1
|
Gao D, Luster J, Zürcher A, Arend M, Bai E, Gessler A, Rigling A, Schaub M, Hartmann M, Werner RA, Joseph J, Poll C, Hagedorn F. Drought resistance and resilience of rhizosphere communities in forest soils from the cellular to ecosystem scale - insights from 13C pulse labeling. THE NEW PHYTOLOGIST 2024; 242:960-974. [PMID: 38402527 DOI: 10.1111/nph.19612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
The link between above- and belowground communities is a key uncertainty in drought and rewetting effects on forest carbon (C) cycle. In young beech model ecosystems and mature naturally dry pine forest exposed to 15-yr-long irrigation, we performed 13C pulse labeling experiments, one during drought and one 2 wk after rewetting, tracing tree assimilates into rhizosphere communities. The 13C pulses applied in tree crowns reached soil microbial communities of the young and mature forests one and 4 d later, respectively. Drought decreased the transfer of labeled assimilates relative to the irrigation treatment. The 13C label in phospholipid fatty acids (PLFAs) indicated greater drought reduction of assimilate incorporation by fungi (-85%) than by gram-positive (-43%) and gram-negative bacteria (-58%). 13C label incorporation was more strongly reduced for PLFAs (cell membrane) than for microbial cytoplasm extracted by chloroform. This suggests that fresh rhizodeposits are predominantly used for osmoregulation or storage under drought, at the expense of new cell formation. Two weeks after rewetting, 13C enrichment in PLFAs was greater in previously dry than in continuously moist soils. Drought and rewetting effects were greater in beech systems than in pine forest. Belowground C allocation and rhizosphere communities are highly resilient to drought.
Collapse
Affiliation(s)
- Decai Gao
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Jörg Luster
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
| | - Alois Zürcher
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
| | - Matthias Arend
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
- Physiological Plant Ecology, University of Basel, 4056, Basel, Switzerland
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
- Terrestrial Ecosystems, ETH Zürich, 8092, Zürich, Switzerland
| | - Andreas Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
- Terrestrial Ecosystems, ETH Zürich, 8092, Zürich, Switzerland
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
| | - Martin Hartmann
- Sustainable Agroecosystems Group, Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, 8092, Zürich, Switzerland
| | - Roland A Werner
- Agricultural Sciences, ETH Zürich, 8092, Zürich, Switzerland
| | - Jobin Joseph
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
| | - Christian Poll
- Soil Biology, University of Hohenheim, 70599, Stuttgart, Germany
| | - Frank Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
| |
Collapse
|
2
|
Cardoni M, Mercado-Blanco J. Confronting stresses affecting olive cultivation from the holobiont perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1261754. [PMID: 38023867 PMCID: PMC10661416 DOI: 10.3389/fpls.2023.1261754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
The holobiont concept has revolutionized our understanding of plant-associated microbiomes and their significance for the development, fitness, growth and resilience of their host plants. The olive tree holds an iconic status within the Mediterranean Basin. Innovative changes introduced in olive cropping systems, driven by the increasing demand of its derived products, are not only modifying the traditional landscape of this relevant commodity but may also imply that either traditional or emerging stresses can affect it in ways yet to be thoroughly investigated. Incomplete information is currently available about the impact of abiotic and biotic pressures on the olive holobiont, what includes the specific features of its associated microbiome in relation to the host's structural, chemical, genetic and physiological traits. This comprehensive review consolidates the existing knowledge about stress factors affecting olive cultivation and compiles the information available of the microbiota associated with different olive tissues and organs. We aim to offer, based on the existing evidence, an insightful perspective of diverse stressing factors that may disturb the structure, composition and network interactions of the olive-associated microbial communities, underscoring the importance to adopt a more holistic methodology. The identification of knowledge gaps emphasizes the need for multilevel research approaches and to consider the holobiont conceptual framework in future investigations. By doing so, more powerful tools to promote olive's health, productivity and resilience can be envisaged. These tools may assist in the designing of more sustainable agronomic practices and novel breeding strategies to effectively face evolving environmental challenges and the growing demand of high quality food products.
Collapse
Affiliation(s)
- Martina Cardoni
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Jesús Mercado-Blanco
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
3
|
Santos-Medellín C, Blazewicz SJ, Pett-Ridge J, Firestone MK, Emerson JB. Viral but not bacterial community successional patterns reflect extreme turnover shortly after rewetting dry soils. Nat Ecol Evol 2023; 7:1809-1822. [PMID: 37770548 DOI: 10.1038/s41559-023-02207-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023]
Abstract
As central members of soil trophic networks, viruses have the potential to drive substantial microbial mortality and nutrient turnover. Pinpointing viral contributions to terrestrial ecosystem processes remains a challenge, as temporal dynamics are difficult to unravel in the spatially and physicochemically heterogeneous soil environment. In Mediterranean grasslands, the first rainfall after seasonal drought provides an ecosystem reset, triggering microbial activity during a tractable window for capturing short-term dynamics. Here, we simulated precipitation in microcosms from four distinct dry grassland soils and generated 144 viromes, 84 metagenomes and 84 16S ribosomal RNA gene amplicon datasets to characterize viral, prokaryotic and relic DNA dynamics over 10 days. Vastly different viral communities in each soil followed remarkably similar successional trajectories. Wet-up triggered a significant increase in viral richness, followed by extensive compositional turnover. Temporal succession in prokaryotic communities was much less pronounced, perhaps suggesting differences in the scales of activity captured by viromes (representing recently produced, ephemeral viral particles) and total DNA. Still, differences in the relative abundances of Actinobacteria (enriched in dry soils) and Proteobacteria (enriched in wetted soils) matched those of their predicted phages, indicating viral predation of dominant bacterial taxa. Rewetting also rapidly depleted relic DNA, which subsequently reaccumulated, indicating substantial new microbial mortality in the days after wet-up, particularly of the taxa putatively under phage predation. Production of abundant, diverse viral particles via microbial host cell lysis appears to be a conserved feature of the early response to soil rewetting, and results suggest the potential for 'Cull-the-Winner' dynamics, whereby viruses infect and cull but do not decimate dominant host populations.
Collapse
Affiliation(s)
| | - Steven J Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California, Merced, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Mary K Firestone
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, CA, USA.
| |
Collapse
|
4
|
Hu J, Miller G, Shi W. Abundance, diversity, and composition of root-associated microbial communities varied with tall fescue cultivars under water deficit. Front Microbiol 2023; 13:1078836. [PMID: 36713160 PMCID: PMC9878326 DOI: 10.3389/fmicb.2022.1078836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
The plant breeding program has developed many cultivars of tall fescue (Festuca arundinacea) with low maintenance and stress tolerance. While the root-associated microbial community helps confer stress tolerance in the host plant, it is still largely unknown how the microbiota varies with plant cultivars under water stress. The study aimed to characterize drought-responsive bacteria and fungi in the roots and rhizosphere of different tall fescue cultivars. Intact grass-soil cores were collected from six cultivars grown in a field trial under no-irrigation for 3 years. Tall fescue under irrigation was also sampled from an adjacent area as the contrast. Bacterial and fungal communities in roots, rhizosphere, and bulk soil were examined for abundance, diversity, and composition using quantitative-PCR and high-throughput amplicon sequencing of 16S rRNA gene and ITS regions, respectively. Differences in microbial community composition and structure between non-irrigated and irrigated samples were statistically significant in all three microhabitats. No-irrigation enriched Actinobacteria in all three microhabitats, but mainly enriched Basidiomycota in the root endosphere and only Glomeromycota in bulk soil. Tall fescue cultivars slightly yet significantly modified endophytic microbial communities. Cultivars showing better adaptability to drought encompassed more relatively abundant Actinobacteria, Basidiomycota, or Glomeromycota in roots and the rhizosphere. PICRUSt2-based predictions revealed that the relative abundance of functional genes in roots related to phytohormones, antioxidant enzymes, and nutrient acquisition was enhanced under no-irrigation. Significant associations between Streptomyces and putative drought-ameliorating genes underscore possible mechanics for microbes to confer tall fescue with water stress tolerance. This work sheds important insight into the potential use of endophytic microbes for screening drought-adaptive genotypes and cultivars.
Collapse
|
5
|
Santos-Medellín C, Estera-Molina K, Yuan M, Pett-Ridge J, Firestone MK, Emerson JB. Spatial turnover of soil viral populations and genotypes overlain by cohesive responses to moisture in grasslands. Proc Natl Acad Sci U S A 2022; 119:e2209132119. [PMID: 36322723 PMCID: PMC9659419 DOI: 10.1073/pnas.2209132119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/09/2022] [Indexed: 11/19/2022] Open
Abstract
Viruses shape microbial communities, food web dynamics, and carbon and nutrient cycling in diverse ecosystems. However, little is known about the patterns and drivers of viral community composition, particularly in soil, precluding a predictive understanding of viral impacts on terrestrial habitats. To investigate soil viral community assembly processes, here we analyzed 43 soil viromes from a rainfall manipulation experiment in a Mediterranean grassland in California. We identified 5,315 viral populations (viral operational taxonomic units [vOTUs] with a representative sequence ≥10 kbp) and found that viral community composition exhibited a highly significant distance-decay relationship within the 200-m2 field site. This pattern was recapitulated by the intrapopulation microheterogeneity trends of prevalent vOTUs (detected in ≥90% of the viromes), which tended to exhibit negative correlations between spatial distance and the genomic similarity of their predominant allelic variants. Although significant spatial structuring was also observed in the bacterial and archaeal communities, the signal was dampened relative to the viromes, suggesting differences in local assembly drivers for viruses and prokaryotes and/or differences in the temporal scales captured by viromes and total DNA. Despite the overwhelming spatial signal, evidence for environmental filtering was revealed in a protein-sharing network analysis, wherein a group of related vOTUs predicted to infect actinobacteria was shown to be significantly enriched in low-moisture samples distributed throughout the field. Overall, our results indicate a highly diverse, dynamic, active, and spatially structured soil virosphere capable of rapid responses to changing environmental conditions.
Collapse
Affiliation(s)
| | - Katerina Estera-Molina
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | - Mengting Yuan
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
- Life & Environmental Sciences Department, University of California, Merced, CA 95343
| | - Mary K. Firestone
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | - Joanne B. Emerson
- Department of Plant Pathology, University of California, Davis, CA 95616
| |
Collapse
|
6
|
Li X, Yan Y, Lu X, Fu L, Liu Y. Responses of soil bacterial communities to precipitation change in the semi-arid alpine grassland of Northern Tibet. FRONTIERS IN PLANT SCIENCE 2022; 13:1036369. [PMID: 36325540 PMCID: PMC9619073 DOI: 10.3389/fpls.2022.1036369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
A change in precipitation can profoundly change the structure of soil microbial communities, especially in arid and semi-arid areas which are limited by moisture conditions. Therefore, it is crucial to explore how soil bacterial community composition and diversity will respond to variation in precipitation. Here we conducted a precipitation control experiment to simulate precipitation change by reducing and increasing rainfall by 25%, 50%, and 75% in the alpine grasslands of northern Tibet. The composition, diversity, and species interaction network of soil microbial community were studied by high-throughput sequencing, and the relationship between microbial community species and soil environmental factors was analyzed. Our results showed that Proteobacteria (45%-52%) and Actinobacteria (37%-45%) were the dominant bacteria in the soil. The alpha diversity index based on Shannon, Chao1, and Simpson indices revealed that precipitation change had no significant effect on richness and evenness of soil microbial communities. Non-metric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM) showed that a clear separation of soil microbial communities between D2(-50%),D3(-75%) and W2(+50%), W3(+75%) treatments. The microbial interaction network indicated that the water-increasing treatment group had closer connections, and Proteobacteria and Actinomycetes were the core species. Furthermore, there was a stronger positive correlation between species in the water-reducing treatment group, the contribution of Proteobacteria decreased significantly, the role of connecting hub decreased, and Actinomycetes became the most important core microbial species. In addition, soil water content (SWC) and available phosphorus (AP) were closely related to the variations in soil microbial compositions. The findings of this study provide a theoretical basis for the driving mechanism of global climate change on soil microbial community and grassland ecosystem in alpine grassland.
Collapse
Affiliation(s)
- Xueqin Li
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yan Yan
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Xuyang Lu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Lijiao Fu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yanling Liu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Ao L, Zhao M, Li X, Sun G. Different Urban Forest Tree Species Affect the Assembly of the Soil Bacterial and Fungal Community. MICROBIAL ECOLOGY 2022; 83:447-458. [PMID: 34031701 DOI: 10.1007/s00248-021-01754-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
The selection of tree species used for the afforestation of urban forests is very important for maintaining the urban ecosystem, while soil microbe is one of the driving factors of material cycling in the urban forest ecosystem and for health of forests. In this study, the characteristics of surface soil bacterial and fungal community structure in four urban forests (primarily composed of Fraxinus mandshurica (Fm), Quercus mongolica (Qm), Pinus sylvestris var. mongolica (Ps), and Pinus tabulaeformis var. Mukdensis (Pt) as the main dominant tree species, respectively) were investigated by high-throughput sequencing. Our results showed that the alpha diversity of the soil microbial community in the Fm urban forest was the highest, while the lowest was in the Ps urban forest. In the bacterial community, Proteobacteria was the most predominant phylum in soils from Fm, Ps, and Pt urban forests. The most relatively abundant phylum of the Qm urban forest soil was Acidobacteria. The relative abundances of the bacterial communities at the genus level in the soil of four urban forests were significantly different. The soil bacterial communities in Ps and Pt urban forests were more similar, and Qm and Fm were also more similar. In the fungal community, Basidiomycota was the most predominant phylum in soils from Qm, Ps, and Pt urban forests. The phylum with the greatest relative abundance in the Fm urban forest soil was Ascomycota. There were differences in the fungal community between Qm, Fm, Ps, and Pt urban forests. Soil microbial community composition was affected by environmental factors: soil bacterial and fungal community compositions were significantly related to soil electrical conductivity (EC), alkali hydrolysable nitrogen (AHN), total nitrogen (TN), and total phosphorus (TP). In conclusion, the soil microbial community structure was related to both forest's tree species and soil properties.
Collapse
Affiliation(s)
- Lun Ao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Meichun Zhao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Xin Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
- School of Forestry, Northeast Forestry University, Harbin, Heilongjiang, 150040, China.
| | - Guangyu Sun
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
8
|
Bose AK, Rigling A, Gessler A, Hagedorn F, Brunner I, Feichtinger L, Bigler C, Egli S, Etzold S, Gossner MM, Guidi C, Lévesque M, Meusburger K, Peter M, Saurer M, Scherrer D, Schleppi P, Schönbeck L, Vogel ME, Arx G, Wermelinger B, Wohlgemuth T, Zweifel R, Schaub M. Lessons learned from a long‐term irrigation experiment in a dry Scots pine forest: Impacts on traits and functioning. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Arun K. Bose
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Forestry and Wood Technology Discipline Khulna University Khulna Bangladesh
| | - Andreas Rigling
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Institute of Terrestrial Ecosystems ETH Zurich, Universitätstrasse 16 Zurich Switzerland
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Institute of Terrestrial Ecosystems ETH Zurich, Universitätstrasse 16 Zurich Switzerland
| | - Frank Hagedorn
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Ivano Brunner
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Linda Feichtinger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Christof Bigler
- Department of Environmental Systems Science, Forest Ecology, Universitätstrasse 22 ETH Zurich Zurich Switzerland
| | - Simon Egli
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Sophia Etzold
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Martin M. Gossner
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Institute of Terrestrial Ecosystems ETH Zurich, Universitätstrasse 16 Zurich Switzerland
| | - Claudia Guidi
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Mathieu Lévesque
- Department of Environmental Systems Science, Forest Ecology, Universitätstrasse 22 ETH Zurich Zurich Switzerland
| | - Katrin Meusburger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Martina Peter
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Matthias Saurer
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Daniel Scherrer
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Patrick Schleppi
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Leonie Schönbeck
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering ENAC École Polytechnique Fédérale de Lausanne EPFL, Station 2 Lausanne Switzerland
| | - Michael E. Vogel
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Georg Arx
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Beat Wermelinger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Thomas Wohlgemuth
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Roman Zweifel
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Marcus Schaub
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| |
Collapse
|
9
|
Osburn ED, Badgley BD, Aylward FO, Barrett JE. Historical forest disturbance mediates soil microbial community responses to drought. Environ Microbiol 2021; 23:6405-6419. [PMID: 34347364 DOI: 10.1111/1462-2920.15706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/11/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023]
Abstract
Despite the abundance of studies demonstrating the effects of drought on soil microbial communities, the role of land use legacies in mediating these drought effects is unclear. To assess historical land use influences on microbial drought responses, we conducted a drought-rewetting experiment in soils from two adjacent and currently forested watersheds with distinct land use histories: an undisturbed 'reference' site and a 'disturbed' site that was clear-cut and converted to agriculture ~60 years prior. We incubated intact soil cores at either constant moisture or under a drought-rewet treatment and characterized bacterial and fungal communities using amplicon sequencing throughout the experiment. Bacterial alpha diversity decreased following drought-rewetting while fungal diversity increased. Bacterial beta diversity also changed markedly following drought-rewetting, especially in historically disturbed soils, while fungal beta diversity exhibited little response. Additionally, bacterial beta diversity in disturbed soils recovered less from drought-rewetting compared with reference soils. Disturbed soil communities also exhibited notable reductions in nitrifying taxa, increases in putative r-selected bacteria, and reductions in network connectivity following drought-rewetting. Overall, our study reveals historical land use to be important in mediating responses of soil bacterial communities to drought, which will influence the ecosystem-scale trajectories of these environments under ongoing and future climate change.
Collapse
Affiliation(s)
- Ernest D Osburn
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Brian D Badgley
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - J E Barrett
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
10
|
Reis F, Magalhães AP, Tavares RM, Baptista P, Lino-Neto T. Bacteria could help ectomycorrhizae establishment under climate variations. MYCORRHIZA 2021; 31:395-401. [PMID: 33782833 DOI: 10.1007/s00572-021-01027-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Rhizosphere microbiome is one of the main sources of plant protection against drought. Beneficial symbiotic microorganisms, such as ectomycorrhizal fungi (ECMF) and mycorrhiza helper bacteria (MHB), interact with each other for increasing or maintaining host plant fitness. This mutual support benefits all three partners and comprises a natural system for drought acclimation in plants. Cork oak (Quercus suber L.) tolerance to drought scenarios is widely known, but adaptation to climate changes has been a challenge for forest sustainability protection. In this work, ECMF and MHB communities from cork oak forests were cross-linked and correlated with climates. Cenococcum, Russula and Tuber were the most abundant ECMF capable of interacting with MHB (ECMF~MHB) genera in cork oak stands, while Bacillus, Burkholderia and Streptomyces were the most conspicuous MHB. Integrating all microbial data, two consortia Lactarius/Bacillaceae and Russula/Burkholderaceae have singled out but revealed a negative interaction with each other. Russula/Burkholderaceae might have an important role for cork oak forest sustainability in arid environments, which will be complemented by the lower drought adaptation of competitive Lactarius/Bacillaceae. These microbial consortia could play an essential role on cork oak forest resilience to upcoming climatic changes.
Collapse
Affiliation(s)
- Francisca Reis
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Alexandre P Magalhães
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Rui M Tavares
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Paula Baptista
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Braganca, Portugal
| | - Teresa Lino-Neto
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
11
|
Groundwater Depth Overrides Tree-Species Effects on the Structure of Soil Microbial Communities Involved in Nitrogen Cycling in Plantation Forests. FORESTS 2020. [DOI: 10.3390/f11030275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Microbial communities found in soil ecosystems play important roles in decomposing organic materials and recycling nutrients. A clear understanding on how biotic and abiotic factors influence the microbial community and its functional role in ecosystems is fundamental to terrestrial biogeochemistry and plant production. The purpose of this study was to investigate microbial communities and functional genes involved in nitrogen cycling as a function of groundwater depth (deep and shallow), tree species (pine and eucalypt), and season (spring and fall). Soil fungal, bacterial, and archaeal communities were determined by length heterogeneity polymerase chain reaction (LH-PCR). Soil ammonia oxidation archaeal (AOA) amoA gene, ammonia oxidation bacterial (AOB) amoA gene, nitrite oxidoreductase nrxA gene, and denitrifying bacterial narG, nirK, nirS, and nosZ genes were further studied using PCR and denaturing gradient gel electrophoresis (DGGE). Soil fungal and bacterial communities remained similar between tree species and groundwater depths, respectively, regardless of season. Soil archaeal communities remained similar between tree species but differed between groundwater depths in the spring only. Archaeal amoA for nitrification and bacterial nirK and nosZ genes for denitrification were detected in DGGE, whereas bacterial amoA and nrxA for nitrification and bacterial narG and nirS genes for denitrification were undetectable. The detected nitrification and denitrification communities varied significantly with groundwater depth. There was no significant difference of nitrifying archaeal amoA or denitrifying nirK communities between different tree species regardless of season. The seasonal difference in microbial communities and functional genes involved in nitrogen cycling suggests microorganisms exhibit seasonal dynamics that likely impact relative rates of nitrification and denitrification.
Collapse
|
12
|
Houfani AA, Větrovský T, Navarrete OU, Štursová M, Tláskal V, Beiko RG, Boucherba N, Baldrian P, Benallaoua S, Jorquera MA. Cellulase-Hemicellulase Activities and Bacterial Community Composition of Different Soils from Algerian Ecosystems. MICROBIAL ECOLOGY 2019; 77:713-725. [PMID: 30209585 DOI: 10.1007/s00248-018-1251-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Soil microorganisms are important mediators of carbon cycling in nature. Although cellulose- and hemicellulose-degrading bacteria have been isolated from Algerian ecosystems, the information on the composition of soil bacterial communities and thus the potential of their members to decompose plant residues is still limited. The objective of the present study was to describe and compare the bacterial community composition in Algerian soils (crop, forest, garden, and desert) and the activity of cellulose- and hemicellulose-degrading enzymes. Bacterial communities were characterized by high-throughput 16S amplicon sequencing followed by the in silico prediction of their functional potential. The highest lignocellulolytic activity was recorded in forest and garden soils whereas activities in the agricultural and desert soils were typically low. The bacterial phyla Proteobacteria (in particular classes α-proteobacteria, δ-proteobacteria, and γ-proteobacteria), Firmicutes, and Actinobacteria dominated in all soils. Forest and garden soils exhibited higher diversity than agricultural and desert soils. Endocellulase activity was elevated in forest and garden soils. In silico analysis predicted higher share of genes assigned to general metabolism in forest and garden soils compared with agricultural and arid soils, particularly in carbohydrate metabolism. The highest potential of lignocellulose decomposition was predicted for forest soils, which is in agreement with the highest activity of corresponding enzymes.
Collapse
Affiliation(s)
- Aicha Asma Houfani
- Laboratoire de Microbiologie Appliquée (LMA), Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algérie
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tomáš Větrovský
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Oscar U Navarrete
- Laboratorio de Ecología Microbiana Aplicada, Departmento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Franciosco Salazar, 01145, Temuco, Chile
- Scientific and Biotechnological Bioresource Nucleus, Universidad de La Frontera, Ave. Franciosco Salazar, 01145, Temuco, Chile
| | - Martina Štursová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Vojtěch Tláskal
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Robert G Beiko
- Faculty of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, NS, B3H 4R2, Canada
| | - Nawel Boucherba
- Laboratoire de Microbiologie Appliquée (LMA), Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algérie
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Said Benallaoua
- Laboratoire de Microbiologie Appliquée (LMA), Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algérie
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada, Departmento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Franciosco Salazar, 01145, Temuco, Chile.
- Scientific and Biotechnological Bioresource Nucleus, Universidad de La Frontera, Ave. Franciosco Salazar, 01145, Temuco, Chile.
| |
Collapse
|
13
|
Bluhm SL, Eitzinger B, Ferlian O, Bluhm C, Schröter K, Pena R, Maraun M, Scheu S. Deprivation of root-derived resources affects microbial biomass but not community structure in litter and soil. PLoS One 2019; 14:e0214233. [PMID: 30921392 PMCID: PMC6438447 DOI: 10.1371/journal.pone.0214233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/08/2019] [Indexed: 11/19/2022] Open
Abstract
The input of plant leaf litter has been assumed to be the most important resource for soil organisms of forest ecosystems, but there is increasing evidence that root-derived resources may be more important. By trenching roots of trees in deciduous and coniferous forests, we cut-off the input of root-derived resources and investigated the response of microorganisms using substrate-induced respiration and phospholipid fatty acid (PLFA) analysis. After one and three years, root trenching strongly decreased microbial biomass and concentrations of PLFAs by about 20%, but the microbial community structure was little affected and the effects were similar in deciduous and coniferous forests. However, the reduction in microbial biomass varied between regions and was more pronounced in forests on limestone soils (Hainich) than in those on sandy soils (Schorfheide). Trenching also reduced microbial biomass in the litter layer but only in the Hainich after one year, whereas fungal and bacterial marker PLFAs as well as the fungal-to-plant marker ratio in litter were reduced in the Schorfheide both after one and three years. The pronounced differences between forests of the two regions suggest that root-derived resources are more important in fueling soil microorganisms of base-rich forests characterized by mull humus than in forests poor in base cations characterized by moder soils. The reduction in microbial biomass and changes in microbial community characteristics in the litter layer suggests that litter microorganisms do not exclusively rely on resources from decomposing litter but also from roots, i.e. from resources based on labile recently fixed carbon. Our results suggest that both bacteria and fungi heavily depend on root-derived resources with both suffering to a similar extent to deprivation of these resources. Further, the results indicate that the community structure of microorganisms is remarkably resistant to changes in resource supply and adapts quickly to new conditions irrespective of tree species composition and forest management.
Collapse
Affiliation(s)
- Sarah L. Bluhm
- University of Göttingen, J.F. Blumenbach Institute of Zoology and Anthropology, Animal Ecology, Untere Karspüle 2, Göttingen, Germany
| | - Bernhard Eitzinger
- University of Göttingen, J.F. Blumenbach Institute of Zoology and Anthropology, Animal Ecology, Untere Karspüle 2, Göttingen, Germany
| | - Olga Ferlian
- University of Göttingen, J.F. Blumenbach Institute of Zoology and Anthropology, Animal Ecology, Untere Karspüle 2, Göttingen, Germany
| | - Christian Bluhm
- University of Göttingen, J.F. Blumenbach Institute of Zoology and Anthropology, Animal Ecology, Untere Karspüle 2, Göttingen, Germany
| | - Kristina Schröter
- University of Göttingen, Büsgen Institute, Forest Botany and Tree Physiology, Büsgenweg 2, Göttingen, Germany
| | - Rodica Pena
- University of Göttingen, Büsgen Institute, Forest Botany and Tree Physiology, Büsgenweg 2, Göttingen, Germany
| | - Mark Maraun
- University of Göttingen, J.F. Blumenbach Institute of Zoology and Anthropology, Animal Ecology, Untere Karspüle 2, Göttingen, Germany
| | - Stefan Scheu
- University of Göttingen, J.F. Blumenbach Institute of Zoology and Anthropology, Animal Ecology, Untere Karspüle 2, Göttingen, Germany
- University of Göttingen, Centre of Biodiversity and Sustainable Land Use, Göttingen, Germany
| |
Collapse
|
14
|
Mercado-Blanco J, Abrantes I, Barra Caracciolo A, Bevivino A, Ciancio A, Grenni P, Hrynkiewicz K, Kredics L, Proença DN. Belowground Microbiota and the Health of Tree Crops. Front Microbiol 2018; 9:1006. [PMID: 29922245 PMCID: PMC5996133 DOI: 10.3389/fmicb.2018.01006] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/30/2018] [Indexed: 11/13/2022] Open
Abstract
Trees are crucial for sustaining life on our planet. Forests and land devoted to tree crops do not only supply essential edible products to humans and animals, but also additional goods such as paper or wood. They also prevent soil erosion, support microbial, animal, and plant biodiversity, play key roles in nutrient and water cycling processes, and mitigate the effects of climate change acting as carbon dioxide sinks. Hence, the health of forests and tree cropping systems is of particular significance. In particular, soil/rhizosphere/root-associated microbial communities (known as microbiota) are decisive to sustain the fitness, development, and productivity of trees. These benefits rely on processes aiming to enhance nutrient assimilation efficiency (plant growth promotion) and/or to protect against a number of (a)biotic constraints. Moreover, specific members of the microbial communities associated with perennial tree crops interact with soil invertebrate food webs, underpinning many density regulation mechanisms. This review discusses belowground microbiota interactions influencing the growth of tree crops. The study of tree-(micro)organism interactions taking place at the belowground level is crucial to understand how they contribute to processes like carbon sequestration, regulation of ecosystem functioning, and nutrient cycling. A comprehensive understanding of the relationship between roots and their associate microbiota can also facilitate the design of novel sustainable approaches for the benefit of these relevant agro-ecosystems. Here, we summarize the methodological approaches to unravel the composition and function of belowground microbiota, the factors influencing their interaction with tree crops, their benefits and harms, with a focus on representative examples of Biological Control Agents (BCA) used against relevant biotic constraints of tree crops. Finally, we add some concluding remarks and suggest future perspectives concerning the microbiota-assisted management strategies to sustain tree crops.
Collapse
Affiliation(s)
- Jesús Mercado-Blanco
- Department of Crop Protection, Agencia Estatal Consejo Superior de Investigaciones Científicas, Institute for Sustainable Agriculture, Córdoba, Spain
| | - Isabel Abrantes
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | | | - Annamaria Bevivino
- Department for Sustainability of Production and Territorial Systems, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Aurelio Ciancio
- Institute for Sustainable Plant Protection, National Research Council, Bari, Italy
| | - Paola Grenni
- Water Research Institute (CNR-IRSA), National Research Council, Rome, Italy
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Diogo N. Proença
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE) and Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
15
|
Kühn J, Richter A, Kahl T, Bauhus J, Schöning I, Ruess L. Community level lipid profiling of consumers as a tool for soil food web diagnostics. Methods Ecol Evol 2018. [DOI: 10.1111/2041-210x.12966] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jakob Kühn
- Ecology GroupInstitute of BiologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Andreas Richter
- Ecology GroupInstitute of BiologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Tiemo Kahl
- Chair of SilvicultureFaculty of Environment and Natural ResourcesUniversity of Freiburg Freiburg Germany
| | - Jürgen Bauhus
- Chair of SilvicultureFaculty of Environment and Natural ResourcesUniversity of Freiburg Freiburg Germany
| | - Ingo Schöning
- Department of Biogeochemical ProcessesMPI for Biogeochemistry Jena Germany
| | - Liliane Ruess
- Ecology GroupInstitute of BiologyHumboldt‐Universität zu Berlin Berlin Germany
| |
Collapse
|
16
|
Bastida F, Torres IF, Andrés-Abellán M, Baldrian P, López-Mondéjar R, Větrovský T, Richnow HH, Starke R, Ondoño S, García C, López-Serrano FR, Jehmlich N. Differential sensitivity of total and active soil microbial communities to drought and forest management. GLOBAL CHANGE BIOLOGY 2017; 23:4185-4203. [PMID: 28614633 DOI: 10.1111/gcb.13790] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/30/2017] [Indexed: 05/25/2023]
Abstract
Climate change will affect semiarid ecosystems through severe droughts that increase the competition for resources in plant and microbial communities. In these habitats, adaptations to climate change may consist of thinning-that reduces competition for resources through a decrease in tree density and the promotion of plant survival. We deciphered the functional and phylogenetic responses of the microbial community to 6 years of drought induced by rainfall exclusion and how forest management affects its resistance to drought, in a semiarid forest ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel, community-based strategies in the face of climate change. The diversity and the composition of the total and active soil microbiome were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially mediated ecosystem multifunctionality was studied by the integration of soil enzyme activities related to the cycles of C, N, and P. The microbial biomass and ecosystem multifunctionality decreased in drought-plots, as a consequence of the lower soil moisture and poorer plant development, but this decrease was more notable in unthinned plots. The structure and diversity of the total bacterial community was unaffected by drought at phylum and order level, but did so at genus level, and was influenced by seasonality. However, the total fungal community and the active microbial community were more sensitive to drought and were related to ecosystem multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of ecosystem multifunctionality to drought through changes in the active microbial community. The integration of total and active microbiome analyses avoids misinterpretations of the links between the soil microbial community and climate change.
Collapse
Affiliation(s)
- Felipe Bastida
- Department of Soil and Water Conservation, CEBAS-CSIC, Murcia, Spain
| | - Irene F Torres
- Department of Soil and Water Conservation, CEBAS-CSIC, Murcia, Spain
| | - Manuela Andrés-Abellán
- Department of Science and Agroforestry Technology and Genetics, Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Albacete, Spain
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Praha 4, Czech Republic
| | - Rubén López-Mondéjar
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Praha 4, Czech Republic
| | - Tomáš Větrovský
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Praha 4, Czech Republic
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Robert Starke
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Sara Ondoño
- Department of Soil and Water Conservation, CEBAS-CSIC, Murcia, Spain
| | - Carlos García
- Department of Soil and Water Conservation, CEBAS-CSIC, Murcia, Spain
| | - Francisco R López-Serrano
- Department of Science and Agroforestry Technology and Genetics, Higher Technical School of Agricultural and Forestry Engineering, University of Castilla-La Mancha, Albacete, Spain
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
17
|
Starke R, Bastida F, Abadía J, García C, Nicolás E, Jehmlich N. Ecological and functional adaptations to water management in a semiarid agroecosystem: a soil metaproteomics approach. Sci Rep 2017; 7:10221. [PMID: 28860535 PMCID: PMC5579227 DOI: 10.1038/s41598-017-09973-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/02/2017] [Indexed: 01/14/2023] Open
Abstract
Climate change models point to a decrease in water availability in semiarid areas that would compromise the maintenance of sustainable agriculture. Here, we used a grapefruit agroecosystem model to evaluate the responses of the active soil microbial community – as a microbial subset directly involved in soil functionality- undergoing strategies to cope with the low water availability in south-east Spain. For this purpose, we tested the impacts of: (i) water quality: transfer-water from a river (TW) or reclaimed-water from a wastewater-treatment plant (RW); and (ii) water quantity: continuous optimal amount of water or reduced irrigation (RDI) in the temporal frame when the crop is less sensitive; and their interactions. Metaproteomics revealed that the phylogenetic diversity of the active community and its functional diversity were lowered in soils with RW. RDI lowered soil respiration and functional diversity while the phylogenetic diversity remained constant. The reestablishment of full irrigation after RDI led to a recovery of soil respiration that was accompanied by an enhanced abundance of resilient bacterial populations. Bacterial populations displayed molecular mechanisms against water stress that have been conserved evolutionarily in plants. Protein-based studies shed light on ecological and functional mechanisms that govern the adaptive responses of soil microbial communities to climate-change friendly water management.
Collapse
Affiliation(s)
- Robert Starke
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Felipe Bastida
- Centro de Edafología y Biología Aplicada del Segura. Spanish Research Council (CEBAS-CSIC). Campus Universitario de Espinardo, CP 30100 PO Box 164, Murcia, Spain.
| | - Joaquín Abadía
- Centro de Edafología y Biología Aplicada del Segura. Spanish Research Council (CEBAS-CSIC). Campus Universitario de Espinardo, CP 30100 PO Box 164, Murcia, Spain
| | - Carlos García
- Centro de Edafología y Biología Aplicada del Segura. Spanish Research Council (CEBAS-CSIC). Campus Universitario de Espinardo, CP 30100 PO Box 164, Murcia, Spain
| | - Emilio Nicolás
- Centro de Edafología y Biología Aplicada del Segura. Spanish Research Council (CEBAS-CSIC). Campus Universitario de Espinardo, CP 30100 PO Box 164, Murcia, Spain
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|
18
|
Truu M, Ostonen I, Preem JK, Lõhmus K, Nõlvak H, Ligi T, Rosenvald K, Parts K, Kupper P, Truu J. Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand. Front Microbiol 2017; 8:557. [PMID: 28421053 PMCID: PMC5376589 DOI: 10.3389/fmicb.2017.00557] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/16/2017] [Indexed: 01/05/2023] Open
Abstract
Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch (Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N2O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity.
Collapse
Affiliation(s)
- Marika Truu
- Department of Geography, Institute of Ecology and Earth Sciences, University of TartuTartu, Estonia
| | - Ivika Ostonen
- Department of Geography, Institute of Ecology and Earth Sciences, University of TartuTartu, Estonia
| | - Jens-Konrad Preem
- Department of Geography, Institute of Ecology and Earth Sciences, University of TartuTartu, Estonia
| | - Krista Lõhmus
- Department of Botany, Institute of Ecology and Earth Sciences, University of TartuTartu, Estonia
| | - Hiie Nõlvak
- Department of Geography, Institute of Ecology and Earth Sciences, University of TartuTartu, Estonia
| | - Teele Ligi
- Department of Geography, Institute of Ecology and Earth Sciences, University of TartuTartu, Estonia
| | - Katrin Rosenvald
- Department of Botany, Institute of Ecology and Earth Sciences, University of TartuTartu, Estonia
| | - Kaarin Parts
- Department of Botany, Institute of Ecology and Earth Sciences, University of TartuTartu, Estonia
| | - Priit Kupper
- Department of Botany, Institute of Ecology and Earth Sciences, University of TartuTartu, Estonia
| | - Jaak Truu
- Department of Geography, Institute of Ecology and Earth Sciences, University of TartuTartu, Estonia
| |
Collapse
|
19
|
McGee CF, Storey S, Clipson N, Doyle E. Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:449-458. [PMID: 28197855 DOI: 10.1007/s10646-017-1776-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/04/2017] [Indexed: 05/14/2023]
Abstract
Soil microorganisms are key contributors to nutrient cycling and are essential for the maintenance of healthy soils and sustainable agriculture. Although the antimicrobial effects of a broad range of nanoparticulate substances have been characterised in vitro, little is known about the impact of these compounds on microbial communities in environments such as soil. In this study, the effect of three widely used nanoparticulates (silver, silicon dioxide and aluminium oxide) on bacterial and fungal communities in an agricultural pastureland soil was examined in a microcosm-based experiment using a combination of enzyme analysis, molecular fingerprinting and amplicon sequencing. A relatively low concentration of silver nanoparticles (AgNPs) significantly reduced total soil dehydrogenase and urease activity, while Al2O3 and SiO2 nanoparticles had no effect. Amplicon sequencing revealed substantial shifts in bacterial community composition in soils amended with AgNPs, with significant decreases in the relative abundance of Acidobacteria and Verrucomicrobia and an increase in Proteobacteria. In particular, the relative abundance of the Proteobacterial genus Dyella significantly increased in AgNP amended soil. The effects of Al2O3 and SiO2 NPs on bacterial community composition were less pronounced. AgNPs significantly reduced bacterial and archaeal amoA gene abundance in soil, with the archaea more susceptible than bacteria. AgNPs also significantly impacted soil fungal community structure, while Al2O3 and SiO2 NPs had no effect. Several fungal ribotypes increased in soil amended with AgNPs, compared to control soil. This study highlights the need to consider the effects of individual nanoparticles on soil microbial communities when assessing their environmental impact.
Collapse
Affiliation(s)
- C F McGee
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - S Storey
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - N Clipson
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - E Doyle
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
20
|
Hartmann M, Brunner I, Hagedorn F, Bardgett RD, Stierli B, Herzog C, Chen X, Zingg A, Graf-Pannatier E, Rigling A, Frey B. A decade of irrigation transforms the soil microbiome of a semi-arid pine forest. Mol Ecol 2017; 26:1190-1206. [DOI: 10.1111/mec.13995] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/18/2016] [Accepted: 12/19/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Martin Hartmann
- Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| | - Ivano Brunner
- Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| | - Frank Hagedorn
- Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| | - Richard D. Bardgett
- School of Earth and Environmental Sciences; Michael Smith Building; The University of Manchester; M13 9PT Manchester UK
| | - Beat Stierli
- Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| | - Claude Herzog
- Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
- Swiss Federal Institute of Technology ETH; 8092 Zürich Switzerland
| | - Xiamei Chen
- Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| | - Andreas Zingg
- Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| | | | - Andreas Rigling
- Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| | - Beat Frey
- Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| |
Collapse
|
21
|
Naylor D, Coleman-Derr D. Drought Stress and Root-Associated Bacterial Communities. FRONTIERS IN PLANT SCIENCE 2017; 8:2223. [PMID: 29375600 PMCID: PMC5767233 DOI: 10.3389/fpls.2017.02223] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/18/2017] [Indexed: 05/20/2023]
Abstract
Root-associated bacterial communities play a vital role in maintaining health of the plant host. These communities exist in complex relationships, where composition and abundance of community members is dependent on a number of factors such as local soil chemistry, plant genotype and phenotype, and perturbations in the surrounding abiotic environment. One common perturbation, drought, has been shown to have drastic effects on bacterial communities, yet little is understood about the underlying causes behind observed shifts in microbial abundance. As drought may affect root bacterial communities both directly by modulating moisture availability, as well as indirectly by altering soil chemistry and plant phenotypes, we provide a synthesis of observed trends in recent studies and discuss possible directions for future research that we hope will provide for more knowledgeable predictions about community responses to future drought events.
Collapse
Affiliation(s)
- Dan Naylor
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Devin Coleman-Derr
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
- *Correspondence: Devin Coleman-Derr,
| |
Collapse
|
22
|
Hommel R, Siegwolf R, Zavadlav S, Arend M, Schaub M, Galiano L, Haeni M, Kayler ZE, Gessler A. Impact of interspecific competition and drought on the allocation of new assimilates in trees. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:785-96. [PMID: 27061772 DOI: 10.1111/plb.12461] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/07/2016] [Indexed: 05/21/2023]
Abstract
In trees, the interplay between reduced carbon assimilation and the inability to transport carbohydrates to the sites of demand under drought might be one of the mechanisms leading to carbon starvation. However, we largely lack knowledge on how drought effects on new assimilate allocation differ between species with different drought sensitivities and how these effects are modified by interspecific competition. We assessed the fate of (13) C labelled assimilates in above- and belowground plant organs and in root/rhizosphere respired CO2 in saplings of drought-tolerant Norway maple (Acer platanoides) and drought-sensitive European beech (Fagus sylvatica) exposed to moderate drought, either in mono- or mixed culture. While drought reduced stomatal conductance and photosynthesis rates in both species, both maintained assimilate transport belowground. Beech even allocated more new assimilate to the roots under moderate drought compared to non-limited water supply conditions, and this pattern was even more pronounced under interspecific competition. Even though maple was a superior competitor compared to beech under non-limited soil water conditions, as indicated by the changes in above- and belowground biomass of both species in the interspecific competition treatments, we can state that beech was still able to efficiently allocate new assimilate belowground under combined drought and interspecific competition. This might be seen as a strategy to maintain root osmotic potential and to prioritise root functioning. Our results thus show that beech tolerates moderate drought stress plus competition without losing its ability to supply belowground tissues. It remains to be explored in future work if this strategy is also valid during long-term drought exposure.
Collapse
Affiliation(s)
- R Hommel
- Leibniz Centre for Agricultural Landscape Research (ZALF), Institute for Landscape Biogeochemistry, Müncheberg, Germany
| | - R Siegwolf
- Laboratory of Atmospheric Chemistry, Stable Isotopes and Ecosystem Fluxes, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - S Zavadlav
- Department of Forest Physiology and Genetics, Ljubljana, Slovenia
| | - M Arend
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - M Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - L Galiano
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
- Institute of Hydrology, University of Freiburg, Freiburg, Germany
| | - M Haeni
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Z E Kayler
- Leibniz Centre for Agricultural Landscape Research (ZALF), Institute for Landscape Biogeochemistry, Müncheberg, Germany
| | - A Gessler
- Leibniz Centre for Agricultural Landscape Research (ZALF), Institute for Landscape Biogeochemistry, Müncheberg, Germany
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
23
|
von Rein I, Gessler A, Premke K, Keitel C, Ulrich A, Kayler ZE. Forest understory plant and soil microbial response to an experimentally induced drought and heat-pulse event: the importance of maintaining the continuum. GLOBAL CHANGE BIOLOGY 2016; 22:2861-74. [PMID: 26946456 DOI: 10.1111/gcb.13270] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 01/15/2016] [Accepted: 02/22/2016] [Indexed: 05/21/2023]
Abstract
Drought duration and intensity are expected to increase with global climate change. How changes in water availability and temperature affect the combined plant-soil-microorganism response remains uncertain. We excavated soil monoliths from a beech (Fagus sylvatica L.) forest, thus keeping the understory plant-microbe communities intact, imposed an extreme climate event, consisting of drought and/or a single heat-pulse event, and followed microbial community dynamics over a time period of 28 days. During the treatment, we labeled the canopy with (13) CO2 with the goal of (i) determining the strength of plant-microbe carbon linkages under control, drought, heat and heat-drought treatments and (ii) characterizing microbial groups that are tightly linked to the plant-soil carbon continuum based on (13) C-labeled PLFAs. Additionally, we used 16S rRNA sequencing of bacteria from the Ah horizon to determine the short-term changes in the active microbial community. The treatments did not sever within-plant transport over the experiment, and carbon sinks belowground were still active. Based on the relative distribution of labeled carbon to roots and microbial PLFAs, we determined that soil microbes appear to have a stronger carbon sink strength during environmental stress. High-throughput sequencing of the 16S rRNA revealed multiple trajectories in microbial community shifts within the different treatments. Heat in combination with drought had a clear negative effect on microbial diversity and resulted in a distinct shift in the microbial community structure that also corresponded to the lowest level of label found in the PLFAs. Hence, the strongest changes in microbial abundances occurred in the heat-drought treatment where plants were most severely affected. Our study suggests that many of the shifts in the microbial communities that we might expect from extreme environmental stress will result from the plant-soil-microbial dynamics rather than from direct effects of drought and heat on soil microbes alone.
Collapse
Affiliation(s)
- Isabell von Rein
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Arthur Gessler
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr 6, D-14195 Berlin, Germany
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstr 111, CH-8903, Birmensdorf, Switzerland
| | - Katrin Premke
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Chemical Analytics and Biogeochemistry, Müggelseedamm 310, 12587 Berlin, Germany
| | - Claudia Keitel
- Centre for Carbon, Water and Food, Faculty of Agriculture & Environment, university of sydney, 380 Werombi Rd, Brownlow Hill, NSW 2570, Australia
| | - Andreas Ulrich
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Zachary E Kayler
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
24
|
Felsmann K, Baudis M, Gimbel K, Kayler ZE, Ellerbrock R, Bruehlheide H, Bruckhoff J, Welk E, Puhlmann H, Weiler M, Gessler A, Ulrich A. Correction: Soil bacterial community structure responses to precipitation reduction and forest management in forest ecosystems across Germany. PLoS One 2015; 10:e0127608. [PMID: 25928746 PMCID: PMC4415999 DOI: 10.1371/journal.pone.0127608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|