrowing barn. The sows were categorized into six groups based on the period in which they were exposed to PED virus: between days 0–30 (G1), 31–60 (G2), 61–90 (G3), or after 91 days of pregnancy (G4), during lactation (L), and after weaning (W). The control group was not exposed to PED during the period of PED outbreak. The study was based on 574 production records. The sows of the G4 and L groups had the fewest piglets weaned (4.8 ± 0.4, and 4.0 ± 0.3 pigs, respectively; P < 0.05) and the greatest pre-weaning mortality (33.1 ± 4.8%, and 39.7 ± 4.1%, respectively; P < 0.05). The number of piglets weaned and pre-weaning mortality, however, did not differ among the G1, G2, G3, and uninfected groups. The G4 and W groups had slightly lesser farrowing rates than the uninfected group (P < 0.05), however, similar subsequent piglet litter performance as the uninfected group. In conclusion, the effect of PED on individual sow productivity differed with the production stage in which sows were exposed to PED virus.
Collapse
Affiliation(s)
- Aina Furutani
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Tadahiro Kawabata
- Kagoshima Prefectural Economics Federation of Agricultural Cooperatives, Section of Swine, Kagoshima, Japan
| | - Masuo Sueyoshi
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan; Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yosuke Sasaki
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan; Organization for the Promotion of Tenure Track, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
33
|
Characterization of Chinese Porcine Epidemic Diarrhea Virus with Novel Insertions and Deletions in Genome. Sci Rep 2017; 7:44209. [PMID: 28276526 PMCID: PMC5343579 DOI: 10.1038/srep44209] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/06/2017] [Indexed: 11/09/2022] Open
Abstract
Outbreaks of porcine epidemic diarrhoea virus (PEDV) have caused great economic losses to the global pig industry. PEDV strains with variants in the spike (S) gene have been reported in several countries. To better understand the molecular epidemiology and genetic diversity of PEDV field isolates, in this study, we characterised the complete genome sequence of a novel PEDV variant JSCZ1601 from a outbreak in China in 2016. The PEDV isolate was 28,033 nucleotides (nt) in length without the polyadenylated sequences. Phylogenetic analysis based on the full-length genome sequence of JSCZ1601 grouped it with the pandemic variants determined post-2010 into group 2 (G2). However, the S gene of JSCZ1601 formed a new subgroup separated from the subgroups containing the other G2 strains. Comparative analysis of the amino acids encoded by the S genes revealed the N-terminal of the deduced JSCZ1601 S protein had a novel two-amino-acid deletion (N58 and S59) compared with all identified genogroups. Further, compared with the reference strains, a 'G' insertion was detected in the 5' terminal of the 5'UTR of the JSCZ1601. The animal experiment revealed that this strain was high pathogenic to neonatal pigs. Taken together, a PEDV strain with the new molecular characterizations and phylogenies was found in mainland China. It is necessary to strengthen the monitoring of PEDV variations.
Collapse
|
34
|
Su Y, Liu Y, Chen Y, Zhao B, Ji P, Xing G, Jiang D, Liu C, Song Y, Wang G, Li D, Deng R, Zhang G. Detection and phylogenetic analysis of porcine epidemic diarrhea virus in central China based on the ORF3 gene and the S1 gene. Virol J 2016; 13:192. [PMID: 27887624 PMCID: PMC5123408 DOI: 10.1186/s12985-016-0646-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine epidemic diarrhea (PED) has increased in severity in China since 2010. To investigate further the infectivity, genetic diversity and molecular epidemiology of its causative agent, the porcine epidemic diarrhea virus (PEDV), we assessed 129 clinical samples, which were the intestinal tissue of piglets with severe diarrhea, from 17 cities in central China. Both the spike (S) glycoprotein (S1, 1-789 amino acids (aa)) and the full-length ORF3 gene of 21 representative field strains from 21 farms in 11 cities were sequenced and analysed. METHODS PEDV was detected by reverse transcription-polymerase chain reaction (RT-PCR), and S1 and ORF3 sequences were processed by the Clustal W method via DNAMAN 8 software, and phylogenetic trees were constructed by the neighbor-joining method using MEGA 6 software. RESULTS The prevalence of PEDV was 92.25% and was detected in 119 of 129 samples, with 94.03% (63 of 67) of pig farms harbouring the disease. According to the phylogenetic analysis of the S1 genes, our isolates all fell into group G2 (variants) and showed a close relationship to isolates from Chinese (HN1303, CH/ZMDZY/11 and AJ1102), Korean (AD01), American (MN, IA1, IA2 and 13-019349) sources, and these isolates differed genetically from other Chinese (LZC, CH/HNZZ/2011 and SD-M) and Korean (SM98) strains as well Japanese (83-P5 and MK) strains. In addition, our isolates differed from attenuated vaccine strains, CV777 (used in China) and DR13 (used in Korea). According to our derived amino acid sequence analysis, we detected one novel variant PEDV, viz: CH/HNLY, with 4-aa insertion/deletion (RSSS/T) at position 375 and 1-aa (D) deletion at position 430 compared to the CV777 attenuated strain. These mutations were located on the receptor binding domain. Our ORF3 gene analyses showed that the prevalent PEDV isolates were variants, and the isolated strains differed genetically from the vaccine strains. CONCLUSIONS These findings illustrated the existence of genetic diversity among geographically distinct PEDV strains, and our study has provided an impetus to conduct further research on the PEDV receptor binding protein and on the new and efficacious vaccines design.
Collapse
Affiliation(s)
- Yunfang Su
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Science, Zhengzhou, 450002, China.
| | - Yumei Chen
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Baolei Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengchao Ji
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Dawei Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chang Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Yapeng Song
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guoqiang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dongliang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Science, Zhengzhou, 450002, China. .,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
35
|
Trujillo-Ortega ME, Beltrán-Figueroa R, García-Hernández ME, Juárez-Ramírez M, Sotomayor-González A, Hernández-Villegas EN, Becerra-Hernández JF, Sarmiento-Silva RE. Isolation and characterization of porcine epidemic diarrhea virus associated with the 2014 disease outbreak in Mexico: case report. BMC Vet Res 2016; 12:132. [PMID: 27357720 PMCID: PMC4928271 DOI: 10.1186/s12917-016-0763-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/24/2016] [Indexed: 11/16/2022] Open
Abstract
Background Interest in porcine epidemic diarrhea has grown since the 2013 outbreak in the United States caused major losses, with mortality rates up to 100 % in suckling piglets. In Mexico, an outbreak of porcine epidemic diarrhea, characterized by 100 % mortality in piglets, began in March 2014 in the State of Mexico. Methods The aim of this study was to confirm and identify porcine epidemic diarrhea virus (PEDV) in samples from piglets with suggestive clinical signs using virological, histological, and molecular techniques. Necropsy was performed on 13 piglets from two litters with initial and advanced clinical signs. Suggestive lesions of acute infection with PEDV were detected in histological sections of the small and large bowels; specifically, multiple virus particles with visible crown-shaped projections were observed using electron microscopy and negative staining. Viral isolation was performed in Vero cells with trypsin. Infection was monitored by observation of cytopathic effect, and titration was determined by TCID50/ml. The presence of the PEDV in cultures and clinical samples was confirmed by RT-PCR amplification and sequencing of a 651-bp segment of the S glycoprotein gene, as well as a 681-bp matrix protein gene. Results The nucleotide sequence analysis of the Mexican isolates showed marked homology to viruses that circulated in 2013 in Colorado, USA. Conclusions In this paper we confirm the isolation and characterization of PEDV from animals with early and advanced clinical signs.
Collapse
Affiliation(s)
- María Elena Trujillo-Ortega
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Rolando Beltrán-Figueroa
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Montserrat Elemi García-Hernández
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Mireya Juárez-Ramírez
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Alicia Sotomayor-González
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Erika N Hernández-Villegas
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - José F Becerra-Hernández
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Rosa Elena Sarmiento-Silva
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
36
|
Lin CM, Saif LJ, Marthaler D, Wang Q. Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains. Virus Res 2016; 226:20-39. [PMID: 27288724 PMCID: PMC7111424 DOI: 10.1016/j.virusres.2016.05.023] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/21/2016] [Accepted: 05/21/2016] [Indexed: 12/16/2022]
Abstract
Evolution of global PEDV strains. Cross-reactivity between PEDV and other coronaviruses and antigenic variations among different PEDV strains. Pathologic features of different PEDV strains. Considerations for vaccine strain selection: PEDV virulence attenuation and in vivo cross-protection among PEDV variants.
Emerging and re-emerging coronaviruses cause morbidity and mortality in human and animal populations, resulting in serious public and animal health threats and economic losses. The ongoing outbreak of a highly contagious and deadly porcine epidemic diarrhea virus (PEDV) in Asia, the Americas and Europe is one example. Genomic sequence analyses of PEDV variants have revealed important insights into the evolution of PEDV. However, the antigenic variations among different PEDV strains are less explored, although they may contribute to the failure of PEDV vaccines in Asian countries. In addition, the evolution of PEDV results in variants with distinct genetic features and virulence differences; thus PEDV can serve as a model to explore the molecular mechanisms of coronavirus evolution and pathogenesis. In this article, we review the evolution, antigenic relationships and pathologic features of PEDV strains. This information and review of researches will aid in the development of strategies for control and prevention of PED.
Collapse
Affiliation(s)
- Chun-Ming Lin
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Douglas Marthaler
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN 55108, United States.
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
37
|
Horie M, Kabemura M, Masatani T, Matsuu A, Ozawa M. Isolation and molecular characterization of porcine epidemic diarrhea viruses collected in Japan in 2014. Arch Virol 2016; 161:2189-95. [PMID: 27224981 DOI: 10.1007/s00705-016-2900-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/15/2016] [Indexed: 11/26/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is the etiological agent of porcine epidemic diarrhea (PED), which is threatening the swine industry all over the world. In Japan, although there were no reported PED cases from 2007 to 2012, a large-scale PED outbreak started in 2013, causing severe economic losses. Although several PEDV studies have been conducted in Japan, more PEDV isolates and sequence information are needed to understand the molecular biology and epidemiology of PEDV. Here, we isolated seven Japanese PEDV strains from intestinal tissue samples collected in 2014 and determined the spike gene sequences of 13 Japanese PEDV strains, including the above seven isolates. Phylogenetic analysis shows that all of the strains are genetically distinct from classical Japanese PEDV strains isolated prior to 2013 and can be classified into two different genotypes: 12 strains belong to the North American clade composed of recent highly pathogenic PEDV strains, and the remaining one strain belongs to the so-called insertion deletion (INDEL) clade. These data suggest multiple PEDV invasions from abroad to Japan. Notably, compared to classical Japanese strains, all of the recent Japanese strains have two amino acid substitutions in a known neutralizing epitope. In addition, one of the strains acquired an additional mutation in another neutralizing epitope that is highly conserved among PEDVs, including the classical and recent isolates. Our isolates and findings will be useful for future investigations aimed at understanding, controlling, and preventing PED.
Collapse
Affiliation(s)
- Masayuki Horie
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Research Center, Kagoshima University, Kagoshima, 890-0065, Japan.
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, 753-8511, Japan.
| | | | - Tatsunori Masatani
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Research Center, Kagoshima University, Kagoshima, 890-0065, Japan
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, 753-8511, Japan
| | - Aya Matsuu
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Research Center, Kagoshima University, Kagoshima, 890-0065, Japan
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, 753-8511, Japan
| | - Makoto Ozawa
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Research Center, Kagoshima University, Kagoshima, 890-0065, Japan.
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, 753-8511, Japan.
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.
| |
Collapse
|
38
|
Wang FX, Yuan DY, Jin YN, Hu L, Sun ZY, He Q, Zhao SH, Zhan SB, Wen YJ. Reverse Transcription Cross-Priming Amplification-Nucleic Acid Test Strip for Rapid Detection of Porcine Epidemic Diarrhea Virus. Sci Rep 2016; 6:24702. [PMID: 27090105 PMCID: PMC4835727 DOI: 10.1038/srep24702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/04/2016] [Indexed: 12/04/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly transmissible coronavirus that causes a severe enteric disease particularly in neonatal piglets. In this study, a rapid method for detecting PEDV was developed based on cross-priming amplification and nucleic acid test strip(CPA-NATS). Five primers specific for the N gene sequence of PEDV were used for the cross-priming amplification. Detection of amplification products based on labeled probe primers was conducted with strip binding antibody of labeled markers. The CPA method was evaluated and compared with a PCR method. The reverse transcription CPA system was further optimized for detecting PEDV RNA in clinical specimens. Results showed that the method was highly specific for the detection of PEDV, and had the same sensitivity as PCR, with detection limit of 10−6 diluted plasmid containing the target gene of PEDV. It was also successfully applied to detecting PEDV in clinical specimens. The reverse transcription CPA-NATS detection system established in this study offers a specific, sensitive, rapid, and simple detection tool for screening PEDV, which can contribute to strategies in the effective control of PEDV in swine.
Collapse
Affiliation(s)
- Feng-Xue Wang
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899 Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, Jilin, 130112, People's Republic of China
| | - Dan-Yi Yuan
- (Sino-USA) SiChuan Nabii Bio-Tech Co., Ltd., Chengdu, SiChuan, 610041, People's Republic of China
| | - Ya-Nan Jin
- Ustar Biotechnologies (Hangzhou), Ltd., Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Lin Hu
- Ustar Biotechnologies (Hangzhou), Ltd., Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Zhi-Yong Sun
- (Sino-USA) SiChuan Nabii Bio-Tech Co., Ltd., Chengdu, SiChuan, 610041, People's Republic of China
| | - Qian He
- (Sino-USA) SiChuan Nabii Bio-Tech Co., Ltd., Chengdu, SiChuan, 610041, People's Republic of China
| | - Shi-Hua Zhao
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot, Inner Mongolia, 010031, People's Republic of China
| | - Shu-Bai Zhan
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot, Inner Mongolia, 010031, People's Republic of China
| | - Yong-Jun Wen
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899 Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, Jilin, 130112, People's Republic of China.,Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot, Inner Mongolia, 010031, People's Republic of China
| |
Collapse
|
39
|
Abstract
Porcine epidemic diarrhoea (PED) is a non-zoonotic viral disease of pigs caused by a coronavirus and characterised by watery diarrhoea and weight loss. PED is not notifiable to the EU or World Organisation for Animal Health listed but it is notifiable at the national level in Finland, France, Ireland and Sweden. PED case reports from seven countries and PED surveillance and monitoring activities in thirteen countries were reported. This information was combined with an extensive literature review to provide an update on global PED occurrence, circulating strains and impact in 2014-2015. PED confirmed cases have been reported in North America, South America, Asia and Europe. PED virus (PEDV) sequences originating from EU pig herds indicate that the strains currently in circulation share nearly 100% sequence identity and have greater than 99% sequence identity with the reference INDEL (insertion/deletion) strain USA/OH851/2014. In 2014-2015, greater genetic variability has been reported in strains circulating in Asia compared with EU Member States and a non-INDEL strain has been detected in the Ukraine in 2014. Data on impact confirms that mortality is higher in suckling piglets and diarrhoea is observed in all age groups. The reported impact is in agreement with that reported in EFSA AHAW Panel (2014) indicating that the impact of recently reported PED outbreaks in Asia and the USA seems to be more severe than that described in EU countries, although the impact of different PEDV strains is difficult to compare between one country and another, as impact is dependent not only on pathogenicity but also on factors such as biosecurity, herd size, farm management, sanitary status or herd immune status.
Collapse
|
40
|
Yamamoto T, Suzuki T, Ohashi S, Miyazaki A, Tsutsui T. Genomic Motifs as a Novel Indicator of the Relationship between Strains Isolated from the Epidemic of Porcine Epidemic Diarrhea in 2013-2014. PLoS One 2016; 11:e0147994. [PMID: 26808527 PMCID: PMC4726493 DOI: 10.1371/journal.pone.0147994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/10/2016] [Indexed: 11/18/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a positive-sense RNA virus that causes infectious gastroenteritis in pigs. Following a PED outbreak that occurred in China in 2010, the disease was identified for the first time in the United States in April 2013, and was reported in many other countries worldwide from 2013 to 2014. As a novel approach to elucidate the epidemiological relationship between PEDV strains, we explored their genome sequences to identify the motifs that were shared within related strains. Of PED outbreaks reported in many countries during 2013–2014, 119 PEDV strains in Japan, USA, Canada, Mexico, Germany, and Korea were selected and used in this study. We developed a motif mining program, which aimed to identify a specific region of the genome that was exclusively shared by a group of PEDV strains. Eight motifs were identified (M1–M8) and they were observed in 41, 9, 18, 6, 10, 14, 2, and 2 strains, respectively. Motifs M1–M6 were shared by strains from more than two countries, and seemed to originate from one PEDV strain, Indiana12.83/USA/2013, among the 119 strains studied. BLAST search for motifs M1–M6 revealed that M3–M5 were almost identical to the strain ZMDZY identified in 2011 in China, while M1 and M2 were similar to other Chinese strains isolated in 2011–2012. Consequently, the PED outbreaks in these six countries may be closely related, and multiple transmissions of PEDV strains between these countries may have occurred during 2013–2014. Although tools such as phylogenetic tree analysis with whole genome sequences are increasingly applied to reveal the connection between isolates, its interpretation is sometimes inconclusive. Application of motifs as a tool to examine the whole genome sequences of causative agents will be more objective and will be an explicit indicator of their relationship.
Collapse
Affiliation(s)
- Takehisa Yamamoto
- Virology and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Research Organization, Tsukuba, Ibaraki 305–0856, Japan
- * E-mail:
| | - Tohru Suzuki
- Virology and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Research Organization, Tsukuba, Ibaraki 305–0856, Japan
| | - Seiichi Ohashi
- Virology and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Research Organization, Tsukuba, Ibaraki 305–0856, Japan
| | - Ayako Miyazaki
- Virology and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Research Organization, Tsukuba, Ibaraki 305–0856, Japan
| | - Toshiyuki Tsutsui
- Virology and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Research Organization, Tsukuba, Ibaraki 305–0856, Japan
| |
Collapse
|
41
|
Wang X, Chen J, Shi D, Shi H, Zhang X, Yuan J, Jiang S, Feng L. Immunogenicity and antigenic relationships among spike proteins of porcine epidemic diarrhea virus subtypes G1 and G2. Arch Virol 2015; 161:537-47. [PMID: 26611909 PMCID: PMC7087089 DOI: 10.1007/s00705-015-2694-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/16/2015] [Indexed: 11/01/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a coronavirus that infects cells lining the small intestine of swine, resulting in vomiting, diarrhea, and dehydration. The amino acid sequence of the spike (S) protein, which is the principal target recognized by host immune cells, has multiple mutations that distinguish the two PEDV genotypes, G1 and G2. To determine whether these mutations lead to changes in antigenicity, as suggested by the failure of PEDV vaccines in China, we first optimized the codons of typical S genes of the CV777 vaccine strain (G1 subtype) and LNCT2 strain (G2 subtype) and expressed the recombinant full-length sequence of the S protein in a eukaryotic expression system. The IgG antibody levels of serum from mice immunized with purified S protein were markedly high. Antigenicity was compared by detection of polyclonal antibodies (PAbs) against the virus and S protein using an enzyme-linked immunosorbent assay (ELISA), an indirect immunofluorescence assay (IFA), and a serum cross-neutralization (SN) assay. Reactivity with the PAbs revealed significant cross-reactivity between the two PEDV subtypes, although there was a twofold difference in the antigenic responses based on PAb titers in the ELISA and IFA. Consistent with the variation in the S gene sequences, the SN titer suggested differences in the neutralization activity of the S protein between the two subtypes, which could explain the antigenic variation between the PEDV subtypes G1 and G2.
Collapse
Affiliation(s)
- Xiaobo Wang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Jianfei Chen
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Da Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Hongyan Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Xin Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Jing Yuan
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Public Health Clinical Center and Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Li Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| |
Collapse
|
42
|
Sasaki Y, Alvarez J, Sekiguchi S, Sueyoshi M, Otake S, Perez A. Epidemiological factors associated to spread of porcine epidemic diarrhea in Japan. Prev Vet Med 2015; 123:161-167. [PMID: 26588869 DOI: 10.1016/j.prevetmed.2015.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 10/22/2022]
Abstract
Porcine epidemic diarrhea (PED) is an emerging disease of pigs that has recently led to large numbers of piglet deaths in a number of countries of Eastern Asia and The Americas. The objective of the present study was to identify and compare risk factors associated with PED infection in locally and non-locally PED-exposed farms in Japan. A questionnaire was administered to a convenience selection of pig farms located throughout Japan. Questionnaires were administered between November 2013 (when the first case was reported in Japan) and August 2014. PED-positive farms (cases, n=124) were asked to provide information on their status (positive or negative) and select herd management practices for the two weeks prior to onset of PED clinical signs. Negative farms (controls, n=128) were given the same questionnaire and asked herd management practices for the two weeks prior to a given reference date. This date was assigned based on the date of PED occurrence in the town/prefecture in which the farm was located. Case and control farms were categorized as "locally exposed" if they were located within a 5km radius from a PED-infected farm and "non-locally exposed", otherwise. Logistic regression analysis was used to identify factors associated with PED infection. Two separate regressions were done for locally exposed and non-locally exposed farms using PED status (positive/negative) as the dependent variable. PED in locally-exposed farms was associated (P<0.05) with increased farm size (in 100 pig increments), shorter distances to the closest PED-positive farm (less than1,001m), and a disinfectant contact time of less than 20min. In non-locally exposed farms, PED was associated (P<0.05) with increased feed truck visits to the farm, no visit of the veterinarian, and again a disinfectant contact time of less than 20min. These findings suggest that the mechanisms of PED spread in Japan were different for farms closer to case-farms compared to farms that were further away from PED cases. These results will contribute to understanding the epidemiology of the disease in Japan and will ultimately aid in designing and implementing effective prevention and control strategies in Japan and other regions epidemically infected by the PED virus.
Collapse
Affiliation(s)
- Yosuke Sasaki
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan.
| | - Julio Alvarez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, MN, USA
| | - Satoshi Sekiguchi
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan; Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masuo Sueyoshi
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan; Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | | - Andres Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, MN, USA
| |
Collapse
|
43
|
Song D, Zhou X, Peng Q, Chen Y, Zhang F, Huang T, Zhang T, Li A, Huang D, Wu Q, He H, Tang Y. Newly Emerged Porcine Deltacoronavirus Associated With Diarrhoea in Swine in China: Identification, Prevalence and Full-Length Genome Sequence Analysis. Transbound Emerg Dis 2015; 62:575-80. [PMID: 26250097 PMCID: PMC7169704 DOI: 10.1111/tbed.12399] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Indexed: 11/30/2022]
Abstract
To identify and characterize aetiologic agent(s) associated with an outbreak of a severe diarrhoea in piglets in Jiangxi, China, in March 2015, a nested reverse transcription–polymerase chain reaction (RT‐PCR) for the detection of porcine deltacoronavirus (PDCoV) was developed. A survey based on the nested RT‐PCR established indicated that the monoinfection of PDCoV (33.71%) and coinfection of PDCoV (19.66%) with porcine epidemic diarrhoea virus (PEDV) were common in diarrhoeal pigs in Jiangxi, China. A high prevalence of PDCoV (58.33%) in diarrhoeal samples which were PEDV negative was observed. The complete genome sequence of a representative PDCoV strain, PDCoV/CHJXNI2/2015, was determined. Phylogenetic analysis of complete genome and S protein sequences of PDCoV/CHJXNI2/2015 demonstrated that it was most closely related to Hong Kong and US PDCoVs. To our knowledge, this is the first report on the identification, prevalence, complete genome sequencing and molecular characterizations of PDCoV in diarrhoeal samples in pigs in China.
Collapse
Affiliation(s)
- D Song
- Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - X Zhou
- Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Q Peng
- Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Y Chen
- Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - F Zhang
- Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - T Huang
- Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - T Zhang
- Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - A Li
- Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - D Huang
- Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Q Wu
- Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - H He
- Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Y Tang
- Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
44
|
The dynamics of Chinese variant porcine epidemic diarrhea virus production in Vero cells and intestines of 2-day old piglets. Virus Res 2015; 208:82-8. [PMID: 26091822 DOI: 10.1016/j.virusres.2015.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 11/20/2022]
Abstract
A severe porcine epidemic diarrhea (PED) epizootic has been affecting pigs of all ages that are characterized by high mortality among suckling piglets in China since late 2010, causing significant economic losses. Obtaining a current-circulating PEDV variant isolate that can grow efficiently in cell culture is prerequisite for the development of efficient vaccines. In this study, PEDV strain HN1303 was isolated successfully on Vero cells with supplemental trypsin, and the isolate has been serially propagated in cell culture for over 95 passages. The infectious titers of the virus during the first 10 passages ranged from 10(2.6) to 10(5.8) 50% tissue culture infective doses (TCID50)/ml, and the titers of 20-95 passages ranged from 10(6.2) to 10(8.0)TCID50/ml. The growth curve of Vero cell-adapted HN1303 in cell culture was determined, and dynamics of virus production was confirmed by immunoperoxidase monolayer assay (IPMA). Sequence and phylogenetic analysis based on spike gene indicate that the HN1303 strain belongs to genotype IIa. In addition, the fourth passage cell-culture HN1303 was subjected to 2-day old piglets. All piglets orally inoculated developed severe watery diarrhea and vomiting within 24 hours post-inoculation (hpi) and died within 72 hpi. The results of animal experiments reveal that this strain is highly pathogenic to 2-day old piglets.
Collapse
|
45
|
Complete genome characterization of porcine epidemic diarrhea virus in Vietnam. Arch Virol 2015; 160:1931-8. [PMID: 26026958 DOI: 10.1007/s00705-015-2463-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) first emerged in Vietnam in 2009. In this study, the complete genomes of three Vietnamese PEDV isolates were characterized. These three isolates were isolated from 3-day-old pigs experiencing diarrhea. Two isolates were from swine farms in the south, and the other was from northern Vietnam. The whole genome sequences of these isolates are 28,035 nucleotides in length and have characteristics similar to those of other PEDV isolates. All three Vietnamese PEDV isolates share 99.8 % and 99.6 % sequence identity at the nucleotide and amino acid level, respectively, and have insertions of four amino acids (GENQ) and one amino acid (N) at positions 56-59 and 140, respectively, and one deletion of two amino acids (DG) at positions 160-161. Phylogenetic analysis based on the whole genome revealed that the three Vietnamese PEDV isolates are grouped together with new variants from China from 2011 to 2012 and are genetically distinct from US isolates and the classical PEDV variant. The results suggest that Vietnamese PEDV isolates are new variants, as evidenced by their genetic composition of insertions and a deletion in the spike gene, and they might have originated from the same ancestor as the Chinese PEDV strain. This study provides a better understanding of the molecular characteristics of PEDV in Vietnam.
Collapse
|