1
|
Sun Y, Li J, Li Y, Wu Z. Molecular characterization and transcriptional regulation between PPAR and CPT1 in freshwater bivalve Hyriopsis cumingii. Int J Biol Macromol 2024:135647. [PMID: 39278449 DOI: 10.1016/j.ijbiomac.2024.135647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Peroxisome proliferator activated receptors (PPARs) exert their roles in lipid metabolism and adaptive immunity by transactivating carnitine palmitoyltransferase 1 (CPT1). However, it remains unclear whether the PPAR-CPT1 signaling pathway exists in mollusks that only carry out innate immunity. This study cloned and characterized PPAR and CPT1 genes from Hyriopsis cumingii for the first time, designated as HcPPARs and HcCPT1s, respectively. The bioinformatics analysis revealed conservative molecular characteristics of these genes across species. Real-time quantitative PCR results indicated that higher expression levels of HcPPARs and HcCPT1s in the blood, mantle, and intestine suggested their potential involvement in lipid metabolism and innate immunity of mollusks. Treatments with agonists and inhibitors demonstrated a correlation in the expression of HcPPARs and HcCPT1s. Dual luciferase reporter assay identified regions with high transcriptional activities on promoters of HcCPT1s and potential binding sites for HcPPARs through prediction and mutation sites. These results suggested that the PPAR-CPT1 signaling might exist in H. cumingii. This research provides a necessary foundation for exploring the role of the PPAR-CPT1 signaling in innate immunity, and offers new theoretical evidence for the molecular regulatory mechanism of mollusks and the treatment of metabolic disorders and inflammatory diseases.
Collapse
Affiliation(s)
- Yu Sun
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
| | - Jie Li
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yanhong Li
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Murillo Ramos AM, Wilson JY. Is there potential for estradiol receptor signaling in lophotrochozoans? Gen Comp Endocrinol 2024; 354:114519. [PMID: 38677339 DOI: 10.1016/j.ygcen.2024.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
Estrogen receptors (ERs) are thought to be the ancestor of all steroid receptors and are present in most lophotrochozoans studied to date, including molluscs, annelids, and rotifers. A number of studies have investigated the functional role of estrogen receptors in invertebrate species, although most are in molluscs, where the receptor is constitutively active. In vitro experiments provided evidence for ligand-activated estrogen receptors in annelids, raising important questions about the role of estrogen signalling in lophotrochozoan lineages. Here, we review the concordant and discordant evidence of estradiol receptor signalling in lophotrochozoans, with a focus on annelids and rotifers. We explore the de novo synthesis of estrogens, the evolution and expression of estrogen receptors, and physiological responses to activation of estrogen receptors in the lophotrochozoan phyla Annelida and Rotifera. Key data are missing to determine if de novo biosynthesis of estradiol in non-molluscan lophotrochozoans is likely. For example, an ortholog for the CYP11 gene is present, but confirmation of substrate conversion and measured tissue products is lacking. Orthologs CYP17 and CYP19 are lacking, yet intermediates or products (e.g. estradiol) in tissues have been measured. Estrogen receptors are present in multiple species, and for a limited number, in vitro data show agonist binding of estradiol and/or transcriptional activation. The expression patterns of the lophotrochozoan ERs suggest developmental, reproductive, and digestive roles but are highly species dependent. E2 exposures suggest that lophotrochozoan ERs may play a role in reproduction, but no strong dose-response relationship has been established. Therefore, we expect most lophotrochozoan species, outside of perhaps platyhelminths, to have an ER but their physiological role remains elusive. Mining genomes for orthologs gene families responsible for steroidogenesis, coupled with in vitro and in vivo studies of the steroid pathway are needed to better assess whether lophotrochozoans are capable of estradiol biosynthesis. One major challenge is that much of the data are divided across a diversity of species. We propose that the polychaetes Capitella teleta or Platyneris dumerilii, and rotifer Brachionus manjavacas may be strong species choices for studies of estrogen receptor signalling, because of available genomic data, established laboratory culture techniques, and gene knockout potential.
Collapse
Affiliation(s)
- A M Murillo Ramos
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - J Y Wilson
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
3
|
Casas-Rodríguez A, Medrano-Padial C, Jos A, Cameán AM, Campos A, Fonseca E. Characterization of NR1J1 Paralog Responses of Marine Mussels: Insights from Toxins and Natural Activators. Int J Mol Sci 2024; 25:6287. [PMID: 38928005 PMCID: PMC11204112 DOI: 10.3390/ijms25126287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The pregnane X receptor (PXR) is a nuclear hormone receptor that plays a pivotal role in regulating gene expression in response to various ligands, particularly xenobiotics. In this context, the aim of this study was to shed light on the ligand affinity and functions of four NR1J1 paralogs identified in the marine mussel Mytilus galloprovincialis, employing a dual-luciferase reporter assay. To achieve this, the activation patterns of these paralogs in response to various toxins, including freshwater cyanotoxins (Anatoxin-a, Cylindrospermopsin, and Microcystin-LR, -RR, and -YR) and marine algal toxins (Nodularin, Saxitoxin, and Tetrodotoxin), alongside natural compounds (Saint John's Wort, Ursolic Acid, and 8-Methoxypsoralene) and microalgal extracts (Tetraselmis, Isochrysis, LEGE 95046, and LEGE 91351 extracts), were studied. The investigation revealed nuanced differences in paralog response patterns, highlighting the remarkable sensitivity of MgaNR1J1γ and MgaNR1J1δ paralogs to several toxins. In conclusion, this study sheds light on the intricate mechanisms of xenobiotic metabolism and detoxification, particularly focusing on the role of marine mussel NR1J1 in responding to a diverse array of compounds. Furthermore, comparative analysis with human PXR revealed potential species-specific adaptations in detoxification mechanisms, suggesting evolutionary implications. These findings deepen our understanding of PXR-mediated metabolism mechanisms, offering insights into environmental monitoring and evolutionary biology research.
Collapse
Affiliation(s)
- Antonio Casas-Rodríguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
| | - Concepción Medrano-Padial
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus Universitario 25, Espinardo, 30100 Murcia, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
| | - Ana M. Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
| | - Alexandre Campos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal;
| | - Elza Fonseca
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal;
| |
Collapse
|
4
|
Miglioli A, Fonseca E, Besnardeau L, Canesi L, Schubert M, Dumollard R. First characterization of the nuclear receptor superfamily in the Mediterranean mussel Mytilus galloprovincialis: developmental expression dynamics and potential susceptibility to environmental chemicals. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220500. [PMID: 38310933 PMCID: PMC10838637 DOI: 10.1098/rstb.2022.0500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 02/06/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) represent a global threat to human health and the environment. In vertebrates, lipophilic EDCs primarily act by mimicking endogenous hormones, thus interfering with the transcriptional activity of nuclear receptors (NRs). The demonstration of the direct translation of these mechanisms into perturbation of NR-mediated physiological functions in invertebrates, however, has rarely proven successful, as the modes of action of EDCs in vertebrates and invertebrates seem to be distinct. In the present work, we investigated the members of the NR superfamily in a bivalve mollusk, the Mediterranean mussel Mytilus galloprovincialis. In addition to annotating the M. galloprovincialis NR complement, we assessed the potential developmental functions and susceptibility to EDC challenge during early development by gene expression analyses. Our results indicate that a majority of mussel NRs are dynamically expressed during early development, including receptors characterized by a potential susceptibility to EDCs. This study thus indicates that NRs are major regulators of early mussel development and that NR-mediated endocrine disruption in the mussel could be occurring at a larger scale and at earlier stages of the life cycle than previously anticipated. Altogether, these findings will have significant repercussions for our understanding of the stability of natural mussel populations. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Angelica Miglioli
- Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| | - Elza Fonseca
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Lydia Besnardeau
- Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| | - Laura Canesi
- Dipartimento di Scenze della Terrra dell'Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy
| | - Michael Schubert
- Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| | - Rémi Dumollard
- Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| |
Collapse
|
5
|
Margiotta-Casaluci L, Owen SF, Winter MJ. Cross-Species Extrapolation of Biological Data to Guide the Environmental Safety Assessment of Pharmaceuticals-The State of the Art and Future Priorities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:513-525. [PMID: 37067359 DOI: 10.1002/etc.5634] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
The extrapolation of biological data across species is a key aspect of biomedical research and drug development. In this context, comparative biology considerations are applied with the goal of understanding human disease and guiding the development of effective and safe medicines. However, the widespread occurrence of pharmaceuticals in the environment and the need to assess the risk posed to wildlife have prompted a renewed interest in the extrapolation of pharmacological and toxicological data across the entire tree of life. To address this challenge, a biological "read-across" approach, based on the use of mammalian data to inform toxicity predictions in wildlife species, has been proposed as an effective way to streamline the environmental safety assessment of pharmaceuticals. Yet, how effective has this approach been, and are we any closer to being able to accurately predict environmental risk based on known human risk? We discuss the main theoretical and experimental advancements achieved in the last 10 years of research in this field. We propose that a better understanding of the functional conservation of drug targets across species and of the quantitative relationship between target modulation and adverse effects should be considered as future research priorities. This pharmacodynamic focus should be complemented with the application of higher-throughput experimental and computational approaches to accelerate the prediction of internal exposure dynamics. The translation of comparative (eco)toxicology research into real-world applications, however, relies on the (limited) availability of experts with the skill set needed to navigate the complexity of the problem; hence, we also call for synergistic multistakeholder efforts to support and strengthen comparative toxicology research and education at a global level. Environ Toxicol Chem 2024;43:513-525. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Luigi Margiotta-Casaluci
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Stewart F Owen
- Global Sustainability, AstraZeneca, Macclesfield, Cheshire, United Kingdom
| | - Matthew J Winter
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
6
|
Wu W, LoVerde PT. Updated knowledge and a proposed nomenclature for nuclear receptors with two DNA binding domains (2DBD-NRs). PLoS One 2023; 18:e0286107. [PMID: 37699039 PMCID: PMC10497141 DOI: 10.1371/journal.pone.0286107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023] Open
Abstract
Nuclear receptors (NRs) are important transcriptional modulators in metazoans. Typical NRs possess a conserved DNA binding domain (DBD) and a ligand binding domain (LBD). Since we discovered a type of novel NRs each of them has two DBDs and single LBD (2DBD-NRs) more than decade ago, there has been very few studies about 2DBD-NRs. Recently, 2DBD-NRs have been only reported in Platyhelminths and Mollusca and are thought to be specific NRs to lophotrochozoan. In this study, we searched different databases and identified 2DBD-NRs in different animals from both protostomes and deuterostomes. Phylogenetic analysis shows that at least two ancient 2DBD-NR genes were present in the urbilaterian, a common ancestor of protostomes and deuterostomes. 2DBD-NRs underwent gene duplication and loss after the split of different animal phyla, most of them in a certain animal phylum are paralogues, rather than orthologues, like in other animal phyla. Amino acid sequence analysis shows that the conserved motifs in typical NRs are also present in 2DBD-NRs and they are gene specific. From our phylogenetic analysis of 2DBD-NRs and following the rule of Nomenclature System for the Nuclear Receptors, a nomenclature for 2DBD-NRs is proposed.
Collapse
Affiliation(s)
- Wenjie Wu
- Departments of Biochemistry and Structural Biology University of Texas Health, San Antonio, Texas, United States of America
| | - Philip T. LoVerde
- Departments of Biochemistry and Structural Biology University of Texas Health, San Antonio, Texas, United States of America
| |
Collapse
|
7
|
Imiuwa ME, Baynes A, Routledge EJ. Understanding target-specific effects of antidepressant drug pollution on molluscs: A systematic review protocol. PLoS One 2023; 18:e0287582. [PMID: 37368915 PMCID: PMC10298782 DOI: 10.1371/journal.pone.0287582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The environmental prevalence of widely prescribed human pharmaceuticals that target key evolutionary conserved biomolecules present across phyla is concerning. Antidepressants, one of the most widely consumed pharmaceuticals globally, have been developed to target biomolecules modulating monoaminergic neurotransmission, thus interfering with the endogenous regulation of multiple key neurophysiological processes. Furthermore, rising prescription and consumption rates of antidepressants caused by the burgeoning incidence of depression is consistent with increasing reports of antidepressant detection in aquatic environments worldwide. Consequently, there are growing concerns that long-term exposure to environmental levels of antidepressants may cause adverse drug target-specific effects on non-target aquatic organisms. While these concerns have resulted in a considerable body of research addressing a range of toxicological endpoints, drug target-specific effects of environmental levels of different classes of antidepressants in non-target aquatic organisms remain to be understood. Interestingly, evidence suggests that molluscs may be more vulnerable to the effects of antidepressants than any other animal phylum, making them invaluable in understanding the effects of antidepressants on wildlife. Here, a protocol for the systematic review of literature to understand drug target-specific effects of environmental levels of different classes of antidepressants on aquatic molluscs is described. The study will provide critical insight needed to understand and characterize effects of antidepressants relevant to regulatory risk assessment decision-making, and/or direct future research efforts. METHODS The systematic review will be conducted in line with the guidelines by the Collaboration for Environmental Evidence (CEE). A literature search on Scopus, Web of Science, PubMed, as well as grey literature databases, will be carried out. Using predefined criteria, study selection, critical appraisal and data extraction will be done by multiple reviewers with a web-based evidence synthesis platform. A narrative synthesis of outcomes of selected studies will be presented. The protocol has been registered in the Open Science Framework (OSF) registry with the registration DOI: 10.17605/OSF.IO/P4H8W.
Collapse
Affiliation(s)
- Maurice E. Imiuwa
- Faculty of life Sciences, Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Alice Baynes
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Edwin J. Routledge
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
8
|
Morthorst JE, Holbech H, De Crozé N, Matthiessen P, LeBlanc GA. Thyroid-like hormone signaling in invertebrates and its potential role in initial screening of thyroid hormone system disrupting chemicals. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:63-82. [PMID: 35581168 PMCID: PMC10083991 DOI: 10.1002/ieam.4632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/30/2022] [Accepted: 05/12/2022] [Indexed: 05/07/2023]
Abstract
This review examines the presence and evolution of thyroid-like systems in selected aquatic invertebrates to determine the potential use of these organisms in screens for vertebrate thyroid hormone axis disrupting chemicals (THADCs). Such a screen might support the phasing out of some vertebrate testing. Although arthropods including crustaceans do not contain a functional thyroid signaling system, elements of such a system exist in the aquatic phyla mollusks, echinoderms, tunicates, and cephalochordates. These phyla can synthesize thyroid hormone, which has been demonstrated in some groups to induce the nuclear thyroid hormone receptor (THR). Thyroid hormone may act in these phyla through interaction with a membrane integrin receptor. Thyroid hormone regulates inter alia metamorphosis but, unlike in vertebrates, this does not occur via receptor activation by the ligands triiodothyronine (T3) and thyroxine (T4). Instead, the unliganded nuclear receptor itself controls metamorphosis in mollusks, echinoderms, and tunicates, whereas the T3 derivative tri-iodothyroacetic acid (TRIAC) acts as a THR ligand in cephalochordates. In view of this, it may be possible to develop an invertebrate-based screen that is sensitive to vertebrate THADCs that interfere with thyroid hormone synthesis or metabolism along with interaction with membrane receptors. The review makes some recommendations for the need to develop an appropriate test method. Integr Environ Assess Manag 2023;19:63-82. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Henrik Holbech
- Department of BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Noémie De Crozé
- Laboratoire Recherche Environnementale, L'ORÉAL Recherche & InnovationAulnay‐sous‐BoisFrance
| | | | - Gerald A. LeBlanc
- Department of Biological SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
9
|
Wang Q, Miao J, Zhao A, Wu M, Pan L. Use of GAL4 factor-based yeast assay to quantify the effects of xenobiotics on RXR homodimer and RXR/PPAR heterodimer in scallop Chlamys farreri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158526. [PMID: 36063929 DOI: 10.1016/j.scitotenv.2022.158526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Retinoid X receptor (RXR) and peroxisome proliferators-activated receptors (PPAR) have been shown as important targets of endocrine disrupting effects caused by organotin compounds (OTCs). In vitro methods for non-model species are instrumental in revealing not only mechanism of toxicity but also basic biology. In the present study, we constructed the GAL4 factor-based recombinant yeast systems of RXRα/RXRα (RR), RXRα/PPARα (RPα) and RXRα/PPARγ (RPγ) of the scallop Chlamys farreri to investigate their transcriptional activity under the induction of OTCs (tributyltin chloride, triphenyltin chloride, tripropyltin chloride and bis(tributyltin)oxide), their spiked sediments and five other non‑tin compounds (Wy14643, rosiglitazone, benzyl butyl phthalate, dicyclohexyl phthalate and bis(2-ethylhexyl) phthalate). The results showed that the natural ligand of RXR, 9-cis-retinoic acid (9cRA), induces transcriptional activity in all three systems, while four OTCs induced the transcriptional activity of the RR and RPα systems. None of the five potential non‑tin endocrine disruptors induced effects on the RPα and RPγ systems. The spiked sediment experiment demonstrated the feasibility of the recombinant yeast systems constructed in this study for environmental sample detection. These results suggest that OTCs pose a threat to affect function of RXRα and PPARα of bivalve mollusks. The newly developed GAL4 factor-based yeast two-hybrid system can be used as a valuable tool for identification and quantification of compounds active in disturbing RXR and PPAR of bivalves.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Anran Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Manni Wu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
10
|
Lynch AE, Noble LR, Jones CS, Routledge EJ. Common aquatic pollutants modify hemocyte immune responses in Biomphalaria glabrata. Front Immunol 2022; 13:839746. [PMID: 36159819 PMCID: PMC9493456 DOI: 10.3389/fimmu.2022.839746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Disruptions to reproductive health in wildlife species inhabiting polluted environments is often found to occur alongside compromised immunity. However, research on impacts of aquatic pollution on freshwater mollusc immune responses is limited despite their importance as vectors of disease (Schistosomiasis) in humans, cattle and wild mammals. We developed an in vitro 'tool-kit' of well-characterized quantitative immune tests using Biomphalaria glabrata hemocytes. We exposed hemocytes to environmentally-relevant concentrations of common aquatic pollutants (17β-estradiol, Bisphenol-A and p,p'-DDE) and measured key innate immune responses including motility, phagocytosis and encapsulation. Additionally, we tested an extract of a typical domestic tertiary treated effluent as representative of a 'real-world' mixture of chemicals. Encapsulation responses were stimulated by p,p'-DDE at low doses but were suppressed at higher doses. Concentrations of BPA (above 200 ng/L) and p,p'-DDE (above 500 ng/L) significantly inhibited phagocytosis compared to controls, whilst hemocyte motility was reduced by all test chemicals and the effluent extract in a dose-dependent manner. All responses occurred at chemical concentrations considered to be below the cytotoxic thresholds of hemocytes. This is the first time a suite of in vitro tests has been developed specifically in B. glabrata with the purpose of investigating the impacts of chemical pollutants and an effluent extract on immunity. Our findings indicate that common aquatic pollutants alter innate immune responses in B. glabrata, suggesting that pollutants may be a critical, yet overlooked, factor impacting disease by modulating the dynamics of parasite transmission between molluscs and humans.
Collapse
Affiliation(s)
- Adam E. Lynch
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Leslie R. Noble
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- School of Biological Sciences, Aberdeen University, Aberdeen, United Kingdom
| | - Catherine S. Jones
- School of Biological Sciences, Aberdeen University, Aberdeen, United Kingdom
| | - Edwin J. Routledge
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
11
|
Wan S, Li Q, Yu H, Liu S, Kong L. A nuclear receptor heterodimer, CgPPAR2-CgRXR, acts as a regulator of carotenoid metabolism in Crassostrea gigas. Gene 2022; 827:146473. [PMID: 35390448 DOI: 10.1016/j.gene.2022.146473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022]
Abstract
Nuclear receptors (NRs) are mostly ligand-activated transcription factors in animals and play essential roles in metabolism and homeostasis. The NR heterodimer composed of PPAR/RXR (peroxisome proliferator-activated receptor/retinoid X receptor) is considered a key regulator of lipid metabolism in vertebrate. However, in molluscs, how this heterodimer is involved in carotenoid metabolism remains unclear. To elucidate how this heterodimer regulates carotenoid metabolism, we identified a PPAR gene in C. gigas, designated as CgPPAR2 (LOC105323212), and functionally characterized it using two-hybrid and reporter systems. CgPPAR2 is a direct orthologue of vertebrate PPARs and the second PPAR gene identified in C. gigas genome in addition to CgPPAR1 (LOC105317849). The results demonstrated that CgPPAR2 protein can form heterodimer with C. gigas RXR (CgRXR), and then regulate carotenoid metabolism by controlling carotenoid cleavage oxygenases with different carotenoid cleavage efficiencies. This regulation can be affected by retinoid ligands, i.e., carotenoid derivatives, validating a negative feedback regulation mechanism of carotenoid cleavage for retinoid production. Besides, organotins may disrupt this regulatory process through the mediation of CgPPAR2/CgRXR heterodimer. This is the first report of PPAR/RXR heterodimer regulating carotenoid metabolism in mollusks, contributing to a better understanding of the evolution and conservation of this nuclear receptor heterodimer.
Collapse
Affiliation(s)
- Sai Wan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Qingdao 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
12
|
Ojoghoro JO, Scrimshaw MD, Sumpter JP. Steroid hormones in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148306. [PMID: 34157532 DOI: 10.1016/j.scitotenv.2021.148306] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 05/16/2023]
Abstract
Steroid hormones are extremely important natural hormones in all vertebrates. They control a wide range of physiological processes, including osmoregulation, sexual maturity, reproduction and stress responses. In addition, many synthetic steroid hormones are in widespread and general use, both as human and veterinary pharmaceuticals. Recent advances in environmental analytical chemistry have enabled concentrations of steroid hormones in rivers to be determined. Many different steroid hormones, both natural and synthetic, including transformation products, have been identified and quantified, demonstrating that they are widespread aquatic contaminants. Laboratory ecotoxicology experiments, mainly conducted with fish, but also amphibians, have shown that some steroid hormones, both natural and synthetic, can adversely affect reproduction when present in the water at extremely low concentrations: even sub-ng/L. Recent research has demonstrated that mixtures of different steroid hormones can inhibit reproduction even when each individual hormone is present at a concentration below which it would not invoke a measurable effect on its own. Limited field studies have supported the conclusions of the laboratory studies that steroid hormones may be environmental pollutants of significant concern. Further research is required to identify the main sources of steroid hormones entering the aquatic environment, better describe the complex mixtures of steroid hormones now known to be ubiquitously present, and determine the impacts of environmentally-realistic mixtures of steroid hormones on aquatic vertebrates, especially fish. Only once that research is completed can a robust aquatic risk assessment of steroid hormones be concluded.
Collapse
Affiliation(s)
- J O Ojoghoro
- Department of Botany, Faculty of Science, Delta State University Abraka, Delta State, Nigeria
| | - M D Scrimshaw
- Division of Environmental Science, Department of Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom.
| | - J P Sumpter
- Division of Environmental Science, Department of Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom.
| |
Collapse
|
13
|
Lesoway MP, Henry JQ. Retinoids promote penis development in sequentially hermaphroditic snails. Dev Biol 2021; 478:122-132. [PMID: 34224682 DOI: 10.1016/j.ydbio.2021.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022]
Abstract
Sexual systems are surprisingly diverse, considering the ubiquity of sexual reproduction. Sequential hermaphroditism, the ability of an individual to change sex, has emerged multiple times independently across the animal kingdom. In molluscs, repeated shifts between ancestrally separate sexes and hermaphroditism are generally found at the level of family and above, suggesting recruitment of deeply conserved mechanisms. Despite this, molecular mechanisms of sexual development are poorly known. In molluscs with separate sexes, endocrine disrupting toxins bind the retinoid X receptor (RXR), activating ectopic male development in females, suggesting the retinoid pathway as a candidate controlling sexual transitions in sequential hermaphrodites. We therefore tested the role of retinoic acid signaling in sequentially hermaphroditic Crepidula snails, which develop first into males, then change sex, maturing into females. We show that retinoid agonists induce precocious penis growth in juveniles and superimposition of male development in females. Combining RXR antagonists with retinoid agonists significantly reduces penis length in induced juveniles, while similar treatments using retinoic acid receptor (RAR) antagonists increase penis length. Transcripts of both receptors are expressed in the induced penis. Our findings therefore show that retinoid signaling can initiate molluscan male genital development, and regulate penis length. Further, we show that retinoids induce ectopic male development in multiple Crepidula species. Species-specific influence of conspecific induction of sexual transitions correlates with responsiveness to retinoids. We propose that retinoid signaling plays a conserved role in molluscan male development, and that shifts in the timing of retinoid signaling may have been important for the origins of sequential hermaphroditism within molluscs.
Collapse
Affiliation(s)
- Maryna P Lesoway
- Department of Cell and Developmental Biology University of Illinois, 601 S Goodwin Avenue Urbana, IL, USA, 61801.
| | - Jonathan Q Henry
- Department of Cell and Developmental Biology University of Illinois, 601 S Goodwin Avenue Urbana, IL, USA, 61801
| |
Collapse
|
14
|
Taubenheim J, Kortmann C, Fraune S. Function and Evolution of Nuclear Receptors in Environmental-Dependent Postembryonic Development. Front Cell Dev Biol 2021; 9:653792. [PMID: 34178983 PMCID: PMC8222990 DOI: 10.3389/fcell.2021.653792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors (NRs) fulfill key roles in the coordination of postembryonal developmental transitions in animal species. They control the metamorphosis and sexual maturation in virtually all animals and by that the two main environmental-dependent developmental decision points. Sexual maturation and metamorphosis are controlled by steroid receptors and thyroid receptors, respectively in vertebrates, while both processes are orchestrated by the ecdysone receptor (EcR) in insects. The regulation of these processes depends on environmental factors like nutrition, temperature, or photoperiods and by that NRs form evolutionary conserved mediators of phenotypic plasticity. While the mechanism of action for metamorphosis and sexual maturation are well studied in model organisms, the evolution of these systems is not entirely understood and requires further investigation. We here review the current knowledge of NR involvement in metamorphosis and sexual maturation across the animal tree of life with special attention to environmental integration and evolution of the signaling mechanism. Furthermore, we compare commonalities and differences of the different signaling systems. Finally, we identify key gaps in our knowledge of NR evolution, which, if sufficiently investigated, would lead to an importantly improved understanding of the evolution of complex signaling systems, the evolution of life history decision points, and, ultimately, speciation events in the metazoan kingdom.
Collapse
Affiliation(s)
| | | | - Sebastian Fraune
- Zoology and Organismic Interactions, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Pes K, Friese A, Cox CJ, Laizé V, Fernández I. Biochemical and molecular responses of the Mediterranean mussel (Mytilus galloprovincialis) to short-term exposure to three commonly prescribed drugs. MARINE ENVIRONMENTAL RESEARCH 2021; 168:105309. [PMID: 33798995 DOI: 10.1016/j.marenvres.2021.105309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals represent a group of emerging contaminants. The short-term effect (3 and 7 days) of warfarin (1 and 10 mg L-1), dexamethasone (0.392 and 3.92 mg L-1) and imidazole (0.013 and 0.13 mg L-1) exposure was evaluated on mussels (Mytilus galloprovincialis). Total antioxidant status, glutathione reductase, glutathione peroxidase (GPx) and superoxide dismutase enzyme activities, and the expression of genes involved in the xenobiotic response (ATP binding cassette subfamily B member 1 (abcb1) and several nuclear receptor family J (nr1j) isoforms), were evaluated. All nr1j isoforms are suggested to be the xenobiotic receptor orthologs of the NR1I family. All drugs increased GPx activity and altered the expression of particular nr1j isoforms. Dexamethasone exposure also decreased abcb1 expression. These findings raised some concerns regarding the release of these pharmaceuticals into the aquatic environment. Thus, further studies might be needed to perform an accurate environmental risk assessment of these 3 poorly studied drugs.
Collapse
Affiliation(s)
- Katia Pes
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Annika Friese
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Cymon J Cox
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Vincent Laizé
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ignacio Fernández
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, s/n. 40196 Zamarramala, Segovia, Spain.
| |
Collapse
|
16
|
Miglioli A, Canesi L, Gomes IDL, Schubert M, Dumollard R. Nuclear Receptors and Development of Marine Invertebrates. Genes (Basel) 2021; 12:genes12010083. [PMID: 33440651 PMCID: PMC7827873 DOI: 10.3390/genes12010083] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear Receptors (NRs) are a superfamily of transcription factors specific to metazoans that have the unique ability to directly translate the message of a signaling molecule into a transcriptional response. In vertebrates, NRs are pivotal players in countless processes of both embryonic and adult physiology, with embryonic development being one of the most dynamic periods of NR activity. Accumulating evidence suggests that NR signaling is also a major regulator of development in marine invertebrates, although ligands and transactivation dynamics are not necessarily conserved with respect to vertebrates. The explosion of genome sequencing projects and the interpretation of the resulting data in a phylogenetic context allowed significant progress toward an understanding of NR superfamily evolution, both in terms of molecular activities and developmental functions. In this context, marine invertebrates have been crucial for characterizing the ancestral states of NR-ligand interactions, further strengthening the importance of these organisms in the field of evolutionary developmental biology.
Collapse
Affiliation(s)
- Angelica Miglioli
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Laura Canesi
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Isa D. L. Gomes
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
- Correspondence:
| |
Collapse
|
17
|
Fonseca E, Machado AM, Vilas-Arrondo N, Gomes-Dos-Santos A, Veríssimo A, Esteves P, Almeida T, Themudo G, Ruivo R, Pérez M, da Fonseca R, Santos MM, Froufe E, Román-Marcote E, Venkatesh B, Castro LFC. Cartilaginous fishes offer unique insights into the evolution of the nuclear receptor gene repertoire in gnathostomes. Gen Comp Endocrinol 2020; 295:113527. [PMID: 32526329 DOI: 10.1016/j.ygcen.2020.113527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NRs) are key transcription factors that originated in the common ancestor of metazoans. The vast majority of NRs are triggered by binding to either endogenous (e.g. retinoic acid) or exogenous (e.g. xenobiotics) ligands, and their evolution and expansion is tightly linked to the function of endocrine systems. Importantly, they represent classic targets of physiological exploitation by endocrine disrupting chemicals. The NR gene repertoire in different lineages has been shaped by gene loss, duplication and mutation, denoting a dynamic evolutionary route. As the earliest diverging class of gnathostomes (jawed vertebrates), cartilaginous fishes offer an exceptional opportunity to address the early diversification of NR gene families and the evolution of the endocrine system in jawed vertebrates. Here we provide an exhaustive analysis into the NR gene composition in five elasmobranch (sharks and rays) and two holocephalan (chimaeras) species. For this purpose, we generated also a low coverage draft genome assembly of the chimaera small-eyed rabbitfish, Hydrolagus affinis. We show that cartilaginous fish retain an archetypal NR gene repertoire, similar to that of mammals and coincident with the two rounds of whole genome duplication that occurred in the gnathostome ancestor. Furthermore, novel gene members of the non-canonical NR0B receptors were found in the genomes of this lineage. Our findings provide an essential view into the early diversification of NRs in gnathostomes, paving the way for functional studies.
Collapse
Affiliation(s)
- Elza Fonseca
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal
| | - André M Machado
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal
| | - Nair Vilas-Arrondo
- AQUACOV, Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, 36390 Vigo, Spain; UVIGO, phD Program "Marine Science, Tehchology and Management" (Do *MAR), Faculty of Biology, University of Vigo, 36200 Vigo, Spain
| | - André Gomes-Dos-Santos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal
| | - Ana Veríssimo
- FCUP - Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal; CIBIO - Research Center in Biodiversity and Genetic Resources, InBIO, Associate Laboratory, U.Porto, 4485-661 Vairão, Portugal
| | - Pedro Esteves
- FCUP - Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal; UVIGO, phD Program "Marine Science, Tehchology and Management" (Do *MAR), Faculty of Biology, University of Vigo, 36200 Vigo, Spain
| | - Tereza Almeida
- FCUP - Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal; CIBIO - Research Center in Biodiversity and Genetic Resources, InBIO, Associate Laboratory, U.Porto, 4485-661 Vairão, Portugal
| | - Gonçalo Themudo
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal
| | - Raquel Ruivo
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal
| | - Montse Pérez
- AQUACOV, Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, 36390 Vigo, Spain
| | - Rute da Fonseca
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Denmark
| | - Miguel M Santos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal
| | - Elsa Froufe
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal
| | - Esther Román-Marcote
- AQUACOV, Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, 36390 Vigo, Spain
| | - Byrappa Venkatesh
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore.
| | - L Filipe C Castro
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal.
| |
Collapse
|
18
|
RXR Expression in Marine Gastropods with Different Sensitivity to Imposex Development. Sci Rep 2020; 10:9507. [PMID: 32528077 PMCID: PMC7289818 DOI: 10.1038/s41598-020-66402-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/07/2020] [Indexed: 01/05/2023] Open
Abstract
The superposition of male sexual characteristics in female marine gastropods (imposex) represents one of the clearest ecological examples of organotin-mediated endocrine disruption. Recent evidences suggest that signaling pathways mediated by members of the nuclear receptor superfamily, RXR and PPARγ, are involved in the development of this pseudohermaphroditic condition. Here, we identified significant differences in RXR expression in two caenogastropod species from Nuevo Gulf, Argentina, Buccinanops globulosus and Trophon geversianus, which present clear contrast in imposex incidence. In addition, B. globulosus males from a polluted and an unpolluted area showed differences in RXR expression. Conversely, PPARγ levels were similar between both analyzed species. These findings indicate specie-specific RXR and PPARγ expression, suggesting a major role of RXR in the induction of imposex.
Collapse
|
19
|
Baynes A, Montagut Pino G, Duong GH, Lockyer AE, McDougall C, Jobling S, Routledge EJ. Early embryonic exposure of freshwater gastropods to pharmaceutical 5-alpha-reductase inhibitors results in a surprising open-coiled "banana-shaped" shell. Sci Rep 2019; 9:16439. [PMID: 31712739 PMCID: PMC6848481 DOI: 10.1038/s41598-019-52850-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/19/2019] [Indexed: 01/16/2023] Open
Abstract
In vertebrates, the steroidogenesis enzyme 5α-reductase converts testosterone to the more potent androgen 5α-dihydrotestosterone. Homologues of 5α-reductase genes have been identified in molluscs. However, recent findings suggest that vertebrate-type steroid androgens are not utilised in molluscan reproductive development. Genomic searches have revealed that molluscs do not possess many of the steroidogenic enzymes required to make testosterone, nor a nuclear androgen receptor. Consequently, the role of 5α-reductase in molluscs presents a mystery. Here, developmental exposures of Biomphalaria glabrata to selective pharmaceutical 5α-reductase inhibitors elicited a strong, highly reproducible phenotypic response characterised by the development of elongated "banana-shaped" shell morphology. In comparison to untreated snails, the shells are open-coiled and the whorls are unattached. Dutasteride (5α-reductase inhibitor) is approximately 10-times more potent at provoking the banana-shaped shell phenotype than finasteride, paralleling the pharmaceuticals' efficacy in humans. Other enzyme inhibitors with different modes of action were tested to investigate the specificity of the phenotype. However, only the pharmaceutical 5α-reductase inhibitors provoked the response. Dutasteride elicited the same phenotype in a second gastropod, Physella acuta. In the absence of evidence for de novo androgen steroidogenesis in molluscs, these findings suggest that novel substrates for 5α-reductase exist in gastropods, lending support to the contention that molluscan endocrinology differs from the well-characterised vertebrate endocrine system.
Collapse
Affiliation(s)
- Alice Baynes
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom.
| | - Gemma Montagut Pino
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
- Centre for Obesity Research, Division of Medicine, University College London (UCL), 5 University Street, London, WC1E 6JF, United Kingdom
| | - Giang Huong Duong
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Anne E Lockyer
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Carmel McDougall
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Susan Jobling
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Edwin J Routledge
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| |
Collapse
|
20
|
Wu W, LoVerde PT. Nuclear hormone receptors in parasitic Platyhelminths. Mol Biochem Parasitol 2019; 233:111218. [PMID: 31470045 DOI: 10.1016/j.molbiopara.2019.111218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 11/16/2022]
Abstract
Nuclear receptors (NRs) belong to a large protein superfamily which includes intracellular receptors for secreted hydrophobic signal molecules, such as steroid hormones and thyroid hormones. They regulate development and reproduction in metazoans by binding to the promoter region of their target gene to activate or repress mRNA synthesis. Isolation and characterization of NRs in the parasitic trematode Schistosoma mansoni identified two homologues of mammalian thyroid receptor (TR). This was the first known protostome exhibiting TR homologues. Three novel NRs each possess a novel set of two DNA binding domains (DBD) in tandem with a ligand binding domain (LBD) (2DBD-NRs) isolated in Schistosoma mansoni revealed a novel NR modular structure: A/B-DBD-DBD-hinge-LBD. Full length cDNA of several NRs have been isolated and studied in the parasitic trematodes S. mansoni, S. japonicum and in the cestode Echinococcus multilocularis. The genome of the blood flukes S. mansoni, S. japonicum and S. haematobium, the liver fluke Clonorchis sinensis and the cestode Echinococcus multilocularis have been sequenced. Study of the NR complement in parasitic Platyhelminths will help us to understand the role of NRs in regulation of their development and understand the evolution of NR in animals.
Collapse
Affiliation(s)
- Wenjie Wu
- Departments of Biochemistry and Structural Biology and Pathology and Laboratory Medicine, University of Texas Health Sciences Center, San Antonio, TX, 78229-3800, USA
| | - Philip T LoVerde
- Departments of Biochemistry and Structural Biology and Pathology and Laboratory Medicine, University of Texas Health Sciences Center, San Antonio, TX, 78229-3800, USA.
| |
Collapse
|
21
|
Giraud-Billoud M, Castro-Vazquez A. Aging and retinoid X receptor agonists on masculinization of female Pomacea canaliculata, with a critical appraisal of imposex evaluation in the Ampullariidae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:573-582. [PMID: 30476819 DOI: 10.1016/j.ecoenv.2018.10.096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 10/05/2018] [Accepted: 10/25/2018] [Indexed: 06/09/2023]
Abstract
Ampullariidae are unique among gastropods in that females normally show a primordium of the copulatory apparatus (CApp). The aims of this study were (a) to quantitatively evaluate the development and growth of the female CApp with age; (b) to compare the effects of RXR and PPARγ agonists in adult females of known age and (c) to explore the effect of masculinizing RXR agonists on the expression of RXR in the CApp. It was found that the CApp grows and develops with age. A significant increase in penile sheath length (PsL) and also in a developmental index (DI) was observed in 7-8 months old females, as compared with 4-5 months old ones. A reported endogenous agonist of RXR, 9-cis retinoic acid (9cis-RA), as well as two organotin compounds, tributyltin (TBT) and triphenyltin (TPT) which have been also reported to bind to RXR, were injected and its masculinizing effects were measured. Also, the effect of a PPARγ agonist, rosiglitazone, was studied. All studied RXR agonists, but not the PPARγ agonist, were effective in increasing PsL, penile length (PL) and DI. Finally, the expression of the RXR in the CApp was studied (Western blot) in control, TBT, TPT, and 9cis-RA treated females. A significantly increased expression of RXR was only observed after 9cis-RA treatment. It is concluded that (a) development and growth of the CApp is significantly affected by female age; (b) reported RXR agonists, but not a PPARγ agonist, cause female masculinization of young females. An appraisal of previous studies of female masculinization in the Ampullariidae has also been made and it is emphasized that the masculinizing effect of aging should be considered, particularly when interpreting field data.
Collapse
Affiliation(s)
- Maximiliano Giraud-Billoud
- IHEM, Universidad Nacional de Cuyo, CONICET, Casilla de Correo 33, 5500-Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Fisiología, Casilla de Correo 33, 5500-Mendoza, Argentina.
| | - Alfredo Castro-Vazquez
- IHEM, Universidad Nacional de Cuyo, CONICET, Casilla de Correo 33, 5500-Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Fisiología, Casilla de Correo 33, 5500-Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Casilla de Correo 33, 5500-Mendoza, Argentina
| |
Collapse
|
22
|
Capitão AMF, Lopes-Marques MS, Ishii Y, Ruivo R, Fonseca ESS, Páscoa I, Jorge RP, Barbosa MAG, Hiromori Y, Miyagi T, Nakanishi T, Santos MM, Castro LFC. Evolutionary Exploitation of Vertebrate Peroxisome Proliferator-Activated Receptor γ by Organotins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13951-13959. [PMID: 30398865 DOI: 10.1021/acs.est.8b04399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Globally persistent man-made chemicals display ever-growing ecosystemic consequences, a hallmark of the Anthropocene epoch. In this context, the assessment of how lineage-specific gene repertoires influence organism sensitivity toward endocrine disruptors is a central question in toxicology. A striking example highlights the role of a group of compounds known as obesogens. In mammals, most examples involve the modulation of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ). To address the structural and biological determinants of PPARγ exploitation by a model obesogen, tributyltin (TBT), in chordates, we employed comparative genomics, transactivation and ligand binding assays, homology modeling, and site-directed-mutagenesis. We show that the emergence of multiple PPARs (α, β and γ) in vertebrate ancestry coincides with the acquisition of TBT agonist affinity, as can be deduced from the conserved transactivation and binding affinity of the chondrichthyan and mammalian PPARγ. The amphioxus single-copy PPAR is irresponsive to TBT; as well as the investigated teleosts, this is a probable consequence of a specific mutational remodeling of the ligand binding pocket. Our findings endorse the modulatory ability of man-made chemicals and suggest an evolutionarily diverse setting, with impacts for environmental risk assessment.
Collapse
Affiliation(s)
- Ana M F Capitão
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
| | - Mónica S Lopes-Marques
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
| | - Yoichiro Ishii
- Laboratory of Hygienic Chemistry and Molecular Toxicology , Gifu Pharmaceutical University , 1-25-4 Daigaku-nishi , Gifu , Gifu 501-1196 , Japan
| | - Raquel Ruivo
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
| | - Elza S S Fonseca
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
| | - Inês Páscoa
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
| | - Rodolfo P Jorge
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
| | - Mélanie A G Barbosa
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
| | - Youhei Hiromori
- Laboratory of Hygienic Chemistry and Molecular Toxicology , Gifu Pharmaceutical University , 1-25-4 Daigaku-nishi , Gifu , Gifu 501-1196 , Japan
- Faculty of Pharmaceutical Sciences , Suzuka University of Medical Science 3500-3 Minamitamagaki , Suzuka , Mie 513-8670 , Japan
| | - Takayuki Miyagi
- Laboratory of Hygienic Chemistry and Molecular Toxicology , Gifu Pharmaceutical University , 1-25-4 Daigaku-nishi , Gifu , Gifu 501-1196 , Japan
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology , Gifu Pharmaceutical University , 1-25-4 Daigaku-nishi , Gifu , Gifu 501-1196 , Japan
| | - Miguel M Santos
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
| |
Collapse
|
23
|
Liu J, Wang H, Liu X, Zhang G, Pingchang Yang, Liu Z. Chinese liquor extract enhances inflammation resistance in RAW 264.7 and reduces aging in Caenorhabditis elegans. RSC Adv 2018; 8:38529-38537. [PMID: 35559102 PMCID: PMC9090560 DOI: 10.1039/c8ra06575f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/27/2018] [Indexed: 11/21/2022] Open
Abstract
Recent reports have indicated that the ingredients in Chinese liquor possess multiple bioactivities. The objective of this study was to evaluate the potential effects of Chinese liquor extract (CME) on the resistance to inflammation in mononuclear macrophages (RAW 264.7 cell line) and aging in Caenorhabditis elegans (C. elegans). The results showed that CME suppressed key lipopolysaccharide (LPS)-induced pro-inflammatory mediators, tumor necrosis factor-α, and nitric oxide in vitro. Furthermore, CME inhibited activation of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3 kinase (PI3K)/AKT pathways in LPS-stimulated cells. Further studies also showed that CME improved stress resistance of nematodes under infection conditions. Moreover, CME increased the expression of immune-related genes, such as lys-7. Based on these results, our findings provide mechanistic insights about the protection provided by CME against LPS-induced inflammation in RAW 264.7 cells, namely, inhibition of MAPK and PI3K/AKT pathways, as well as its capability against Pseudomonas aeruginosa- and Staphylococcus aureus-induced aging in C. elegans.
Collapse
Affiliation(s)
- Jie Liu
- Department of Allergy, The Third Affiliated Hospital of Shenzhen University Shenzhen 518020 China +86-0755-86671907 +86-0755-86671907.,The Research Center of Allergy & Immunology, Shenzhen University School of Medicine Shenzhen 518060 China
| | - Huailing Wang
- Department of Allergy, The Third Affiliated Hospital of Shenzhen University Shenzhen 518020 China +86-0755-86671907 +86-0755-86671907.,The Research Center of Allergy & Immunology, Shenzhen University School of Medicine Shenzhen 518060 China
| | - Xiaoyu Liu
- Department of Allergy, The Third Affiliated Hospital of Shenzhen University Shenzhen 518020 China +86-0755-86671907 +86-0755-86671907.,The Research Center of Allergy & Immunology, Shenzhen University School of Medicine Shenzhen 518060 China
| | - Guohao Zhang
- The Research Center of Allergy & Immunology, Shenzhen University School of Medicine Shenzhen 518060 China
| | - Pingchang Yang
- Department of Allergy, The Third Affiliated Hospital of Shenzhen University Shenzhen 518020 China +86-0755-86671907 +86-0755-86671907.,The Research Center of Allergy & Immunology, Shenzhen University School of Medicine Shenzhen 518060 China
| | - Zhigang Liu
- Department of Allergy, The Third Affiliated Hospital of Shenzhen University Shenzhen 518020 China +86-0755-86671907 +86-0755-86671907.,The Research Center of Allergy & Immunology, Shenzhen University School of Medicine Shenzhen 518060 China
| |
Collapse
|
24
|
Morales M, Martínez-Paz P, Sánchez-Argüello P, Morcillo G, Martínez-Guitarte JL. Bisphenol A (BPA) modulates the expression of endocrine and stress response genes in the freshwater snail Physa acuta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 152:132-138. [PMID: 29407779 DOI: 10.1016/j.ecoenv.2018.01.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Bisphenol A (BPA), a known endocrine disrupting chemical (EDC) that can mimic the action of oestrogens by interacting with hormone receptors, is potentially able to influence reproductive functions in vertebrates and invertebrates. The freshwater pulmonate Physa acuta is a sensitive organism to xenobiotics appropriate for aquatic toxicity testing in environmental studies. This study was conducted to explore the effects of BPA on the Gastropoda endocrine system. The effects following a range of exposure times (5-96h) to BPA in P. acuta were evaluated at the molecular level by analysing changes in the transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), as well as in genes involved in the stress response, such as hsp70 and hsp90. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that BPA induced a significant increase in the mRNA levels of ER, ERR, and RXR, suggesting that these receptors could be involved in similar pathways or regulation events in the endocrine disruptor activity of this chemical at the molecular level in Gastropoda. Additionally, the hsp70 expression was upregulated after 5 and 72h of BPA exposures, but hsp90 was only upregulated after 5h of BPA exposure. Finally, we assessed the glutathione-S-transferase (GST) activity after BPA treatment and found that it was affected after 48h. In conclusion, these data provide, for the first time, evidences of molecular effects produced by BPA in the endocrine system of Gastropoda, supporting the potential of ER, ERR and RXR as biomarkers to analyse putative EDCs in ecotoxicological studies. Moreover, our results suggest that P. acuta is an appropriate sentinel organism to evaluate the effect of EDCs in the freshwater environment.
Collapse
Affiliation(s)
- Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Dpto. Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain.
| | - Pedro Martínez-Paz
- Grupo de Biología y Toxicología Ambiental, Dpto. Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - Paloma Sánchez-Argüello
- Laboratorio de Ecotoxicología, Dpto. de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra, La Coruña km 7, 28040 Madrid, Spain
| | - Gloria Morcillo
- Grupo de Biología y Toxicología Ambiental, Dpto. Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - José Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Dpto. Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
25
|
Smolarz K, Zabrzańska S, Konieczna L, Hallmann A. Changes in steroid profiles of the blue mussel Mytilus trossulus as a function of season, stage of gametogenesis, sex, tissue and mussel bed depth. Gen Comp Endocrinol 2018; 259:231-239. [PMID: 29247680 DOI: 10.1016/j.ygcen.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/02/2017] [Accepted: 12/13/2017] [Indexed: 12/29/2022]
Abstract
This paper describes changes in the content of free steroid hormones e.g. testosterone (T), estradiol-17β (E2), estrone (E1) and estriol (E3) of Mytilus trossulus from the southern Baltic Sea as a function of season, stage of gametogenesis, sex, tissue (gonadal and somatic) and depth. The highest levels of T, E2, E1 and E3 were found in mussels sampled in spring and summer while the lowest levels were found in winter. This pattern was stable and was seen in both sexes and tissues in mussels from both mussel beds. The spring and summer peaks in steroid levels (SL) coincided with advanced levels of gametogenesis (the highest gonadal index, GI) of our model species. But, the lowest GI (autumn) and the lowest steroids content (winter) did not overlap. Instead, water temperature increase was followed by increase of SL and vice versa. This suggests that steroids may not be actively involved in the early stages of gamete development and does not preclude them from potentially being involved as endogenous modulators in the final stages of reproduction (e.g. spawning). Hence, observed fluctuations in SL in our model species are unlikely to be caused by reproductive cycle but are rather of unknown nature, likely linked with environmental conditions. Sex-related differences in steroid content included estrogen domination in females and androgen domination in males. A trend towards higher level of steroids in gills than in gonads was found, supporting the hypothesis about an exogenous origin of steroids in bivalves. However, based on the present results, we cannot exclude the possibility that these steroids have both an endogenous and exogenous origin.
Collapse
Affiliation(s)
- Katarzyna Smolarz
- Department of Marine Ecosystem Functioning, University of Gdańsk, Poland
| | - Sandra Zabrzańska
- Department of Marine Ecosystem Functioning, University of Gdańsk, Poland
| | - Lucyna Konieczna
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Poland
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Poland.
| |
Collapse
|
26
|
Lagadic L, Katsiadaki I, Biever R, Guiney PD, Karouna-Renier N, Schwarz T, Meador JP. Tributyltin: Advancing the Science on Assessing Endocrine Disruption with an Unconventional Endocrine-Disrupting Compound. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 245:65-127. [PMID: 29119384 DOI: 10.1007/398_2017_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tributyltin (TBT) has been recognized as an endocrine disrupting chemical (EDC) for several decades. However, only in the last decade, was its primary endocrine mechanism of action (MeOA) elucidated-interactions with the nuclear retinoid-X receptor (RXR), peroxisome proliferator-activated receptor γ (PPARγ), and their heterodimers. This molecular initiating event (MIE) alters a range of reproductive, developmental, and metabolic pathways at the organism level. It is noteworthy that a variety of MeOAs have been proposed over the years for the observed endocrine-type effects of TBT; however, convincing data for the MIE was provided only recently and now several researchers have confirmed and refined the information on this MeOA. One of the most important lessons learned from years of research on TBT concerns apparent species sensitivity. Several aspects such as the rates of uptake and elimination, chemical potency, and metabolic capacity are all important for identifying the most sensitive species for a given chemical, including EDCs. For TBT, much of this was discovered by trial and error, hence important relationships and important sensitive taxa were not identified until several decades after its introduction to the environment. As recognized for many years, TBT-induced responses are known to occur at very low concentrations for molluscs, a fact that has more recently also been observed in fish species. This review explores the MeOA and effects of TBT in different species (aquatic molluscs and other invertebrates, fish, amphibians, birds, and mammals) according to the OECD Conceptual Framework for Endocrine Disruptor Testing and Assessment (CFEDTA). The information gathered on biological effects that are relevant for populations of aquatic animals was used to construct Species Sensitivity Distributions (SSDs) based on No Observed Effect Concentrations (NOECs) and Lowest Observed Effect Concentrations (LOECs). Fish appear at the lower end of these distributions, showing that they are as sensitive as molluscs, and for some species, even more sensitive. Concentrations in the range of 1 ng/L for water exposure (10 ng/g for whole-body burden) have been shown to elicit endocrine-type responses, whereas mortality occurs at water concentrations ten times higher. Current screening and assessment methodologies as compiled in the OECD CFEDTA are able to identify TBT as a potent endocrine disruptor with a high environmental risk for the original use pattern. If those approaches had been available when TBT was introduced to the market, it is likely that its use would have been regulated sooner, thus avoiding the detrimental effects on marine gastropod populations and communities as documented over several decades.
Collapse
Affiliation(s)
- Laurent Lagadic
- Bayer AG, Research and Development, Crop Science Division, Environmental Safety, Alfred-Nobel-Straße 50, Monheim am Rhein, 40789, Germany.
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Ron Biever
- Smithers Viscient, 790 Main Street, Wareham, MA, 02571, USA
| | - Patrick D Guiney
- University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA
| | - Natalie Karouna-Renier
- USGS Patuxent Wildlife Research Center, BARC East Bldg 308, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| | - Tamar Schwarz
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - James P Meador
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| |
Collapse
|
27
|
Bal N, Kumar A, Nugegoda D. Assessing multigenerational effects of prednisolone to the freshwater snail, Physa acuta (Gastropoda: Physidae). JOURNAL OF HAZARDOUS MATERIALS 2017; 339:281-291. [PMID: 28658637 DOI: 10.1016/j.jhazmat.2017.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/10/2017] [Accepted: 06/12/2017] [Indexed: 05/12/2023]
Abstract
Prednisolone (PDS), a potent synthetic glucocorticoid is widely prescribed for its exceptional anti-inflammatory properties. Several studies have detected the environmental presence of PDS in water bodies which has led to an ecological concern for its toxicity to non-target aquatic biota. The present study investigated the effects of exposure to PDS on different life-cycle stages and generations of the freshwater snail, Physa acuta. This continuous exposure over a period of multiple generations resulted in generational impairments at measured endpoints. LOEC values (p<0.001) for PDS exposure ranged from 32 to 4μg/L in exposed F0-F2 generations. Global DNA methylation (% 5-methyl cytosine) of adult progeny was found to be affected at higher test concentrations in comparison to the parent snails. Partially formed to completely missed growth components of shell structure and shell thinning in abnormally underdeveloped PDS exposed snails of F1 and F2 generation, was also observed in this multigenerational exposure experiment. The multigenerational study confirmed P. acuta as a promising bioindicator since critical effects of the long term glucocorticoid exposure opens up the way for further investigations on transgenerational toxicity in environmental toxicology and risk assessment and to monitor glucocorticoid pollution in aqueous ecosystem.
Collapse
Affiliation(s)
- Navdeep Bal
- School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia; CSIRO Land and Water, PMB 2, Glen Osmond, SA, 5064, Australia.
| | - Anu Kumar
- CSIRO Land and Water, PMB 2, Glen Osmond, SA, 5064, Australia.
| | - Dayanthi Nugegoda
- School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
28
|
Kim DH, Kim HS, Hwang DS, Kim HJ, Hagiwara A, Lee JS, Jeong CB. Genome-wide identification of nuclear receptor (NR) genes and the evolutionary significance of the NR1O subfamily in the monogonont rotifer Brachionus spp. Gen Comp Endocrinol 2017; 252:219-225. [PMID: 28673513 DOI: 10.1016/j.ygcen.2017.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/09/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs) are a large family of transcription factors that are involved in many fundamental biological processes. NRs are considered to have originated from a common ancestor, and are highly conserved throughout the whole animal taxa. Therefore, the genome-wide identification of NR genes in an animal taxon can provide insight into the evolutionary tendencies of NRs. Here, we identified all the NR genes in the monogonont rotifer Brachionus spp., which are considered an ecologically key species due to their abundance and world-wide distribution. The NR family was composed of 40, 32, 29, and 32 genes in the genomes of the rotifers B. calyciflorus, B. koreanus, B. plicatilis, and B. rotundiformis, respectively, which were classified into seven distinct subfamilies. The composition of each subfamily was highly conserved between species, except for NR1O genes, suggesting that they have undergone sporadic evolutionary processes for adaptation to their different environmental pressures. In addition, despite the dynamics of NR evolution, the significance of the conserved endocrine system, particularly for estrogen receptor (ER)-signaling, in rotifers was discussed on the basis of phylogenetic analyses. The results of this study may help provide a better understanding the evolution of NRs, and expand our knowledge of rotifer endocrine systems.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
29
|
Schultz JH, Adema CM. Comparative immunogenomics of molluscs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:3-15. [PMID: 28322934 PMCID: PMC5494275 DOI: 10.1016/j.dci.2017.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 05/22/2023]
Abstract
Comparative immunology, studying both vertebrates and invertebrates, provided the earliest descriptions of phagocytosis as a general immune mechanism. However, the large scale of animal diversity challenges all-inclusive investigations and the field of immunology has developed by mostly emphasizing study of a few vertebrate species. In addressing the lack of comprehensive understanding of animal immunity, especially that of invertebrates, comparative immunology helps toward management of invertebrates that are food sources, agricultural pests, pathogens, or transmit diseases, and helps interpret the evolution of animal immunity. Initial studies showed that the Mollusca (second largest animal phylum), and invertebrates in general, possess innate defenses but lack the lymphocytic immune system that characterizes vertebrate immunology. Recognizing the reality of both common and taxon-specific immune features, and applying up-to-date cell and molecular research capabilities, in-depth studies of a select number of bivalve and gastropod species continue to reveal novel aspects of molluscan immunity. The genomics era heralded a new stage of comparative immunology; large-scale efforts yielded an initial set of full molluscan genome sequences that is available for analyses of full complements of immune genes and regulatory sequences. Next-generation sequencing (NGS), due to lower cost and effort required, allows individual researchers to generate large sequence datasets for growing numbers of molluscs. RNAseq provides expression profiles that enable discovery of immune genes and genome sequences reveal distribution and diversity of immune factors across molluscan phylogeny. Although computational de novo sequence assembly will benefit from continued development and automated annotation may require some experimental validation, NGS is a powerful tool for comparative immunology, especially increasing coverage of the extensive molluscan diversity. To date, immunogenomics revealed new levels of complexity of molluscan defense by indicating sequence heterogeneity in individual snails and bivalves, and members of expanded immune gene families are expressed differentially to generate pathogen-specific defense responses.
Collapse
Affiliation(s)
- Jonathan H Schultz
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Coen M Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
30
|
Vogeler S, Galloway TS, Isupov M, Bean TP. Cloning retinoid and peroxisome proliferator-activated nuclear receptors of the Pacific oyster and in silico binding to environmental chemicals. PLoS One 2017; 12:e0176024. [PMID: 28426724 PMCID: PMC5398557 DOI: 10.1371/journal.pone.0176024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/04/2017] [Indexed: 01/15/2023] Open
Abstract
Disruption of nuclear receptors, a transcription factor superfamily regulating gene expression in animals, is one proposed mechanism through which pollution causes effects in aquatic invertebrates. Environmental pollutants have the ability to interfere with the receptor's functions through direct binding and inducing incorrect signals. Limited knowledge of invertebrate endocrinology and molecular regulatory mechanisms, however, impede the understanding of endocrine disruptive effects in many aquatic invertebrate species. Here, we isolated three nuclear receptors of the Pacific oyster, Crassostrea gigas: two isoforms of the retinoid X receptor, CgRXR-1 and CgRXR-2, a retinoic acid receptor ortholog CgRAR, and a peroxisome proliferator-activated receptor ortholog CgPPAR. Computer modelling of the receptors based on 3D crystal structures of human proteins was used to predict each receptor's ability to bind to different ligands in silico. CgRXR showed high potential to bind and be activated by 9-cis retinoic acid and the organotin tributyltin (TBT). Computer modelling of CgRAR revealed six residues in the ligand binding domain, which prevent the successful interaction with natural and synthetic retinoid ligands. This supports an existing theory of loss of retinoid binding in molluscan RARs. Modelling of CgPPAR was less reliable due to high discrepancies in sequence to its human ortholog. Yet, there are suggestions of binding to TBT, but not to rosiglitazone. The effect of potential receptor ligands on early oyster development was assessed after 24h of chemical exposure. TBT oxide (0.2μg/l), all-trans retinoic acid (ATRA) (0.06 mg/L) and perfluorooctanoic acid (20 mg/L) showed high effects on development (>74% abnormal developed D-shelled larvae), while rosiglitazone (40 mg/L) showed no effect. The results are discussed in relation to a putative direct (TBT) disruption effect on nuclear receptors. The inability of direct binding of ATRA to CgRAR suggests either a disruptive effect through a pathway excluding nuclear receptors or an indirect interaction. Our findings provide valuable information on potential mechanisms of molluscan nuclear receptors and the effects of environmental pollution on aquatic invertebrates.
Collapse
Affiliation(s)
- Susanne Vogeler
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Weymouth, United Kingdom
| | - Tamara S. Galloway
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Michail Isupov
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Tim P. Bean
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Weymouth, United Kingdom
| |
Collapse
|
31
|
Wang P, Qiu Z, Xia D, Tang S, Shen X, Zhao Q. Transcriptome analysis of the epidermis of the purple quail-like (q-lp) mutant of silkworm, Bombyx mori. PLoS One 2017; 12:e0175994. [PMID: 28414820 PMCID: PMC5393886 DOI: 10.1371/journal.pone.0175994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/04/2017] [Indexed: 01/08/2023] Open
Abstract
A new purple quail-like (q-lp) mutant found from the plain silkworm strain 932VR has pigment dots on the epidermis similar to the pigment mutant quail (q). In addition, q-lp mutant larvae are inactive, consume little and grow slowly, with a high death rate and other developmental abnormalities. Pigmentation of the silkworm epidermis consists of melanin, ommochrome and pteridine. Silkworm development is regulated by ecdysone and juvenile hormone. In this study, we performed RNA-Seq on the epidermis of the q-lp mutant in the 4th instar during molting, with 932VR serving as the control. The results showed 515 differentially expressed genes, of which 234 were upregulated and 281 downregulated in q-lp. BLASTGO analysis indicated that the downregulated genes mainly encode protein-binding proteins, membrane components, oxidation/reduction enzymes, and proteolytic enzymes, whereas the upregulated genes largely encode cuticle structural constituents, membrane components, transport related proteins, and protein-binding proteins. Quantitative reverse transcription PCR was used to verify the accuracy of the RNA-Seq data, focusing on key genes for biosynthesis of the three pigments and chitin as well as genes encoding cuticular proteins and several related nuclear receptors, which are thought to play key roles in the q-lp mutant. We drew three conclusions based on the results: 1) melanin, ommochrome and pteridine pigments are all increased in the q-lp mutant; 2) more cuticle proteins are expressed in q-lp than in 932VR, and the number of upregulated cuticular genes is significantly greater than downregulated genes; 3) the downstream pathway regulated by ecdysone is blocked in the q-lp mutant. Our research findings lay the foundation for further research on the developmental changes responsible for the q-lp mutant.
Collapse
Affiliation(s)
- Pingyang Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Zhiyong Qiu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Dingguo Xia
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Shunming Tang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Xingjia Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Qiaoling Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
- * E-mail:
| |
Collapse
|
32
|
Martínez-Paz P, Morales M, Sánchez-Argüello P, Morcillo G, Martínez-Guitarte JL. Cadmium in vivo exposure alters stress response and endocrine-related genes in the freshwater snail Physa acuta. New biomarker genes in a new model organism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1488-1497. [PMID: 27890585 DOI: 10.1016/j.envpol.2016.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
The freshwater snail Physa acuta is a sensitive organism to xenobiotics that is appropriate for toxicity testing. Cadmium (Cd) is a heavy metal with known toxic effects on several organisms, which include endocrine disruption and activation of the cellular stress responses. There is scarce genomic information on P. acuta; hence, in this work, we identify several genes related to the hormonal system, the stress response and the detoxification system to evaluate the effects of Cd. The transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), the heat shock proteins genes hsp70 and hsp90 and a metallothionein (MT) gene was analysed in P. acuta exposed to Cd. In addition, the hsp70 and hsp90 genes were also evaluated after heat shock treatment. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that Cd presence induced a significant increase in the mRNA levels of ER, ERR and RXR, suggesting a putative mode of action that could explain the endocrine disruptor activity of this heavy metal at the molecular level on Gastropoda. Moreover, the hsp70 gene was upregulated after 24-h Cd treatment, but the hsp90 gene expression was not affected. In contrast, the hsp70 and hsp90 genes were strongly upregulated during heat shock response. Finally, the MT gene expression showed a non-significant variability after Cd exposure. In conclusion, this study provides, for the first time, information about the effects of Cd on the endocrine system of Gastropoda at the molecular level and offers new putative biomarker genes that could be useful in ecotoxicological studies, risk assessment and bioremediation.
Collapse
Affiliation(s)
- Pedro Martínez-Paz
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain.
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - Paloma Sánchez-Argüello
- Laboratorio de Ecotoxicología, Departamento de Medioambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. La Coruña km 7, 28040 Madrid, Spain
| | - Gloria Morcillo
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - José Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
33
|
Endocrine Disruption and In Vitro Ecotoxicology: Recent Advances and Approaches. IN VITRO ENVIRONMENTAL TOXICOLOGY - CONCEPTS, APPLICATION AND ASSESSMENT 2017; 157:1-58. [DOI: 10.1007/10_2016_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Schwarz TI, Katsiadaki I, Maskrey BH, Scott AP. Mussels (Mytilus spp.) display an ability for rapid and high capacity uptake of the vertebrate steroid, estradiol-17β from water. J Steroid Biochem Mol Biol 2017; 165:407-420. [PMID: 27568213 DOI: 10.1016/j.jsbmb.2016.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/11/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
Abstract
Six experiments were carried out to define the optimum conditions for investigating the dynamics of uptake and metabolism of tritiated E2 from water by adult blue mussels, Mytilus spp. Optimum uptake was achieved using 400mL aerated sea water animal-1 and an incubation period of no more than 24h. The pattern of disappearance conformed closest to an inverse hyperbolic curve with the percentage of radiolabel that could be measured in the water reaching an asymptote that was on average 50% of the original. This apparent inability of the animals to absorb all the radiolabel was investigated further. Solvent partition and chromatography revealed that, after 24h, c. 60% of the radiolabel still present in the water was composed of water soluble conjugates, c. 25% was composed of tritiated water and only 15% ran on and around the chromatographic position of E2. The major water soluble constituent was identified by chromatography and mass-spectrometry as 1,3,5(10)-estratriene-3,17β-diol 3-sulfate (estradiol 3-S). The clearance rate of radiolabel was 46.9±1.8mLanimal-1h-1. This was not significantly affected by the addition of as much as 25μgL-1 cold E2 to the water, demonstrating that mussels have a large capacity for E2 uptake. A new procedure involving solvent partition was developed for separating the free, esterified and sulfated forms of E2 present in the flesh of mussels. This involved extracting the soft tissue with organic solvents and then treating a portion of dried extract with a combination of heptane (dissolved fatty acid esters of E2) and 80% ethanol (dissolved free and sulfated E2). The latter fraction was further partitioned between water (sulfate) and diethyl ether (free steroid). This procedure was much cheaper and less time-consuming than chromatography. Approximately 80% of the radioactivity that was taken up by the animals was present in the form of ester. Moreover, E2 was the only steroid identified after saponification of these esters. Of the remaining radioactivity, c. 10% was in the form of unidentified free steroids and c. 10% was estradiol 3-S. In order to determine how rapidly mussels were able to depurate tritiated E2 and its metabolites, two experiments were carried out. Animals from the first experiment purged up to 63% of radioactivity in 20days under flow-through conditions; whereas animals from the second experiment released only 16% of radioactivity in 10days under semi-static conditions. The ratios of the different forms of E2 did not change substantially during the course of depuration.
Collapse
Affiliation(s)
- Tamar I Schwarz
- Centre for Environment, Fisheries and Aquaculture Science Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Benjamin H Maskrey
- Centre for Environment, Fisheries and Aquaculture Science Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Science Barrack Road, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|
35
|
Hultin CL, Hallgren P, Hansson MC. Estrogen receptor genes in gastropods: phylogenetic divergence and gene expression responses to a synthetic estrogen. Comp Biochem Physiol C Toxicol Pharmacol 2016; 189:17-21. [PMID: 27426037 DOI: 10.1016/j.cbpc.2016.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/02/2016] [Accepted: 07/12/2016] [Indexed: 11/21/2022]
Abstract
Endocrine disrupting chemicals (EDCs) have the potential to affect development and reproduction in gastropods. However, one is today lacking basic understanding of the Molluscan endocrine system and one can therefore not fully explain these EDC-induced affects. Furthermore, only a few genes that potentially may be connected to the endocrine system have been sequenced in gastropods. An example is the estrogen receptor gene (er) that have been identified in a restricted number of freshwater and marine gastropods. Here, we have identified a new partial coding sequence of an estrogen receptor gene (er) in the European common heterobranch Radix balthica. The following phylogenetic analysis divided the ers of heterobranchs and ceanogastropods in two branches. Furthermore, exposure to the synthetic estrogen 17α-ethinylestradiol (EE2) showed that exposure could significantly affect er expression level in the heterobranch R. balthica. This paper is the first that phylogenetically compares gastropods' er, basal er expression profiles, and transcriptional estrogenic responses in gastropods from two different evolutionary groups.
Collapse
Affiliation(s)
- Cecilia L Hultin
- Centre for Environmental and Climate Research (CEC), Lund University, Sölvegatan 37, SE-22362 Lund, Sweden.
| | - Per Hallgren
- Department of Biology, Lund University, Sölvegatan 37, SE-22362 Lund, Sweden
| | - Maria C Hansson
- Centre for Environmental and Climate Research (CEC), Lund University, Sölvegatan 37, SE-22362 Lund, Sweden
| |
Collapse
|
36
|
Vogeler S, Bean TP, Lyons BP, Galloway TS. Dynamics of nuclear receptor gene expression during Pacific oyster development. BMC DEVELOPMENTAL BIOLOGY 2016; 16:33. [PMID: 27680968 PMCID: PMC5041327 DOI: 10.1186/s12861-016-0129-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 08/11/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Nuclear receptors are a highly conserved set of ligand binding transcription factors, with essential roles regulating aspects of vertebrate and invertebrate biology alike. Current understanding of nuclear receptor regulated gene expression in invertebrates remains sparse, limiting our ability to elucidate gene function and the conservation of developmental processes across phyla. Here, we studied nuclear receptor expression in the early life stages of the Pacific oyster, Crassostrea gigas, to identify at which specific key stages nuclear receptors are expressed RESULTS: We used quantitative RT-PCR to determine the expression profiles of 34 nuclear receptors, revealing three developmental key stages, during which nuclear receptor expression is dynamically regulated: embryogenesis, mid development from gastrulation to trochophore larva, and late larval development prior to metamorphosis. Clustering of nuclear receptor expression patterns demonstrated that transcriptional regulation was not directly related to gene phylogeny, suggesting closely related genes may have distinct functions. Expression of gene homologs of vertebrate retinoid receptors suggests participation in organogenesis and shell-formation, as they are highly expressed at the gastrulation and trochophore larval initial shell formation stages. The ecdysone receptor homolog showed high expression just before larval settlement, suggesting a potential role in metamorphosis. CONCLUSION Throughout early oyster development nuclear receptors exhibited highly dynamic expression profiles, which were not confined by gene phylogeny. These results provide fundamental information on the presence of nuclear receptors during key developmental stages, which aids elucidation of their function in the developmental process. This understanding is essential as ligand sensing nuclear receptors can be disrupted by xenobiotics, a mode of action through which anthropogenic environmental pollutants have been found to mediate effects.
Collapse
Affiliation(s)
- Susanne Vogeler
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tim P. Bean
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Brett P. Lyons
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tamara S. Galloway
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| |
Collapse
|
37
|
Ip JCH, Leung PTY, Ho KKY, Qiu JW, Leung KMY. De novo transcriptome assembly of the marine gastropod Reishia clavigera for supporting toxic mechanism studies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 178:39-48. [PMID: 27450239 DOI: 10.1016/j.aquatox.2016.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 07/06/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
The intertidal whelk Reishia clavigera is commonly used as a biomonitor of chemical contamination in the marine environment along Western Pacific region, and as a model for mechanistic studies of organotin-mediated imposex development. However, limited genomic resources of R. clavigera have restricted its role for the investigation of molecular mechanisms of such endocrine disruptions. This study, therefore, aimed to establish tissue-specific transcriptomes of the digestive gland, gonad, head ganglia, penis and the remaining body part of the male and female R. clavigera. By combining the results, a global transcriptome was obtained. A total of 578,134,720 high-quality filtered reads were obtained using Illumina sequencing. The R. clavigera transcriptome comprised of 38,466 transcripts and 32,798 unigenes with predicted open reading frames. The average length of transcripts was 1,709bp with N50 of 2,236bp. Based on sequence similarity searches against public databases, 28,657 transcripts and 24,403 unigenes had at least one BLAST hit. There were 17,530 transcripts and 14,897 unigenes annotated with at least one Gene Ontology (GO) term. Moreover, 5,776 transcripts and 5,137 unigenes were associated with 333 Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways. The numbers of unigenes were similar among the five target tissues and between sexes, but tissue-specific expression profiles were revealed by multivariate analyses. Based on the functional annotation, putative steroid hormone-associated unigenes were identified. In particular, we highlighted the presence of steroid hormone receptor homologues that could be the targets for mechanistic studies of the organotin-mediated imposex development in marine gastropods. This newly generated transcriptome assembly of R. clavigera provides a valuable molecular resource for ecotoxicological and environmental genomic studies.
Collapse
Affiliation(s)
- Jack C H Ip
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Priscilla T Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kevin K Y Ho
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - J W Qiu
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Biology, Hong Kong Baptist University, Waterloo Road, Kowloon, Hong Kong, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
38
|
Kaur S, Baynes A, Lockyer AE, Routledge EJ, Jones CS, Noble LR, Jobling S. Steroid Androgen Exposure during Development Has No Effect on Reproductive Physiology of Biomphalaria glabrata. PLoS One 2016; 11:e0159852. [PMID: 27448327 PMCID: PMC4957768 DOI: 10.1371/journal.pone.0159852] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/08/2016] [Indexed: 12/21/2022] Open
Abstract
Gastropod mollusks have been proposed as alternative models for male reproductive toxicity testing, due to similarities in their reproductive anatomy compared to mammals, together with evidence that endocrine disrupting chemicals can cause effects in some mollusks analogous to those seen in mammals. To test this hypothesis, we used the freshwater pulmonate snail, Biomphalaria glabrata, for which various genetic tools and a draft genome have recently become available, to investigate the effects of two steroid androgens on the development of mollusk secondary sexual organs. Here we present the results of exposures to two potent androgens, the vertebrate steroid; 5α-dihydrotestosterone (DHT) and the pharmaceutical anabolic steroid; 17α-methyltestosterone (MT), under continuous flow-through conditions throughout embryonic development and up to sexual maturity. Secondary sexual gland morphology, histopathology and differential gene expression analysis were used to determine whether steroid androgens stimulated or inhibited organ development. No significant differences between tissues from control and exposed snails were identified, suggesting that these androgens elicited no biologically detectable response normally associated with exposure to androgens in vertebrate model systems. Identifying no effect of androgens in this mollusk is significant, not only in the context of the suitability of mollusks as alternative model organisms for testing vertebrate androgen receptor agonists but also, if applicable to other similar mollusks, in terms of the likely impacts of androgens and anti-androgenic pollutants present in the aquatic environment.
Collapse
Affiliation(s)
- Satwant Kaur
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Alice Baynes
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
- * E-mail:
| | - Anne E. Lockyer
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland
| | - Edwin J. Routledge
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Catherine S. Jones
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland
| | - Leslie R. Noble
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland
| | - Susan Jobling
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| |
Collapse
|
39
|
Ouadah-Boussouf N, Babin PJ. Pharmacological evaluation of the mechanisms involved in increased adiposity in zebrafish triggered by the environmental contaminant tributyltin. Toxicol Appl Pharmacol 2016; 294:32-42. [PMID: 26812627 DOI: 10.1016/j.taap.2016.01.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/09/2016] [Accepted: 01/09/2016] [Indexed: 01/06/2023]
Abstract
One proposed contributing factor to the rise in overweight and obesity is exposure to endocrine disrupting chemicals. Tributyltin chloride (TBT), an organotin, induces adipogenesis in cell culture models and may increases adipose mass in vivo in vertebrate model organisms. It has been hypothesized that TBT acts via the peroxisome proliferator activated receptor (PPAR)γ-dependent pathway. However, the mechanisms involved in the effects of TBT exposure on in vivo adipose tissue metabolism remain unexplored. Semitransparent zebrafish larvae, with their well-developed white adipose tissue, offer a unique opportunity for studying the effects of toxicant chemicals and pharmaceuticals on adipocyte biology and whole-organism adiposity in a vertebrate model. Within hours, zebrafish larvae, treated at environmentally-relevant nanomolar concentrations of TBT, exhibited a remarkable increase in adiposity linked to adipocyte hypertrophy. Under the experimental conditions used, we also demonstrated that zebrafish larvae adipose tissue proved to be highly responsive to selected human nuclear receptor agonists and antagonists. Retinoid X receptor (RXR) homodimers and RXR/liver X receptor heterodimers were suggested to be in vivo effectors of the obesogenic effect of TBT on zebrafish white adipose tissue. RXR/PPARγ heterodimers may be recruited to modulate adiposity in zebrafish but were not a necessary requirement for the short term in vivo TBT obesogenic effect. Together, the present results suggest that TBT may induce the promotion of triacylglycerol storage in adipocytes via RXR-dependent pathways without necessary using PPAR isoforms.
Collapse
Affiliation(s)
- Nafia Ouadah-Boussouf
- Maladies Rares: Génétique et Métabolisme (MRGM), Univ. Bordeaux, INSERM, U1211, F-33615 Pessac, France
| | - Patrick J Babin
- Maladies Rares: Génétique et Métabolisme (MRGM), Univ. Bordeaux, INSERM, U1211, F-33615 Pessac, France.
| |
Collapse
|
40
|
Humphries J, Harter B. Identification of nuclear factor kappaB (NF-κB) binding motifs in Biomphalaria glabrata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:366-70. [PMID: 26277107 DOI: 10.1016/j.dci.2015.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 05/16/2023]
Abstract
Biomphalaria glabrata acts as the intermediate host to the parasite, Schistosoma mansoni, and for this reason, the immune system of B. glabrata has been researched extensively. Several studies have demonstrated that the transcriptome profile of B. glabrata changes following exposure to a variety of pathogens, yet very little is known regarding the regulation of gene expression in this species. Nuclear factor kappaB (NF-κB) homologues have recently been identified in B. glabrata but few functional studies have been carried out on this family of transcription factors. The aims of this study therefore were to identify NF-κB binding sites (κB motifs) in B. glabrata and examine them via functional assays. Two different κB motifs were predicted. Furthermore, the Rel homology domain (RHD) of a B. glabrata NF-κB was able to bind these κB motifs in EMSAs, as well as a vertebrate κB motif.
Collapse
|
41
|
Dimastrogiovanni G, Fernandes D, Bonastre M, Porte C. Progesterone is actively metabolized to 5α-pregnane-3,20-dione and 3β-hydroxy-5α-pregnan-20-one by the marine mussel Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:93-100. [PMID: 26026673 DOI: 10.1016/j.aquatox.2015.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Progesterone (P4) and synthetic progestins enter the aquatic environment through wastewater treatment plant effluents and agricultural run-off, posing potential risks to aquatic organisms due to their biological activity. P4 is a precursor of a number of steroids in vertebrates, including estrogens and androgens. Mussels Mytilus galloprovincialis were exposed to P4 at the ng to low μg/L range (0.02-10μg/L) for 7 days with the aim of (a) assessing potential alterations on endogenous steroids as a consequence of exposure, and (b) describing the enzymatic pathways involved in P4 metabolism in mussels. No significant alteration of the levels of testosterone (T) and estradiol (E2) was observed in mantle/gonad tissue of exposed mussels, in spite of a 5.6-fold increase in immunoreactive T in those exposed to 10μg P4/L, which was attributed to cross-reactivity. P4 was actively metabolized to 5α-pregnane-3,20-dione (5α-DHP) and 3β-hydroxy-5α-pregnan-20-one (3β,20-one) in digestive gland, with no evidence for the synthesis of 17α-hydroxyprogesterone or androstenedione. The metabolism of P4 to 5α-DHP was not altered by exposure. Histological examination of the gonads suggested that exposure to 10μg/L P4 induced gamete maturation and release in mussels. Nonetheless, environmental concentrations of P4 are unlikely to have an endocrine action in mussels.
Collapse
Affiliation(s)
| | - Denise Fernandes
- Environmental Chemistry Department, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain; FCT, CIMA, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Marta Bonastre
- Environmental Chemistry Department, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|