1
|
Ivanova O, Karelina T. Quantitative systems pharmacology model of α-synuclein pathology in Parkinson's disease-like mouse for investigation of passive immunotherapy mechanisms. CPT Pharmacometrics Syst Pharmacol 2024; 13:1798-1809. [PMID: 39177164 PMCID: PMC11494828 DOI: 10.1002/psp4.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
The main pathophysiological hallmark of Parkinson's disease (PD) is the accumulation of aggregated alpha-synuclein (αSyn). Microglial activation is an early event in PD and may play a key role in pathological αSyn aggregation and transmission, as well as in clearance of αSyn and immunotherapy efficacy. Our aim was to investigate how different proposed mechanisms of anti-αSyn immunotherapy may contribute to pathology reduction in various PD-like mouse models. Our mechanistic model of PD pathology in mouse includes αSyn production, aggregation, degradation and distribution in neurons, secretion into interstitial fluid, internalization, and subsequent clearance by neurons and microglia. It describes the influence of neuroinflammation on PD pathogenesis and dopaminergic neurodegeneration. Multiple data from mouse PD models were used for calibration and validation. Simulations of anti-αSyn passive immunotherapy adequately reproduce preclinical data and suggest that (1) immunotherapy is efficient in the reduction of aggregated αSyn in various models of PD-like pathology; (2) prevention of aSyn spread only does not reduce the pathology; (3) a decrease in microglial inflammatory activation and aSyn aggregation may be alternative therapy approaches in PD-like pathology.
Collapse
|
2
|
Shu H, Zhang P, Gu L. Alpha-synuclein in peripheral body fluid as a biomarker for Parkinson's disease. Acta Neurol Belg 2024; 124:831-842. [PMID: 38170418 DOI: 10.1007/s13760-023-02452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE Whether alpha-synuclein in peripheral body fluids can be used for the diagnosis of Parkinson's disease (PD) remains in controversy. This study evaluates diagnostic potential of alpha-synuclein for PD in various peripheral body fluids using a meta-analysis approach. METHODS Studies published before October 2022 were searched in Web of Science and PubMed databases. The results were computed using the STATA 12.0 statistical software. RESULTS In plasma, PD patients exhibited elevated alpha-synuclein levels relative to healthy controls (HCs) [standard mean difference (SMD) = 0.78, 95% confidence interval (CI) = 0.42 to 1.15] with a sensitivity of 0.79 (95% CI: 0.64-0.89) and a specificity of 0.95 (95% CI: 0.90-0.98). Higher plasma alpha-synuclein levels were correlated with longer disease durations, higher Unified Parkinson's Disease Rating Scale motor scores, and higher Hoehn and Yahr stages in PD patients. Plasma neural-derived exosomal alpha-synuclein levels (SMD = 1.82, 95% CI = 0.30 to 3.35), ratio of plasma neural-derived exosomal alpha-synuclein to total alpha-synuclein (SMD = 1.26, 95% CI = 0.19 to 2.33), and erythrocytic alpha-synuclein levels were also increased in PD patients (SMD = 6.57, 95% CI = 3.55 to 9.58). In serum, there was no significant difference in alpha-synuclein levels between PD patients and HCs (SMD = 0.54, 95% CI = - 0.27 to 1.34). In saliva, reduced alpha-synuclein levels were observed in PD patients (SMD = - 0.85, 95% CI = - 1.67 to - 0.04). CONCLUSIONS Alpha-synuclein levels in plasma, plasma neural-derived exosome, erythrocyte, and saliva may serve as potential biomarkers for the diagnosis of PD.
Collapse
Affiliation(s)
- Hao Shu
- Department of Neurology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, China
| | - Pengcheng Zhang
- Institute of Environment and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300041, China
| | - Lihua Gu
- Department of Neurology, Tianjin Huanhu Hospital, No. 6 Jizhao Road, Tianjin, 300350, China.
| |
Collapse
|
3
|
Zapata-Acevedo JF, Mantilla-Galindo A, Vargas-Sánchez K, González-Reyes RE. Blood-brain barrier biomarkers. Adv Clin Chem 2024; 121:1-88. [PMID: 38797540 DOI: 10.1016/bs.acc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The blood-brain barrier (BBB) is a dynamic interface that regulates the exchange of molecules and cells between the brain parenchyma and the peripheral blood. The BBB is mainly composed of endothelial cells, astrocytes and pericytes. The integrity of this structure is essential for maintaining brain and spinal cord homeostasis and protection from injury or disease. However, in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, and multiple sclerosis, the BBB can become compromised thus allowing passage of molecules and cells in and out of the central nervous system parenchyma. These agents, however, can serve as biomarkers of BBB permeability and neuronal damage, and provide valuable information for diagnosis, prognosis and treatment. Herein, we provide an overview of the BBB and changes due to aging, and summarize current knowledge on biomarkers of BBB disruption and neurodegeneration, including permeability, cellular, molecular and imaging biomarkers. We also discuss the challenges and opportunities for developing a biomarker toolkit that can reliably assess the BBB in physiologic and pathophysiologic states.
Collapse
Affiliation(s)
- Juan F Zapata-Acevedo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Alejandra Mantilla-Galindo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Karina Vargas-Sánchez
- Laboratorio de Neurofisiología Celular, Grupo de Neurociencia Traslacional, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
4
|
Huang J, Yuan X, Chen L, Hu B, Wang H, Huang W. The Biology, Pathological Roles of Exosomes and Their Clinical Application in Parkinson's Disease. Neuroscience 2023; 531:24-38. [PMID: 37689233 DOI: 10.1016/j.neuroscience.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a high global incidence and places a great burden on the patient, their family and society. Early diagnosis of PD is the key to hindering the progression process and may enable treatment to partially reverse the disease course. Exosomes are lipid bilayers with a diameter of 40-160 nm (average ∼100 nm), show a cup-shaped structure in transmission electron microscopy (TEM) images, and contain different types of nucleic acids and proteins. On the one hand, several molecules contained in exosomes are correlated with PD pathology. On the other hand, biomarkers based on exosomes have gradually become diagnostic tools in PD. Since exosomes can freely cross the blood-brain barrier, CNS-derived exosomes obtained from the periphery have the potential to be a powerful marker for early PD diagnosis. Of course, exosomes also have great potential as drug delivery systems due to their low toxicity, lipid solubility and immunological inertness. However, there is still a lack of standardized, efficient, and ultrasensitive methods for the isolation of exosomes, hindering the development of effective biomarkers. Therefore, this review describes the biological characteristics of exosomes, exosome extraction methods, and the pathological role, diagnostic/therapeutic value of exosomes in PD.
Collapse
Affiliation(s)
- Juan Huang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Xingxing Yuan
- The department of Anesthesiology, Hunan Provincial People,s Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Lin Chen
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Binbin Hu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Hui Wang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Wei Huang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China.
| |
Collapse
|
5
|
Conte C, Ingrassia A, Breve J, Bol JJ, Timmermans-Huisman E, van Dam AM, Beccari T, van de Berg WDJ. Toll-like Receptor 4 Is Upregulated in Parkinson's Disease Patients and Co-Localizes with pSer129αSyn: A Possible Link with the Pathology. Cells 2023; 12:1368. [PMID: 37408202 DOI: 10.3390/cells12101368] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 07/07/2023] Open
Abstract
Growing evidence suggests a crucial role of neuroinflammation in the pathophysiology of Parkinson's disease (PD). Neuroinflammation is linked to the accumulation and aggregation of a-synuclein (αSyn), the primary pathological hallmark of PD. Toll-like receptors 4 (TLR4) can have implications in the development and progression of the pathology. In this study, we analyzed the expression of TLR4 in the substantia nigra (SN) and medial temporal gyrus (GTM) of well-characterized PD patients and age-matched controls. We also assessed the co-localization of TLR4 with pSer129 αSyn. Using qPCR, we observed an upregulation of TLR4 expression in the SN and GTM in PD patients compared to controls, which was accompanied by a reduction in αSyn expression likely due to the depletion of dopaminergic (DA) cells. Additionally, using immunofluorescence and confocal microscopy, we observed TLR4-positive staining and co-localization with pSer129-αSyn in Lewy bodies of DA neurons in the SN, as well as in pyramidal neurons in the GTM of PD donors. Furthermore, we observed a co-localization of TLR4 and Iba-1 in glial cells of both SN and GTM. Our findings provide evidence for the increased expression of TLR4 in the PD brain and suggest that the interaction between TLR4 and pSer129-αSyn could play a role in mediating the neuroinflammatory response in PD.
Collapse
Affiliation(s)
- Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06100 Perugia, Italy
| | - Angela Ingrassia
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - John Breve
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - John J Bol
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Evelien Timmermans-Huisman
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Anne-Marie van Dam
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06100 Perugia, Italy
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Oligomeric α-synuclein and tau aggregates in NDEVs differentiate Parkinson's disease from atypical parkinsonisms. Neurobiol Dis 2023; 176:105947. [PMID: 36481435 DOI: 10.1016/j.nbd.2022.105947] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/22/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The early differential diagnosis of Parkinson's disease (PD) and atypical Parkinsonian syndromes (APS), including corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP), is challenging because of an overlap of clinical features and the lack of reliable biomarkers. Neural-derived extracellular vesicles (NDEVs) isolated from blood provide a window into the brain's biochemistry and may assist in distinguishing between PD and APS. We verified in a case-control study whether oligomeric α-Synuclein and Tau aggregates isolated from NDEVs could allow the differential diagnosis of these conditions. Blood sampling and clinical data, including disease duration, motor severity, global cognition, and levodopa equivalent daily dose (LEDD), were collected from patients with a diagnosis of either PD (n = 70), PSP (n = 21), or CBD (n = 19). NDEVs were isolated from serum by immunocapture using an antibody against the neuronal surface marker L1CAM; oligomeric α-Synuclein and aggregated Tau were measured by ELISA. NDEVs analyses showed that oligomeric α-Synuclein is significantly augmented in PD compared to APS, whereas Tau aggregates are significantly increased in APS compared to PD (p < 0.0001). ROC analyses showed that these two biomarkers have a "good" power of classification (p < 0.0001 for both proteins), with high sensitivity and specificity, with NDEVs concentration of Tau aggregates and oligomeric α-Synuclein being respectively the best biomarker for PD/PSP and PD/CBD diagnostic differentiation. Logistic and multiple regression analysis confirmed that NDEVs-derived oligomeric α-Synuclein and Tau aggregates differentiate PD from CBD and PSP (p < 0.001). Notably, a positive correlation between NDEVs oligomeric α-Synuclein and disease severity (disease duration, p = 0.023; Modified H&Y, p = 0.015; UPDRS motor scores, p = 0.004) was found in PD patients and, in these same patients, NDEVs Tau aggregates concentration inversely correlated with global cognitive scores (p = 0.043). A minimally invasive blood test measuring the concentration of α-synuclein and Tau aggregates in NDEVs can represent a promising tool to distinguish with high sensitivity and specificity PD from CBD or PSP patients. Optimization and validation of these data will be needed to confirm the diagnostic value of these biomarkers in distinguishing synucleinopathies from taupathies.
Collapse
|
7
|
Chen WR, Chen JC, Chang SY, Chao CT, Wu YR, Chen CM, Chou C. Phosphorylated α-synuclein in diluted human serum as a biomarker for Parkinson's disease. Biomed J 2022; 45:914-922. [PMID: 34974168 PMCID: PMC9795354 DOI: 10.1016/j.bj.2021.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/17/2021] [Accepted: 12/26/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders, which characterized by increased pathological marker protein, α-synuclein (α-syn) and phosphorylated-Ser129-α-syn in the extracellular fluids. Current methods of measuring the p-Ser129-α-syn concentration in cerebrospinal fluid for PD are based on ELISA method, however, the amount of area under the curve (AUC) to predict PD is around 0.7-0.8. Higher confidence level of AUC in p-Ser129-α-syn quantification for the early diagnosis of PD would be essential. METHODS Detection of p-Ser129-α-syn in diluted human serum for diagnosis of PD was investigated by a modified paired surface plasma wave biosensor (PSPWB) using a quarter wave plate for better detection performance. The method combining an immunoassay and non-labeled technique measures the p-Ser129-α-syn level with high sensitivity and specificity. Ten patients with PD at early stage (Hohn & Yahr stage I and II) and 11 age-matched healthy control participants were recruited for measurement of serum p-Ser129-α-syn. RESULTS AUC of the p-Ser129-α-syn in diluted human serum was 0.92 and it shows that p-Ser129-α-syn in diluted human serum could be used as a sensitive biomarker for the diagnosis of PD in clinics. Results clearly show that the measured p-Ser129-α-syn concentration in diluted human serum displays a statistical significance between health control subjects and PD patients. CONCLUSIONS P-Ser129-α-syn has low abundance in human serum, high detection sensitivity and specificity are critical to the success of the diagnosis of PD in clinics. In this study, a modified PSPWB was developed that the limit of detection at 1 ng/mL for p-Ser129-α-syn (standard) spiked into diluted human serum of a healthy control was performed. This result shows that the modified PSPWB can be used as a platform for detecting p-Ser129-α-syn in diluted human serum as a potential biomarker for PD.
Collapse
Affiliation(s)
- Wei-Ru Chen
- PhD Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Jin-Chung Chen
- Institute of Biomedical Science, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Yi Chang
- PhD Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan,The General Education Center, Ming Chi University of Technology, Taipei, Taiwan
| | - Chi-Tse Chao
- Graduate Institute of Electro-optical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang-Gung Memorial Hospital at Linkou, Taoyuan, Taiwan,College of Medicine, Chang-Gung University, Taoyuan, Taiwan,Corresponding author. Department of Neurology, Chang-Gung Memorial Hospital at Linkou, 5, Fusing St., Gueishan, Taoyuan 333 Taiwan.
| | - Chiung-Mei Chen
- Department of Neurology, Chang-Gung Memorial Hospital at Linkou, Taoyuan, Taiwan,College of Medicine, Chang-Gung University, Taoyuan, Taiwan,Corresponding author. Department of Neurology, Chang-Gung Memorial Hospital at Linkou, 5, Fusing St., Gueishan, Taoyuan 333 Taiwan.
| | - Chien Chou
- PhD Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan,Graduate Institute of Electro-optical Engineering, Chang Gung University, Taoyuan, Taiwan,Corresponding author. PhD Program in Biomedical Engineering, Chang Gung University, 259, Wenhua 1st Rd., Gueishan, Taoyuan 333, Taiwan.
| |
Collapse
|
8
|
Zheng R, Yan Y, Pu J, Zhang B. Physiological and Pathological Functions of Neuronal Hemoglobin: A Key Underappreciated Protein in Parkinson's Disease. Int J Mol Sci 2022; 23:9088. [PMID: 36012351 PMCID: PMC9408843 DOI: 10.3390/ijms23169088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The expression of Hemoglobin (Hb) is not restricted to erythrocytes but is also present in neurons. Hb is selectively enriched in vulnerable mesencephalic dopaminergic neurons of Parkinson's disease (PD) instead of resistant neurons. Controversial results of neuronal Hb levels have been reported in postmortem brains of PD patients: although neuronal Hb levels may decline in PD patients, elderly men with higher Hb levels have an increased risk of developing PD. α-synuclein, a key protein involved in PD pathology, interacts directly with Hb protein and forms complexes in erythrocytes and brains of monkeys and humans. These complexes increase in erythrocytes and striatal cytoplasm, while they decrease in striatal mitochondria with aging. Besides, the colocalization of serine 129-phosphorylated (Pser129) α-synuclein and Hb β chains have been found in the brains of PD patients. Several underlying molecular mechanisms involving mitochondrial homeostasis, α-synuclein accumulation, iron metabolism, and hormone-regulated signaling pathways have been investigated to assess the relationship between neuronal Hb and PD development. The formation of fibrils with neuronal Hb in various neurodegenerative diseases may indicate a common fibrillization pathway and a widespread target that could be applied in neurodegeneration therapy.
Collapse
Affiliation(s)
| | | | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
9
|
Chan DKY, Chen J, Chen RF, Parikh J, Xu YH, Silburn PA, Mellick GD. Plasma biomarkers inclusive of α-synuclein/amyloid-beta40 ratio strongly correlate with Mini-Mental State Examination score in Parkinson's disease and predict cognitive impairment. J Neurol 2022; 269:6377-6385. [PMID: 35879562 PMCID: PMC9618522 DOI: 10.1007/s00415-022-11287-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022]
Abstract
Plasma biomarkers for Parkinson’s disease (PD) diagnosis that carry predictive value for cognitive impairment are valuable. We explored the relationship of Mini-Mental State Examination (MMSE) score with plasma biomarkers in PD patients and compared results to vascular dementia (VaD) and normal controls. The predictive accuracy of an individual biomarker on cognitive impairment was evaluated using area under the receiver operating characteristic curve (AUROC), and multivariate logistic regression was applied to evaluate predictive accuracy of biomarkers on cognitive impairment; 178 subjects (41 PD, 31 VaD and 106 normal controls) were included. In multiple linear regression analysis of PD patients, α-synuclein, anti-α-synuclein, α-synuclein/Aβ40 and anti-α-synuclein/Aβ40 were highly predictive of MMSE score in both full model and parsimonious model (R2 = 0.838 and 0.835, respectively) compared to non-significant results in VaD group (R2 = 0.149) and in normal controls (R2 = 0.056). Α-synuclein and anti-α-synuclein/Aβ40 were positively associated with MMSE score, and anti-α-synuclein, α-synuclein/Aβ40 were negatively associated with the MMSE score among PD patients (all Ps < 0.005). In the AUROC analysis, anti-α-synuclein (AUROC = 0.788) and anti-α-synuclein/Aβ40 (AUROC = 0.749) were significant individual predictors of cognitive impairment. In multivariate logistic regression, full model of combined biomarkers showed high accuracy in predicting cognitive impairment (AUROC = 0.890; 95%CI 0.796–0.984) for PD versus controls, as was parsimonious model (AUROC = 0.866; 95%CI 0.764–0.968). In conclusion, simple combination of biomarkers inclusive of α-synuclein/Aβ40 strongly correlates with MMSE score in PD patients versus controls and is highly predictive of cognitive impairment.
Collapse
Affiliation(s)
- Daniel Kam Yin Chan
- University of New South Wales, Sydney, Australia. .,NICM Health Research Institute, Western Sydney University, Sydney, Australia. .,Bankstown-Lidcombe Hospital, Eldridge Rd,, Bankstown, NSW, 2200, Australia.
| | - Jack Chen
- University of New South Wales, Sydney, Australia
| | - Ren Fen Chen
- Central Sydney Immunology Laboratory at Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jayesh Parikh
- Bankstown-Lidcombe Hospital, Eldridge Rd,, Bankstown, NSW, 2200, Australia
| | - Ying Hua Xu
- University of New South Wales, Sydney, Australia.,NICM Health Research Institute, Western Sydney University, Sydney, Australia.,Bankstown-Lidcombe Hospital, Eldridge Rd,, Bankstown, NSW, 2200, Australia
| | - Peter A Silburn
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
10
|
Opportunities and challenges of alpha-synuclein as a potential biomarker for Parkinson's disease and other synucleinopathies. NPJ Parkinsons Dis 2022; 8:93. [PMID: 35869066 PMCID: PMC9307631 DOI: 10.1038/s41531-022-00357-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD), the second most common progressive neurodegenerative disease, develops and progresses for 10–15 years before the clinical diagnostic symptoms of the disease are manifested. Furthermore, several aspects of PD pathology overlap with other neurodegenerative diseases (NDDs) linked to alpha-synuclein (aSyn) aggregation, also called synucleinopathies. Therefore, there is an urgent need to discover and validate early diagnostic and prognostic markers that reflect disease pathophysiology, progression, severity, and potential differences in disease mechanisms between PD and other NDDs. The close association between aSyn and the development of pathology in synucleinopathies, along with the identification of aSyn species in biological fluids, has led to increasing interest in aSyn species as potential biomarkers for early diagnosis of PD and differentiate it from other synucleinopathies. In this review, we (1) provide an overview of the progress toward mapping the distribution of aSyn species in the brain, peripheral tissues, and biological fluids; (2) present comparative and critical analysis of previous studies that measured total aSyn as well as other species such as modified and aggregated forms of aSyn in different biological fluids; and (3) highlight conceptual and technical gaps and challenges that could hinder the development and validation of reliable aSyn biomarkers; and (4) outline a series of recommendations to address these challenges. Finally, we propose a combined biomarker approach based on integrating biochemical, aggregation and structure features of aSyn, in addition to other biomarkers of neurodegeneration. We believe that capturing the diversity of aSyn species is essential to develop robust assays and diagnostics for early detection, patient stratification, monitoring of disease progression, and differentiation between synucleinopathies. This could transform clinical trial design and implementation, accelerate the development of new therapies, and improve clinical decisions and treatment strategies.
Collapse
|
11
|
Blömeke L, Pils M, Kraemer-Schulien V, Dybala A, Schaffrath A, Kulawik A, Rehn F, Cousin A, Nischwitz V, Willbold J, Zack R, Tropea TF, Bujnicki T, Tamgüney G, Weintraub D, Irwin D, Grossman M, Wolk DA, Trojanowski JQ, Bannach O, Chen-Plotkin A, Willbold D. Quantitative detection of α-Synuclein and Tau oligomers and other aggregates by digital single particle counting. NPJ Parkinsons Dis 2022; 8:68. [PMID: 35655068 PMCID: PMC9163356 DOI: 10.1038/s41531-022-00330-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The pathological hallmark of neurodegenerative diseases is the formation of toxic oligomers by proteins such as alpha-synuclein (aSyn) or microtubule-associated protein tau (Tau). Consequently, such oligomers are promising biomarker candidates for diagnostics as well as drug development. However, measuring oligomers and other aggregates in human biofluids is still challenging as extreme sensitivity and specificity are required. We previously developed surface-based fluorescence intensity distribution analysis (sFIDA) featuring single-particle sensitivity and absolute specificity for aggregates. In this work, we measured aSyn and Tau aggregate concentrations of 237 cerebrospinal fluid (CSF) samples from five cohorts: Parkinson's disease (PD), dementia with Lewy bodies (DLB), Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and a neurologically-normal control group. aSyn aggregate concentration discriminates PD and DLB patients from normal controls (sensitivity 73%, specificity 65%, area under the receiver operating curve (AUC) 0.68). Tau aggregates were significantly elevated in PSP patients compared to all other groups (sensitivity 87%, specificity 70%, AUC 0.76). Further, we found a tight correlation between aSyn and Tau aggregate titers among all patient cohorts (Pearson coefficient of correlation r = 0.81). Our results demonstrate that aSyn and Tau aggregate concentrations measured by sFIDA differentiate neurodegenerative disease diagnostic groups. Moreover, sFIDA-based Tau aggregate measurements might be particularly useful in distinguishing PSP from other parkinsonisms. Finally, our findings suggest that sFIDA can improve pre-clinical and clinical studies by identifying those individuals that will most likely respond to compounds designed to eliminate specific oligomers or to prevent their formation.
Collapse
Affiliation(s)
- Lara Blömeke
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
- attyloid GmbH, 40225, Düsseldorf, Germany
| | - Marlene Pils
- attyloid GmbH, 40225, Düsseldorf, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Victoria Kraemer-Schulien
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Alexandra Dybala
- attyloid GmbH, 40225, Düsseldorf, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Anja Schaffrath
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Andreas Kulawik
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
- attyloid GmbH, 40225, Düsseldorf, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Fabian Rehn
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Anneliese Cousin
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Volker Nischwitz
- Central Institute for Engineering, Electronics and Analytics, Analytics (ZEA-3), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Johannes Willbold
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Rebecca Zack
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas F Tropea
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tuyen Bujnicki
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Gültekin Tamgüney
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Daniel Weintraub
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parkinson's Disease and Mental Illness Research, Education, and Clinical Centers, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - David Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oliver Bannach
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
- attyloid GmbH, 40225, Düsseldorf, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dieter Willbold
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
12
|
Kawahata I, Finkelstein DI, Fukunaga K. Pathogenic Impact of α-Synuclein Phosphorylation and Its Kinases in α-Synucleinopathies. Int J Mol Sci 2022; 23:ijms23116216. [PMID: 35682892 PMCID: PMC9181156 DOI: 10.3390/ijms23116216] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022] Open
Abstract
α-Synuclein is a protein with a molecular weight of 14.5 kDa and consists of 140 amino acids encoded by the SNCA gene. Missense mutations and gene duplications in the SNCA gene cause hereditary Parkinson’s disease. Highly phosphorylated and abnormally aggregated α-synuclein is a major component of Lewy bodies found in neuronal cells of patients with sporadic Parkinson’s disease, dementia with Lewy bodies, and glial cytoplasmic inclusion bodies in oligodendrocytes with multiple system atrophy. Aggregated α-synuclein is cytotoxic and plays a central role in the pathogenesis of the above-mentioned synucleinopathies. In a healthy brain, most α-synuclein is unphosphorylated; however, more than 90% of abnormally aggregated α-synuclein in Lewy bodies of patients with Parkinson’s disease is phosphorylated at Ser129, which is presumed to be of pathological significance. Several kinases catalyze Ser129 phosphorylation, but the role of phosphorylation enzymes in disease pathogenesis and their relationship to cellular toxicity from phosphorylation are not fully understood in α-synucleinopathy. Consequently, this review focuses on the pathogenic impact of α-synuclein phosphorylation and its kinases during the neurodegeneration process in α-synucleinopathy.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Correspondence: (I.K.); (K.F.); Tel.: +81-22-795-6838 (I.K.); +81-22-795-6836 (K.F.); Fax: +81-22-795-6835 (I.K. & K.F.)
| | - David I. Finkelstein
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- BRI Pharma Inc., Sendai 982-0804, Japan
- Correspondence: (I.K.); (K.F.); Tel.: +81-22-795-6838 (I.K.); +81-22-795-6836 (K.F.); Fax: +81-22-795-6835 (I.K. & K.F.)
| |
Collapse
|
13
|
Braczynski AK, Sevenich M, Gering I, Kupreichyk T, Agerschou ED, Kronimus Y, Habib P, Stoldt M, Willbold D, Schulz JB, Bach JP, Falkenburger BH, Hoyer W. Alpha-Synuclein-Specific Naturally Occurring Antibodies Inhibit Aggregation In Vitro and In Vivo. Biomolecules 2022; 12:biom12030469. [PMID: 35327661 PMCID: PMC8946620 DOI: 10.3390/biom12030469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is associated with motor and non-motor symptoms and characterized by aggregates of alpha-synuclein (αSyn). Naturally occurring antibodies (nAbs) are part of the innate immune system, produced without prior contact to their specific antigen, and polyreactive. The abundance of nAbs against αSyn is altered in patients with PD. In this work, we biophysically characterized nAbs against αSyn (nAbs-αSyn) and determined their biological effects. nAbs-αSyn were isolated from commercial intravenous immunoglobulins using column affinity purification. Biophysical properties were characterized using a battery of established in vitro assays. Biological effects were characterized in HEK293T cells transiently transfected with fluorescently tagged αSyn. Specific binding of nAbs-αSyn to monomeric αSyn was demonstrated by Dot blot, ELISA, and Surface Plasmon Resonance. nAbs-αSyn did not affect viability of HEK293T cells as reported by Cell Titer Blue and LDH Assays. nAbs-αSyn inhibited fibrillation of αSyn reported by the Thioflavin T aggregation assay. Altered fibril formation was confirmed with atomic force microscopy. In cells transfected with EGFP-tagged αSyn we observed reduced formation of aggresomes, perinuclear accumulations of αSyn aggregates. The results demonstrate that serum of healthy individuals contains nAbs that specifically bind αSyn and inhibit aggregation of αSyn in vitro. The addition of nAbs-αSyn to cultured cells affects intracellular αSyn aggregates. These findings help understanding the role of the innate immune systems for the pathogenesis of PD and suggest that systemic αSyn binding agents could potentially affect neuronal αSyn pathology.
Collapse
Affiliation(s)
- Anne K. Braczynski
- Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany; (A.K.B.); (P.H.); (J.B.S.); (J.-P.B.)
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.K.); (E.D.A.); (M.S.); (D.W.)
| | - Marc Sevenich
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.S.); (I.G.)
- Priavoid GmbH, 40225 Düsseldorf, Germany
| | - Ian Gering
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.S.); (I.G.)
| | - Tatsiana Kupreichyk
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.K.); (E.D.A.); (M.S.); (D.W.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.S.); (I.G.)
| | - Emil D. Agerschou
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.K.); (E.D.A.); (M.S.); (D.W.)
| | - Yannick Kronimus
- Department of Geriatric Medicine, University Hospital Essen, University Duisburg-Essen, 47057 Duisburg, Germany;
| | - Pardes Habib
- Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany; (A.K.B.); (P.H.); (J.B.S.); (J.-P.B.)
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Stoldt
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.K.); (E.D.A.); (M.S.); (D.W.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.S.); (I.G.)
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.K.); (E.D.A.); (M.S.); (D.W.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.S.); (I.G.)
| | - Jörg B. Schulz
- Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany; (A.K.B.); (P.H.); (J.B.S.); (J.-P.B.)
- JARA-Institute Molecular Neuroscience and Neuroimaging, Jülich Aachen Research Alliance, FZ Jülich and RWTH University, 52428 Jülich, Germany
| | - Jan-Philipp Bach
- Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany; (A.K.B.); (P.H.); (J.B.S.); (J.-P.B.)
| | - Björn H. Falkenburger
- Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany; (A.K.B.); (P.H.); (J.B.S.); (J.-P.B.)
- Department of Neurology, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
- Correspondence: (B.H.F.); (W.H.)
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.K.); (E.D.A.); (M.S.); (D.W.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.S.); (I.G.)
- Correspondence: (B.H.F.); (W.H.)
| |
Collapse
|
14
|
Barba L, Paolini Paoletti F, Bellomo G, Gaetani L, Halbgebauer S, Oeckl P, Otto M, Parnetti L. Alpha and Beta Synucleins: From Pathophysiology to Clinical Application as Biomarkers. Mov Disord 2022; 37:669-683. [PMID: 35122299 PMCID: PMC9303453 DOI: 10.1002/mds.28941] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
The synuclein family includes three neuronal proteins, named α‐synuclein, β‐synuclein, and γ‐synuclein, that have peculiar structural features. α‐synuclein is largely known for being a key protein in the pathophysiology of Parkinson's disease (PD) and other synucleinopathies, namely, dementia with Lewy bodies and multisystem atrophy. The role of β‐synuclein and γ‐synuclein is less well understood in terms of physiological functions and potential contribution to human diseases. α‐synuclein has been investigated extensively in both cerebrospinal fluid (CSF) and blood as a potential biomarker for synucleinopathies. Recently, great attention has been also paid to β‐synuclein, whose CSF and blood levels seem to reflect synaptic damage and neurodegeneration independent of the presence of synucleinopathy. In this review, we aim to provide an overview on the pathophysiological roles of the synucleins. Because γ‐synuclein has been poorly investigated in the field of synucleinopathy and its pathophysiological roles are far from being clear, we focus on the interactions between α‐synuclein and β‐synuclein in PD. We also discuss the role of α‐synuclein and β‐synuclein as potential biomarkers to improve the diagnostic characterization of synucleinopathies, thus highlighting their potential application in clinical trials for disease‐modifying therapies. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Lorenzo Barba
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
- Department of Neurology University of Ulm Ulm Germany
- Department of Neurology Martin‐Luther‐University Halle‐Wittenberg Halle/Saale Germany
| | - Federico Paolini Paoletti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Giovanni Bellomo
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Lorenzo Gaetani
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | | | - Patrick Oeckl
- Department of Neurology University of Ulm Ulm Germany
- German Center for Neurodegenerative Disorders Ulm (DZNE e. V.) Ulm Germany
| | - Markus Otto
- Department of Neurology University of Ulm Ulm Germany
- Department of Neurology Martin‐Luther‐University Halle‐Wittenberg Halle/Saale Germany
| | - Lucilla Parnetti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| |
Collapse
|
15
|
Murueta-Goyena A, Cipriani R, Carmona-Abellán M, Acera M, Ayo N, del Pino R, Tijero B, Fernández T, Gabilondo I, Zallo F, Matute C, Sánchez-Pernaute R, Khurana V, Cavaliere F, Capetillo-Zarate E, Gómez-Esteban JC. Characterization of molecular biomarkers in cerebrospinal fluid and serum of E46K-SNCA mutation carriers. Parkinsonism Relat Disord 2022; 96:29-35. [DOI: 10.1016/j.parkreldis.2022.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
|
16
|
Chan DKY, Braidy N, Chen RF, Xu YH, Bentley S, Lubomski M, Davis RL, Chen J, Sue CM, Mellick GD. Strong Predictive Algorithm of Pathogenesis-Based Biomarkers Improves Parkinson's Disease Diagnosis. Mol Neurobiol 2022; 59:1476-1485. [PMID: 34993845 DOI: 10.1007/s12035-021-02604-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
Easily accessible and accurate biomarkers can aid Parkinson's disease diagnosis. We investigated whether combining plasma levels of α-synuclein, anti-α-synuclein, and/or their ratios to amyloid beta-40 correlated with clinical diagnosis. The inclusion of amyloid beta-40 (Aβ40) is novel. Plasma levels of biomarkers were quantified with ELISA. Using receiver operating characteristic (ROC) curve analysis, levels of α-synuclein, anti-α-synuclein, and their ratios with Aβ40 were analyzed in an initial training set of cases and controls. Promising biomarkers were then used to build a diagnostic algorithm. Verification of the results of biomarkers and the algorithm was performed in an independent set. The training set consisted of 50 cases (age 65.2±9.3, range 44-83, female:male=21:29) with 50 age- and gender-matched controls (67.1±10.0, range 45-96 years; female:male=21:29). ROC curve analysis yielded the following area under the curve results: anti-α-synuclein=0.835, α-synuclein=0.738, anti-α-synuclein/Aβ40=0.737, and α-synuclein/Aβ40=0.663. A 2-step diagnostic algorithm was built: either α-synuclein or anti-α-synuclein was ≥2 times the means of controls (step-1), resulting in 74% sensitivity; and adding α-synuclein/Aβ40 or anti-α-synuclein/Aβ40 (step-2) yielded better sensitivity (82%) while using step-2 alone yielded good specificity in controls (98%). The results were verified in an independent sample of 46 cases and 126 controls, with sensitivity reaching 91.3% and specificity 90.5%. The algorithm was equally sensitive in Parkinson's disease of ≤5-year duration with 92.6% correctly identified in the training set and 90% in the verification set. With two independent samples totaling 272 subjects, our study showed that combination of biomarkers of α-synuclein, anti-α-synuclein, and their ratios to Aβ40 showed promising sensitivity and specificity.
Collapse
Affiliation(s)
- Daniel Kam Yin Chan
- University of New South Wales, Kensington, Australia. .,Western Sydney University, Sydney, Australia. .,Bankstown-Lidcombe Hospital, Eldridge Rd, Bankstown, NSW, 2200, Australia.
| | - Nady Braidy
- University of New South Wales, Kensington, Australia
| | - Ren Fen Chen
- Central Sydney Immunology Laboratory, NSW Health Pathology at Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ying Hua Xu
- University of New South Wales, Kensington, Australia.,Bankstown-Lidcombe Hospital, Eldridge Rd, Bankstown, NSW, 2200, Australia
| | | | - Michal Lubomski
- Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Ryan L Davis
- Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Jack Chen
- University of New South Wales, Kensington, Australia
| | - Carolyn M Sue
- Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | | |
Collapse
|
17
|
Li XY, Li W, Li X, Li XR, Sun L, Yang W, Cai Y, Chen Z, Wu J, Wang C, Yu S. Alterations of Erythrocytic Phosphorylated Alpha-Synuclein in Different Subtypes and Stages of Parkinson's Disease. Front Aging Neurosci 2021; 13:623977. [PMID: 34658833 PMCID: PMC8511781 DOI: 10.3389/fnagi.2021.623977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Serine 129-phosphorylated alpha-synuclein (pS-α-syn) is a major form of α-syn relevant to the pathogenesis of Parkinson's disease (PD), which has been recently detected in red blood cells (RBCs). However, alterations of RBC-derived pS-α-syn (pS-α-syn-RBC) in different subtypes and stages of PD remains to be investigated. In the present study, by using enzyme-linked immunosorbent assay (ELISA) to measure pS-α-syn-RBC, we demonstrated significantly higher levels of pS-α-syn-RBC in PD patients than in healthy controls. pS-α-syn-RBC separated the patients well from the controls, with a sensitivity of 93.39% (95% CI: 90.17-95.81%), a specificity of 93.11% (95% CI: 89.85-95.58%), and an area under the curve (AUC) of 0.96. Considering motor subtypes, the levels of pS-α-syn-RBC were significantly higher in late-onset than young-onset PD (p = 0.013) and in those with postural instability and gait difficulty than with tremor-dominant (TD) phenotype (p = 0.029). In addition, the levels of pS-α-syn-RBC were also different in non-motor subtypes, which were significantly lower in patients with cognitive impairment (p = 0.012) and olfactory loss (p = 0.004) than in those without such symptoms. Moreover, the levels of pS-α-syn-RBC in PD patients were positively correlated with disease duration and Hoehn & Yahr stages (H&Y) (p for trend =0.02 and <0.001) as well as UPDRS III (R 2 = 0.031, p = 0.0042) and MoCA scores (R 2 = 0.048, p = 0.0004). The results obtained suggest that pS-α-syn-RBC can be used as a potential biomarker for not only separating PD patients from healthy controls but also predicting the subtypes and stages of PD.
Collapse
Affiliation(s)
- Xu-Ying Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wei Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xin Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xu-Ran Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Linjuan Sun
- Department of Neurology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiwei Yang
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yanning Cai
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhigang Chen
- Department of Neurology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jun Wu
- Department of Neurology, Peking University Shenzhen Hospital, Guangdong, China
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Enhanced Plasmonic Biosensor Utilizing Paired Antibody and Label-Free Fe 3O 4 Nanoparticles for Highly Sensitive and Selective Detection of Parkinson's α-Synuclein in Serum. BIOSENSORS-BASEL 2021; 11:bios11100402. [PMID: 34677358 PMCID: PMC8534275 DOI: 10.3390/bios11100402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Parkinson’s disease (PD) is an acute and progressive neurodegenerative disorder, and diagnosis of the disease at its earliest stage is of paramount importance to improve the life expectancy of patients. α-Synuclein (α-syn) is a potential biomarker for the early diagnosis of PD, and there is a great need to develop a biosensing platform that precisely detects α-syn in human body fluids. Herein, we developed a surface plasmon resonance (SPR) biosensor based on the label-free iron oxide nanoparticles (Fe3O4 NPs) and paired antibody for the highly sensitive and selective detection of α-syn in serum samples. The sensitivity of the SPR platform is enhanced significantly by directly depositing Fe3O4 NPs on the Au surface at a high density to increase the decay length of the evanescent field on the Au film. Moreover, the utilization of rabbit-type monoclonal antibody (α-syn-RmAb) immobilized on Au films allows the SPR platform to have a high affinity-selectivity binding performance compared to mouse-type monoclonal antibodies as a common bioreceptor for capturing α-syn molecules. As a result, the current platform has a detection limit of 5.6 fg/mL, which is 20,000-fold lower than that of commercial ELISA. The improved sensor chip can also be easily regenerated to repeat the α-syn measurement with the same sensitivity. Furthermore, the SPR sensor was applied to the direct analysis of α-syn in serum samples. By using a format of paired α-syn-RmAb, the SPR sensor provides a recovery rate in the range from 94.5% to 104.3% to detect the α-syn in diluted serum samples precisely. This work demonstrates a highly sensitive and selective quantification approach to detect α-syn in human biofluids and paves the way for the future development in the early diagnosis of PD.
Collapse
|
19
|
Singh S, Khayachi A, Milnerwood AJ, DeMarco ML. Quantitative Profiling of Synuclein Species: Application to Transgenic Mouse Models of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 10:613-621. [PMID: 32083592 DOI: 10.3233/jpd-191835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Improved analytical tools for detailed characterization of synucleins in pre-clinical models of Parkinson's disease (PD) and related synucleinopathies are needed. OBJECTIVE Develop a multiple reaction monitoring (MRM) liquid chromatography tandem mass spectrometry (LC-MS/MS) assay to quantify species-specific sequences and structural heterogeneity in soluble α- and β-synucleins in brain tissue. METHODS Using a proteolytic digestion workflow, the MRM LC-MS/MS method assayed six proteotypic peptides from the α-synuclein sequence; three unique to mouse or human α-synuclein and three conserved in α- and β-synuclein. For quantification, we used labeled α-synuclein as the internal standard and an external calibration curve. As proof of concept, the synuclein LC-MS/MS method was applied to brain tissue specimens from M83 transgenic PD mice, which overexpresses human α-synuclein, relative to wild-type littermate controls. RESULTS The synuclein MRM assay was linear over a wide concentration range (at least one order of magnitude). The assay had several advantages over ligand binding analytical methods, such as western blotting and enzyme-linked immunosorbent assays. These advantages included the ability to: quantify 1) total α-synuclein, 2) combined α- and β-synucleins, 3) species-specific contributions to total α-synuclein (e.g., in mice expressing both mouse and human α-synuclein), and 4) identify peptide-specific profile differences that may reflect post-translational modifications, all within a single analysis. CONCLUSION With improved and expanded analytical characteristics coupled with a streamlined sample preparation workflow, the quantitative synuclein profiling LC-MS/MS assay provides a versatile and efficient platform to characterize synuclein biology in pre-clinical models and the potential for application to human tissues and fluids.
Collapse
Affiliation(s)
- Serena Singh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Anouar Khayachi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Austen J Milnerwood
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Mari L DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, St. Paul's Hospital, Providence Health Care, Vancouver, Canada
| |
Collapse
|
20
|
Shim KH, Go HG, Bae H, Jeong DE, Kim D, Youn YC, Kim S, An SSA, Kang MJ. Decreased Exosomal Acetylcholinesterase Activity in the Plasma of Patients With Parkinson's Disease. Front Aging Neurosci 2021; 13:665400. [PMID: 34122043 PMCID: PMC8193230 DOI: 10.3389/fnagi.2021.665400] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Exosomes, which are small extracellular vesicles produced from various cell types, contain a variety of molecular constituents, such as proteins, lipids, and RNA. Recently, exosomal biomarkers have been investigated to probe the understanding and diagnosis of neurodegenerative disorders. Previous reports have demonstrated increased exosomal α-synuclein (α-syn) in patients with Parkinson’s disease (PD) in comparison to healthy controls (HC). Interestingly, the cholinergic loss was revealed in the central and peripheral nervous systems in histopathology and molecular neuroimaging. Thereby, we simultaneously examined acetylcholinesterase (AChE) with α-syn as exosomal markers. Exosomes were isolated from the plasma of 34 FP-CIT PET proven patients with PD and 29 HC. Exosomal α-syn and AChE activity were quantified andthe relationship with clinical parameters was analyzed. Remarkably, exosomal AChE activity was significantly decreased in PD compared to HC (P = 0.002). Moreover, exosomal AChE activity in PD revealed a strong negative correlation with disease severity, including H&Y (P = 0.007) and UPDRS part III (P = 0.047) scores. By contrast, no significant difference in exosomal α-syn concentration was observed between groups. These results support the occurrence of cholinergic dysfunction in PD, and they could be implicated with disease progression, especially motor deficits. Exosomal AChE activity with advanced exosome isolation techniques may be a reliable biomarker for the early diagnosis and prognosis of PD.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- Department of Neurology, Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, South Korea
| | - Han Gyeol Go
- Department of Neurology, Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, South Korea.,Department of Bionano Technology, Gachon University, Seongnam-si, South Korea
| | - Heewon Bae
- Department of Neurology, Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, South Korea
| | - Da-Eun Jeong
- Department of Neurology, Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, South Korea
| | - Danyeong Kim
- Department of Bionano Technology, Gachon University, Seongnam-si, South Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University Hospital, Seoul, South Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam-si, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Seongnam-si, South Korea
| | - Min Ju Kang
- Department of Neurology, Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, South Korea
| |
Collapse
|
21
|
Stuendl A, Kraus T, Chatterjee M, Zapke B, Sadowski B, Moebius W, Hobert MA, Deuschle C, Brockmann K, Maetzler W, Mollenhauer B, Schneider A. α-Synuclein in Plasma-Derived Extracellular Vesicles Is a Potential Biomarker of Parkinson's Disease. Mov Disord 2021; 36:2508-2518. [PMID: 34002893 DOI: 10.1002/mds.28639] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Extracellular vesicles are small vesicles that are released from many cells, including neurons. α-Synuclein has recently been described in extracellular vesicles derived from the central nervous system and may contribute to the spreading of disease pathology in α-synuclein-related neurodegeneration. OBJECTIVES We aimed to examine the potential diagnostic value of α-synuclein in plasma extracellular vesicles from patients with Parkinson's disease (PD). METHODS Preanalytical variables were studied to establish an optimized assay for preparation of plasma extracellular vesicles and detection of extracellular vesicle-derived α-synuclein. Plasma samples were obtained from 2 independent cohorts. The Tübingen cohort contained 96 patients with PD, 50 patients with dementia with Lewy bodies, 50 patients with progressive supranuclear palsy (PSP), and 42 healthy controls; the Kassel cohort included 47 patients with PD, 43 patients with dementia with Lewy bodies, and 36 controls with secondary parkinsonian syndromes. Extracellular vesicles were prepared from total plasma by size exclusion chromatography and quantified by nanoparticle tracking analysis, α-synuclein content was measured by an electrochemiluminescence assay. RESULTS α-Synuclein concentration in plasma extracellular vesicles provided the best discrimination between PD, dementia with Lewy bodies, PSP, and healthy controls, with an area under the curve of 0.804 (PD vs dementia with Lewy bodies), 0.815 (PD vs. PSP), and 0.769 (PD vs healthy controls) in the Tübingen cohort. Results were validated in the Kassel cohort. CONCLUSIONS The concentration of α-synuclein in plasma extracellular vesicles may serve as a potential diagnostic biomarker for PD. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anne Stuendl
- German Center for Neurodegenerative Diseases, DZNE, Bonn, Germany
| | - Tanja Kraus
- German Center for Neurodegenerative Diseases, DZNE, Bonn, Germany
| | | | - Björn Zapke
- German Center for Neurodegenerative Diseases, DZNE, Bonn, Germany
| | - Boguslawa Sadowski
- Department of Neurogenetics, Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wiebke Moebius
- Department of Neurogenetics, Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Markus A Hobert
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Christian Deuschle
- Department of Neurology, University of Tübingen, Tübingen, Germany.,Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research HiH, Tübingen, Germany.,German Center for Neurodegenerative Diseases DZNE, Tübingen, Germany
| | - Kathrin Brockmann
- Department of Neurology, University of Tübingen, Tübingen, Germany.,Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research HiH, Tübingen, Germany.,German Center for Neurodegenerative Diseases DZNE, Tübingen, Germany
| | - Walter Maetzler
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Paracelsus-Elena-Klinik, Kassel, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases, DZNE, Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
22
|
Insights into the Pathophysiology of Psychiatric Symptoms in Central Nervous System Disorders: Implications for Early and Differential Diagnosis. Int J Mol Sci 2021; 22:ijms22094440. [PMID: 33922780 PMCID: PMC8123079 DOI: 10.3390/ijms22094440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Different psychopathological manifestations, such as affective, psychotic, obsessive-compulsive symptoms, and impulse control disturbances, may occur in most central nervous system (CNS) disorders including neurodegenerative and neuroinflammatory diseases. Psychiatric symptoms often represent the clinical onset of such disorders, thus potentially leading to misdiagnosis, delay in treatment, and a worse outcome. In this review, psychiatric symptoms observed along the course of several neurological diseases, namely Alzheimer’s disease, fronto-temporal dementia, Parkinson’s disease, Huntington’s disease, and multiple sclerosis, are discussed, as well as the involved brain circuits and molecular/synaptic alterations. Special attention has been paid to the emerging role of fluid biomarkers in early detection of these neurodegenerative diseases. The frequent occurrence of psychiatric symptoms in neurological diseases, even as the first clinical manifestations, should prompt neurologists and psychiatrists to share a common clinico-biological background and a coordinated diagnostic approach.
Collapse
|
23
|
Sharma S, Nozohouri S, Vaidya B, Abbruscato T. Repurposing metformin to treat age-related neurodegenerative disorders and ischemic stroke. Life Sci 2021; 274:119343. [PMID: 33716063 DOI: 10.1016/j.lfs.2021.119343] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Aging is a risk factor for major central nervous system (CNS) disorders. More specifically, aging can be inked to neurodegenerative diseases (NDs) because of its deteriorating impact on neurovascular unit (NVU). Metformin, a first line FDA-approved anti-diabetic drug, has gained increasing interest among researchers for its role in improving aging-related neurodegenerative disorders. Additionally, numerous studies have illustrated metformin's role in ischemic stroke, a cerebrovascular disorder in which the NVU becomes dysfunctional which can lead to permanent life-threatening disabilities. Considering metformin's beneficial preclinical actions on various disorders, and the drug's role in alleviating severity of these conditions through involvement in commonly characterized cellular pathways, we discuss the potential of metformin as a suitable drug candidate for repurposing in CNS disorders.
Collapse
Affiliation(s)
- Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA.
| |
Collapse
|
24
|
Nam D, Kim A, Han SJ, Lee SI, Park SH, Seol W, Son I, Ho DH. Analysis of α-synuclein levels related to LRRK2 kinase activity: from substantia nigra to urine of patients with Parkinson's disease. Anim Cells Syst (Seoul) 2021; 25:28-36. [PMID: 33717414 PMCID: PMC7935126 DOI: 10.1080/19768354.2021.1883735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Research on Parkinson’s disease (PD) has been focused on the development of PD diagnostic tools as much as the development of PD therapeutics. Several genetic culprits of PD, including DJ-1, Leucine-rich repeat kinase 2 (LRRK2), and α-synuclein (α-syn), have been investigated as markers of PD in human biofluids. Unfortunately, the approaches to develop PD diagnostic tools are impractical, and there is a considerable demand for an appropriate marker of PD. The measurement of α-syn in biofluids has recently been made more accurate by examining monomers and aggregates separately using enzyme-linked immunosorbent assay (ELISA). Previously, we reported on the development of two types of sandwich ELISA for total α-syn and MJFR-14-6-4-2 antibody-specific α-syn fibrillar oligomers. The pathogenic LRRK2 G2019S mutation is related to increased α-syn secretion in the extracellular space. We tested our established ELISA using differentiated SH-SH5Y cells transfected with LRRK2 G2019S. The secretory levels of fibrillar oligomeric α-syn divided by total α-syn were significantly increased in LRRK2 G2019S-expressing cells. Additionally, substantia nigra lysates or concentrated urine from PD patients and non-PD subjects were analyzed. We observed ambiguous changes in the levels of total or fibrillar oligomeric α-syn and their ratio between PD and non-PD. Despite the insignificant increase in the relative levels of fibrillar oligomeric α-syn to total α-syn in PD, the duration of disease progression after diagnosis significantly corresponded to the relative levels of fibrillar oligomeric α-syn to total α-syn in the urine. These results might provide greater understanding for the next stage of development of α-syn ELISAs.
Collapse
Affiliation(s)
- Daleum Nam
- InAm Neuroscience Research Center, Gunpo, Republic of Korea
| | - Ami Kim
- Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo-si, Republic of Korea
| | - Sun Jung Han
- Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo-si, Republic of Korea
| | - Sung-Ik Lee
- Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo-si, Republic of Korea
| | - Sung-Hye Park
- Department of pathology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Wongi Seol
- InAm Neuroscience Research Center, Gunpo, Republic of Korea
| | - Ilhong Son
- InAm Neuroscience Research Center, Gunpo, Republic of Korea.,Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo-si, Republic of Korea
| | - Dong Hwan Ho
- InAm Neuroscience Research Center, Gunpo, Republic of Korea
| |
Collapse
|
25
|
Shim KH, Kim SC, Youn YC, Sung YH, An SSA. Decreased plasma α-synuclein in idiopathic Parkinson’s disease patients after adjusting hemolysis factor. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00104-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Camporesi E, Nilsson J, Brinkmalm A, Becker B, Ashton NJ, Blennow K, Zetterberg H. Fluid Biomarkers for Synaptic Dysfunction and Loss. Biomark Insights 2020; 15:1177271920950319. [PMID: 32913390 PMCID: PMC7444114 DOI: 10.1177/1177271920950319] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Synapses are the site for brain communication where information is transmitted between neurons and stored for memory formation. Synaptic degeneration is a global and early pathogenic event in neurodegenerative disorders with reduced levels of pre- and postsynaptic proteins being recognized as a core feature of Alzheimer's disease (AD) pathophysiology. Together with AD, other neurodegenerative and neurodevelopmental disorders show altered synaptic homeostasis as an important pathogenic event, and due to that, they are commonly referred to as synaptopathies. The exact mechanisms of synapse dysfunction in the different diseases are not well understood and their study would help understanding the pathogenic role of synaptic degeneration, as well as differences and commonalities among them and highlight candidate synaptic biomarkers for specific disorders. The assessment of synaptic proteins in cerebrospinal fluid (CSF), which can reflect synaptic dysfunction in patients with cognitive disorders, is a keen area of interest. Substantial research efforts are now directed toward the investigation of CSF synaptic pathology to improve the diagnosis of neurodegenerative disorders at an early stage as well as to monitor clinical progression. In this review, we will first summarize the pathological events that lead to synapse loss and then discuss the available data on established (eg, neurogranin, SNAP-25, synaptotagmin-1, GAP-43, and α-syn) and emerging (eg, synaptic vesicle glycoprotein 2A and neuronal pentraxins) CSF biomarkers for synapse dysfunction, while highlighting possible utilities, disease specificity, and technical challenges for their detection.
Collapse
Affiliation(s)
- Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bruno Becker
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
27
|
Wijeyekoon RS, Kronenberg-Versteeg D, Scott KM, Hayat S, Kuan WL, Evans JR, Breen DP, Cummins G, Jones JL, Clatworthy MR, Floto RA, Barker RA, Williams-Gray CH. Peripheral innate immune and bacterial signals relate to clinical heterogeneity in Parkinson's disease. Brain Behav Immun 2020; 87:473-488. [PMID: 32006615 PMCID: PMC7613010 DOI: 10.1016/j.bbi.2020.01.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/14/2020] [Accepted: 01/28/2020] [Indexed: 01/09/2023] Open
Abstract
The innate immune system is implicated in Parkinson's disease (PD), but peripheral in-vivo clinical evidence of the components and driving mechanisms involved and their relationship with clinical heterogeneity and progression to dementia remain poorly explored. We examined changes in peripheral innate immune-related markers in PD cases (n = 41) stratified according to risk of developing early dementia. 'Higher Risk'(HR) (n = 23) and 'Lower Risk' (LR) (n = 18) groups were defined according to neuropsychological predictors and MAPT H1/H2 genotype, and compared to age, gender and genotype-matched controls. Monocyte subsets and expression of key surface markers were measured using flow cytometry. Serum markers including alpha-synuclein, inflammasome-related caspase-1 and bacterial translocation-related endotoxin were measured using quantitative immuno-based assays. Specific markers were further investigated using monocyte assays and validated in plasma samples from a larger incident PD cohort (n = 95). We found that classical monocyte frequency was elevated in PD cases compared to controls, driven predominantly by the HR group, in whom Toll-Like Receptor (TLR)4+ monocytes and monocyte Triggering Receptor Expressed on Myeloid cells-2 (TREM2) expression were also increased. Monocyte Human Leukocyte Antigen (HLA)-DR expression correlated with clinical variables, with lower levels associated with worse cognitive/motor performance. Notably, monocyte changes were accompanied by elevated serum bacterial endotoxin, again predominantly in the HR group. Serum alpha-synuclein and inflammasome-related caspase-1 were decreased in PD cases compared to controls regardless of group, with decreased monocyte alpha-synuclein secretion in HR cases. Further, alpha-synuclein and caspase-1 correlated positively in serum and monocyte lysates, and in plasma from the larger cohort, though no associations were seen with baseline or 36-month longitudinal clinical data. Principal Components Analysis of all monocyte and significant serum markers indicated 3 major components. Component 1 (alpha-synuclein, caspase-1, TLR2+ monocytes) differentiated PD cases and controls in both groups, while Component 2 (endotoxin, monocyte TREM2, alpha-synuclein) did so predominantly in the HR group. Component 3 (classical monocytes, alpha-synuclein) also differentiated cases and controls overall in both groups. These findings demonstrate that systemic innate immune changes are present in PD and are greatest in those at higher risk of rapid progression to dementia. Markers associated with PD per-se (alpha-synuclein, caspase-1), differ from those related to cognitive progression and clinical heterogeneity (endotoxin, TREM2, TLR4, classical monocytes, HLA-DR), with mechanistic and therapeutic implications. Alpha-synuclein and caspase-1 are associated, suggesting inflammasome involvement common to all PD, while bacterial translocation associated changes may contribute towards progression to Parkinson's dementia. Additionally, HLA-DR-associated variations in antigen presentation/clearance may modulate existing clinical disease.
Collapse
Affiliation(s)
- Ruwani S. Wijeyekoon
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK,Corresponding Author;
| | | | - Kirsten M. Scott
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Shaista Hayat
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Wei-Li Kuan
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Jonathan R. Evans
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK,Nottingham University Hospital NHS Trust, Nottingham, UK
| | - David P. Breen
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, 49, Little France Crescent, Edinburgh, EH16 4SB, UK,Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Chancellor’s Building, 49, Little France Crescent, Edinburgh, EH16 4SB, UK,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, 9, Little France Road, Edinburgh BioQuarter, Edinburgh, EH16 4UX, UK
| | - Gemma Cummins
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Joanne L. Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - R. Andres Floto
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Roger A. Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK,Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Caroline H. Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| |
Collapse
|
28
|
Seino Y, Nakamura T, Kawarabayashi T, Hirohata M, Narita S, Wakasaya Y, Kaito K, Ueda T, Harigaya Y, Shoji M. Cerebrospinal Fluid and Plasma Biomarkers in Neurodegenerative Diseases. J Alzheimers Dis 2020; 68:395-404. [PMID: 30814356 DOI: 10.3233/jad-181152] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebrospinal fluid (CSF) amyloid-β (Aβ)42 and tau are biomarkers for Alzheimer's disease (AD); however, the effects of other neurodegenerative processes on these biomarkers remain unclear. We measured Aβ40, Aβ42, total tau, phosphorylated-tau, and α-synuclein in CSF and plasma using matched samples from various neurodegenerative diseases to expand our basic knowledge on these biomarkers and their practical applications. A total of 213 CSF and 183 plasma samples were analyzed from cognitively unimpaired subjects, and patients with Alzheimer's disease dementia (ADD), mild cognitive impairment (MCI), non-AD dementias, and other neurological diseases. The CSF/plasma ratios of Aβ40 and Aβ42 were approximately 25:1. Aβ40/42 ratios in CSF and plasma were both 10:1. The CSF total tau/P181tau ratio was 6:1. The CSF/plasma α-synuclein ratio was 1:65. Significantly decreased Aβ42 levels and an increased Aβ40/42 ratio in CSF in ADD/MCI suggested that these relationships were specifically altered in AD. Increased total tau levels in ADD/MCI, encephalopathy, and multiple system atrophy, and increased P181tau in ADD/MCI indicated that these biomarkers corresponded to neurodegeneration and tauopathy, respectively. Although CSF α-synuclein levels were increased in ADD/MCI, there was no merit in measuring α-synuclein in CSF or plasma as a biomarker. The combination of biomarkers by the Aβ40/42 ratio×p181tau reflected specific changes due to the AD pathology in ADD/MCI. Thus, CSF Aβ40, Aβ42, p181tau, and tau were identified as biomarkers for aggregated Aβ associated state (A), aggregated tau associated state (T), and neurodegeneration state (N) pathologies in AD based on the NIA-AA criteria. Overlaps in these biomarkers need to be considered in clinical practice for differential diagnoses of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yusuke Seino
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takumi Nakamura
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takeshi Kawarabayashi
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Mie Hirohata
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Sakiko Narita
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuhito Wakasaya
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kozue Kaito
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Tetsuya Ueda
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Yasuo Harigaya
- Department of Neurology, Maebashi Red Cross Hospital, Maebashi, Japan
| | - Mikio Shoji
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
29
|
Ashton NJ, Hye A, Rajkumar AP, Leuzy A, Snowden S, Suárez-Calvet M, Karikari TK, Schöll M, La Joie R, Rabinovici GD, Höglund K, Ballard C, Hortobágyi T, Svenningsson P, Blennow K, Zetterberg H, Aarsland D. An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders. Nat Rev Neurol 2020; 16:265-284. [PMID: 32322100 DOI: 10.1038/s41582-020-0348-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 01/11/2023]
Abstract
Cerebrospinal fluid analyses and neuroimaging can identify the underlying pathophysiology at the earliest stage of some neurodegenerative disorders, but do not have the scalability needed for population screening. Therefore, a blood-based marker for such pathophysiology would have greater utility in a primary care setting and in eligibility screening for clinical trials. Rapid advances in ultra-sensitive assays have enabled the levels of pathological proteins to be measured in blood samples, but research has been predominantly focused on Alzheimer disease (AD). Nonetheless, proteins that were identified as potential blood-based biomarkers for AD, for example, amyloid-β, tau, phosphorylated tau and neurofilament light chain, are likely to be relevant to other neurodegenerative disorders that involve similar pathological processes and could also be useful for the differential diagnosis of clinical symptoms. This Review outlines the neuropathological, clinical, molecular imaging and cerebrospinal fluid features of the most common neurodegenerative disorders outside the AD continuum and gives an overview of the current status of blood-based biomarkers for these disorders.
Collapse
Affiliation(s)
- Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Abdul Hye
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Anto P Rajkumar
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK.,Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - Antoine Leuzy
- Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | - Stuart Snowden
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Marc Suárez-Calvet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Catalonia, Spain.,Department of Neurology, Hospital del Mar, Barcelona, Catalonia, Spain
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Clinical Memory Research Unit, Lund University, Malmö, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Renaud La Joie
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kina Höglund
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Disease Research, Neurogeriatrics Division, Karolinska Institutet, Novum, Huddinge, Stockholm, Sweden
| | | | - Tibor Hortobágyi
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, Debrecen, Hungary
| | - Per Svenningsson
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK. .,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK. .,Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
30
|
Peripheral alpha-synuclein levels in patients with genetic and non-genetic forms of Parkinson's disease. Parkinsonism Relat Disord 2020; 73:35-40. [DOI: 10.1016/j.parkreldis.2020.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 02/11/2020] [Accepted: 03/19/2020] [Indexed: 11/21/2022]
|
31
|
O'Hara DM, Kalia SK, Kalia LV. Methods for detecting toxic α-synuclein species as a biomarker for Parkinson's disease. Crit Rev Clin Lab Sci 2020; 57:291-307. [PMID: 32116096 DOI: 10.1080/10408363.2019.1711359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the accumulation of α-synuclein (α-syn) into insoluble aggregates known as Lewy bodies and Lewy neurites in the brain. However, prior to the formation of these large aggregates, α-syn forms oligomers and small fibrils, which are believed to be the pathogenic species leading to the death of neurons in the substantia nigra in disease. The majority of aggregated α-syn is phosphorylated, and it is thought that this post-translational modification may be critical in disease pathogenesis. Thus, early detection of the toxic forms of α-syn may provide a window of opportunity for an intervention to halt or slow the progression of neurodegeneration in PD. Expression of α-syn is not restricted to the central nervous system and the protein can be found elsewhere, including bodily fluids and peripheral tissues. This review will examine current methods for detecting toxic forms of α-syn in accessible biospecimens and outline emerging techniques that may provide reliable identification of biomarkers for PD.
Collapse
Affiliation(s)
- Darren M O'Hara
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Neurology, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Neurology, Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| |
Collapse
|
32
|
Tayebi M, El-Hage CM, Pinczowski P, Whiteley P, David M, Li QX, Varghese S, Mikhael M, Habiba U, Harman D, Tatarczuch L, Bogeski M, Birchall I, Ferguson K, Walker L, Masters C, Summers BA. Plant poisoning leads to alpha-synucleinopathy and neuromelanopathy in kangaroos. Sci Rep 2019; 9:16546. [PMID: 31723225 PMCID: PMC6853926 DOI: 10.1038/s41598-019-53396-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/31/2019] [Indexed: 11/09/2022] Open
Abstract
The pathogenesis of synucleinopathies, common neuropathological lesions normally associated with some human neurodegenerative disorders such as Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, remains poorly understood. In animals, ingestion of the tryptamine-alkaloid-rich phalaris pastures plants causes a disorder called Phalaris staggers, a neurological syndrome reported in kangaroos. The aim of the study was to characterise the clinical and neuropathological changes associated with spontaneous cases of Phalaris staggers in kangaroos. Gross, histological, ultrastructural and Immunohistochemical studies were performed to demonstrate neuronal accumulation of neuromelanin and aggregated α-synuclein. ELISA and mass spectrometry were used to detect serum-borne α-synuclein and tryptamine alkaloids respectively. We report that neurons in the central and enteric nervous systems of affected kangaroos display extensive accumulation of neuromelanin in the perikaryon without affecting neuronal morphology. Ultrastructural studies confirmed the typical structure of neuromelanin. While we demonstrated strong staining of α-synuclein, restricted to neurons, intracytoplasmic Lewy bodies inclusions were not observed. α-synuclein aggregates levels were shown to be lower in sera of the affected kangaroos compared to unaffected herd mate kangaroos. Finally, mass spectrometry failed to detect the alkaloid toxins in the sera derived from the affected kangaroos. Our preliminary findings warrant further investigation of Phalaris staggers in kangaroos, potentially a valuable large animal model for environmentally-acquired toxic synucleinopathy.
Collapse
Affiliation(s)
- Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia. .,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.
| | | | - Pedro Pinczowski
- New South Wales Department of Primary Industries, Menangle, New South Wales, Australia
| | - Pam Whiteley
- University of Melbourne, Parkville, Victoria, Australia
| | - Monique David
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Qiao-Xin Li
- New South Wales Department of Primary Industries, Menangle, New South Wales, Australia
| | - Shiji Varghese
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Meena Mikhael
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Umma Habiba
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - David Harman
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | | | - Mirjana Bogeski
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Ian Birchall
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Kirsty Ferguson
- MGV Mt Annan, Mt Annan, NSW, Australia.,Sydney Metropolitan Wildlife Services, Lindfield, NSW, Australia
| | - Larry Walker
- Southern Scientific, Hamilton, Victoria, Australia
| | - Colin Masters
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | | |
Collapse
|
33
|
Chen X, Niu J, Peng R, Song Y, Xu N, Zhang Y. The early diagnosis of Parkinson's disease through combined biomarkers. Acta Neurol Scand 2019; 140:268-273. [PMID: 31190374 DOI: 10.1111/ane.13140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 01/11/2023]
Abstract
OBJECTIVE This study primarily aims to explore the value of combining the measurement of plasma α-synuclein oligomer levels with enhanced T2 star-weighted angiography (ESWAN) in the early diagnosis of Parkinson's disease. METHODS Sixty patients with early Parkinson's disease and 30 normal adults, with similar ages and genders, were enrolled in the study. Their levels of plasma α-synuclein oligomers were measured, and ESWAN was performed. The amplitudes, phases and R2* values of the head, body and tail of the ipsilateral and contralateral substantia nigra pars compacta (SNc) were measured, at the side of the limb with severe symptoms or early symptoms. The receiver operating characteristic (ROC) curve was used to explore the value of these indexes in the early diagnosis of Parkinson's disease. RESULTS The plasma level of α-synuclein oligomer was significantly higher in the experimental group than in the control group (P < 0.05). The amplitude values of the head and tail of contralateral SNcs were significantly lower in the experimental group than in the control group (P < 0.05). In the single-index assessment, the serum α-synuclein oligomer had the highest specificity (70%), while the sensitivity of the amplitude of the head and tail of the contralateral SNc was 75% and 80%, respectively. The area under the curve, for the combination of these three indicators, was 0.827, diagnostic efficiency was particularly high, and sensitivity and specificity both reached 80%. CONCLUSION The combined detection of plasma α-synuclein oligomer and amplitude of the head and tail of the SNc has high diagnostic specificity and sensitivity.
Collapse
Affiliation(s)
- Xin‐Qiao Chen
- Department of Neurology The Second Affiliated Hospital of Xiamen Medical College Xiamen China
| | - Jian‐Ping Niu
- Department of Neurology The Second Affiliated Hospital of Xiamen Medical College Xiamen China
| | - Rui‐Qiang Peng
- Department of Neurology The Second Affiliated Hospital of Xiamen Medical College Xiamen China
| | - Ye‐Hua Song
- Department of Neurology The Second Affiliated Hospital of Xiamen Medical College Xiamen China
| | - Na Xu
- Department of Neurology The Second Affiliated Hospital of Xiamen Medical College Xiamen China
| | - Yi‐Wen Zhang
- Department of Neurology The Second Affiliated Hospital of Xiamen Medical College Xiamen China
| |
Collapse
|
34
|
Cariulo C, Martufi P, Verani M, Azzollini L, Bruni G, Weiss A, Deguire SM, Lashuel HA, Scaricamazza E, Sancesario GM, Schirinzi T, Mercuri NB, Sancesario G, Caricasole A, Petricca L. Phospho-S129 Alpha-Synuclein Is Present in Human Plasma but Not in Cerebrospinal Fluid as Determined by an Ultrasensitive Immunoassay. Front Neurosci 2019; 13:889. [PMID: 31507364 PMCID: PMC6714598 DOI: 10.3389/fnins.2019.00889] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/07/2019] [Indexed: 01/05/2023] Open
Abstract
Accumulation and aggregation of misfolded alpha-synuclein is believed to be a cause of Parkinson’s disease (PD). Phosphorylation of alpha-synuclein at S129 is known to be associated with the pathological misfolding process, but efforts to investigate the relevance of this post-translational modification for pathology have been frustrated by difficulties in detecting and quantifying it in relevant samples. We report novel, ultrasensitive immunoassays based on single-molecule counting technology, useful for detecting alpha-synuclein and its S129 phosphorylated form in clinical samples in the low pg/ml range. Using human CSF and plasma samples, we find levels of alpha-synuclein comparable to those previously reported. However, while alpha-synuclein phosphorylated on S129 could easily be detected in human plasma, where its detection is extremely sensitive to protein phosphatases, its levels in CSF were undetectable, with a possible influence of a matrix effect. In plasma samples from a small test cohort comprising 5 PD individuals and five age-matched control individuals we find that pS129 alpha-synuclein levels are increased in PD plasma samples, in line with previous reports. We conclude that pS129 alpha-synuclein is not detectable in CSF and recommend the addition of phosphatase inhibitors to plasma samples at the time of collection. Moreover, the findings obtained on the small cohort of clinical plasma samples point to plasma pS129 alpha-synuclein levels as a candidate diagnostic biomarker in PD.
Collapse
Affiliation(s)
| | - Paola Martufi
- Department of Neuroscience, IRBM S.p.A., Rome, Italy
| | | | | | | | | | - Sean M Deguire
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Eugenia Scaricamazza
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Tommaso Schirinzi
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Sancesario
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Lara Petricca
- Department of Neuroscience, IRBM S.p.A., Rome, Italy
| |
Collapse
|
35
|
Parnetti L, Gaetani L, Eusebi P, Paciotti S, Hansson O, El-Agnaf O, Mollenhauer B, Blennow K, Calabresi P. CSF and blood biomarkers for Parkinson's disease. Lancet Neurol 2019; 18:573-586. [PMID: 30981640 DOI: 10.1016/s1474-4422(19)30024-9] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/21/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
In the management of Parkinson's disease, reliable diagnostic and prognostic biomarkers are urgently needed. The diagnosis of Parkinson's disease mostly relies on clinical symptoms, which hampers the detection of the earliest phases of the disease-the time at which treatment with forthcoming disease-modifying drugs could have the greatest therapeutic effect. Reliable prognostic markers could help in predicting the response to treatments. Evidence suggests potential diagnostic and prognostic value of CSF and blood biomarkers closely reflecting the pathophysiology of Parkinson's disease, such as α-synuclein species, lysosomal enzymes, markers of amyloid and tau pathology, and neurofilament light chain. A combination of multiple CSF biomarkers has emerged as an accurate diagnostic and prognostic model. With respect to early diagnosis, the measurement of CSF α-synuclein aggregates is providing encouraging preliminary results. Blood α-synuclein species and neurofilament light chain are also under investigation because they would provide a non-invasive tool, both for early and differential diagnosis of Parkinson's disease versus atypical parkinsonian disorders, and for disease monitoring. In view of adopting CSF and blood biomarkers for improving Parkinson's disease diagnostic and prognostic accuracy, further validation in large independent cohorts is needed.
Collapse
Affiliation(s)
- Lucilla Parnetti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Perugia, Italy.
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Paolo Eusebi
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Silvia Paciotti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Perugia, Italy; Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Omar El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany; University Medical Center, Department of Neurology, Göttingen, Germany
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Paolo Calabresi
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
36
|
Ohmichi T, Mitsuhashi M, Tatebe H, Kasai T, Ali El-Agnaf OM, Tokuda T. Quantification of brain-derived extracellular vesicles in plasma as a biomarker to diagnose Parkinson's and related diseases. Parkinsonism Relat Disord 2018; 61:82-87. [PMID: 30502924 DOI: 10.1016/j.parkreldis.2018.11.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/03/2018] [Accepted: 11/19/2018] [Indexed: 11/29/2022]
Abstract
INTRODUCTION There is still a substantial unmet need for blood-based biomarkers to make an objective diagnosis of Parkinson's disease (PD) and the parkinsonism-plus syndromes. This study is aimed to determine whether enumeration of brain-derived exosomes (BDEs) in plasma is informative in the diagnosis of those diseases. METHODS We have developed a specific method to enumerate the plasma levels of neuron-derived, astrocyte-derived, and oligodendrocyte-derived exosomes (NDEs, ADEs and ODEs, respectively), and quantified them individually in patients with PD (n = 15), multiple system atrophy (MSA, n = 15), progressive supranuclear palsy (PSP, n = 7) and disease controls (n = 15). Our assays employ specific antibodies against molecules expressed by neurons, astrocytes and oligodendrocytes, respectively, combined with an antibody to the exosome common marker CD81. RESULTS The plasma levels of NDEs showed significant increase in PD compared to control (p < 0.01) and MSA (p < 0.05) (one-way ANOVA, Bonferroni post hoc test). The plasma levels of ODEs and the ratio of ODE/NDE showed a significant correlation with UPDRS part III scores in the patients with MSA with predominant parkinsonism (MSA-P) (r2 = 0.57, n = 6, p = 0.048) and in the patients with PD (r2 = 0.51, n = 14, p = 0.0041), respectively. CONCLUSIONS This is the first paper that enumerated NDE, ADE, and ODE in human plasma and showed the usefulness of those levels as biomarkers for PD. Our results suggest the capability of the plasma levels of NDE and ODE as a diagnostic and surrogate biomarker for PD and MSA-P, respectively.
Collapse
Affiliation(s)
- Takuma Ohmichi
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan.
| | | | - Harutsugu Tatebe
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan; Department of Zaitaku (Homecare) Medicine, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan.
| | - Takashi Kasai
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan.
| | - Omar M Ali El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, PO Box 5825, Doha, Qatar; Life Sciences Division, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 5825, Doha, Qatar.
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan; Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan.
| |
Collapse
|
37
|
Akhtar RS, Licata JP, Luk KC, Shaw LM, Trojanowski JQ, Lee VMY. Measurements of auto-antibodies to α-synuclein in the serum and cerebral spinal fluids of patients with Parkinson's disease. J Neurochem 2018; 145:489-503. [PMID: 29500813 DOI: 10.1111/jnc.14330] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 12/14/2022]
Abstract
Biomarkers for α-synuclein are needed for diagnosis and prognosis in Parkinson's disease (PD). Endogenous auto-antibodies to α-synuclein could serve as biomarkers for underlying synucleinopathy, but previous assessments of auto-antibodies have shown variability and inconsistent clinical correlations. We hypothesized that auto-antibodies to α-synuclein could be diagnostic for PD and explain its clinical heterogeneity. To test this hypothesis, we developed an enzyme-linked immunosorbent assay for measuring α-synuclein auto-antibodies in human samples. We evaluated 69 serum samples (16 healthy controls (HC) and 53 PD patients) and 145 CSF samples (52 HC and 93 PD patients) from our Institution. Both serum and CSF were available for 24 participants. Males had higher auto-antibody levels than females in both fluids. CSF auto-antibody levels were significantly higher in PD patients as compared with HC, whereas serum levels were not significantly different. CSF auto-antibody levels did not associate with amyloid-β1-42 , total tau, or phosphorylated tau. CSF auto-antibody levels correlated with performance on the Montreal Cognitive Assessment, even when controlled for CSF amyloidβ1-42 . CSF hemoglobin levels, as a proxy for contamination of CSF by blood during lumbar puncture, did not influence these observations. Using recombinant α-synuclein with N- and C-terminal truncations, we found that CSF auto-antibodies target amino acids 100 through 120 of α-synuclein. We conclude that endogenous CSF auto-antibodies are significantly higher in PD patients as compared with HC, suggesting that they could indicate the presence of underlying synucleinopathy. These auto-antibodies associate with poor cognition, independently of CSF amyloidβ1-42 , and target a select C-terminal region of α-synuclein. Read the Editorial Highlight for this article on page 433.
Collapse
Affiliation(s)
- Rizwan S Akhtar
- Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph P Licata
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leslie M Shaw
- Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Shalash A, Salama M, Makar M, Roushdy T, Elrassas HH, Mohamed W, El-Balkimy M, Abou Donia M. Elevated Serum α-Synuclein Autoantibodies in Patients with Parkinson's Disease Relative to Alzheimer's Disease and Controls. Front Neurol 2017; 8:720. [PMID: 29312137 PMCID: PMC5744443 DOI: 10.3389/fneur.2017.00720] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022] Open
Abstract
Early diagnosis of neurodegenerative diseases is of paramount importance for successful treatment. Lack of sensitive and early biomarkers for diagnosis of diseases like Parkinson’s disease (PD) is a handicapping problem for all movement disorders specialists. Using serum autoimmune antibodies (AIAs) against neural proteins is a new promising strategy to diagnose brain disorders through non-invasive and cost-effective method. In the present study, we measured the level of AIAs against α-synuclein (α-syn), which is an important protein involved in the pathogenesis of PD. In our study patients with PD (46 patients), Alzheimer’s disease (AD) (27 patients) and healthy controls (20 patients) were evaluated according to their sera α-syn AIAs levels. Interestingly, α-syn AIAs were significantly elevated in PD group compared to AD and healthy controls, which advocates their use for diagnosis of PD.
Collapse
Affiliation(s)
- Ali Shalash
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Salama
- Medical Experimental Research Centre (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Faculty of Medicine, Toxicology Department, Mansoura University, Mansoura, Egypt
| | - Marianne Makar
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tamer Roushdy
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hanan Hany Elrassas
- Faculty of Medicine, Okasha Institute of Psychiatry, Ain Shams University, Cairo, Egypt
| | - Wael Mohamed
- Faculty of Medicine, Department of Clinical Pharmacology, Menoufia University, Shebin El-Kom, Egypt.,Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
| | - Mahmoud El-Balkimy
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Abou Donia
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
39
|
Malec-Litwinowicz M, Plewka A, Plewka D, Bogunia E, Morek M, Szczudlik A, Szubiga M, Rudzińska-Bar M. The relation between plasma α-synuclein level and clinical symptoms or signs of Parkinson's disease. Neurol Neurochir Pol 2017; 52:243-251. [PMID: 29342421 DOI: 10.1016/j.pjnns.2017.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 05/13/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Parkinson disease (PD) is the common neurodegenerative disease. α-Synuclein (ASN), main aggregating protein in neural cells of CNS in PD, was found in peripheral fluids. Testing ASN in plasma is potential test for diagnose PD, but previous studies are controversial. The aim of this study was to investigate if plasma ASN level may be a valuable biomarker, is the level of plasma ASN concentration different in various motor subtypes of diseases, is there a relation between the level of plasma ASN and the severity of motor symptoms. METHODS Patients with PD hospitalized in Neurology Department, Medical College were performed sequencing the 8th and 9th exon of GBA gene. Next plasma ASN level was tested in 58 patients with sequenced GBA gene and in 38 healthy volunteers (HV), matched by the age (respectively 68.43 vs. 64.57 years of age) and sex (female %, respectively: 43.10 vs.44.74). Patients were assessed with the scales: UPDRS (II, III, IV), Hoehn-Yahr (HY) and qualified to PIGD or TD subtype. For homogeneity of the group patients with GBA mutation were excluded from the analysis. RESULTS The ASN level did not differ between patients and HV (respectively: 4.53 vs. 3.73ng/ml) and between patients with different subtypes. There was inverse correlation between ASN and HY in PIGD subtype. CONCLUSIONS Plasma ASN level is not valuable marker of the disease. It does not differ in subtypes of the disease. There is relation between plasma ASN level and the severity of the disease in PIGD subtype.
Collapse
Affiliation(s)
| | - Andrzej Plewka
- Department of Proteomics, Medical University of Silesia, SPLMS in Sosnowiec, Poland
| | - Danuta Plewka
- Department of Cytophysiology, Chair of Histology and Embryology, Medical University of Silesia, SMK in Katowice, Poland
| | - Edyta Bogunia
- Department of Proteomics, Medical University of Silesia, SPLMS in Sosnowiec, Poland
| | - Michał Morek
- Department of Proteomics, Medical University of Silesia, SPLMS in Sosnowiec, Poland
| | - Andrzej Szczudlik
- Department of Neurology, Medical College, Jagiellonian University in Krakow, Poland
| | - Michał Szubiga
- Department of Medical Genetics, Polish-American Institute of Pediatrics, Jagiellonian University, Poland
| | | |
Collapse
|
40
|
Lin CH, Yang SY, Horng HE, Yang CC, Chieh JJ, Chen HH, Liu BH, Chiu MJ. Plasma α-synuclein predicts cognitive decline in Parkinson's disease. J Neurol Neurosurg Psychiatry 2017; 88:818-824. [PMID: 28550072 PMCID: PMC5629933 DOI: 10.1136/jnnp-2016-314857] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE α-Synuclein is critical to the pathogenesis of Parkinson's disease (PD). Few studies examined the plasma levels of α-synuclein due to the exceptionally low level of α-synuclein in plasma compared with cerebrospinal fluid. We aimed to investigate plasma α-synuclein in patients with PD of different disease severity. METHODS There were total 114 participants, including 80 patients with PD and 34 controls, in the study. Participants received a complete evaluation of motor and non-motor symptoms, including cognitive function. We applied immunomagnetic reduction-based immunoassay to measure plasma levels of α-synuclein. RESULTS Plasma levels of α-synuclein were significantly higher in patients with PD compared with controls (median: 1.56 pg/mL, 95% CI 1.02 to 1.98 pg/mL vs 0.02 pg/mL, 95% CI 0.01 to 0.03 pg/mL; p<0.0001). Although there was a significant increase in plasma α-synuclein levels in PD patients with a higher Hoehn-Yahr (H-Y) stage, there was no correlation with motor symptom severity, as assessed by Unified Parkinson's Disease Rating Scale part III scores, after confounders (age, gender, and disease duration) were taken into account. However, plasma α-synuclein levels were significantly higher in PD patients with dementia (PDD) than in PD patients with mild cognitive impairment (PD-MCI) or normal cognition (0.42 pg/mL, (95% CI 0.25 to 0.93) for PD with normal cognition; 1.29 pg/mL (95% CI 0.76 to 1.93) for PD-MCI and 4.09 pg/mL (95% CI 1.99 to 6.19) for PDD, p<0.01) and were negatively correlated with Mini-Mental State Examination scores (R2-adjusted=0.3004, p<0.001), even after confounder adjustment. CONCLUSIONS Our data suggest that plasma α-synuclein level correlates with cognitive decline but not motor severity in patients with PD. Plasma α-synuclein could serve as a surrogate biomarker for patients at risk of cognitive decline.
Collapse
Affiliation(s)
- Chin-Hsien Lin
- Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Herng-Er Horng
- Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan
| | | | - Jen-Jie Chieh
- Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan
| | | | | | - Ming-Jang Chiu
- Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Neurology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
41
|
Mollenhauer B, Batrla R, El-Agnaf O, Galasko DR, Lashuel HA, Merchant KM, Shaw LM, Selkoe DJ, Umek R, Vanderstichele H, Zetterberg H, Zhang J, Caspell-Garcia C, Coffey C, Hutten SJ, Frasier M, Taylor P. A user's guide for α-synuclein biomarker studies in biological fluids: Perianalytical considerations. Mov Disord 2017; 32:1117-1130. [PMID: 28734051 PMCID: PMC5638072 DOI: 10.1002/mds.27090] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 01/13/2023] Open
Abstract
Parkinson's disease biomarkers are needed to increase diagnostic accuracy, to objectively monitor disease progression and to assess therapeutic efficacy as well as target engagement when evaluating novel drug and therapeutic strategies. This article summarizes perianalytical considerations for biomarker studies (based on immunoassays) in Parkinson's disease, with emphasis on quantifying total α‐synuclein protein in biological fluids. Current knowledge and pitfalls are discussed, and selected perianalytical variables are presented systematically, including different temperature of sample collection and types of collection tubes, gradient sampling, the addition of detergent, aliquot volume, the freezing time, and the different thawing methods. We also discuss analytical confounders. We identify gaps in the knowledge and delineate specific areas that require further investigation, such as the need to identify posttranslational modifications of α‐synuclein and antibody‐independent reference methods for quantification, as well as the analysis of potential confounders, such as comorbidities, medication, and phenotypes of Parkinson's disease in larger cohorts. This review could be used as a guideline for future Parkinson's disease biomarker studies and will require regular updating as more information arises in this growing field, including new technical developments as they become available. In addition to reviewing best practices, we also identify the current technical limitations and gaps in the knowledge that should be addressed to enable accurate and quantitative assessment of α‐synuclein levels in the clinical setting. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany.,Department of Neurology, University Medical Center, Göttingen, Germany
| | - Richard Batrla
- Roche Diagnostics International Ltd, Rotkreuz, Switzerland
| | - Omar El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), and College of Science and Engineering, HBKU, Education City, Qatar Foundation, Doha, Qatar
| | | | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Faculty of Life Science, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Lesley M Shaw
- Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dennis J Selkoe
- Center for Neurodegenerative Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Umek
- MesoScale Discovery, Gaithersburg, Maryland, USA
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; UK Dementia Research Institute, London, UK
| | - Jing Zhang
- University of Washington, Seattle, Washington, USA
| | - Chelsea Caspell-Garcia
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Chris Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Samantha J Hutten
- Michael J. Fox Foundation for Parkinson's Research, New York, New York, USA
| | - Mark Frasier
- Michael J. Fox Foundation for Parkinson's Research, New York, New York, USA
| | | | | |
Collapse
|
42
|
Abstract
Peptide antibodies, with their high specificities and affinities, are invaluable reagents for peptide and protein recognition in biological specimens. Depending on the application and the assay, in which the peptide antibody is to used, several factors influence successful antibody production, including peptide selection and antibody screening. Peptide antibodies have been used in clinical laboratory diagnostics with great success for decades, primarily because they can be produced to multiple targets, recognizing native wildtype proteins, denatured proteins, and newly generated epitopes. Especially mutation-specific peptide antibodies have become important as diagnostic tools in the detection of various cancers. In addition to their use as diagnostic tools in malignant and premalignant conditions, peptide antibodies are applied in all other areas of clinical laboratory diagnostics, including endocrinology, hematology, neurodegenerative diseases, cardiovascular diseases, infectious diseases, and amyloidoses.
Collapse
|
43
|
Giacomelli C, Daniele S, Martini C. Potential biomarkers and novel pharmacological targets in protein aggregation-related neurodegenerative diseases. Biochem Pharmacol 2017; 131:1-15. [PMID: 28159621 DOI: 10.1016/j.bcp.2017.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
The aggregation of specific proteins plays a pivotal role in the etiopathogenesis of several neurodegenerative diseases (NDs). β-Amyloid (Aβ) peptide-containing plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated protein tau are the two main neuropathological lesions in Alzheimer's disease. Meanwhile, Parkinson's disease is defined by the presence of intraneuronal inclusions (Lewy bodies), in which α-synuclein (α-syn) has been identified as a major protein component. The current literature provides considerable insights into the mechanisms underlying oligomeric-related neurodegeneration, as well as the relationship between protein aggregation and ND, thus facilitating the development of novel putative biomarkers and/or pharmacological targets. Recently, α-syn, tau and Aβ have been shown to interact each other or with other "pathological proteins" to form toxic heteroaggregates. These latest findings are overcoming the concept that each neurodegenerative disease is related to the misfolding of a single specific protein. In this review, potential opportunities and pharmacological approaches targeting α-syn, tau and Aβ and their oligomeric forms are highlighted with examples from recent studies. Protein aggregation as a biomarker of NDs, in both the brain and peripheral fluids, is deeply explored. Finally, the relationship between biomarker establishment and assessment and their use as diagnostics or therapeutic targets are discussed.
Collapse
Affiliation(s)
- Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| |
Collapse
|
44
|
Recent developments in circulating biomarkers in Parkinson’s disease: the potential use of miRNAs in a clinical setting. Bioanalysis 2016; 8:2497-2518. [DOI: 10.4155/bio-2016-0166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting 5% of the elderly population. PD diagnosis is still based on the identification of neuromotor symptoms although nonmotor manifestations emerge years prior to diagnosis. The discovery of biomarkers at the earliest stages of PD is of extreme interest. miRNAs have been considered potential biomarkers for neurodegenerative diseases, but only a limited number have been found to be PD related. This review focuses on the current findings in the field of circulating miRNAs in PD and the challenges surrounding clinical utility and validation. We briefly describe the more established circulating biomarkers in PD and provide a more thorough review of miRNAs differentially expressed in PD. We highlight their potential for being considered as biomarkers for diagnosis while emphasizing the challenges for adequate validation of the findings and how miRNAs can be envisioned in a clinical setting satisfying regulatory bodies.
Collapse
|
45
|
Yang SY, Chiu MJ, Lin CH, Horng HE, Yang CC, Chieh JJ, Chen HH, Liu BH. Development of an ultra-high sensitive immunoassay with plasma biomarker for differentiating Parkinson disease dementia from Parkinson disease using antibody functionalized magnetic nanoparticles. J Nanobiotechnology 2016; 14:41. [PMID: 27278241 PMCID: PMC4898388 DOI: 10.1186/s12951-016-0198-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/24/2016] [Indexed: 11/10/2022] Open
Abstract
Background It is difficult to discriminate healthy subjects and patients with Parkinson disease (PD) or Parkinson disease dementia (PDD) by assaying plasma α-synuclein because the concentrations of circulating α-synuclein in the blood are almost the same as the low-detection limit using current immunoassays, such as enzyme-linked immunosorbent assay. In this work, an ultra-sensitive immunoassay utilizing immunomagnetic reduction (IMR) is developed. The reagent for IMR consists of magnetic nanoparticles functionalized with antibodies against α-synuclein and dispersed in pH-7.2 phosphate-buffered saline. A high-Tc superconducting-quantum-interference-device (SQUID) alternative-current magnetosusceptometer is used to measure the IMR signal of the reagent due to the association between magnetic nanoparticles and α-synuclein molecules. Results According to the experimental α-synuclein concentration dependent IMR signal, the low-detection limit is 0.3 fg/ml and the dynamic range is 310 pg/ml. The preliminary results show the plasma α-synuclein for PD patients distributes from 6 to 30 fg/ml. For PDD patients, the concentration of plasma α-synuclein varies from 0.1 to 100 pg/ml. Whereas the concentration of plasma α-synuclein for healthy subjects is significantly lower than that of PD patients. Conclusions The ultra-sensitive IMR by utilizing antibody-functionalized magnetic nanoparticles and high-Tc SQUID magnetometer is promising as a method to assay plasma α-synuclein, which is a potential biomarker for discriminating patients with PD or PDD.
Collapse
Affiliation(s)
- Shieh-Yueh Yang
- MagQu Co., Ltd., Xindian District, New Taipei City, 231, Taiwan. .,Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei, 116, Taiwan.
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.,Department of Psychology, National Taiwan University, Taipei, 100, Taiwan.,Graduate Institute of Biomedical Engineering and Bioinformatics, National Taiwan University, Taipei, 116, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Herng-Er Horng
- Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Che-Chuan Yang
- MagQu Co., Ltd., Xindian District, New Taipei City, 231, Taiwan
| | - Jen-Jie Chieh
- Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Hsin-Hsien Chen
- MagQu Co., Ltd., Xindian District, New Taipei City, 231, Taiwan
| | - Bing-Hsien Liu
- MagQu Co., Ltd., Xindian District, New Taipei City, 231, Taiwan
| |
Collapse
|