1
|
Lee S, Dobes P, Marciniak J, Mascellani Bergo A, Kamler M, Marsik P, Pohl R, Titera D, Hyrsl P, Havlik J. Phytochemical S-methyl-L-cysteine sulfoxide from Brassicaceae: a key to health or a poison for bees? Open Biol 2024; 14:240219. [PMID: 39657820 PMCID: PMC11631464 DOI: 10.1098/rsob.240219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 12/12/2024] Open
Abstract
Intensive agricultural practices impact the health and nutrition of pollinators like honey bees (Apis mellifera). Rapeseed (Brassica napus L.) is widely cultivated, providing diverse nutrients and phytochemicals, including S-methyl-L-cysteine sulfoxide (SMCSO). While the nutritional impact of rapeseed on bees is known, SMCSO's effects remain unexplored. We examined SMCSO and its related metabolites-3-methylthiolactic acid sulfoxide and N-acetyl-S-methyl-L-cysteine sulfoxide-analysing their seasonal fluctuations, colony variations and distribution in body parts. Our findings showed that these compounds in bee gut vary among colonies, possibly due to the dietary preferences, and are highly concentrated in bodies during the summer. They are distributed differently within bee bodies, with higher concentrations in the abdomens of foragers compared with nurses. Administration of SMCSO in a laboratory setting showed no immediate toxic effects but significantly boosted bees' antioxidant capacity. Long-term administration decreased bee body weight, particularly in the thorax and head, and altered amino acid metabolism. SMCSO is found in the nectar and pollen of rapeseed flowers and highly accumulates in rapeseed honey compared with other types of honey. This study reveals the dual impact of SMCSO on bee health, providing a basis for further ecological and physiological research to enhance bee health and colony sustainability.
Collapse
Affiliation(s)
- Saetbyeol Lee
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Pavel Dobes
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jacek Marciniak
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Anna Mascellani Bergo
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | | | - Petr Marsik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Pavel Hyrsl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jaroslav Havlik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
2
|
Ellis JT, Rangel J. Stress drives premature hive exiting behavior that leads to death in young honey bee (Apis mellifera) workers. Biol Res 2024; 57:92. [PMID: 39593109 PMCID: PMC11600856 DOI: 10.1186/s40659-024-00569-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The Western honey bee, Apis mellifera, is an economically important pollinator, as well as a tractable species for studying the behavioral intricacies of eusociality. Honey bees are currently being challenged by multiple biotic and environmental stressors, many of which act concomitantly to affect colony health and productivity. For instance, developmental stress can lead workers to become precocious foragers and to leave the hive prematurely. Precocious foragers have decreased flight time and lower foraging efficiency, which can ultimately lower colony productivity and even lead to colony collapse. MATERIALS AND METHODS In this study, we tested the hypothesis that stress during pupal development can cause young workers to exit the hive prematurely before they are physically able to fly. This premature exiting behavior results in death outside the hive soon thereafter. To determine how various stressors may lead bees to perform this behavior, we subjected workers during the last pupal stage to either cold stress (26 °C for 24 h), heat stress (39 °C for 24 h), or Varroa destructor mite parasitization, and compared the rate of premature hive exits between stressed bees and their respective control counterparts. Upon emergence, we individually tagged focal bees in all treatment groups and introduced them to a common observation hive. We then followed tagged bees over time and monitored their survivorship, as well as their likelihood of performing the premature hive exiting behavior. We also dissected the hypopharyngeal glands of all treatment and control bees sampled. RESULTS We found that significantly more bees in all three treatment groups exited the hive prematurely compared to their control counterparts. Bees in all treatment groups also had significantly smaller hypopharyngeal glands than control bees. CONCLUSIONS Our results suggest that premature hive exiting behavior is driven by stress and is potentially a form of accelerated age polyethism that leads to premature death.
Collapse
Affiliation(s)
- Jordan Twombly Ellis
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA.
| |
Collapse
|
3
|
Verrier E, Bretagnolle V, Aupinel P, Decourtye A, Henry M, Rebaudo F, Requier F. Semi-natural habitats mitigate the impact of food shortage on honey bees in farmlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175309. [PMID: 39111415 DOI: 10.1016/j.scitotenv.2024.175309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Landscape simplification and the loss of semi-natural habitats are identified as important drivers of insect pollinator decline in farmlands, by disrupting the availability of floral resources and facilitating the occurrence of food shortages. Food shortages can lead to accelerated behavioral maturation in honey bees, with potential consequences for colony survival. However, little is known about the magnitude of behavioral maturation mediated by to food shortage under real field conditions, and whether it could be mitigated by the presence of semi-natural habitats. Here, we monitored the lifespan (LSP), age at first exit (AFE), foraging tenure, and foraging intensity of 1035 honey bees along a landscape gradient of semi-natural habitats in farmlands. We found a clear acceleration of behavioral maturation of bees during the food shortage season, with precocity in AFE between 6 and 10 days earlier and reduced LSP by 5 to 9 days, with no effect on foraging tenure or foraging intensity. We also found that higher proportions of semi-natural habitats mitigated behavioral maturation of bees by up to 6 days. Beyond the direct effects on adult bees, we found no delayed effect of larval feeding status on adult life-history traits or foraging behavior. Nevertheless, our results strongly advocate the implementation of policies aimed at increasing the coverage of semi-natural environments (e.g., grasslands, forests, hedgerows) in intensive agricultural landscapes to support honey bee survival and pollinator conservation.
Collapse
Affiliation(s)
- Elise Verrier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Vincent Bretagnolle
- Centre d'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360 Villiers-en-Bois, France; LTSER Zone Atelier Plaine & Val de Sèvre, Villiers-en-Bois 79360, France; UMT PrADE, Site Agroparc, 84914 Avignon, France
| | - Pierrick Aupinel
- UMT PrADE, Site Agroparc, 84914 Avignon, France; UE 1255 APIS 'Abeilles paysages interactions et systèmes de culture', INRAE, 17700 Surgères, France
| | - Axel Decourtye
- UMT PrADE, Site Agroparc, 84914 Avignon, France; ITSAP-Institut de l'abeille, 84914 Avignon, France
| | - Mickaël Henry
- UMT PrADE, Site Agroparc, 84914 Avignon, France; INRAE, UR 406 Abeilles et Environnement, 84914 Avignon, France
| | - François Rebaudo
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Fabrice Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Desclos le Peley V, Grateau S, Moreau-Vauzelle C, Raboteau D, Chevallereau C, Requier F, Aupinel P, Richard FJ. Experimental Ecotoxicology Procedures Interfere with Honey Bee Life History. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1320-1331. [PMID: 38661473 DOI: 10.1002/etc.5872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Apis mellifera was used as a model species for ecotoxicological testing. In the present study, we tested the effects of acetone (0.1% in feed), a solvent commonly used to dissolve pesticides, on bees exposed at different developmental stages (larval and/or adult). Moreover, we explored the potential effect of in vitro larval rearing, a commonly used technique for accurately monitoring worker exposure at the larval stage, by combining acetone exposure and treatment conditions (in vitro larval rearing vs. in vivo larval rearing). We then analyzed the life-history traits of the experimental bees using radio frequency identification technology over three sessions (May, June, and August) to assess the potential seasonal dependence of the solvent effects. Our results highlight the substantial influence of in vitro larval rearing on the life cycle of bees, with a 47.7% decrease in life span, a decrease of 0.9 days in the age at first exit, an increase of 57.3% in the loss rate at first exit, and a decrease of 40.6% in foraging tenure. We did not observe any effect of exposure to acetone at the larval stage on the capacities of bees reared in vitro. Conversely, acetone exposure at the adult stage reduced the bee life span by 21.8% to 60%, decreased the age at first exit by 1.12 to 4.34 days, and reduced the foraging tenure by 30% to 37.7%. Interestingly, we found a significant effect of season on acetone exposure, suggesting that interference with the life-history traits of honey bees is dependent on season. These findings suggest improved integration of long-term monitoring for assessing sublethal responses in bees following exposure to chemicals during both the larval and adult stages. Environ Toxicol Chem 2024;43:1320-1331. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Victor Desclos le Peley
- Laboratoire Écologie et Biologie des Interactions-UMR CNRS 7267, Laboratoire EBI-Équipe Écologie Évolution Symbiose, Université de Poitiers, Poitiers, France
| | - Stéphane Grateau
- UE 1255 Abeilles, Paysages, Interactions et Systèmes de culture,Station du Magneraud, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Surgères, France
| | - Carole Moreau-Vauzelle
- UE 1255 Abeilles, Paysages, Interactions et Systèmes de culture,Station du Magneraud, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Surgères, France
| | - Daniel Raboteau
- UE 1255 Abeilles, Paysages, Interactions et Systèmes de culture,Station du Magneraud, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Surgères, France
| | - Colombe Chevallereau
- UE 1255 Abeilles, Paysages, Interactions et Systèmes de culture,Station du Magneraud, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Surgères, France
| | - Fabrice Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Pierrick Aupinel
- UE 1255 Abeilles, Paysages, Interactions et Systèmes de culture,Station du Magneraud, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Surgères, France
| | - Freddie-Jeanne Richard
- Laboratoire Écologie et Biologie des Interactions-UMR CNRS 7267, Laboratoire EBI-Équipe Écologie Évolution Symbiose, Université de Poitiers, Poitiers, France
| |
Collapse
|
5
|
Birkenbach M, Straub F, Kiesel A, Ayasse M, Wilfert L, Kuppler J. Land-use affects pollinator-specific resource availability and pollinator foraging behaviour. Ecol Evol 2024; 14:e11061. [PMID: 38455145 PMCID: PMC10918743 DOI: 10.1002/ece3.11061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Land-use management is a key factor causing pollinator declines in agricultural grasslands. This decline can not only be directly driven by land-use (e.g., habitat loss) but also be indirectly mediated through a reduction in floral resource abundance and diversity, which might in turn affect pollinator health and foraging. We conducted surveys of the abundance of flowering plant species and behavioural observations of two common generalist pollinator species, namely the bumblebee Bombus lapidarius and the syrphid fly Episyrphus balteatus, in managed grasslands of variable land-use intensity (LUI) to investigate whether land-use affects (1) resource availability of the pollinators, (2) their host plant selection and (3) pollinator foraging behaviour. We have found that the floral composition of plant species that were used as resource by the investigated pollinator species depends on land-use intensity and practices such as mowing or grazing. We have also found that bumblebees, but not syrphid flies, visit different plants depending on LUI or management type. Furthermore, LUI indirectly changed pollinator behaviour via a reduction in plot-level flower diversity and abundance. For example, bumblebees show longer flight durations with decreasing flower cover indicating higher energy expenditure when foraging on land-use intensive plots. Syrphid flies were generally less affected by local land use, showing how different pollinator groups can differently react to land-use change. Overall, we show that land-use can change resource composition, abundance and diversity for pollinators, which can in turn affect pollinator foraging behaviour and potentially contribute to pollinator decline in agricultural grasslands.
Collapse
Affiliation(s)
- Markus Birkenbach
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Florian Straub
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Anna Kiesel
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Lena Wilfert
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Jonas Kuppler
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| |
Collapse
|
6
|
Motta EVS, Moran NA. The honeybee microbiota and its impact on health and disease. Nat Rev Microbiol 2024; 22:122-137. [PMID: 38049554 PMCID: PMC10998682 DOI: 10.1038/s41579-023-00990-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Honeybees (Apis mellifera) are key pollinators that support global agriculture and are long-established models for developmental and behavioural research. Recently, they have emerged as models for studying gut microbial communities. Earlier research established that hindguts of adult worker bees harbour a conserved set of host-restricted bacterial species, each showing extensive strain variation. These bacteria can be cultured axenically and introduced to gnotobiotic hosts, and some have basic genetic tools available. In this Review, we explore the most recent research showing how the microbiota establishes itself in the gut and impacts bee biology and health. Microbiota members occupy specific niches within the gut where they interact with each other and the host. They engage in cross-feeding and antagonistic interactions, which likely contribute to the stability of the community and prevent pathogen invasion. An intact gut microbiota provides protection against diverse pathogens and parasites and contributes to the processing of refractory components of the pollen coat and dietary toxins. Absence or disruption of the microbiota results in altered expression of genes that underlie immunity, metabolism, behaviour and development. In the field, such disruption by agrochemicals may negatively impact bees. These findings demonstrate a key developmental and protective role of the microbiota, with broad implications for bee health.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas, Austin, TX, USA.
| |
Collapse
|
7
|
Ulgezen ZN, Van Langevelde F, van Dooremalen C. Stress-induced loss of social resilience in honeybee colonies and its implications on fitness. Proc Biol Sci 2024; 291:20232460. [PMID: 38196354 PMCID: PMC10777151 DOI: 10.1098/rspb.2023.2460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Stressors may lead to a shift in the timing of life-history events of species, causing a mismatch with optimal environmental conditions, potentially reducing fitness. In honeybees, the timing of brood rearing and nest emergence in late winter/early spring is critical as colonies need to grow fast after winter to prepare for reproduction. However, the effects of stress on these life-history events in late winter/early spring and the possible consequences are not well understood. Therefore, we tested whether (i) honeybee colonies shift timing of brood rearing and nest emergence as response to stressors, and (ii) if there is a consequent loss of social resilience, reflected in colony fitness (survival, growth and reproduction). We monitored stressed (high load of the parasitic mite Varroa destructor or nutrition restricted) colonies and presumably non-stressed colonies from the beginning of 2020 till spring of 2021. We found that honeybee colonies do not shift the timing of brood rearing and nest emergence in spring as a coping mechanism to stressors. However, we show that there is loss of social resilience in stressed colonies, leading to reduced growth and reproduction. Our study contributes to better understanding the effects of stressors on social resilience in eusocial organisms.
Collapse
Affiliation(s)
- Zeynep N. Ulgezen
- Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Wildlife Ecology and Conservation Group, Department of Environmental Sciences, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
| | - Frank Van Langevelde
- Wildlife Ecology and Conservation Group, Department of Environmental Sciences, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
| | - Coby van Dooremalen
- Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
8
|
Schilcher F, Scheiner R. New insight into molecular mechanisms underlying division of labor in honeybees. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101080. [PMID: 37391163 DOI: 10.1016/j.cois.2023.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/22/2023] [Accepted: 06/25/2023] [Indexed: 07/02/2023]
Abstract
Honeybees are highly organized eusocial insects displaying a distinct division of labor. Juvenile hormone (JH) has long been hypothesized to be the major driver of behavioral transitions. However, more and more experiments in recent years have suggested that the role of this hormone is not as fundamental as hypothesized. Vitellogenin, a common egg yolk precursor protein, seems to be the major regulator of division of labor in honeybees, in connection with nutrition and the neurohormone and transmitter octopamine. Here, we review the role of vitellogenin in controlling honeybee division of labor and its modulation by JH, nutrition, and the catecholamine octopamine.
Collapse
Affiliation(s)
- Felix Schilcher
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
9
|
Fernandes KE, Stanfield B, Frost EA, Shanahan ER, Susantio D, Dong AZ, Tran TD, Cokcetin NN, Carter DA. Low Levels of Hive Stress Are Associated with Decreased Honey Activity and Changes to the Gut Microbiome of Resident Honey Bees. Microbiol Spectr 2023; 11:e0074223. [PMID: 37289060 PMCID: PMC10434159 DOI: 10.1128/spectrum.00742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Honey bees (Apis mellifera) face increasing threats to their health, particularly from the degradation of floral resources and chronic pesticide exposure. The properties of honey and the bee gut microbiome are known to both affect and be affected by bee health. Using samples from healthy hives and hives showing signs of stress from a single apiary with access to the same floral resources, we profiled the antimicrobial activity and chemical properties of honey and determined the bacterial and fungal microbiome of the bee gut and the hive environment. We found honey from healthy hives was significantly more active than honey from stressed hives, with increased phenolics and antioxidant content linked to higher antimicrobial activity. The bacterial microbiome was more diverse in stressed hives, suggesting they may have less capacity to exclude potential pathogens. Finally, bees from healthy and stressed hives had significant differences in core and opportunistically pathogenic taxa in gut samples. Our results emphasize the need for understanding and proactively managing bee health. IMPORTANCE Honey bees serve as pollinators for many plants and crops worldwide and produce valuable hive products such as honey and wax. Various sources of stress can disrupt honey bee colonies, affecting their health and productivity. Growing evidence suggests that honey is vitally important to hive functioning and overall health. In this study, we determined the antimicrobial activity and chemical properties of honey from healthy hives and hives showing signs of stress, finding that honey from healthy hives was significantly more antimicrobial, with increased phenolics and antioxidant content. We next profiled the bacterial and fungal microbiome of the bee gut and the hive environment, finding significant differences between healthy and stressed hives. Our results underscore the need for greater understanding in this area, as we found even apparently minor stress can have implications for overall hive fitness as well as the economic potential of hive products.
Collapse
Affiliation(s)
- Kenya E Fernandes
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Bridie Stanfield
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Elizabeth A Frost
- ABGU, A Joint Venture of NSW Department of Primary Industries and University of New England, Armidale, New South Wales, Australia
- NSW Department of Primary Industries, Paterson, New South Wales, Australia
| | - Erin R Shanahan
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel Susantio
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew Z Dong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Trong D Tran
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nural N Cokcetin
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Australian Institute for Microbiology and Infection, University of Technology, Sydney, New South Wales, Australia
| | - Dee A Carter
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Walton A, Toth AL. Nutritional inequalities structure worker division of labor in social insects. CURRENT OPINION IN INSECT SCIENCE 2023; 58:101059. [PMID: 37230413 DOI: 10.1016/j.cois.2023.101059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 05/27/2023]
Abstract
Eusocial insect societies are fundamentally non-egalitarian. The reproductive caste 'wins' in terms of resource accumulation, whereas non-reproductive workers 'lose'. Here, we argue that the division of labor among workers is also organized by nutritional inequalities. Across vastly different social systems and a variety of hymenopteran species, there is a recurrent pattern of lean foragers and corpulent nest workers. Experimental manipulations confirm causal associations between nutritional differences, associated molecular pathways, and behavioral roles in insect societies. The comparative and functional genomic data suggest that a conserved toolkit of core metabolic, nutrient storage, and signaling genes has evolved to regulate the social insect division of labor. Thus, the unequal distribution of food resources can be considered a fundamental organizing factor in the social insect division of labor.
Collapse
Affiliation(s)
- Alexander Walton
- Biological Sciences, University of Alberta, Edmonton AB T6G 2E9, Canada
| | - Amy L Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50014 USA.
| |
Collapse
|
11
|
Brodschneider R, Omar E, Crailsheim K. Flight performance of pollen starved honey bees and incomplete compensation through ingestion after early life pollen deprivation. Front Physiol 2022; 13:1004150. [PMID: 36569746 PMCID: PMC9780383 DOI: 10.3389/fphys.2022.1004150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
We investigated the effect of adult honey bee pollen nutrition on the flight performance of honey bees. Therefore, caged bees were allowed to perform 30 min of defecation/training flights every second day before flight performance of pollen-fed bees and pollen-deprived bees older than 16 days were compared in a flight mill. We first fed 10 µL of 1 M glucose solution to bees, and after they metabolized this during flight, they were fed 10 µL of 2 M glucose solution for a second flight test. Pollen-deprived bees flew longer and further than pollen-fed bees in both flights. Pollen-fed bees flew faster in the early period at the beginning of flights, whereas pollen-deprived bees were faster in the final phases. Pollen-fed bees were able to raise their maximum flight speed in 2 M glucose solution flights, whereas pollen-constraint bees were not. The two groups did not differ in abdomen fresh weight, but the fresh weight of the head and thorax and dry weight of the head, thorax and abdomen were higher in pollen-fed bees. In a second experiment, we constrained pollen consumption of caged bees during the first 7 days and compared daily consumption of bees from day 8-16 to consumption of bees unrestricted in pollen. We found that pollen-deprived bees perceive the pollen shortage and try to compensate for their needs by consuming significantly more pollen at the later phase of their life than pollen-fed bees of the same age. Still, bees constrained from pollen in the first 7 days did only reach 51.1% of the lifetime consumption of unconstrained bees. This shows that bees can sense the need for essential nutrients from pollen, but their physiological apparatus does not allow them to fully compensate for their early life constraint. Pollen deprivation only in the first 7 days of worker life likewise significantly reduced fresh and dry weights of the body sections (head, thorax, and abdomen) and survival. This underlines the importance of protein consumption in a short critical period early in adult bees' lives for their development and their performance later in life.
Collapse
Affiliation(s)
- Robert Brodschneider
- University of Graz, Institute of Biology, Graz, Austria,*Correspondence: Robert Brodschneider,
| | - Eslam Omar
- University of Graz, Institute of Biology, Graz, Austria,Plant Protection Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | | |
Collapse
|
12
|
Honey bees reared in isolation adhere to normal age-related division of labor when reintroduced into a colony. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Dostálková S, Kodrík D, Simone-Finstrom M, Petřivalský M, Danihlík J. Fine-scale assessment of Chlorella syrup as a nutritional supplement for honey bee colonies. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1028037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Habitat loss, climate change, and global agriculture have a non-negligible effect on the reduced abundance and diversity of floral resources. Malnutrition and nutritional stress are consequences of the combination of these factors with considerable impact on honey bee health and colony losses. The solution to inadequate natural sources for beekeeping is the additional feeding of honey bee colonies with food supplements. The algae Chlorella is a natural food source, with a nutrient profile similar to natural pollen, thus it has promising application in beekeeping. We evaluated Chlorella vulgaris syrup as a dietary supplement in the view of the oxidative stress that may be caused by long term administration to the colonies. Consuming Chlorella syrup did not influence the activity of digestive enzymes of summer honey bee workers, however, lipase activity insignificantly increased. After Chlorella application to colonies, we also observed insignificantly higher gene expression of antioxidant enzymes catalase and superoxid dismutase1 in adult workers; however, in larvae the expression of those genes was not affected. Surprisingly, the gene expression did not correspond with enzyme activity in adult bee abdomens. In Chlorella fed colonies, we recorded a higher concentration of vitellogenin, which plays multiple roles in honey bee physiology, i.e., antioxidant, storage protein, or immunity-related functions. Our new findings brought evidence that Chlorella did not negatively affect the digestion or oxidative balance of honey bees, thus its application as a pollen supplement can be fully recommended for maintaining the health of honey bee colonies during periods of dearth.
Collapse
|
14
|
Schilcher F, Hilsmann L, Ankenbrand MJ, Krischke M, Mueller MJ, Steffan-Dewenter I, Scheiner R. Honeybees are buffered against undernourishment during larval stages. FRONTIERS IN INSECT SCIENCE 2022; 2:951317. [PMID: 38468773 PMCID: PMC10926507 DOI: 10.3389/finsc.2022.951317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/24/2022] [Indexed: 03/13/2024]
Abstract
The negative impact of juvenile undernourishment on adult behavior has been well reported for vertebrates, but relatively little is known about invertebrates. In honeybees, nutrition has long been known to affect task performance and timing of behavioral transitions. Whether and how a dietary restriction during larval development affects the task performance of adult honeybees is largely unknown. We raised honeybees in-vitro, varying the amount of a standardized diet (150 µl, 160 µl, 180 µl in total). Emerging adults were marked and inserted into established colonies. Behavioral performance of nurse bees and foragers was investigated and physiological factors known to be involved in the regulation of social organization were quantified. Surprisingly, adult honeybees raised under different feeding regimes did not differ in any of the behaviors observed. No differences were observed in physiological parameters apart from weight. Honeybees were lighter when undernourished (150 µl), while they were heavier under the overfed treatment (180 µl) compared to the control group raised under a normal diet (160 µl). These data suggest that dietary restrictions during larval development do not affect task performance or physiology in this social insect despite producing clear effects on adult weight. We speculate that possible effects of larval undernourishment might be compensated during the early period of adult life.
Collapse
Affiliation(s)
- Felix Schilcher
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Lioba Hilsmann
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Markus J. Ankenbrand
- Center for Computational and Theoretical Biology (CCTB), Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Markus Krischke
- Julius-von-Sachs-Institute of Biosciences, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Martin J. Mueller
- Julius-von-Sachs-Institute of Biosciences, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ingolf Steffan-Dewenter
- Animal Ecology and Tropical Biology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Parish AJ, Rice DW, Tanquary VM, Tennessen JM, Newton ILG. Honey bee symbiont buffers larvae against nutritional stress and supplements lysine. THE ISME JOURNAL 2022; 16:2160-2168. [PMID: 35726020 PMCID: PMC9381588 DOI: 10.1038/s41396-022-01268-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023]
Abstract
Honey bees have suffered dramatic losses in recent years, largely due to multiple stressors underpinned by poor nutrition [1]. Nutritional stress especially harms larvae, who mature into workers unable to meet the needs of their colony [2]. In this study, we characterize the metabolic capabilities of a honey bee larvae-associated bacterium, Bombella apis (formerly Parasaccharibacter apium), and its effects on the nutritional resilience of larvae. We found that B. apis is the only bacterium associated with larvae that can withstand the antimicrobial larval diet. Further, we found that B. apis can synthesize all essential amino acids and significantly alters the amino acid content of synthetic larval diet, largely by supplying the essential amino acid lysine. Analyses of gene gain/loss across the phylogeny suggest that four amino acid transporters were gained in recent B. apis ancestors. In addition, the transporter LysE is conserved across all sequenced strains of B. apis. Finally, we tested the impact of B. apis on developing honey bee larvae subjected to nutritional stress and found that larvae supplemented with B. apis are bolstered against mass reduction despite limited nutrition. Together, these data suggest a novel role of B. apis as a nutritional mutualist of honey bee larvae.
Collapse
Affiliation(s)
- Audrey J Parish
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Danny W Rice
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Vicki M Tanquary
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Irene L G Newton
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
16
|
Impact of the Plant-Based Natural Supplement Imмunostart Herb on Honey Bee Colony Performance. ACTA VET-BEOGRAD 2022. [DOI: 10.2478/acve-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
Winter is the season that poses the greatest challenges for honey bee colonies. Therefore, the main approach in beekeeping practice is aimed mainly at providing sufficient quality food supplies for bee colonies in early autumn. We conducted the present study to test the influence of the natural plant extract IMМUNOSTART HERB on population strength, stored pollen area, capped worker brood area, and honey yield. The experimental groups were supplied with IMМUNOSTART HERB 4 times at 7-day intervals, whereas sugar syrup was given to the control groups. The obtained results showed that the applied supplemental diet affected all investigated biological parameters, with the most noticeable effect after the second application. In all measurements, the honey bee colony parameters in the treated groups showed higher values in comparison to the control groups. These results highlight the potential of herbal supplements to effectively improve bee colonies’ development during the period of scarce bee forage, as well as to provide suitable conditions for successful overwintering.
Collapse
|
17
|
Jang H, Ghosh S, Sun S, Cheon KJ, Mohamadzade Namin S, Jung C. Chlorella-supplemented diet improves the health of honey bee (Apis mellifera). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.922741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nutritional stress is one of the major factors affecting the health of honey bees. Supplementing the pollen patty with microalgae enhances the protein content of the patty and therefore is supposed to improve bee’s health. The objective of the present study was to investigate the effect of Chlorella as a dietary supplement on the health and physiology of the honey bee (Apis mellifera). We formulated the honey bee feed by supplementing Chlorella sorokiniana, obtained commercially, with commercially available rapeseed pollen patty in different amounts—0.5, 2, 5, and 10%, and the treatment groups were named P0.5, P2, P5, and P10, respectively. Pollen patty was set as a positive control and only 50% sucrose solution (no protein) was set as a negative control. Diets were supplied ad libitum to newly emerged workers in cages; food consumption patterns; longevity; and physiology including the development of the brain in terms of protein (i.e., total amino acids), thorax muscle, fat body mass, and glands (hypopharyngeal and venom); and gene expression of nutrition-related gene vitellogenin (Vg) of honey bee at different points of time of their age were observed. The addition of Chlorella significantly increased the food consumption pattern, longevity, gland development, muscle formation, and Vg gene expression significantly in comparison to only a pollen or sugar diet. However, the response varied depending on the level of Chlorella supplementation. As depicted in most of the cases, P2, that is, the pollen diet with 2% of Chlorella supplement exhibited the best outcome in terms of all the tested parameters. Therefore, based on the results obtained in the present study, we concluded that 2% Chlorella supplementation to pollen patty could enhance the health of honey bees, which in turn improves their performance.
Collapse
|
18
|
Metz BN, Tarpy DR. Variation in the reproductive quality of honey bee males affects their age of flight attempt. PeerJ 2022; 10:e13859. [PMID: 35935251 PMCID: PMC9354755 DOI: 10.7717/peerj.13859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023] Open
Abstract
Background Honey bee males (drones) exhibit life histories that enable a high potential for pre- or post-copulatory sperm competition. With a numerical sex ratio of ∼11,000 drones for every queen, they patrol flyways and congregate aerially to mate on the wing. However, colonies and in fact drones themselves may benefit from a relative lack of competition, as queens are highly polyandrous, and colonies have an adaptive advantage when headed by queens that are multiply mated. Previous research has shown that larger drones are more likely to be found at drone congregation areas, more likely to mate successfully, and obtain a higher paternity share. However, the reproductive quality and size of drones varies widely within and among colonies, suggesting adaptive maintenance of drone quality variation at different levels of selection. Methods We collected drones from six colony sources over the course of five days. We paint marked and individually tagged drones after taking body measurements at emergence and then placed the drones in one of two foster colonies. Using an entrance cage, we collected drones daily as they attempted flight. We collected 2,420 drones live or dead, analyzed 1,891 for attempted flight, collected emergence data on 207 drones, and dissected 565 upon capture to assess reproductive maturity. We measured drone body mass, head width, and thorax width at emergence, and upon dissection we further measured thorax mass, seminal vesicle length, mucus gland length, sperm count, and sperm viability from the seminal vesicles. Results We found that drones that were more massive at emergence were larger and more fecund upon capture, suggesting that they are of higher reproductive quality and therefore do not exhibit a trade-off between size and fecundity. However, smaller drones tended to attempt initial flight at a younger age, which suggests a size trade-off not with fecundity but rather developmental maturation. We conclude that smaller drones may take more mating flights, each individually with a lower chance of success but thereby increasing their overall fitness. In doing so, the temporal spread of mating attempts of a single generation of drones within a given colony increases colony-level chances of mating with nearby queens, suggesting an adaptive rationale for high variation among drone reproductive quality within colonies.
Collapse
Affiliation(s)
- Bradley N. Metz
- Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| | - David R. Tarpy
- Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
19
|
Bouchebti S, Wright GA, Shafir S. Macronutrient balance has opposing effects on cognition and survival in honey bees. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sofia Bouchebti
- B. Triwaks Bee Research Center, Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food & Environment The Hebrew University of Jerusalem Rehovot Israel
- School of Zoology Tel Aviv University Tel Aviv Israel
| | | | - Sharoni Shafir
- B. Triwaks Bee Research Center, Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food & Environment The Hebrew University of Jerusalem Rehovot Israel
| |
Collapse
|
20
|
Colin T, Warren RJ, Quarrell SR, Allen GR, Barron AB. Evaluating the foraging performance of individual honey bees in different environments with automated field
RFID
systems. Ecosphere 2022. [DOI: 10.1002/ecs2.4088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Théotime Colin
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales Australia
- Department of Biological Sciences Macquarie University Sydney New South Wales Australia
| | - Ryan J. Warren
- Tasmanian Institute of Agriculture University of Tasmania Hobart Tasmania Australia
| | - Stephen R. Quarrell
- Tasmanian Institute of Agriculture University of Tasmania Hobart Tasmania Australia
| | - Geoff R. Allen
- Tasmanian Institute of Agriculture University of Tasmania Hobart Tasmania Australia
| | - Andrew B. Barron
- Department of Biological Sciences Macquarie University Sydney New South Wales Australia
| |
Collapse
|
21
|
Simone-Finstrom M, Strand MK, Tarpy DR, Rueppell O. Impact of Honey Bee Migratory Management on Pathogen Loads and Immune Gene Expression is Affected by Complex Interactions With Environment, Worker Life History, and Season. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:6523145. [PMID: 35137136 PMCID: PMC8825759 DOI: 10.1093/jisesa/ieab096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 05/12/2023]
Abstract
The effects of honey bee management, such as intensive migratory beekeeping, are part of the ongoing debate concerning causes of colony health problems. Even though comparisons of disease and pathogen loads among differently managed colonies indicate some effects, the direct impact of migratory practices on honey bee pathogens is poorly understood. To test long- and short-term impacts of managed migration on pathogen loads and immunity, experimental honey bee colonies were maintained with or without migratory movement. Individuals that experienced migration as juveniles (e.g., larval and pupal development), as adults, or both were compared to control colonies that remained stationary and therefore did not experience migratory relocation. Samples at different ages and life-history stages (hive bees or foragers), taken at the beginning and end of the active season, were analyzed for pathogen loads and physiological markers of health. Bees exposed to migratory management during adulthood had increased levels of the AKI virus complex (Acute bee paralysis, Kashmir bee, and Israeli acute bee paralysis viruses) and decreased levels of antiviral gene expression (dicer-like). However, those in stationary management as adults had elevated gut parasites (i.e. trypanosomes). Effects of environment during juvenile development were more complex and interacted with life-history stage and season. Age at collection, life-history stage, and season all influenced numerous factors from viral load to immune gene expression. Although the factors that we examined are not independent, the results illuminate potential factors in both migratory and nonmigratory beekeeping that are likely to contribute to colony stress, and also indicate potential mitigation measures.
Collapse
Affiliation(s)
- Michael Simone-Finstrom
- USDA-ARS Honey Bee Breeding, Genetics and Physiology Research Laboratory, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
- Corresponding author, e-mail:
| | - Micheline K Strand
- Life Sciences Branch, U.S. Army Research Office, 800 Park Office Drive, Research Triangle Park, NC 27703, USA
| | - David R Tarpy
- Department of Entomology and Plant Pathology, North Carolina State University, 100 Derieux Place, Raleigh, NC 27695, USA
- The W.M. Keck Center for Behavioral Biology, North Carolina State University, 112 Derieux Place, Raleigh, NC 27695, USA
- Current address: Department of Applied Ecology, North Carolina State University, 100 Eugene Brooks Avenue, Raleigh, NC 27695, USA
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
- Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27412, USA
| |
Collapse
|
22
|
Schilcher F, Hilsmann L, Rauscher L, Değirmenci L, Krischke M, Krischke B, Ankenbrand M, Rutschmann B, Mueller MJ, Steffan-Dewenter I, Scheiner R. In Vitro Rearing Changes Social Task Performance and Physiology in Honeybees. INSECTS 2021; 13:insects13010004. [PMID: 35055848 PMCID: PMC8779213 DOI: 10.3390/insects13010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary The rearing of honeybee larvae in the laboratory is an important tool for studying the effects of plant protection products or pathogens on developing and adult bees, yet how rearing under artificial conditions affects the later social behavior and physiology of the honeybees is mostly unknown. We, here, show that honeybees reared in the laboratory generally had a lower probability for performing nursing or foraging tasks compared to bees reared under natural conditions in bee colonies. Nursing behavior itself appeared normal in in vitro honeybees. In contrast, bees reared in the laboratory foraged for a shorter period in life and performed fewer trips compared to bees reared in colonies. In addition, in vitro honeybees did not display the typical increase in juvenile hormone titer, which goes hand-in-hand with the initiation of foraging in colony-reared bees. Abstract In vitro rearing of honeybee larvae is an established method that enables exact control and monitoring of developmental factors and allows controlled application of pesticides or pathogens. However, only a few studies have investigated how the rearing method itself affects the behavior of the resulting adult honeybees. We raised honeybees in vitro according to a standardized protocol: marking the emerging honeybees individually and inserting them into established colonies. Subsequently, we investigated the behavioral performance of nurse bees and foragers and quantified the physiological factors underlying the social organization. Adult honeybees raised in vitro differed from naturally reared honeybees in their probability of performing social tasks. Further, in vitro-reared bees foraged for a shorter duration in their life and performed fewer foraging trips. Nursing behavior appeared to be unaffected by rearing condition. Weight was also unaffected by rearing condition. Interestingly, juvenile hormone titers, which normally increase strongly around the time when a honeybee becomes a forager, were significantly lower in three- and four-week-old in vitro bees. The effects of the rearing environment on individual sucrose responsiveness and lipid levels were rather minor. These data suggest that larval rearing conditions can affect the task performance and physiology of adult bees despite equal weight, pointing to an important role of the colony environment for these factors. Our observations of behavior and metabolic pathways offer important novel insight into how the rearing environment affects adult honeybees.
Collapse
Affiliation(s)
- Felix Schilcher
- Biocentre, Department of Behavioural Physiology and Sociobiology, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; (L.H.); (L.R.); (L.D.); (R.S.)
- Correspondence: ; Tel.: +49-931-31-85373
| | - Lioba Hilsmann
- Biocentre, Department of Behavioural Physiology and Sociobiology, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; (L.H.); (L.R.); (L.D.); (R.S.)
| | - Lisa Rauscher
- Biocentre, Department of Behavioural Physiology and Sociobiology, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; (L.H.); (L.R.); (L.D.); (R.S.)
| | - Laura Değirmenci
- Biocentre, Department of Behavioural Physiology and Sociobiology, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; (L.H.); (L.R.); (L.D.); (R.S.)
| | - Markus Krischke
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany; (M.K.); (M.J.M.)
| | - Beate Krischke
- Biocentre, Department of Animal Ecology and Tropical Biology, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; (B.K.); (B.R.); (I.S.-D.)
| | - Markus Ankenbrand
- Center for Computational and Theoretical Biology (CCTB), Julius-Maximilians-Universität Würzburg, Klara-Oppenheimer-Weg 32, 97074 Würzburg, Germany;
| | - Benjamin Rutschmann
- Biocentre, Department of Animal Ecology and Tropical Biology, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; (B.K.); (B.R.); (I.S.-D.)
| | - Martin J. Mueller
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany; (M.K.); (M.J.M.)
| | - Ingolf Steffan-Dewenter
- Biocentre, Department of Animal Ecology and Tropical Biology, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; (B.K.); (B.R.); (I.S.-D.)
| | - Ricarda Scheiner
- Biocentre, Department of Behavioural Physiology and Sociobiology, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; (L.H.); (L.R.); (L.D.); (R.S.)
| |
Collapse
|
23
|
Young honeybees show learned preferences after experiencing adulterated pollen. Sci Rep 2021; 11:23327. [PMID: 34857828 PMCID: PMC8640054 DOI: 10.1038/s41598-021-02700-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/18/2021] [Indexed: 12/04/2022] Open
Abstract
Pollen selection affects honeybee colony development and productivity. Considering that pollen is consumed by young in-hive bees, and not by foragers, we hypothesized that young bees learn pollen cues and adjust their preferences to the most suitable pollens. To assess whether young bees show preferences based on learning for highly or poorly suitable pollens, we measured consumption preferences for two pure monofloral pollens after the bees had experienced one of them adulterated with a deterrent (amygdalin or quinine) or a phagostimulant (linoleic acid). Preferences were obtained from nurse-aged bees confined in cages and from nurse bees in open colonies. Furthermore, we tested the bees' orientation in a Y-maze using a neutral odour (Linalool or Nonanal) that had been previously associated with an amygdalin-adulterated pollen. Consumption preferences of bees, both in cages and in colonies, were reduced for pollens that had been adulterated with deterrents and increased for pollens that had been supplemented with linoleic acid. In the Y-maze, individuals consistently avoided the odours that they had previously experienced paired with the deterrent-adulterated pollen. Results show that nurse-aged bees associate pollen-based or pollen-related cues with either a distasteful/malaise experience or a tasty/nutritious event, leading to memories that bias their pollen-mediated response.
Collapse
|
24
|
Abstract
Optimal nutrition is crucial for honey bee colony growth and robust immune systems. Honey bee nutrition is complex and depends on the floral composition of the landscape. Foraging behavior of honey bees depends on both colony environment and external environment. There are significant gaps in knowledge regarding honey bee nutrition, and hence no optimal diet is available for honey bees, as there is for other livestock. In this review, we discuss (1) foraging behavior of honey bees, (2) nutritional needs, (3) nutritional supplements used by beekeepers, (4) probiotics, and (5) supplemental forage and efforts integrating floral diversity into cropping systems.
Collapse
Affiliation(s)
- Jennifer M Tsuruda
- University of Tennessee - Knoxville, 2505 E J Chapman Drive, Knoxville, TN 37996, USA
| | - Priyadarshini Chakrabarti
- Mississippi State University, P.O. Box 5307, Mississippi State, MS 39762, USA; Oregon State University, 4017 Agriculture and Life Science Building, Corvallis, OR 97331, USA
| | - Ramesh R Sagili
- Oregon State University, 4017 Agriculture and Life Science Building, Corvallis, OR 97331, USA.
| |
Collapse
|
25
|
Bianchi E, Agra MN, García C, Gennari G, Maldonado L, Rodríguez GA, Palacio MA, Scannapieco AC, Lanzavecchia SB. Defensive Behavior and Morphometric Variation in Apis mellifera Colonies From Two Different Agro-Ecological Zones of North-Western Argentina. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.590225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
European lineages of Apis mellifera were first introduced into America for beekeeping purposes. A subsequent introduction and accidental release of A. m. scutellata resulted in hybridization events that gave rise to Africanized populations that rapidly spread throughout the continent. In Argentina, Africanized honey bees (AHBs) have been mostly detected in northern regions of the territory, and represent a valuable genetic resource for the selection of stocks with advantageous characteristics for beekeeping. The objective of the present study was to profile honey bee colonies of wild origin with potential beneficial traits for apiculture using morphological, molecular and behavioral traits. Honey bee colonies chosen for evaluation were located in two different agro-ecological regions in north-western Argentina (Tucumán province): The Chaco Depressed Plain (Leales apiary) and the Piedmont (Famaillá apiary). Each apiary was surveyed three times during the 2017–2018 season (mid-season, wintertime, and early spring) for: brood population, phoretic Varroa level and defensive behavior (run, fly, sting, and hang). At the midpoint of the beekeeping season colonies were also characterized by morphometry (45 variables) and mitochondrial haplotypes (COI–COII intergenic region). Apiaries studied showed similar patterns throughout the beekeeping season, for most of the characteristics monitored. However, significant variation in defensive behavior parameters was found between apiaries at the different times of evaluation. Twelve of 45 morphometric variables also showed significant differences between apiaries. The mitochondrial haplotype analysis revealed a high representation of African A4 and A1 haplotypes (91%) in both apiaries. Haplotype variation was associated with morphometric and behavioral traits. Multivariate analyses [principal component analysis (PCA) and principal coordinate analysis (PCoA)] including morphometric and behavior variables explained 65.3% (PCA) and 48.1% (PCoA) of the variability observed between colonies in the first two components. Several morphometric parameters and “fly” behavior were mainly associated with the separation of the colonies. The results from this study point to a possible association between morphometric and behavioral variation and the adaptation of honey bee colonies to differential agro-ecological conditions. We discuss how the detected variation between apiaries can be used for the selection and preservation of honey bee ecotypes in regional breeding programs.
Collapse
|
26
|
Noordyke ER, van Santen E, Ellis JD. Tracing the Fate of Pollen Substitute Patties in Western Honey Bee (Hymenoptera: Apidae) Colonies. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1421-1430. [PMID: 34041543 DOI: 10.1093/jee/toab083] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Commercial beekeepers need healthy, productive honey bee (Apis mellifera L.) colonies, even when the landscape lacks adequate pollen forage to sustain the colonies. As a result, many commercial beekeepers spend significant money and labor on the use of pollen substitutes in their colonies. However, there is little consensus in the literature about the benefits and drawbacks of pollen substitute use on honey bee colony health. In order to understand this critically, it is important to know first how honey bees distribute pollen substitute patties throughout their colonies. We traced the fate of three commercially available pollen substitute patties (MegaBee, UltraBee, AP23) dyed with a nontoxic food coloring (Brilliant Blue FCF) and undyed as negative controls, a dyed positive control (fondant), and a dyed consumption control (Crayola Model Magic Clay) in 44 honey bee colonies. Using spectrophotometry and visual inspection, we analyzed adult bee guts, larval guts, bee bread stores and colony debris underneath the hive for presence of the dye. Our data suggest that (1) a proportion of adult bees ingest the patty, (2) adult bees likely do not feed patty directly to larvae, (3) adult bees do not store patty like bee bread, and (4) only a very small proportion of patty is lost as debris. Collectively our data suggest that honey bee colonies use pollen substitute patties. However, patties likely do not replace the function of natural pollen entirely in terms of larval provisioning and long-term storage as bee bread.
Collapse
Affiliation(s)
- Emily R Noordyke
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Edzard van Santen
- Statistical Consulting Unit and Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - James D Ellis
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
27
|
Developmental environment shapes honeybee worker response to virus infection. Sci Rep 2021; 11:13961. [PMID: 34234217 PMCID: PMC8263599 DOI: 10.1038/s41598-021-93199-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/18/2021] [Indexed: 11/08/2022] Open
Abstract
The consequences of early-life experiences are far reaching. In particular, the social and nutritional environments that developing animals experience can shape their adult phenotypes. In honeybees, larval nutrition determines the eventual social roles of adults as reproductive queens or sterile workers. However, little is known about the effects of developmental nutrition on important adult worker phenotypes such as disease resilience. In this study, we manipulated worker developmental nutrition in two distinct ways under semi-natural field conditions. In the first experiment, we restricted access to nutrition via social isolation by temporarily preventing alloparental care. In the second experiment, we altered the diet quality experienced by the entire colony, leading to adult bees that had developed entirely in a nutritionally restricted environment. When bees from these two experiments reached the adult stage, we challenged them with a common bee virus, Israeli acute paralysis virus (IAPV) and compared mortality, body condition, and the expression of immune genes across diet and viral inoculation treatments. Our findings show that both forms of early life nutritional stress, whether induced by lack of alloparental care or diet quality restriction, significantly reduced bees' resilience to virus infection and affected the expression of several key genes related to immune function. These results extend our understanding of how early life nutritional environment can affect phenotypes relevant to health and highlight the importance of considering how nutritional stress can be profound even when filtered through a social group. These results also provide important insights into how nutritional stress can affect honeybee health on a longer time scale and its potential to interact with other forms of stress (i.e. disease).
Collapse
|
28
|
Traynor KS, vanEngelsdorp D, Lamas ZS. Social disruption: Sublethal pesticides in pollen lead to Apis mellifera queen events and brood loss. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112105. [PMID: 33690003 DOI: 10.1016/j.ecoenv.2021.112105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Eusocial Apis mellifera colonies depend on queen longevity and brood viability to survive, as the queen is the sole reproductive individual and the maturing brood replenishes the shorter-lived worker bees. Production of many crops rely on both pesticides and bee pollination to improve crop quantity and quality, yet sublethal impacts of this pesticide exposure is often poorly understood. We investigated the resiliency of queens and their brood after one month of sublethal exposure to field relevant doses of pesticides that mimic exposure during commercial pollination contracts. We exposed full size colonies to pollen contaminated with field-relevant doses of the fungicides (chlorothalonil and propicanizole), insecticides (chlorypyrifos and fenpropathrin) or both, noting a significant reduction in pollen consumption in colonies exposed to fungicides compared to control. While we found no difference in the total amount of pollen collected per colony, a higher proportion of pollen to non-pollen foragers was detected in all pesticide exposed colonies. After ceasing treatments, we measured brood development, discovering a significant increase in brood loss and/or cannibalism across all pesticide exposed groups. Sublethal pesticide exposure in general was linked to reduced production of replacement workers and a change in protein acquisition (pollen vs. non-pollen foraging). Fungicide exposure also resulted in increased loss of the reproductive queen.
Collapse
Affiliation(s)
- Kirsten S Traynor
- Global Biosocial Complexity Initiative, Arizona State University, Tempe, AZ, USA; Freie Universität Berlin, Berlin, Germany; Institute for Bee Research, Celle, Germany.
| | | | | |
Collapse
|
29
|
Mogren CL, Benítez MS, McCarter K, Boyer F, Lundgren JG. Diverging landscape impacts on macronutrient status despite overlapping diets in managed ( Apis mellifera) and native ( Melissodes desponsa) bees. CONSERVATION PHYSIOLOGY 2020; 8:coaa109. [PMID: 33365131 PMCID: PMC7745716 DOI: 10.1093/conphys/coaa109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/20/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Declining pollinator populations worldwide are attributed to multiple stressors, including the loss of quality forage. Habitat management in agricultural areas often targets honey bees (Apis mellifera L.) specifically, with the assumption that native bees will benefit from an 'umbrella species' strategy. We tested this theory using a conservation physiology approach to compare the effects of landscape composition and floral dietary composition on the physiological status of honey bees and Melissodes desponsa in eastern South Dakota, USA. The total glycogen, lipid and protein concentrations were quantified from field collected bees. Next-generation sequencing of the trnL chloroplast gene from bee guts was used to evaluate dietary composition. The effects of landscape and dietary composition on macronutrient concentrations were compared between bee species. As the mean land-use patch area increased, honey bee glycogen levels increased, though M. desponsa experienced a decrease in glycogen. Protein levels decreased in honey bees as the largest patch index, a measure of single patch dominance, increased versus M. desponsa. Lipids in both species were unaffected by the measured landscape variables. Dietary analysis revealed that honey bees foraged preferentially on weedy non-native plant species, while M. desponsa sought out native and rarer species, in addition to utilizing non-native plants. Both species foraged on Asteraceae, Oleaceae and Fabaceae, specifically Melilotus sp. and Medicago sp. Dietary composition was not predictive of the macronutrients measured for either species. Together, these data highlight the management importance of including patch area in conservation recommendations, as bee species may have divergent physiological responses to landscape characteristics. While solitary bees may forage on weedy introduced plants in agricultural areas, robust strategies should also reincorporate native plant species, though they may not be preferred by honey bees, to maximize overall health and diversity of pollinator communities.
Collapse
Affiliation(s)
- Christina L Mogren
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, 3050 Maile Way Gilmore 310, Honolulu, HI 96822, USA
| | - María-Soledad Benítez
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Kevin McCarter
- Department of Experimental Statistics, Louisiana State University, Baton Rouge, LA 70802, USA
| | - Frédéric Boyer
- Laboratoire d’Écologie Alpine, Centre National de la Recherche Scientifique, Université Grenoble Alpes, F-38000 Grenoble, France
| | | |
Collapse
|
30
|
Chakrabarti P, Lucas HM, Sagili RR. Evaluating Effects of a Critical Micronutrient (24-Methylenecholesterol) on Honey Bee Physiology. ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA 2020; 113:176-182. [PMID: 32410742 PMCID: PMC7212396 DOI: 10.1093/aesa/saz067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 05/03/2023]
Abstract
Although poor nutrition is cited as one of the crucial factors in global pollinator decline, the requirements and role of several important nutrients (especially micronutrients) in honey bees are not well understood. Micronutrients, viz. phytosterols, play a physiologically vital role in insects as precursors of important molting hormones and building blocks of cellular membranes. There is a gap in comprehensive understanding of the impacts of dietary sterols on honey bee physiology. In the present study, we investigated the role of 24-methylenecholesterol-a key phytosterol-in honey bee nutritional physiology. Artificial diets with varying concentrations of 24-methylenecholesterol (0%, 0.1%. 0.25%, 0.5%, 0.75%, and 1% dry diet weight) were formulated and fed to honey bees in a laboratory cage experiment. Survival, diet consumption, head protein content, and abdominal lipid contents were significantly higher in dietary sterol-supplemented bees. Our findings provide additional insights regarding the role of this important sterol in honey bee nutritional physiology. The insights gleaned from this study could also advance the understanding of sterol metabolism and regulation in other bee species that are dependent on pollen for sterols, and assist in formulation of a more complete artificial diet for honey bees (Apis mellifera Linnaeus, 1758) (Hymenoptera: Apidae).
Collapse
Affiliation(s)
| | - Hannah M Lucas
- Department of Horticulture, Oregon State University, Corvallis, OR
| | - Ramesh R Sagili
- Department of Horticulture, Oregon State University, Corvallis, OR
| |
Collapse
|
31
|
Carr-Markell MK, Demler CM, Couvillon MJ, Schürch R, Spivak M. Do honey bee (Apis mellifera) foragers recruit their nestmates to native forbs in reconstructed prairie habitats? PLoS One 2020; 15:e0228169. [PMID: 32049993 PMCID: PMC7015315 DOI: 10.1371/journal.pone.0228169] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/08/2020] [Indexed: 02/02/2023] Open
Abstract
Honey bee (Apis mellifera) colonies are valued for the pollination services that they provide. However, colony mortality has increased to unsustainable levels in some countries, including the United States. Landscape conversion to monocrop agriculture likely plays a role in this increased mortality by decreasing the food sources available to honey bees. Many land owners and organizations in the Upper Midwest region of the United States would like to restore/reconstruct native prairie habitats. With increasing public awareness of high bee mortality, many landowners and beekeepers have wondered whether these restored prairies could significantly improve honey bee colony nutrition. Conveniently, honey bees have a unique communication signal called a waggle dance, which indicates the locations of the flower patches that foragers perceive as highly profitable food sources. We used these communication signals to answer two main questions: First, is there any part of the season in which the foraging force of a honey bee colony will devote a large proportion of its recruitment efforts (waggle dances) to flower patches within prairies? Second, will honey bee foragers advertise specific taxa of native prairie flowers as profitable pollen sources? We decoded 1528 waggle dances in colonies located near two large, reconstructed prairies. We also collected pollen loads from a subset of waggle-dancing bees, which we then analyzed to determine the flower taxon advertised. Most dances advertised flower patches outside of reconstructed prairies, but the proportion of dances advertising nectar sources within prairies increased significantly in the late summer/fall at one site. Honey bees advertised seven native prairie taxa as profitable pollen sources, although the three most commonly advertised pollen taxa were non-native. Our results suggest that including certain native prairie flower taxa in reconstructed prairies may increase the chances that colonies will use those prairies as major food sources during the period of greatest colony growth and honey production.
Collapse
Affiliation(s)
- Morgan K. Carr-Markell
- Department of Entomology, University of Minnesota, Falcon Heights, Minnesota, United States of America
- * E-mail:
| | - Cora M. Demler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Margaret J. Couvillon
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Roger Schürch
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Marla Spivak
- Department of Entomology, University of Minnesota, Falcon Heights, Minnesota, United States of America
| |
Collapse
|
32
|
Dufour C, Fournier V, Giovenazzo P. The impact of lowbush blueberry (Vaccinium angustifolium Ait.) and cranberry (Vaccinium macrocarpon Ait.) pollination on honey bee (Apis mellifera L.) colony health status. PLoS One 2020; 15:e0227970. [PMID: 31978125 PMCID: PMC6980599 DOI: 10.1371/journal.pone.0227970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/04/2020] [Indexed: 11/18/2022] Open
Abstract
Commercial lowbush blueberry (Vaccinium angustifolium Ait.) and cranberry (Vaccinium macrocarpon Ait.) crops benefit from the presence of honey bee (Apis mellifera L.) for pollination. Unfortunately, beekeepers are observing negative impacts of pollination services on honey bee colonies. In this study, we investigated three beekeeping management strategies (MS) and measured their impact on honey bee colony health and development. Experimental groups (five colonies/MS) were: A) Control farmland honey producing MS (control MS); B) Blueberry pollination MS (blueberry MS); C) Cranberry pollination MS (cranberry MS) and D) Double pollination MS, blueberry followed by cranberry (double MS). Our goals were to 1) compare floral abundance and attractiveness of foraging areas to honey bees between apiaries using a Geographic Information System, and 2) compare honey bee colony health status and population development between MS during a complete beekeeping season. Our results show significantly lower floral abundance and honey bee attractiveness of foraging areas during cranberry pollination compared to the other environments. The blueberry pollination site seemed to significantly reduce brood population in the colonies who provided those services (blueberry MS and double MS). The cranberry pollination site seemed to significantly reduce colony weight gain (cranberry MS and double MS) and induce a significantly higher winter mortality rate (cranberry MS). We also measured significantly higher levels of Black queen cell virus and Sacbrood virus in the MS providing cranberry pollination (cranberry MS and double MS).
Collapse
Affiliation(s)
- Claude Dufour
- Département de biologie, Université Laval, Québec, Québec, Canada
| | - Valérie Fournier
- Centre de recherche et innovation sur les végétaux, Université Laval, Québec, Québec, Canada
| | - Pierre Giovenazzo
- Département de biologie, Université Laval, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
33
|
|
34
|
Rittschof CC, Rubin BER, Palmer JH. The transcriptomic signature of low aggression in honey bees resembles a response to infection. BMC Genomics 2019; 20:1029. [PMID: 31888487 PMCID: PMC6937707 DOI: 10.1186/s12864-019-6417-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Behavior reflects an organism's health status. Many organisms display a generalized suite of behaviors that indicate infection or predict infection susceptibility. We apply this concept to honey bee aggression, a behavior that has been associated with positive health outcomes in previous studies. We sequenced the transcriptomes of the brain, fat body, and midgut of adult sibling worker bees who developed as pre-adults in relatively high versus low aggression colonies. Previous studies showed that this pre-adult experience impacts both aggressive behavior and resilience to pesticides. We performed enrichment analyses on differentially expressed genes to determine whether variation in aggression resembles the molecular response to infection. We further assessed whether the transcriptomic signature of aggression in the brain is similar to the neuromolecular response to acute predator threat, exposure to a high-aggression environment as an adult, or adult behavioral maturation. RESULTS Across all three tissues assessed, genes that are differentially expressed as a function of aggression significantly overlap with genes whose expression is modulated by a variety of pathogens and parasitic feeding. In the fat body, and to some degree the midgut, our data specifically support the hypothesis that low aggression resembles a diseased or parasitized state. However, we find little evidence of active infection in individuals from the low aggression group. We also find little evidence that the brain molecular signature of aggression is enriched for genes modulated by social cues that induce aggression in adults. However, we do find evidence that genes associated with adult behavioral maturation are enriched in our brain samples. CONCLUSIONS Results support the hypothesis that low aggression resembles a molecular state of infection. This pattern is most robust in the peripheral fat body, an immune responsive tissue in the honey bee. We find no evidence of acute infection in bees from the low aggression group, suggesting the physiological state characterizing low aggression may instead predispose bees to negative health outcomes when they are exposed to additional stressors. The similarity of molecular signatures associated with the seemingly disparate traits of aggression and disease suggests that these characteristics may, in fact, be intimately tied.
Collapse
Affiliation(s)
- Clare C Rittschof
- University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY, 40546, USA.
| | - Benjamin E R Rubin
- Department of Ecology and Evolutionary Biology; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Joseph H Palmer
- Kentucky State University, 400 E. Main St., Frankfort, KY, 40601, USA
| |
Collapse
|
35
|
Paul SC, Putra R, Müller C. Early life starvation has stronger intra-generational than transgenerational effects on key life-history traits and consumption measures in a sawfly. PLoS One 2019; 14:e0226519. [PMID: 31856200 PMCID: PMC6922382 DOI: 10.1371/journal.pone.0226519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/26/2019] [Indexed: 11/19/2022] Open
Abstract
Resource availability during development shapes not only adult phenotype but also the phenotype of subsequent offspring. When resources are absent and periods of starvation occur in early life, such developmental stress often influences key life-history traits in a way that benefits individuals and their offspring when facing further bouts of starvation. Here we investigated the impacts of different starvation regimes during larval development on life-history traits and measures of consumption in the turnip sawfly, Athalia rosae (Hymenoptera: Tenthredinidae). We then assessed whether offspring of starved and non-starved parents differed in their own life-history if reared in conditions that either matched that of their parents or were a mismatch. Early life starvation effects were more pronounced within than across generations in A. rosae, with negative impacts on adult body mass and increases in developmental time, but no effects on adult longevity in either generation. We found some evidence of higher growth rates in larvae having experienced starvation, although this did not ameliorate the overall negative effect of larval starvation on adult size. However, further work is necessary to disentangle the effects of larval size and instar from those of starvation treatment. Finally, we found weak evidence for transgenerational effects on larval growth, with intra-generational larval starvation experience being more decisive for life-history traits. Our study demonstrates that intra-generational effects of starvation are stronger than transgenerational effects on life-history traits and consumption measures in A. rosae.
Collapse
Affiliation(s)
| | - Rocky Putra
- Chemical Ecology, Bielefeld University, Bielefeld, Germany
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Caroline Müller
- Chemical Ecology, Bielefeld University, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
36
|
Bagheri S, Mirzaie M. A mathematical model of honey bee colony dynamics to predict the effect of pollen on colony failure. PLoS One 2019; 14:e0225632. [PMID: 31756236 PMCID: PMC6874302 DOI: 10.1371/journal.pone.0225632] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 11/08/2019] [Indexed: 11/26/2022] Open
Abstract
The decline in colony populations of the honey bee, known as the Colony Collapse Disorder (CCD), is a global concern. Numerous studies have reported possible causes, including pesticides, parasites, and nutritional stress. Poor nutrition affects the immune system at both the individual and colony level, amplifying effects of other stress factors. Pollen is the only source of ten amino acids that are essential to honey bee development, brood rearing and reproduction. This paper presents a new mathematical model to explore the effect of pollen on honey bee colony dynamics. In this model, we considered pollen and nectar as the required food for the colony. The effect of pollen and nectar collected by foragers was evaluated at different mortality rates of pupa, pollen and nectar foragers.
Collapse
Affiliation(s)
- Shahin Bagheri
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, Iran
| | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, Iran
- * E-mail:
| |
Collapse
|
37
|
López-Uribe MM, Ricigliano VA, Simone-Finstrom M. Defining Pollinator Health: A Holistic Approach Based on Ecological, Genetic, and Physiological Factors. Annu Rev Anim Biosci 2019; 8:269-294. [PMID: 31618045 DOI: 10.1146/annurev-animal-020518-115045] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evidence for global bee population declines has catalyzed a rapidly evolving area of research that aims to identify the causal factors and to effectively assess the status of pollinator populations. The term pollinator health emerged through efforts to understand causes of bee decline and colony losses, but it lacks a formal definition. In this review, we propose a definition for pollinator health and synthesize the available literature on the application of standardized biomarkers to assess health at the individual, colony, and population levels. We focus on biomarkers in honey bees, a model species, but extrapolate the potential application of these approaches to monitor the health status of wild bee populations. Biomarker-guided health measures can inform beekeeper management decisions, wild bee conservation efforts, and environmental policies. We conclude by addressing challenges to pollinator health from a One Health perspective that emphasizes the interplay between environmental quality and human, animal, and bee health.
Collapse
Affiliation(s)
- Margarita M López-Uribe
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Vincent A Ricigliano
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana 70820, USA; ,
| | - Michael Simone-Finstrom
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana 70820, USA; ,
| |
Collapse
|
38
|
Chakrabarti P, Morré JT, Lucas HM, Maier CS, Sagili RR. The omics approach to bee nutritional landscape. Metabolomics 2019; 15:127. [PMID: 31538263 PMCID: PMC6753177 DOI: 10.1007/s11306-019-1590-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/11/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Significant annual honey bee colony losses have been reported in the USA and across the world over the past years. Malnutrition is one among several causative factors for such declines. Optimal nutrition serves as the first line of defense against multiple stressors such as parasites/pathogens and pesticides. Given the importance of nutrition, it is imperative to understand bee nutrition holistically, identifying dietary sources that may fulfill bee nutritional needs. Pollen is the primary source of protein for bees and is critical for brood rearing and colony growth. Currently, there is significant gap in knowledge regarding the chemical and nutritional composition of pollen. METHODS Targeted sterol analysis and untargeted metabolomics were conducted on five commercially available crop pollens, three bee-collected crop pollens, three vegetable oils (often added to artificial protein supplements by beekeepers), and one commonly used artificial protein supplement. RESULTS This study reports key phytosterols and metabolites present across a spectrum of bee diets, including some of the major bee-pollinated crop pollens in the western United States. Significant differences were observed in sterol concentrations among the dietary sources tested. Among all quantified sterols, the highest concentrations were observed for 24-methylenecholesterol and further, pollen samples exhibited the highest 24-methylenecholesterol among all diet sources that were tested. Also, 236 metabolites were identified across all dietary sources examined. CONCLUSION Information gleaned from this study is crucial in understanding the nutritional landscape available to all bee pollinators and may further assist in future efforts to develop comprehensive database of nutrients and metabolites present in all bee diets.
Collapse
Affiliation(s)
| | - Jeffery T Morré
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Hannah M Lucas
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Ramesh R Sagili
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
39
|
Hendriksma HP, Pachow CD, Nieh JC. Effects of essential amino acid supplementation to promote honey bee gland and muscle development in cages and colonies. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103906. [PMID: 31254521 DOI: 10.1016/j.jinsphys.2019.103906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/20/2019] [Accepted: 06/23/2019] [Indexed: 05/24/2023]
Abstract
There is growing concern about the impact of poor nutrition on honey bee health. With caged bee experiments and whole-colony field experiments, we examined the effects of supplementing bees with essential amino acids (EAA), or a control treatment of nonessential amino acids (NAA). Caged bees fed EAA developed significantly greater head weights than controls, weights that were similar to nurse bees. Caged bees fed EAA developed significantly greater thorax weights than controls, weights that were similar to foragers. Higher head and thorax weights may respectively reflect increased glandular development in nurse bees and higher flight muscle mass in forager bees. In our field study, 29% of the pollen collected by our honey bee colonies came from eucalyptus trees. Amino acid analyses revealed no EAA deficiencies for the bee-collected polyfloral pollen or for monofloral eucalyptus pollen. Colonies fed 29 g EAA supplement may have slightly increased individual bee growth and brood rearing, but this effect was not significant. A clear colony result was a correlation between nurse bee physiology and brood development: 17% increase in nurse bee weight corresponded to 100% more capped brood cells (R2 = 0.38). We suggest that colony supplementation should target nurse bee nutrition. Nurse bees eventually become forager bees. Hence, increased glandular development may support colony brood development and greater flight muscle mass may assist colony foraging.
Collapse
Affiliation(s)
- Harmen P Hendriksma
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, 9500 Gilman Drive, MC0116, La Jolla, CA 92093-0116, USA.
| | - Collin D Pachow
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, 9500 Gilman Drive, MC0116, La Jolla, CA 92093-0116, USA
| | - James C Nieh
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, 9500 Gilman Drive, MC0116, La Jolla, CA 92093-0116, USA
| |
Collapse
|
40
|
Brunet J, Ziobro R, Osvatic J, Clayton MK. The effects of time, temperature and plant variety on pollen viability and its implications for gene flow risk. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:715-722. [PMID: 30653805 DOI: 10.1111/plb.12959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Pollen viability affects the probability that a pollen grain deposited on a plant's stigma will produce a viable seed. Because a mature seed is needed before a gene flow event can occur, pollen viability will influence the risk of escape for genetically engineered (GE) crops. Pollen viability was measured at intervals for up to 2 h following removal of the pollen from the anthers. It was quantified at three temperatures and for different alfalfa varieties, including both conventional and Roundup Ready (RR) varieties. Pollen viability was assessed using in vitro germination. Time since removal from the anthers was the most prevalent factor affecting pollen viability in alfalfa. Pollen viability declined with increasing time at all three temperatures and for all varieties tested. Pollen viability was not affected by temperatures ranging between 25 and 37 °C and did not vary among plant varieties, including conventional and RR varieties. Bee foraging behaviour suggested pollen viability within the first 10 min following pollen removal from a flower to most affect seed production. Pollen longevity was predicted to have little impact on seed set and gene flow. Linking pollinator behaviour to pollen viability improved our understanding of its impact on gene flow risk.
Collapse
Affiliation(s)
- J Brunet
- United States Department of Agriculture - Agricultural Research Service, Madison, WI, USA
- Department of Entomology, University of Wisconsin, Madison, WI, USA
| | - R Ziobro
- Department of Entomology, University of Wisconsin, Madison, WI, USA
| | - J Osvatic
- Department of Entomology, University of Wisconsin, Madison, WI, USA
| | - M K Clayton
- Department of Statistics, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
41
|
Bernklau E, Bjostad L, Hogeboom A, Carlisle A, H S A. Dietary Phytochemicals, Honey Bee Longevity and Pathogen Tolerance. INSECTS 2019; 10:E14. [PMID: 30626025 PMCID: PMC6359238 DOI: 10.3390/insects10010014] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 01/25/2023]
Abstract
Continued loss of natural habitats with native prairies and wildflower patches is eliminating diverse sources of pollen, nectar and phytochemicals therein for foraging bees. The longstanding plant-pollinator mutualism reiterates the role of phytochemicals in sustaining plant-pollinator relationship and promoting honey bee health. We studied the effects of four phytochemicals-caffeine, gallic acid, kaempferol and p-coumaric acid, on survival and pathogen tolerance in the European honey bee, Apis mellifera (L.). We recorded longevity of worker bees that were provided ad libitum access to sugar solution supplemented with different concentrations of phytochemicals. We artificially infected worker bees with the protozoan parasite, Nosema ceranae. Infected bees were provided access to the same concentrations of the phytochemicals in the sugar solution, and their longevity and spore load at mortality were determined. Bees supplemented with dietary phytochemicals survived longer and lower concentrations were generally more beneficial. Dietary phytochemicals enabled bees to combat infection as seen by reduced spore-load at mortality. Many of the phytochemicals are plant defense compounds that pollinators have evolved to tolerate and derive benefits from. Our findings support the chemical bases of co-evolutionary interactions and reiterate the importance of diversity in floral nutrition sources to sustain healthy honey bee populations by strengthening the natural mutualistic relationships.
Collapse
Affiliation(s)
- Elisa Bernklau
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA.
| | - Louis Bjostad
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA.
| | - Alison Hogeboom
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Ashley Carlisle
- Department of Fisheries, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Arathi H S
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
42
|
Li J, Heerman MC, Evans JD, Rose R, Li W, Rodríguez-García C, DeGrandi-Hoffman G, Zhao Y, Huang S, Li Z, Hamilton M, Chen Y. Pollen reverses decreased lifespan, altered nutritional metabolism, and suppressed immunity in honey bees (Apis mellifera) treated with antibiotics. J Exp Biol 2019; 222:jeb.202077. [DOI: 10.1242/jeb.202077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Nutrition is involved in regulating multiple aspects of honeybee biology such as caste, immunity, lifespan, growth and behavioral development. Deformed wing virus (DWV) is a major pathogenic factor which threatens honeybee populations, and its replication is regulated by nutrition status and immune responses of honeybees. The alimentary canal of the honeybee is home to a diverse microbial community that provides essential nutrients and serves to bolster immune responses. However, to what extent gut bacteria affect honeybee nutrition metabolism and immunity with respect to DWV has not been investigated fully. In this study, newly emerged worker bees were subjected to four diets that contained 1) pollen, 2) pollen and antibiotics, 3) neither pollen nor antibiotics, 4) antibiotics alone. The expression level of two nutrition genes target of rapamycin (tor) and insulin like peptide (ilp1), one nutritional marker gene vitellogenin (vg), five major royal jelly proteins genes (mrjp1-5), one antimicrobial peptide regulating gene relish (rel), and DWV virus titer and its replication intermediate, negative RNA strand, were determined by qRT-PCR from the honeybees after 7 days post antibiotic treatment. Additionally, honeybee head weight and survival rate were measured. We observed that antibiotics decreased the expression of tor and rel, increased DWV titer and its replication activity. Expression of ilp1, five mrjps, vg, and honeybee head weight were also reduced compared to bees on a pollen diet. Antibiotics also caused a significant drop in survivorship, which could be rescued by addition of pollen to diets. Of importance, pollen could partially rescue the loss of vg and mrjp2 while also increasing head weight of antibiotic-treated bees. Our results illuminate the roles of bacteria in honeybee nutrition, metabolism, and immunity; which confer the capability of inhibiting virus replication, extending honeybee lifespan, and improving overall health.
Collapse
Affiliation(s)
- Jianghong Li
- USDA-ARS Bee Research Laboratory, Bldg. 306, BARC-East, Beltsville, MD 20705, USA
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Matthew C. Heerman
- USDA-ARS Bee Research Laboratory, Bldg. 306, BARC-East, Beltsville, MD 20705, USA
| | - Jay D. Evans
- USDA-ARS Bee Research Laboratory, Bldg. 306, BARC-East, Beltsville, MD 20705, USA
| | - Robyn Rose
- USDA APHIS, Plant Protection and Quarantine, 4700 River Rd, Riverdale, MD 20737, USA
| | - Wenfeng Li
- USDA-ARS Bee Research Laboratory, Bldg. 306, BARC-East, Beltsville, MD 20705, USA
| | | | | | - Yazhou Zhao
- USDA-ARS Bee Research Laboratory, Bldg. 306, BARC-East, Beltsville, MD 20705, USA
- Institute of Apicultural Research, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Shaokang Huang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiguo Li
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Michele Hamilton
- USDA-ARS Bee Research Laboratory, Bldg. 306, BARC-East, Beltsville, MD 20705, USA
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Bldg. 306, BARC-East, Beltsville, MD 20705, USA
| |
Collapse
|
43
|
Rodriguez Messan M, Page RE, Kang Y. Effects of vitellogenin in age polyethism and population dynamics of honeybees. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Arathi HS, Bjostad L, Bernklau E. Metabolomic analysis of pollen from honey bee hives and from canola flowers. Metabolomics 2018; 14:86. [PMID: 30830342 DOI: 10.1007/s11306-018-1381-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/05/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Pollen is essential for successful plant reproduction and critical for plant-pollinator mutualisms, as pollen is essential larval nutrition. However, we understand very little about the chemical constituents of pollen leading us to this exploratory study characterizing plant and beehive pollen. METHODS We performed a metabolomics assay of canola flower pollen and beehive pollen. RESULTS AND DISCUSSION The metabolome of canola pollen is affected by irrigation showing differences in lipids and non-polar secondary metabolites. Metabolome of beehive pollen is affected by plant source showing differences in pentose sugars, myo-inositol and furanose. Further research is needed to document the nutritional bases of plant-pollinator mutualism.
Collapse
Affiliation(s)
- H S Arathi
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| | - L Bjostad
- Bioagricultural Sciences and Pest Management Department, Colorado State University, Fort Collins, CO, 80523, USA
| | - E Bernklau
- Bioagricultural Sciences and Pest Management Department, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
45
|
The effects of artificial rearing environment on the behavior of adult honey bees, Apis mellifera L. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2507-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Meikle WG, Holst N, Colin T, Weiss M, Carroll MJ, McFrederick QS, Barron AB. Using within-day hive weight changes to measure environmental effects on honey bee colonies. PLoS One 2018; 13:e0197589. [PMID: 29791462 PMCID: PMC5965838 DOI: 10.1371/journal.pone.0197589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/06/2018] [Indexed: 11/18/2022] Open
Abstract
Patterns in within-day hive weight data from two independent datasets in Arizona and California were modeled using piecewise regression, and analyzed with respect to honey bee colony behavior and landscape effects. The regression analysis yielded information on the start and finish of a colony’s daily activity cycle, hive weight change at night, hive weight loss due to departing foragers and weight gain due to returning foragers. Assumptions about the meaning of the timing and size of the morning weight changes were tested in a third study by delaying the forager departure times from one to three hours using screen entrance gates. A regression of planned vs. observed departure delays showed that the initial hive weight loss around dawn was largely due to foragers. In a similar experiment in Australia, hive weight loss due to departing foragers in the morning was correlated with net bee traffic (difference between the number of departing bees and the number of arriving bees) and from those data the payload of the arriving bees was estimated to be 0.02 g. The piecewise regression approach was then used to analyze a fifth study involving hives with and without access to natural forage. The analysis showed that, during a commercial pollination event, hives with previous access to forage had a significantly higher rate of weight gain as the foragers returned in the afternoon, and, in the weeks after the pollination event, a significantly higher rate of weight loss in the morning, as foragers departed. This combination of continuous weight data and piecewise regression proved effective in detecting treatment differences in foraging activity that other methods failed to detect.
Collapse
Affiliation(s)
- William G. Meikle
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, United States of America
- * E-mail:
| | - Niels Holst
- Dept. of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, Denmark
| | - Théotime Colin
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Milagra Weiss
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, United States of America
| | - Mark J. Carroll
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, United States of America
| | - Quinn S. McFrederick
- Department of Entomology, University of California, Riverside, CA, United States of America
| | - Andrew B. Barron
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
47
|
Schultner E, Oettler J, Helanterä H. The Role of Brood in Eusocial Hymenoptera. QUARTERLY REVIEW OF BIOLOGY 2018; 92:39-78. [PMID: 29558609 DOI: 10.1086/690840] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Study of social traits in offspring traditionally reflects on interactions in simple family groups, with famous examples including parent-offspring conflict and sibling rivalry in birds and mammals. In contrast, studies of complex social groups such as the societies of ants, bees, and wasps focus mainly on adults and, in particular, on traits and interests of queens and workers. The social role of developing individuals in complex societies remains poorly understood. We attempt to fill this gap by illustrating that development in social Hymenoptera constitutes a crucial life stage with important consequences for the individual as well as the colony. We begin by describing the complex social regulatory network that modulates development in Hymenoptera societies. By highlighting the inclusive fitness interests of developing individuals, we show that they may differ from those of other colony members. We then demonstrate that offspring have evolved specialized traits that allow them to play a functional, cooperative role within colonies and give them the potential power to act toward increasing their inclusive fitness. We conclude by providing testable predictions for investigating the role of brood in colony interactions and giving a general outlook on what can be learned from studying offspring traits in hymenopteran societies.
Collapse
|
48
|
Bordier C, Klein S, Le Conte Y, Barron AB, Alaux C. Stress decreases pollen foraging performance in honeybees. ACTA ACUST UNITED AC 2018; 221:jeb.171470. [PMID: 29361592 DOI: 10.1242/jeb.171470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/02/2018] [Indexed: 12/16/2022]
Abstract
Foraging in honeybees is energetically demanding. Here, we examined whether stressors, which generally increase metabolic demands, can impair foraging performance. A controlled non-pathogenic stressor (immune challenge) resulted in a change in the foraging preferences of bees. It reduced pollen foraging and increased the duration of trips in pollen foragers. Stress also reduced the amount of octopamine in the brain of pollen foragers (a biogenic amine involved in the regulation of foraging and flight behaviour in insects). According to the literature, flight metabolic rate is higher during pollen foraging than during nectar foraging, and nectar gives a higher energetic return relative to the foraging effort when compared with pollen. We thus propose that stress might be particularly detrimental to the performance of pollen foragers, and stressed bees prefer the energy-rich resource of nectar. In conclusion, stress, even at low levels, could have consequences for bee foraging behaviour and thereby the nutritional balance of the colony.
Collapse
Affiliation(s)
- Célia Bordier
- INRA, UR 406 Abeilles et Environnement, 84914 Avignon, France
| | - Simon Klein
- Research Center on Animal Cognition, Center for Integrative Biology, National Center for Scientific Research (CNRS), University Paul Sabatier (UPS), 31062 Toulouse, France.,Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, 84914 Avignon, France
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Cédric Alaux
- INRA, UR 406 Abeilles et Environnement, 84914 Avignon, France
| |
Collapse
|
49
|
Zaluski R, Justulin LA, Orsi RDO. Field-relevant doses of the systemic insecticide fipronil and fungicide pyraclostrobin impair mandibular and hypopharyngeal glands in nurse honeybees (Apis mellifera). Sci Rep 2017; 7:15217. [PMID: 29123242 PMCID: PMC5680249 DOI: 10.1038/s41598-017-15581-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/30/2017] [Indexed: 12/27/2022] Open
Abstract
Global decreases in bee populations emphasize the importance of assessing how environmental stressors affect colony maintenance, especially considering the extreme task specialization observed in honeybee societies. Royal jelly, a protein secretion essential to colony nutrition, is produced by nurse honeybees, and development of bee mandibular glands, which comprise a reservoir surrounded by secretory cells and hypopharyngeal glands that are shaped by acini, is directly associated with production of this secretion. Here, we examined individual and combined effects of the systemic fungicide pyraclostrobin and insecticide fipronil in field-relevant doses (850 and 2.5 ppb, respectively) on mandibular and hypopharyngeal glands in nurse honeybees. Six days of pesticide treatment decreased secretory cell height in mandibular glands. When pyraclostrobin and fipronil were combined, the reservoir volume in mandibular glands also decreased. The total number of acini in hypopharyngeal glands was not affected, but pesticide treatment reduced the number of larger acini while increasing smaller acini. These morphological impairments appeared to reduce royal jelly secretion by nurse honeybees and consequently hampered colony maintenance. Overall, pesticide exposure in doses close to those experienced by bees in the field impaired brood-food glands in nurse honeybees, a change that could negatively influence development, survival, and colony maintenance.
Collapse
Affiliation(s)
- Rodrigo Zaluski
- Núcleo de Ensino, Ciência e Tecnologia em Apicultura Racional (NECTAR), São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Production, Botucatu, SP, Brazil
| | - Luis Antonio Justulin
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, SP, Brazil
| | - Ricardo de Oliveira Orsi
- Núcleo de Ensino, Ciência e Tecnologia em Apicultura Racional (NECTAR), São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Production, Botucatu, SP, Brazil.
| |
Collapse
|
50
|
Colwell MJ, Williams GR, Evans RC, Shutler D. Honey bee-collected pollen in agro-ecosystems reveals diet diversity, diet quality, and pesticide exposure. Ecol Evol 2017; 7:7243-7253. [PMID: 28944014 PMCID: PMC5606875 DOI: 10.1002/ece3.3178] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 05/01/2017] [Accepted: 05/26/2017] [Indexed: 11/09/2022] Open
Abstract
European honey bees Apis mellifera are important commercial pollinators that have suffered greater than normal overwintering losses since 2007 in North America and Europe. Contributing factors likely include a combination of parasites, pesticides, and poor nutrition. We examined diet diversity, diet nutritional quality, and pesticides in honey bee-collected pollen from commercial colonies in the Canadian Maritime Provinces in spring and summer 2011. We sampled pollen collected by honey bees at colonies in four site types: apple orchards, blueberry fields, cranberry bogs, and fallow fields. Proportion of honey bee-collected pollen from crop versus noncrop flowers was high in apple, very low in blueberry, and low in cranberry sites. Pollen nutritional value tended to be relatively good from apple and cranberry sites and poor from blueberry and fallow sites. Floral surveys ranked, from highest to lowest in diversity, fallow, cranberry, apple, and blueberry sites. Pesticide diversity in honey bee-collected pollen was high from apple and blueberry sites and low from cranberry and fallow sites. Four different neonicotinoid pesticides were detected, but neither these nor any other pesticides were at or above LD50 levels. Pollen hazard quotients were highest in apple and blueberry sites and lowest in fallow sites. Pollen hazard quotients were also negatively correlated with the number of flower taxa detected in surveys. Results reveal differences among site types in diet diversity, diet quality, and pesticide exposure that are informative for improving honey bee and land agro-ecosystem management.
Collapse
Affiliation(s)
- Megan J Colwell
- Department of Biology Acadia University Wolfville NS Canada.,Present address: Department of Entomology University of Manitoba Winnipeg MB Canada R3T 2N2
| | - Geoffrey R Williams
- Department of Biology Acadia University Wolfville NS Canada.,Department of Biology Dalhousie University Halifax NS Canada.,Institute of Bee Health Vetsuisse Faculty University of Bern Bern Switzerland.,Agroscope, Swiss Bee Research Centre Bern Switzerland.,Present address: Department of Entomology & Plant Pathology Auburn University Auburn AL 36849 USA
| | - Rodger C Evans
- Department of Biology Acadia University Wolfville NS Canada
| | - Dave Shutler
- Department of Biology Acadia University Wolfville NS Canada
| |
Collapse
|