1
|
Newell SE, Doll JC, Jutte MC, Davidson JL, McCarthy MJ, Jacquemin SJ. Drivers and mechanisms of harmful algal blooms across hydrologic extremes in hypereutrophic grand lake st marys (Ohio). HARMFUL ALGAE 2024; 138:102684. [PMID: 39244227 DOI: 10.1016/j.hal.2024.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 09/09/2024]
Abstract
Grand Lake St. Marys (GLSM) is a large, shallow, hypereutrophic lake situated in an agricultural watershed with high-nutrient, non-point source runoff. The resulting harmful algal blooms (HABs) are typically dominated by Planktothrix, which can produce microcystin, a potent cyanobacterial toxin that has varied in concentration over the past decade. Some drivers of bloom biomass and toxicity in GLSM are described, but recent years (2019-2022) have exhibited anomalous combinations of winter ice cover and spring runoff, suggesting that additional factors contribute to variability in HAB severity and toxicity. 2020 and 2022 were typical water years, with normal tributary runoff volumes occurring primarily in late winter and spring after either little to no ice cover (2019-2020) or heavy/prolonged ice cover (2021-2022). However, 2021 exhibited prolonged winter ice and low winter/spring runoff. 2020 and 2022 were typical bloom years, with near monoculture, Planktothrix-dominated biomass (11 to 405 μg/L total chlorophyll) and high total concentrations of microcystins (<0.3 to 65 μg/L). However, the first half of 2021 exhibited lower biomass (18 to 65 μg/L chlorophyll a) and toxin concentrations (0.4 to 2.0 μg/L). While biomass returned to bloom levels when external tributary loading increased, ammonium uptake and regeneration rates and microcystin concentrations remained low throughout 2021 (in contrast to other years). Overall, potential ammonium uptake rates strongly correlated with chlorophyll and microcystin concentrations (Bayesian R2 = 0.59; 95% CI = 0.44 to 0.65). Phytoplankton diversity was higher in 2021 than other years, especially in spring/early summer, with increased dinoflagellates and diatoms in spring, followed by a mixed cyanobacterial assemblage in summer. These results suggest that lower external nutrient loads can drive immediate positive impacts on water quality, such as reduced HAB biomass and toxicity and higher phytoplankton diversity, even in hypereutrophic, shallow lakes.
Collapse
Affiliation(s)
- Silvia E Newell
- University of Michigan, Michigan Sea Grant, Ann Arbor, MI 48109, USA; Wright State University, Department of Biology, Dayton, OH 45458, USA; Wright State University, Earth and Environmental Sciences, Dayton, OH 45458, USA.
| | - Jason C Doll
- Francis Marion University, Department of Biology, Florence, South Carolina 29502, USA
| | - Morgan C Jutte
- Wright State University - Lake Campus, Department of Biological Sciences, Agriculture and Water Quality Education Center, Celina, Ohio 45822, USA
| | - Joseph L Davidson
- Wright State University, Earth and Environmental Sciences, Dayton, OH 45458, USA
| | - Mark J McCarthy
- Wright State University, Earth and Environmental Sciences, Dayton, OH 45458, USA; Estonian University of Life Sciences, Estonia
| | - Stephen J Jacquemin
- Wright State University - Lake Campus, Department of Biological Sciences, Agriculture and Water Quality Education Center, Celina, Ohio 45822, USA
| |
Collapse
|
2
|
Schürmann QJF, Visser PM, Sollie S, Kardinaal WEA, Faassen EJ, Lokmani R, van der Oost R, Van de Waal DB. Risk assessment of toxic cyanobacterial blooms in recreational waters: A comparative study of monitoring methods. HARMFUL ALGAE 2024; 138:102683. [PMID: 39244242 DOI: 10.1016/j.hal.2024.102683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 09/09/2024]
Abstract
Toxic cyanobacterial blooms impose a health risk to recreational users, and monitoring of cyanobacteria and associated toxins is required to assess this risk. Traditionally, monitoring for risk assessment is based on cyanobacterial biomass, which assumes that all cyanobacteria potentially produce toxins. While these methods may be cost effective, relatively fast, and more widely accessible, they often lead to an overestimation of the health risk induced by cyanotoxins. Monitoring methods that more directly target toxins, or toxin producing genes, may provide a better risk assessment, yet these methods may be more costly, usually take longer, or are not widely accessible. In this study, we compared six monitoring methods (fluorometry, microscopy, qPCR of 16S and mcyE, ELISA assays, and LC-MS/MS), of which the last three focussed on the most abundant cyanotoxin microcystins, across 11 lakes in the Netherlands during the bathing water season (May-October) of 2019. Results of all monitoring methods significantly correlated with LC-MS/MS obtained microcystin levels (the assumed 'golden standard'), with stronger correlations for methods targeting microcystins (ELISA) and microcystin genes (mcyE). The estimated risk levels differed substantially between methods, with 78 % and 56 % of alert level exceedances in the total number of collected samples for fluorometry and microscopy-based methods, respectively, while this was only 16 % and 6 % when the risk assessment was based on ELISA and LC-MS/MS obtained toxin concentrations, respectively. Integrating our results with earlier findings confirmed a strong association between microcystin concentration and the biovolume of potential microcystin-producing genera. Moreover, using an extended database consisting of 4265 observations from 461 locations across the Netherlands in the bathing water seasons of 2015 - 2019, we showed a strong association between fluorescence and the biovolume of potentially toxin-producing genera. Our results indicate that a two-tiered approach may be an effective risk assessment strategy, with first a biomass-based method (fluorometry, biovolume) until the first alert level is exceeded, after which the risk level can be confirmed or adjusted based on follow-up toxin or toxin gene analyses.
Collapse
Affiliation(s)
- Quirijn J F Schürmann
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands; Waardenburg Ecology, Varkensmarkt 9, 4101 CK, Culemborg, The Netherlands
| | - Petra M Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Susan Sollie
- Water consultancy, TAUW, Australiëlaan 5, P.O. Box 3015, 3526 AB, Utrecht, The Netherlands
| | | | - Elisabeth J Faassen
- Wageningen Food Safety Research, Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands; Aquatic Ecology and Water Quality Management, Wageningen University and Research, Droevendaalsesteeg 3, 6700 AA, Wageningen, The Netherlands
| | - Ridouan Lokmani
- AQUON Wateronderzoek en advies, Voorschoterweg 18H, 2324 AB, Leiden, The Netherlands
| | - Ron van der Oost
- Waternet Institute for the Urban Water Cycle, Korte Ouderkerkerdijk 7, 1096 AC, Amsterdam, The Netherlands
| | - Dedmer B Van de Waal
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Krinos AI, Bowers RM, Rohwer RR, McMahon KD, Woyke T, Schulz F. Time-series metagenomics reveals changing protistan ecology of a temperate dimictic lake. MICROBIOME 2024; 12:133. [PMID: 39030632 PMCID: PMC11265017 DOI: 10.1186/s40168-024-01831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/06/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Protists, single-celled eukaryotic organisms, are critical to food web ecology, contributing to primary productivity and connecting small bacteria and archaea to higher trophic levels. Lake Mendota is a large, eutrophic natural lake that is a Long-Term Ecological Research site and among the world's best-studied freshwater systems. Metagenomic samples have been collected and shotgun sequenced from Lake Mendota for the last 20 years. Here, we analyze this comprehensive time series to infer changes to the structure and function of the protistan community and to hypothesize about their interactions with bacteria. RESULTS Based on small subunit rRNA genes extracted from the metagenomes and metagenome-assembled genomes of microeukaryotes, we identify shifts in the eukaryotic phytoplankton community over time, which we predict to be a consequence of reduced zooplankton grazing pressures after the invasion of a invasive predator (the spiny water flea) to the lake. The metagenomic data also reveal the presence of the spiny water flea and the zebra mussel, a second invasive species to Lake Mendota, prior to their visual identification during routine monitoring. Furthermore, we use species co-occurrence and co-abundance analysis to connect the protistan community with bacterial taxa. Correlation analysis suggests that protists and bacteria may interact or respond similarly to environmental conditions. Cryptophytes declined in the second decade of the timeseries, while many alveolate groups (e.g., ciliates and dinoflagellates) and diatoms increased in abundance, changes that have implications for food web efficiency in Lake Mendota. CONCLUSIONS We demonstrate that metagenomic sequence-based community analysis can complement existing efforts to monitor protists in Lake Mendota based on microscopy-based count surveys. We observed patterns of seasonal abundance in microeukaryotes in Lake Mendota that corroborated expectations from other systems, including high abundance of cryptophytes in winter and diatoms in fall and spring, but with much higher resolution than previous surveys. Our study identified long-term changes in the abundance of eukaryotic microbes and provided context for the known establishment of an invasive species that catalyzes a trophic cascade involving protists. Our findings are important for decoding potential long-term consequences of human interventions, including invasive species introduction. Video Abstract.
Collapse
Affiliation(s)
- Arianna I Krinos
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, Woods Hole, MA, USA.
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Robert M Bowers
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robin R Rohwer
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin at Madison, Madison, WI, USA
| | - Tanja Woyke
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Frederik Schulz
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
4
|
Gonzales Ferraz ME, Agasild H, Piirsoo K, Saat M, Nõges T, Panksep K. Seasonal dynamics of toxigenic Microcystis in a large, shallow Lake Peipsi (Estonia) using microcystin mcyE gene abundance. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:747. [PMID: 39023771 DOI: 10.1007/s10661-024-12909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Large and temperate Lake Peipsi is the fourth largest lake in Europe, where the massive cyanobacterial blooms are composed mostly of Microcystis spp., which have been common for several decades now. The seasonal dynamics of potentially toxic Microcystis were studied using microscopy and quantitative polymerase chain reaction (qPCR) by assessing the microcystin-encoding microcystin synthetase gene E (mcyE) abundances. Water samples were analyzed over the lake areas, varying in depth, trophic level, and cyanobacterial composition during the growing period of 2021. The Microcystis mcyE genes were detected through the growing period (May-October), forming peak abundances in September with decreasing temperatures (8.9-11.1 °C). Total phosphorus (TP) and nitrate (NO3-) were the most relevant environmental variables influencing the Microcystis biomass as well as mcyE abundances. Comparison with previous years (2011, 2012) indicated that the abundance and seasonal dynamics of toxigenic Microcystis can be highly variable between the years and lake areas, varying also in dominant Microcystis species. Contrary to expectations, based on mcyE abundances, the increased risk of toxin-producing Microcystis can occur in Peipsi through the growing period, independently of the water temperature and biomasses of Microcystis.
Collapse
Affiliation(s)
- Margarita E Gonzales Ferraz
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006, Tartu, Estonia.
| | - Helen Agasild
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006, Tartu, Estonia.
| | - Kai Piirsoo
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006, Tartu, Estonia.
| | - Madli Saat
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006, Tartu, Estonia.
| | - Tiina Nõges
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006, Tartu, Estonia.
| | - Kristel Panksep
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006, Tartu, Estonia.
| |
Collapse
|
5
|
Bi X, Wei P, Wang Q, Duan L, Dai W, Chen R, Zhang D. Duplex Real-Time Fluorescent Quantitative PCR Assays for the Detection of Toxigenic Microcystis Genotypes Based on SNP/InDel Variation in mcy Gene Cluster. Curr Microbiol 2024; 81:275. [PMID: 39020143 DOI: 10.1007/s00284-024-03797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
In this study, the toxigenic characteristics of 14 strains of Microcystis were analyzed, and single nucleotide polymorphism (SNP) and insertion/deletion (InDel) loci in microcystin synthetase (mcy) gene clusters were screened. Based on SNP and InDel loci associated with the toxigenic characteristics, primers and TaqMan or Cycling fluorescent probes were designed to develop duplex real-time fluorescent quantitative PCR (FQ-PCR) assays. After evaluating specificity and sensitivity, these assays were applied to detect the toxigenic Microcystis genotypes in a shrimp pond where Microcystis blooms occurred. The results showed a total of 2155 SNP loci and 66 InDel loci were obtained, of which 12 SNP loci and 5 InDel loci were associated with the toxigenic characteristics. Three duplex real-time FQ-PCR assays were developed, each of which could quantify two genotypes of toxigenic Microcystis. These FQ-PCR assays were highly specific, and two Cycling assays were more sensitive than TaqMan assay. In the shrimp pond, six genotypes of toxigenic Microcystis were detected using the developed FQ-PCR assays, indicating that above genotyping assays have the potential for quantitative analysis of the toxigenic Microcystis genotypes in natural water.
Collapse
Affiliation(s)
- Xiangdong Bi
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China
| | - Peng Wei
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China
| | - Qian Wang
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Lijin Duan
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Wei Dai
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China.
| | - Rui Chen
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Dajuan Zhang
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
6
|
Hsu TTD, Acosta Caraballo Y, Wu M. An investigation of cyanobacteria, cyanotoxins and environmental variables in selected drinking water treatment plants in New Jersey. Heliyon 2024; 10:e31350. [PMID: 38828292 PMCID: PMC11140601 DOI: 10.1016/j.heliyon.2024.e31350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Harmful Algal Blooms (HAB) have the potential to impact human health primarily through their possible cyanotoxins production. While conventional water treatments can result in the removal of unlysed cyanobacterial cells and low levels of cyanotoxins, during severe HAB events, cyanotoxins can break through and can be present in the treated water due to a lack of adequate toxin treatment. The objectives of this study were to assess the HAB conditions in drinking water sources in New Jersey and investigate relationships between environmental variables and cyanobacterial communities in these drinking water sources. Source water samples were collected monthly from May to October 2019 and analyzed for phytoplankton and cyanobacterial cell densities, microcystins, cylindrospermopsin, Microcystis 16S rRNA gene, microcystin-producing mcyB gene, Raphidiopsis raciborskii-specific rpoC1 gene, and cylindrospermopsin-producing pks gene. Water quality parameters included water temperature, pH, dissolved oxygen, specific conductance, fluorescence of phycocyanin and chlorophyll, chlorophyll-a, total suspended solids, total dissolved solids, dissolved organic carbon, total nitrogen, ammonia, and total phosphorus. In addition to source waters, microcystins and cylindrospermopsin were analyzed for treated waters. The results showed all five selected New Jersey source waters had high total phosphorus concentrations that exceeded the established New Jersey Surface Water Quality Standards for lakes and rivers. Commonly found cyanobacteria were identified, such as Microcystis and Dolichospermum. Site E was the site most susceptible to HABs with significantly greater HAB variables, such as extracted phycocyanin, fluorescence of phycocyanin, cyanobacterial cell density, microcystins, and Microcystis 16S rRNA gene. All treated waters were undetected with microcystins, indicating treatment processes were effective at removing toxins from source waters. Results also showed that phycocyanin values had a significantly positive relationship with microcystin concentration, copies of Microcystis 16S rRNA and microcystin-producing mcyB genes, suggesting these values can be used as a proxy for HAB monitoring. This study suggests that drinking water sources in New Jersey are vulnerable to forthcoming HAB. Monitoring and management of source waters is crucial to help safeguard public health.
Collapse
Affiliation(s)
- Tsung-Ta David Hsu
- New Jersey Center for Water Science and Technology, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
| | - Yaritza Acosta Caraballo
- Environmental Science and Management Program, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
| | - Meiyin Wu
- New Jersey Center for Water Science and Technology, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
- Environmental Science and Management Program, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
| |
Collapse
|
7
|
Saleem F, Atrache R, Jiang JL, Tran KL, Li E, Paschos A, Edge TA, Schellhorn HE. Characterization of Taxonomic and Functional Dynamics Associated with Harmful Algal Bloom Formation in Recreational Water Ecosystems. Toxins (Basel) 2024; 16:263. [PMID: 38922157 PMCID: PMC11209277 DOI: 10.3390/toxins16060263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Harmful algal bloom (HAB) formation leads to the eutrophication of water ecosystems and may render recreational lakes unsuitable for human use. We evaluated the applicability and comparison of metabarcoding, metagenomics, qPCR, and ELISA-based methods for cyanobacteria/cyanotoxin detection in bloom and non-bloom sites for the Great Lakes region. DNA sequencing-based methods robustly identified differences between bloom and non-bloom samples (e.g., the relative prominence of Anabaena and Planktothrix). Shotgun sequencing strategies also identified the enrichment of metabolic genes typical of cyanobacteria in bloom samples, though toxin genes were not detected, suggesting deeper sequencing or PCR methods may be needed to detect low-abundance toxin genes. PCR and ELISA indicated microcystin levels and microcystin gene copies were significantly more abundant in bloom sites. However, not all bloom samples were positive for microcystin, possibly due to bloom development by non-toxin-producing species. Additionally, microcystin levels were significantly correlated (positively) with microcystin gene copy number but not with total cyanobacterial 16S gene copies. In summary, next-generation sequencing-based methods can identify specific taxonomic and functional targets, which can be used for absolute quantification methods (qPCR and ELISA) to augment conventional water monitoring strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Herb E. Schellhorn
- Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON L8S 4L8, Canada; (F.S.); (R.A.); (J.L.J.); (K.L.T.); (E.L.); (A.P.); (T.A.E.)
| |
Collapse
|
8
|
Brown KM, Barker KB, Wagner RS, Ward CS, Sitoki L, Njiru J, Omondi R, Achiya J, Getabu A, McKay RM, Bullerjahn GS. Bacterial community and cyanotoxin gene distribution of the Winam Gulf, Lake Victoria, Kenya. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13297. [PMID: 38885952 PMCID: PMC11182661 DOI: 10.1111/1758-2229.13297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
The Winam Gulf (Kenya) is frequently impaired by cyanobacterial harmful algal blooms (cHABs) due to inadequate wastewater treatment and excess agricultural nutrient input. While phytoplankton in Lake Victoria have been characterized using morphological criteria, our aim is to identify potential toxin-producing cyanobacteria using molecular approaches. The Gulf was sampled over two successive summer seasons, and 16S and 18S ribosomal RNA gene sequencing was performed. Additionally, key genes involved in production of cyanotoxins were examined by quantitative PCR. Bacterial communities were spatially variable, forming distinct clusters in line with regions of the Gulf. Taxa associated with diazotrophy were dominant near Homa Bay. On the eastern side, samples exhibited elevated cyrA abundances, indicating genetic capability of cylindrospermopsin synthesis. Indeed, near the Nyando River mouth in 2022, cyrA exceeded 10 million copies L-1 where there were more than 6000 Cylindrospermopsis spp. cells mL-1. In contrast, the southwestern region had elevated mcyE gene (microcystin synthesis) detections near Homa Bay where Microcystis and Dolichospermum spp. were observed. These findings show that within a relatively small embayment, composition and toxin synthesis potential of cHABs can vary dramatically. This underscores the need for multifaceted management approaches and frequent cyanotoxin monitoring to reduce human health impacts.
Collapse
Affiliation(s)
- Katelyn M. Brown
- Biological SciencesBowling Green State UniversityBowling GreenOhioUSA
- Great Lakes Centers for Fresh Waters and Human HealthBowling GreenOhioUSA
| | - Katelyn B. Barker
- Biological SciencesBowling Green State UniversityBowling GreenOhioUSA
- Great Lakes Centers for Fresh Waters and Human HealthBowling GreenOhioUSA
| | - Ryan S. Wagner
- Biological SciencesBowling Green State UniversityBowling GreenOhioUSA
- Great Lakes Centers for Fresh Waters and Human HealthBowling GreenOhioUSA
| | - Christopher S. Ward
- Biological SciencesBowling Green State UniversityBowling GreenOhioUSA
- Great Lakes Centers for Fresh Waters and Human HealthBowling GreenOhioUSA
| | - Lewis Sitoki
- Department of Earth, Environmental Science and TechnologyTechnical University of KenyaNairobiKenya
| | - James Njiru
- Kenya Marine and Fisheries Research InstituteKisumuKenya
| | - Reuben Omondi
- Department of Fisheries and LimnologyKisii UniversityKisiiKenya
| | - James Achiya
- Kenya Marine and Fisheries Research InstituteKisumuKenya
| | - Albert Getabu
- Department of Fisheries and LimnologyKisii UniversityKisiiKenya
| | - R. Michael McKay
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorOntarioCanada
| | - George S. Bullerjahn
- Biological SciencesBowling Green State UniversityBowling GreenOhioUSA
- Great Lakes Centers for Fresh Waters and Human HealthBowling GreenOhioUSA
| | | |
Collapse
|
9
|
Kiledal EA, Reitz LA, Kuiper EQ, Evans J, Siddiqui R, Denef VJ, Dick GJ. Comparative genomic analysis of Microcystis strain diversity using conserved marker genes. HARMFUL ALGAE 2024; 132:102580. [PMID: 38331539 DOI: 10.1016/j.hal.2024.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
Microcystis-dominated cyanobacterial harmful algal blooms (cyanoHABs) have a global impact on freshwater environments, affecting both wildlife and human health. Microcystis diversity and function in field samples and laboratory cultures can be determined by sequencing whole genomes of cultured isolates or natural populations, but these methods remain computationally and financially expensive. Amplicon sequencing of marker genes is a lower cost and higher throughput alternative to characterize strain composition and diversity in mixed samples. However, the selection of appropriate marker gene region(s) and primers requires prior understanding of the relationship between single gene genotype, whole genome content, and phenotype. To identify phylogenetic markers of Microcystis strain diversity, we compared phylogenetic trees built from each of 2,351 individual core genes to an established phylogeny and assessed the ability of these core genes to predict whole genome content and bioactive compound genotypes. We identified single-copy core genes better able to resolve Microcystis phylogenies than previously identified marker genes. We developed primers suitable for current Illumina-based amplicon sequencing with near-complete coverage of available Microcystis genomes and demonstrate that they outperform existing options for assessing Microcystis strain composition. Results showed that genetic markers can be used to infer Microcystis gene content and phenotypes such as potential production of bioactive compounds , although marker performance varies by bioactive compound gene and sequence similarity. Finally, we demonstrate that these markers can be used to characterize the Microcystis strain composition of laboratory or field samples like those collected for surveillance and modeling of Microcystis-dominated cyanobacterial harmful algal blooms.
Collapse
Affiliation(s)
- E Anders Kiledal
- Department of Earth and Environmental Sciences, University of Michigan, 2534 North University Building, 1100 North University Avenue Ave, Rm. 2004, Ann Arbor, MI 48109-1005, USA.
| | - Laura A Reitz
- Department of Earth and Environmental Sciences, University of Michigan, 2534 North University Building, 1100 North University Avenue Ave, Rm. 2004, Ann Arbor, MI 48109-1005, USA
| | - Esmée Q Kuiper
- Department of Earth and Environmental Sciences, University of Michigan, 2534 North University Building, 1100 North University Avenue Ave, Rm. 2004, Ann Arbor, MI 48109-1005, USA
| | - Jacob Evans
- Department of Ecology and Evolutionary Biology, University of Michigan, 2220 Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1005, USA
| | - Ruqaiya Siddiqui
- Microbiome Core, University of Michigan, 1500 MSRB 1, 1150W Medical Center Drive, Ann Arbor, MI 48109-5666, USA
| | - Vincent J Denef
- Department of Ecology and Evolutionary Biology, University of Michigan, 2220 Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1005, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, 2534 North University Building, 1100 North University Avenue Ave, Rm. 2004, Ann Arbor, MI 48109-1005, USA; Cooperative Institute for Great Lakes Research, University of Michigan, 4040 Dana Building, 440 Church Street, Ann Arbor, MI 48109-1041, USA
| |
Collapse
|
10
|
Rohwer RR, Hale RJ, Vander Zanden MJ, Miller TR, McMahon KD. Species invasions shift microbial phenology in a two-decade freshwater time series. Proc Natl Acad Sci U S A 2023; 120:e2211796120. [PMID: 36881623 PMCID: PMC10089161 DOI: 10.1073/pnas.2211796120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/03/2023] [Indexed: 03/08/2023] Open
Abstract
Invasive species impart abrupt changes on ecosystems, but their impacts on microbial communities are often overlooked. We paired a 20 y freshwater microbial community time series with zooplankton and phytoplankton counts, rich environmental data, and a 6 y cyanotoxin time series. We observed strong microbial phenological patterns that were disrupted by the invasions of spiny water flea (Bythotrephes cederströmii) and zebra mussels (Dreissena polymorpha). First, we detected shifts in Cyanobacteria phenology. After the spiny water flea invasion, Cyanobacteria dominance crept earlier into clearwater; and after the zebra mussel invasion, Cyanobacteria abundance crept even earlier into the diatom-dominated spring. During summer, the spiny water flea invasion sparked a cascade of shifting diversity where zooplankton diversity decreased and Cyanobacteria diversity increased. Second, we detected shifts in cyanotoxin phenology. After the zebra mussel invasion, microcystin increased in early summer and the duration of toxin production increased by over a month. Third, we observed shifts in heterotrophic bacteria phenology. The Bacteroidota phylum and members of the acI Nanopelagicales lineage were differentially more abundant. The proportion of the bacterial community that changed differed by season; spring and clearwater communities changed most following the spiny water flea invasion that lessened clearwater intensity, while summer communities changed least following the zebra mussel invasion despite the shifts in Cyanobacteria diversity and toxicity. A modeling framework identified the invasions as primary drivers of the observed phenological changes. These long-term invasion-mediated shifts in microbial phenology demonstrate the interconnectedness of microbes with the broader food web and their susceptibility to long-term environmental change.
Collapse
Affiliation(s)
- Robin R. Rohwer
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
| | - Riley J. Hale
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI63706
| | | | - Todd R. Miller
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI53205
| | - Katherine D. McMahon
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI63706
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI63706
| |
Collapse
|
11
|
Cai H, McLimans CJ, Beyer JE, Krumholz LR, Hambright KD. Microcystis pangenome reveals cryptic diversity within and across morphospecies. SCIENCE ADVANCES 2023; 9:eadd3783. [PMID: 36638170 PMCID: PMC9839332 DOI: 10.1126/sciadv.add3783] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Microcystis, a common harmful algal bloom (HAB) taxon, threatens water supplies and human health, yet species delimitation is contentious in this taxon, leading to challenges in research and management of this threat. Historical and common morphology-based classifications recognize multiple morphospecies, most with variable and diverse ecologies, while DNA sequence-based classifications indicate a single species with multiple ecotypes. To better delimit Microcystis species, we conducted a pangenome analysis of 122 genomes. Core- and non-core gene phylogenetic analyses placed 113 genomes into 23 monophyletic clusters containing at least two genomes. Overall, genome-related indices revealed that Microcystis contains at least 16 putative genospecies. Fifteen genospecies included at least one Microcystis aeruginosa morphospecies, and 10 genospecies included two or more morphospecies. This classification system will enable consistent taxonomic identification of Microcystis and thereby aid in resolving some of the complexities and controversies that have long characterized eco-evolutionary research and management of this important HAB taxon.
Collapse
Affiliation(s)
- Haiyuan Cai
- Plankton Ecology and Limnology Laboratory, Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Christopher J. McLimans
- Plankton Ecology and Limnology Laboratory, Department of Biology, University of Oklahoma, Norman, OK, USA
- Program in Ecology and Evolutionary Biology, Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Jessica E. Beyer
- Plankton Ecology and Limnology Laboratory, Department of Biology, University of Oklahoma, Norman, OK, USA
- Program in Ecology and Evolutionary Biology, Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Lee R. Krumholz
- Department of Microbiology and Plant Biology and Institute for Energy and the Environment, University of Oklahoma, Norman, OK, USA
| | - K. David Hambright
- Plankton Ecology and Limnology Laboratory, Department of Biology, University of Oklahoma, Norman, OK, USA
- Program in Ecology and Evolutionary Biology, Department of Biology, University of Oklahoma, Norman, OK, USA
- Geographical Ecology, Department of Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
12
|
Sandwich Hybridization Assay for In Situ Real-Time Cyanobacterial Detection and Monitoring: A Review. BIOSENSORS 2022; 12:bios12080640. [PMID: 36005037 PMCID: PMC9405892 DOI: 10.3390/bios12080640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
As cyanobacterial harmful algal bloom (cHAB) events increase in scale, severity, frequency, and duration around the world, rapid and accurate monitoring and characterization tools have become critically essential for regulatory and management decision-making. The composition of cHAB-forming cyanobacteria community can change significantly over time and space and be altered by sample preservation and transportation, making in situ monitoring necessary to obtain real-time and localized information. Sandwich hybridization assay (SHA) utilizes capture oligonucleotide probes for sensitive detection of target-specific nucleic acid sequences. As an amplification-free molecular biology technology, SHA can be adapted for in-situ, real-time or near real-time detection and qualitatively or semi-quantitatively monitoring of cHAB-forming cyanobacteria, owing to its characteristics such as being rapid, portable, inexpensive, and amenable to automation, high sensitivity, specificity and robustness, and multiplexing (i.e., detecting multiple targets simultaneously). Despite its successful application in the monitoring of marine and freshwater phytoplankton, there is still room for improvement. The ability to identify a cHAB community rapidly would decrease delays in cyanotoxin analyses, reduce costs, and increase sample throughput, allowing for timely actions to improve environmental and human health and the understanding of short- and long-term bloom dynamics. Real-time detection and quantitation of HAB-forming cyanobacteria is essential for improving environmental and public health and reducing associated costs. We review and propose to apply SHA for in situ cHABs monitoring.
Collapse
|
13
|
Duan X, Zhang C, Struewing I, Li X, Allen J, Lu J. Cyanotoxin-encoding genes as powerful predictors of cyanotoxin production during harmful cyanobacterial blooms in an inland freshwater lake: Evaluating a novel early-warning system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154568. [PMID: 35302035 PMCID: PMC9698223 DOI: 10.1016/j.scitotenv.2022.154568] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/26/2022] [Accepted: 03/10/2022] [Indexed: 05/06/2023]
Abstract
Freshwater harmful cyanobacterial blooms (HCBs) potentially produce excessive cyanotoxins, mainly microcystins (MCs), significantly threatening aquatic ecosystems and public health. Accurately predicting HCBs is thus essential to developing effective HCB mitigation and prevention strategies. We previously developed a novel early-warning system that uses cyanotoxin-encoding genes to predict cyanotoxin production in Harsha Lake, Ohio, USA, in 2015. In this study, we evaluated the efficacy of the early-warning system in forecasting the 2016 HCB in the same lake. We also examined potential HCB drivers and cyanobacterial community composition. Our results revealed that the cyanobacterial community was stable at the phylum level but changed dynamically at the genus level over time. Microcystis and Planktothrix were the major MC-producing genera that thrived in June and July and produced high concentrations of MCs (peak level 10.22 μg·L-1). The abundances of the MC-encoding gene cluster mcy and its transcript levels significantly correlated with total MC concentrations (before the MC concentrations peaked) and accurately predicted MC production as revealed by logistic equations. When the Microcystis-specific gene mcyG reached approximately 1.5 × 103 copies·mL-1 or when its transcript level reached approximately 2.4 copies·mL-1, total MC level exceeded 0.3 μg L-1 (a health advisory limit) approximately one week later (weekly sampling scheme). This study suggested that cyanotoxin-encoding genes are promising predictors of MC production in inland freshwater lakes, such as Harsha Lake. The evaluated early-warning system can be a useful tool to assist lake managers in predicting, mitigating, and/or preventing HCBs.
Collapse
Affiliation(s)
- Xiaodi Duan
- Pegasus Technical Services, Inc., Cincinnati, OH 45219, USA
| | - Chiqian Zhang
- Pegasus Technical Services, Inc., Cincinnati, OH 45219, USA
| | - Ian Struewing
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Xiang Li
- Oak Ridge Institute for Science and Education at the United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Joel Allen
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA.
| |
Collapse
|
14
|
Gaget V, Almuhtaram H, Kibuye F, Hobson P, Zamyadi A, Wert E, Brookes JD. Benthic cyanobacteria: A utility-centred field study. HARMFUL ALGAE 2022; 113:102185. [PMID: 35287926 DOI: 10.1016/j.hal.2022.102185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Although there is growing evidence that benthic cyanobacteria represent a significant source of toxins and taste and odour (T&O) compounds in water bodies globally, water utilities rarely monitor for them. Benthic cyanobacteria grow in an array of matrices such as sediments, biofilms, and floating mats, and they can detach and colonize treatment plants. The occurrence of compounds produced by benthic species across matrix and climate types has not been systematically investigated. Consequently, there is a lack of guidance available to utilities to monitor for and mitigate the risk associated with benthic cyanobacteria. To assess toxin and T&O risk across climatic zones and provide guidance to water utilities for the monitoring of benthic mats, two field surveys were conducted across three continents. The surveys examined the occurrence of six secondary metabolites and associated genes, namely, geosmin, 2-methylisoborneol (MIB), anatoxin-a, saxitoxin, microcystin, and cylindrospermopsin, in benthic environmental samples collected across three climates (i.e., temperate, sub-tropical, and tropical) and a range of matrix types. Existing enzyme-linked immunosorbent assays (ELISAs) and qPCR assays and were used to measure compound concentrations and their associated genes in samples. A novel qPCR assay was designed to differentiate the production of MIB by actinobacteria from that of cyanobacteria. MIB occurrence was higher in warmer climates than temperate climates. Cyanobacteria in benthic mats were the major producers of taste and odour compounds. Floating mats contained significantly higher concentrations of geosmin and saxitoxins compared to other matrix types. Samples collected in warmer areas contained significantly more saxitoxin and cylindrospermopsin than samples collected in temperate climates. While these trends were mainly indicative, they can be used to establish monitoring practices. These surveys demonstrate that benthic mats are significant contributors of secondary metabolites in source water and should be monitored accordingly. Benthic cyanobacteria were the sole producers of T&O in up to 17% of the collected samples compared to actinobacteria, which were sole producers in only 1% of the samples. The surveys also provided a platform of choice for the transfer of methodologies and specific knowledge to participating utilities to assist with the establishment of monitoring practices for benthic cyanobacteria and associated secondary metabolites.
Collapse
Affiliation(s)
- Virginie Gaget
- University of Adelaide, Water Research Centre, Department of Ecology and Evolutionary Biology, School of Biological Sciences, South Australia, 5005, Australia.
| | - Husein Almuhtaram
- University of Toronto, Department of Civil and Mineral Engineering, Toronto, Ontario, M5S 1A4, Canada
| | - Faith Kibuye
- Department of Research and Development, Southern Nevada Water Authority, Henderson, NV, 89015, USA
| | - Peter Hobson
- Australian Water Quality Centre, South Australia Water Corporation, Adelaide, South Australia, 5000, Australia
| | - Arash Zamyadi
- Water Research Australia Limited, Adelaide, South Australia, 5001, Australia; Department of Chemical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Victoria 3010 Australia
| | - Eric Wert
- Department of Research and Development, Southern Nevada Water Authority, Henderson, NV, 89015, USA
| | - Justin D Brookes
- University of Adelaide, Water Research Centre, Department of Ecology and Evolutionary Biology, School of Biological Sciences, South Australia, 5005, Australia
| |
Collapse
|
15
|
Feist SM, Lance RF. Genetic detection of freshwater harmful algal blooms: A review focused on the use of environmental DNA (eDNA) in Microcystis aeruginosa and Prymnesium parvum. HARMFUL ALGAE 2021; 110:102124. [PMID: 34887004 DOI: 10.1016/j.hal.2021.102124] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Recurrence and severity of harmful algal blooms (HABs) are increasing due to a number of factors, including human practices and climate change. Sensitive and robust methods that allow for early and expedited HAB detection across large landscape scales are needed. Among the suite of HAB detection tools available, a powerful option exists in genetics-based approaches utilizing environmental sampling, also termed environmental DNA (eDNA). Here we provide a detailed methodological review of three HAB eDNA approaches (quantitative PCR, high throughput sequencing, and isothermal amplification). We then summarize and synthesize recently published eDNA applications covering a variety of HAB surveillance and research objectives, all with a specific emphasis in the detection of two widely problematic freshwater species, Microcystis aeruginosa and Prymnesium parvum. In our summary and conclusion we build on this literature by discussing ways in which eDNA methods could be advanced to improve HAB detection. We also discuss ways in which eDNA data could be used to potentially provide novel insight into the ecology, mitigation, and prediction of HABs.
Collapse
Affiliation(s)
- Sheena M Feist
- Environmental Lab, United States Army Corps of Engineers Research and Development Center, Vicksburg, MS, 39180, United States.
| | - Richard F Lance
- Environmental Lab, United States Army Corps of Engineers Research and Development Center, Vicksburg, MS, 39180, United States
| |
Collapse
|
16
|
|
17
|
Fournier C, Riehle E, Dietrich DR, Schleheck D. Is Toxin-Producing Planktothrix sp. an Emerging Species in Lake Constance? Toxins (Basel) 2021; 13:toxins13090666. [PMID: 34564670 PMCID: PMC8472890 DOI: 10.3390/toxins13090666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023] Open
Abstract
Recurring blooms of filamentous, red-pigmented and toxin-producing cyanobacteria Planktothrix rubescens have been reported in numerous deep and stratified prealpine lakes, with the exception of Lake Constance. In a 2019 and 2020 Lake Constance field campaign, we collected samples from a distinct red-pigmented biomass maximum below the chlorophyll-a maximum, which was determined using fluorescence probe measurements at depths between 18 and 20 m. Here, we report the characterization of these deep water red pigment maxima (DRM) as cyanobacterial blooms. Using 16S rRNA gene-amplicon sequencing, we found evidence that the blooms were, indeed, contributed by Planktothrix spp., although phycoerythrin-rich Synechococcus taxa constituted most of the biomass (>96% relative read abundance) of the cyanobacterial DRM community. Through UPLC-MS/MS, we also detected toxic microcystins (MCs) in the DRM in the individual sampling days at concentrations of ≤1.5 ng/L. Subsequently, we reevaluated the fluorescence probe measurements collected over the past decade and found that, in the summer, DRM have been present in Lake Constance, at least since 2009. Our study highlights the need for a continuous monitoring program also targeting the cyanobacterial DRM in Lake Constance, and for future studies on the competition of the different cyanobacterial taxa. Future studies will address the potential community composition changes in response to the climate change driven physiochemical and biological parameters of the lake.
Collapse
Affiliation(s)
- Corentin Fournier
- Microbial Ecology and Limnic Microbiology, University of Konstanz, 78457 Konstanz, Germany;
| | - Eva Riehle
- Human and Environmental Toxicology, University of Konstanz, 78457 Konstanz, Germany;
| | - Daniel R. Dietrich
- Human and Environmental Toxicology, University of Konstanz, 78457 Konstanz, Germany;
- Correspondence: (D.R.D.); (D.S.)
| | - David Schleheck
- Microbial Ecology and Limnic Microbiology, University of Konstanz, 78457 Konstanz, Germany;
- Limnological Institute, University of Konstanz, 78457 Konstanz, Germany
- Correspondence: (D.R.D.); (D.S.)
| |
Collapse
|
18
|
Christensen VG, Stelzer EA, Eikenberry BC, Olds HT, LeDuc JF, Maki RP, Saley AM, Norland J, Khan E. Cyanotoxin mixture models: Relating environmental variables and toxin co-occurrence to human exposure risk. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125560. [PMID: 33773250 DOI: 10.1016/j.jhazmat.2021.125560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/03/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Toxic cyanobacterial blooms, often containing multiple toxins, are a serious public health issue. However, there are no known models that predict a cyanotoxin mixture (anatoxin-a, microcystin, saxitoxin). This paper presents two cyanotoxin mixture models (MIX) and compares them to two microcystin (MC) models from data collected in 2016-2017 from three recurring cyanobacterial bloom locations in Kabetogama Lake, Voyageurs National Park (Minnesota, USA). Models include those using near-real-time environmental variables (readily available) and those using additional comprehensive variables (based on laboratory analyses). Comprehensive models (R2 = 0.87 MC; R2 = 0.86 MIX) explained more variability than the environmental models (R2 = 0.58 MC; R2 = 0.57 MIX). Although neither MIX model was a better fit than the MC models, the MIX models produced no false negatives in the calibration dataset, indicating that all observations above regulatory guidelines were simulated by the MIX models. This is the first known use of Virtual Beach software for a cyanotoxin mixture model, and the methods used in this paper may be applicable to other lakes or beaches.
Collapse
Affiliation(s)
- Victoria G Christensen
- US Geological Survey, Upper Midwest Water Science Center, 2280 Woodale Drive, Mounds View, MN 55112, USA; North Dakota State University, Environmental and Conservation Sciences Program, Fargo, ND 58102, USA.
| | - Erin A Stelzer
- US Geological Survey Ohio Water Microbiology Laboratory, 6460 Busch Blvd STE 100, Columbus, OH, USA
| | - Barbara C Eikenberry
- US Geological Survey, Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
| | - Hayley T Olds
- US Geological Survey, Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
| | - Jaime F LeDuc
- Voyageurs National Park, 360 Highway 11 East, International Falls, MN 56649, USA
| | - Ryan P Maki
- Voyageurs National Park, 360 Highway 11 East, International Falls, MN 56649, USA
| | - Alisha M Saley
- Bodega Marine Laboratory, University of California-Davis, 2099 Westshore Road, Bodega Bay, CA 94923, USA
| | - Jack Norland
- North Dakota State University, Environmental and Conservation Sciences Program, Fargo, ND 58102, USA
| | - Eakalak Khan
- University of Nevada, Las Vegas, Department of Civil and Environmental Engineering and Construction, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA
| |
Collapse
|
19
|
Lee J, Choi J, Fatka M, Swanner E, Ikuma K, Liang X, Leung T, Howe A. Improved detection of mcyA genes and their phylogenetic origins in harmful algal blooms. WATER RESEARCH 2020; 176:115730. [PMID: 32234603 DOI: 10.1016/j.watres.2020.115730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/02/2020] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
Microcystins, a group of cyanotoxins produced by cyanobacterial strains, have become a significant microbial hazard to human and animal health due to increases in the frequency and intensity of cyanobacterial harmful algal blooms (CyanoHABs). Many studies have explored the correlation between microcystin concentrations and abundances of toxin-producing genes (e.g., mcyA genes) measured using quantitative PCR, and discrepancies between toxin concentrations and gene abundances are often observed. In this study, the results show that these discrepancies are at least partially due to primer sets that do not capture the phylogenetic diversity of naturally present toxin-producers. We designed three novel primer gene probes based on known mcyA genes to improve the detection and quantification of these genes in environmental samples. These primers were shown to improve the identification of mcyA genes compared to previously published primers in freshwater metagenomes, cyanobacterial isolates, and lake water samples. Unlike previously published primers, our primer sets could selectively amplify and resolve Microcystis, Anabaena, and Planktothrix mcyA genes. In lake water samples, abundance estimations of mcyA genes were found to correlate strongly with microcystin concentrations. Based on our results, these primers offer significant improvements over previously published probes to accurately identify and quantify mcyA genes in the environment. There is an increasing need to develop models based on microbial information and environmental factors to predict CyanoHABs, and improved primers will play an important role in aiding monitoring efforts to collect reliable and consistent data on toxicity risks.
Collapse
Affiliation(s)
- Jaejin Lee
- Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Jinlyung Choi
- Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Micah Fatka
- Geological and Atmospheric Sciences, Iowa State University, Ames, IA, United States
| | - Elizabeth Swanner
- Geological and Atmospheric Sciences, Iowa State University, Ames, IA, United States
| | - Kaoru Ikuma
- Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, United States
| | - Xuewei Liang
- Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, United States
| | - Tania Leung
- Geological and Atmospheric Sciences, Iowa State University, Ames, IA, United States
| | - Adina Howe
- Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States.
| |
Collapse
|
20
|
Yuan J, Kim HJ, Filstrup CT, Guo B, Imerman P, Ensley S, Yoon KJ. Utility of a PCR-based method for rapid and specific detection of toxigenic Microcystis spp. in farm ponds. J Vet Diagn Invest 2020; 32:369-381. [PMID: 32306863 PMCID: PMC7377613 DOI: 10.1177/1040638720916156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Microcystis is a widespread freshwater cyanobacterium that can produce microcystin, a potent hepatotoxin harmful to animals and humans. Therefore, it is crucial to monitor for the presence of toxigenic Microcystis spp. to provide early warning of potential microcystin contamination. Microscopy, which has been used traditionally to identify Microcystis spp., cannot differentiate toxigenic from non-toxigenic Microcystis. We developed a PCR-based method to detect toxigenic Microcystis spp. based on detection of the microcystin synthetase C (mcyC) gene and 16S rRNA gene. Specificity was validated against toxic and nontoxic M. aeruginosa strains, as well as 4 intergeneric freshwater cyanobacterial strains. Analytical sensitivity was as low as 747 fg/µL genomic DNA (or 3 cells/µL) for toxic M. aeruginosa. Furthermore, we tested 60 water samples from 4 farm ponds providing drinking water to swine facilities in the midwestern United States using this method. Although all water samples were positive for Microcystis spp. (i.e., 16S rRNA gene), toxigenic Microcystis spp. were detected in only 34 samples (57%). Seventeen water samples contained microcystin (0.1-9.1 μg/L) determined with liquid chromatography-mass spectrometry, of which 14 samples (82%) were positive for mcyC. A significant correlation was found between the presence of toxigenic Microcystis spp. and microcystin in water samples (p = 0.0004). Our PCR method can be a low-cost molecular tool for rapid and specific identification of toxigenic Microcystis spp. in farm ponds, improving detection of microcystin contamination, and ensuring water safety for farm animals.
Collapse
Affiliation(s)
- Jian Yuan
- Departments of Veterinary Diagnostic and Production Animal Medicine (Yuan, Guo, Imerman, Ensley, Yoon), Iowa State University, Ames, IA
- Food Science and Human Nutrition (Kim), Iowa State University, Ames, IA
- Ecology, Evolution and Organismal Biology (Filstrup), Iowa State University, Ames, IA
- Current addresses: Department of Anatomy and Physiology, Kansas State University, Manhattan, KS (Ensley)
- Department of Food Engineering, Mokpo National University, Muan, Republic of Korea (Kim)
- Large Lakes Observatory and Minnesota Sea Grant, University of Minnesota–Duluth, Duluth, MN (Filstrup)
| | - Hyun-Joong Kim
- Departments of Veterinary Diagnostic and Production Animal Medicine (Yuan, Guo, Imerman, Ensley, Yoon), Iowa State University, Ames, IA
- Food Science and Human Nutrition (Kim), Iowa State University, Ames, IA
- Ecology, Evolution and Organismal Biology (Filstrup), Iowa State University, Ames, IA
- Current addresses: Department of Anatomy and Physiology, Kansas State University, Manhattan, KS (Ensley)
- Department of Food Engineering, Mokpo National University, Muan, Republic of Korea (Kim)
- Large Lakes Observatory and Minnesota Sea Grant, University of Minnesota–Duluth, Duluth, MN (Filstrup)
| | - Christopher T. Filstrup
- Departments of Veterinary Diagnostic and Production Animal Medicine (Yuan, Guo, Imerman, Ensley, Yoon), Iowa State University, Ames, IA
- Food Science and Human Nutrition (Kim), Iowa State University, Ames, IA
- Ecology, Evolution and Organismal Biology (Filstrup), Iowa State University, Ames, IA
- Current addresses: Department of Anatomy and Physiology, Kansas State University, Manhattan, KS (Ensley)
- Department of Food Engineering, Mokpo National University, Muan, Republic of Korea (Kim)
- Large Lakes Observatory and Minnesota Sea Grant, University of Minnesota–Duluth, Duluth, MN (Filstrup)
| | - Baoqing Guo
- Departments of Veterinary Diagnostic and Production Animal Medicine (Yuan, Guo, Imerman, Ensley, Yoon), Iowa State University, Ames, IA
- Food Science and Human Nutrition (Kim), Iowa State University, Ames, IA
- Ecology, Evolution and Organismal Biology (Filstrup), Iowa State University, Ames, IA
- Current addresses: Department of Anatomy and Physiology, Kansas State University, Manhattan, KS (Ensley)
- Department of Food Engineering, Mokpo National University, Muan, Republic of Korea (Kim)
- Large Lakes Observatory and Minnesota Sea Grant, University of Minnesota–Duluth, Duluth, MN (Filstrup)
| | - Paula Imerman
- Departments of Veterinary Diagnostic and Production Animal Medicine (Yuan, Guo, Imerman, Ensley, Yoon), Iowa State University, Ames, IA
- Food Science and Human Nutrition (Kim), Iowa State University, Ames, IA
- Ecology, Evolution and Organismal Biology (Filstrup), Iowa State University, Ames, IA
- Current addresses: Department of Anatomy and Physiology, Kansas State University, Manhattan, KS (Ensley)
- Department of Food Engineering, Mokpo National University, Muan, Republic of Korea (Kim)
- Large Lakes Observatory and Minnesota Sea Grant, University of Minnesota–Duluth, Duluth, MN (Filstrup)
| | - Steve Ensley
- Departments of Veterinary Diagnostic and Production Animal Medicine (Yuan, Guo, Imerman, Ensley, Yoon), Iowa State University, Ames, IA
- Food Science and Human Nutrition (Kim), Iowa State University, Ames, IA
- Ecology, Evolution and Organismal Biology (Filstrup), Iowa State University, Ames, IA
- Current addresses: Department of Anatomy and Physiology, Kansas State University, Manhattan, KS (Ensley)
- Department of Food Engineering, Mokpo National University, Muan, Republic of Korea (Kim)
- Large Lakes Observatory and Minnesota Sea Grant, University of Minnesota–Duluth, Duluth, MN (Filstrup)
| | - Kyoung-Jin Yoon
- Kyoung-Jin Yoon, Veterinary Medical Research Institute, 1907 ISU-C Drive, Ames, IA 50011.
| |
Collapse
|
21
|
Lu J, Struewing I, Wymer L, Tettenhorst DR, Shoemaker J, Allen J. Use of qPCR and RT-qPCR for monitoring variations of microcystin producers and as an early warning system to predict toxin production in an Ohio inland lake. WATER RESEARCH 2020; 170:115262. [PMID: 31785564 PMCID: PMC7075668 DOI: 10.1016/j.watres.2019.115262] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 05/22/2023]
Abstract
Public concern over cyanobacterial blooms has increased due to their higher frequency of occurrence and their potential ecological and health impacts. Detection of microcystin (MC) producers (MCPs) using qPCR and RT-qPCR allows for the rapid identification of blooms by combining specificity and sensitivity with a relatively high throughput capability. Investigation of MCP population composition (correlation, dominance), toxin gene expression, and relationship to MC concentration was conducted using a panel of qPCR assays targeting mcyA, E and G on weekly and daily water samples collected from an Ohio inland reservoir lake. Further, these data were used to develop early warning thresholds for prediction of MC concentrations exceeding the US EPA Health Advisory cutoff value (>0.3 μg L-1) using receiver operating characteristic curves and tobit regression. MCP Microcystis genomic copy number made up approximately 35% of the total Microcystis spp. and was the dominant toxic subpopulation of MCPs. The expressed MCPs were 0.2% of the extant genomic copy numbers, while toxic Microcystis had higher expressed proportion (0.5%) than that of toxic Planktothrix (0.04%). Microcystis toxin genes increased in June and July but decreased in August and September along with similar trends of cell replication. Quantities of both RT-qPCR and qPCR followed the same trend and were highly correlated with MC-ADDA, while RT-qPCR not only reflected the active toxin genes or toxic species, but also indicated the beginning and ending of toxin production. A one-week early warning of MC exceedance over the EPA Health Advisory was based on signaling of qPCR and RT-qPCR using receiver operating characteristic curves. This study illustrates the potential use of qPCR or RT-qPCR as an early warning system of extant and MC producing potentials during a toxic algal bloom, with predictive powers of 50%-60% and 30%-40% (p < 0.001), respectively, and false positive rates of about 70% for both LC-MS/MS or ELISA.
Collapse
Affiliation(s)
- Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, 45268, USA.
| | - Ian Struewing
- Pegasus Technical Services Inc, Cincinnati, OH, 45268, USA
| | - Larry Wymer
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, 45268, USA
| | - Daniel R Tettenhorst
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, 45268, USA
| | - Jody Shoemaker
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, 45268, USA
| | - Joel Allen
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, 45268, USA
| |
Collapse
|
22
|
Christensen VG, Maki RP, Stelzer EA, Norland JE, Khan E. Phytoplankton community and algal toxicity at a recurring bloom in Sullivan Bay, Kabetogama Lake, Minnesota, USA. Sci Rep 2019; 9:16129. [PMID: 31695119 PMCID: PMC6834968 DOI: 10.1038/s41598-019-52639-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/21/2019] [Indexed: 01/16/2023] Open
Abstract
Kabetogama Lake in Voyageurs National Park, Minnesota, USA suffers from recurring late summer algal blooms that often contain toxin-producing cyanobacteria. Previous research identified the toxin microcystin in blooms, but we wanted to better understand how the algal and cyanobacterial community changed throughout an open water season and how changes in community structure were related to toxin production. Therefore, we sampled one recurring bloom location throughout the entire open water season. The uniqueness of this study is the absence of urban and agricultural nutrient sources, the remote location, and the collection of samples before any visible blooms were present. Through quantitative polymerase chain reaction (qPCR), we discovered that toxin-forming cyanobacteria were present before visible blooms and toxins not previously detected in this region (anatoxin-a and saxitoxin) were present, indicating that sampling for additional toxins and sampling earlier in the season may be necessary to assess ecosystems and human health risk.
Collapse
Affiliation(s)
- Victoria G Christensen
- U.S. Geological Survey, Upper Midwest Water Science Center, 2280 Woodale Drive, Mounds View, MN, 55112, USA. .,North Dakota State University Environmental and Conservation Sciences Program, Fargo, ND, 58102, USA.
| | - Ryan P Maki
- Voyageurs National Park, 360 Highway 11 East, International Falls, MN, 56649, USA
| | - Erin A Stelzer
- U.S. Geological Survey Ohio Water Microbiology Laboratory, 6460 Busch Blvd STE 100, Columbus, OH, USA
| | - Jack E Norland
- North Dakota State University, Morrill Hall - Room 205A, 1230 Albrecht Blvd, Fargo, ND, 58102, USA
| | - Eakalak Khan
- North Dakota State University, Morrill Hall - Room 205A, 1230 Albrecht Blvd, Fargo, ND, 58102, USA.,University of Nevada, Las Vegas, SEB 3134, 4505S Maryland Pkwy, Las Vegas, NV, 89154, USA
| |
Collapse
|
23
|
Miller TR, Bartlett SL, Weirich CA, Hernandez J. Automated Subdaily Sampling of Cyanobacterial Toxins on a Buoy Reveals New Temporal Patterns in Toxin Dynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5661-5670. [PMID: 31038305 DOI: 10.1021/acs.est.9b00257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Temporal variability of toxins produced by cyanobacteria in lakes is relatively unknown at time scales relevant to public health (i.e., hourly). In this study, a water quality monitoring buoy was outfitted with an automated water sampler taking preserved samples every 6 h for 68.75 days over a drinking water intake. A total of 251 samples were analyzed by tandem mass spectrometry for 21 cyanotoxin congeners in 5 classes producing 5020 data points. Microcystins (MCs) were the most abundant toxins measured (mean ± sd = 3.9 ± 3.3 μg/L) followed by cyanopeptolins (CPs) (1.1 ± 1.5 μg/L), anabaenopeptins (APs) (1.0 ± 0.6 μg/L), anatoxin-a (AT-A) (0.03 ± 0.06 μg/L), and microginin-690 (MG-690) (0.002 ± 0.01 μg/L). Advanced time series analyses uncovered patterns in cyanotoxin production. The velocity of cyanotoxin concentration varied from -0.7 to 0.9 μg/L/h with a maximum positive velocity just prior to peak toxin concentration during nonbloom periods. A backward-looking moving window of variance analysis detected major increases in cyanotoxin concentration and predicted the two greatest increases in MC. A wavelet analysis identified a significant ( p < 0.01) 2.8-4.2 day periodicity in toxin concentration over a ∼25 day period during peak toxin production, which is partially explained by easterly wind velocity ( R = -0.2, p < 0.05). Diversity in congener profiles was explored with principle component analysis showing that cyanotoxin dynamics followed a seasonal trajectory where toxin profiles were significantly clustered (ANOSIM R = 0.7, p < 0.05) on a daily basis. Variability in toxin profiles was strongly correlated with time ( R = -0.8, p < 0.001) as well as the C:N ratio of the toxin pool ( R = 0.17, p < 0.05). The methods employed here should be useful for uncovering patterns in cyanotoxin dynamics in other systems.
Collapse
Affiliation(s)
- Todd R Miller
- Joseph J. Zilber School of Public Health , University of Wisconsin-Milwaukee , Milwaukee , Wisconsin 53211 , United States
| | - Sarah L Bartlett
- Joseph J. Zilber School of Public Health , University of Wisconsin-Milwaukee , Milwaukee , Wisconsin 53211 , United States
- School of Freshwater Sciences , University of Wisconsin-Milwaukee , Milwaukee , Wisconsin 53204 , United States
| | - Chelsea A Weirich
- Joseph J. Zilber School of Public Health , University of Wisconsin-Milwaukee , Milwaukee , Wisconsin 53211 , United States
| | - John Hernandez
- Joseph J. Zilber School of Public Health , University of Wisconsin-Milwaukee , Milwaukee , Wisconsin 53211 , United States
| |
Collapse
|
24
|
Linz AM, He S, Stevens SLR, Anantharaman K, Rohwer RR, Malmstrom RR, Bertilsson S, McMahon KD. Freshwater carbon and nutrient cycles revealed through reconstructed population genomes. PeerJ 2018; 6:e6075. [PMID: 30581671 PMCID: PMC6292386 DOI: 10.7717/peerj.6075] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/05/2018] [Indexed: 02/01/2023] Open
Abstract
Although microbes mediate much of the biogeochemical cycling in freshwater, the categories of carbon and nutrients currently used in models of freshwater biogeochemical cycling are too broad to be relevant on a microbial scale. One way to improve these models is to incorporate microbial data. Here, we analyze both genes and genomes from three metagenomic time series and propose specific roles for microbial taxa in freshwater biogeochemical cycles. Our metagenomic time series span multiple years and originate from a eutrophic lake (Lake Mendota) and a humic lake (Trout Bog Lake) with contrasting water chemistry. Our analysis highlights the role of polyamines in the nitrogen cycle, the diversity of diazotrophs between lake types, the balance of assimilatory vs. dissimilatory sulfate reduction in freshwater, the various associations between types of phototrophy and carbon fixation, and the density and diversity of glycoside hydrolases in freshwater microbes. We also investigated aspects of central metabolism such as hydrogen metabolism, oxidative phosphorylation, methylotrophy, and sugar degradation. Finally, by analyzing the dynamics over time in nitrogen fixation genes and Cyanobacteria genomes, we show that the potential for nitrogen fixation is linked to specific populations in Lake Mendota. This work represents an important step towards incorporating microbial data into ecosystem models and provides a better understanding of how microbes may participate in freshwater biogeochemical cycling.
Collapse
Affiliation(s)
- Alexandra M Linz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Shaomei He
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.,Department of Geoscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah L R Stevens
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Robin R Rohwer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Rex R Malmstrom
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.,Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
25
|
Beversdorf LJ, Rude K, Weirich CA, Bartlett SL, Seaman M, Kozik C, Biese P, Gosz T, Suha M, Stempa C, Shaw C, Hedman C, Piatt JJ, Miller TR. Analysis of cyanobacterial metabolites in surface and raw drinking waters reveals more than microcystin. WATER RESEARCH 2018; 140:280-290. [PMID: 29729580 DOI: 10.1016/j.watres.2018.04.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/10/2018] [Accepted: 04/14/2018] [Indexed: 05/26/2023]
Abstract
Freshwater cyanobacterial blooms are becoming increasingly problematic in regions that rely on surface waters for drinking water production. Microcystins (MCs) are toxic peptides produced by multiple cyanobacterial genera with a global occurrence. Cyanobacteria also produce a variety of other toxic and/or otherwise bioactive peptides (TBPs) that have gained less attention including cyanopeptolins (Cpts), anabaenopeptins (Apts), and microginins (Mgn). In this study, we compared temporal and spatial trends of four MCs (MCLR, MCRR, MCYR, MCLA), three Cpts (Cpt1020, Cpt1041, Cpt1007), two Apts (AptF, AptB), and Mgn690 in raw drinking water and at six surface water locations above these drinking water intakes in a eutrophic lake. All four MC congeners and five of six TBPs were detected in lake and raw drinking water. Across all samples, MCLR was the most frequently detected metabolite (100% of samples) followed by MCRR (97%) > Cpt1007 (74%) > MCYR (69%) > AptF (67%) > MCLA (61%) > AptB (54%) > Mgn690 (29%) and Cpt1041 (15%). Mean concentrations of MCs, Apts, and Cpts into two drinking water intakes were 3.9 ± 4.7, 0.14 ± 0.21, and 0.38 ± 0.92, respectively. Mean concentrations in surface water were significantly higher (p < 0.05) than in drinking water intakes for MCs but not for Cpts and Apts. Temporal trends in MCs, Cpts, and Apts in the two raw drinking water intakes were significantly correlated (p < 0.05) with measures of cell abundance (chlorophyll-a, Microcystis cell density), UV absorbance, and turbidity in surface water. This study expands current information about cyanobacterial TBPs that occur in lakes and that enter drinking water treatment plants and underscores the need to determine the fate of less studied cyanobacterial metabolites during drinking water treatment that may exacerbate toxicity of more well-known cyanobacterial toxins.
Collapse
Affiliation(s)
- Lucas J Beversdorf
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kayla Rude
- Department of Chemistry, Carroll University, Waukesha, WI, USA
| | - Chelsea A Weirich
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Sarah L Bartlett
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Mary Seaman
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Christine Kozik
- Department of Biological Sciences, University of Wisconsin - Milwaukee, WI, USA
| | - Peter Biese
- Menasha Drinking Water Treatment Plant, Menasha, WI, USA
| | - Timothy Gosz
- Menasha Drinking Water Treatment Plant, Menasha, WI, USA
| | - Michael Suha
- Appleton Drinking Water Treatment Plant, Menasha, WI, USA
| | | | | | - Curtis Hedman
- Wisconsin State Laboratory of Hygiene, Madison, WI, USA
| | - Joseph J Piatt
- Department of Chemistry, Carroll University, Waukesha, WI, USA
| | - Todd R Miller
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
26
|
Tse TJ, Doig LE, Tang S, Zhang X, Sun W, Wiseman SB, Feng CX, Liu H, Giesy JP, Hecker M, Jones PD. Combining High-Throughput Sequencing of sedaDNA and Traditional Paleolimnological Techniques To Infer Historical Trends in Cyanobacterial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6842-6853. [PMID: 29782156 DOI: 10.1021/acs.est.7b06386] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Freshwaters worldwide are under increasing pressure from anthropogenic activities and changing climate. Unfortunately, many inland waters lack sufficient long-term monitoring to assess environmental trends. Analysis of sedimentary ancient DNA ( sedaDNA) is emerging as a means to reconstruct the past occurrence of microbial communities of inland waters. The purpose of this study was to assess a combination of high-throughput sequencing (16S rRNA) of sedaDNA and traditional paleolimnological analyses to explore multidecadal relationships among cyanobacterial community composition, the potential for cyanotoxin production, and paleoenvironmental proxies. DNA was extracted from two sediment cores collected from a northern Canadian Great Plains reservoir. Diversity indices illustrated significant community-level changes since reservoir formation. Furthermore, higher relative abundances in more recent years were observed for potentially toxic cyanobacterial genera including Dolichospermum. Correlation-based network analysis revealed this trend significantly and positively correlated to abundances of the microcystin synthetase gene ( mcyA) and other paleoproxies (nutrients, pigments, stanols, sterols, and certain diatom species), demonstrating synchrony between molecular and more standard proxies. These findings demonstrate a novel approach to infer long-term dynamics of cyanobacterial diversity in inland waters and highlight the power of high-throughput sequencing to reconstruct trends in environmental quality and inform lake and reservoir management and monitoring program design.
Collapse
Affiliation(s)
- Timothy J Tse
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Global Institute for Water Security , University of Saskatchewan , Saskatoon , Saskatchewan S7N 3H5 , Canada
| | - Lorne E Doig
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Global Institute for Water Security , University of Saskatchewan , Saskatoon , Saskatchewan S7N 3H5 , Canada
| | - Song Tang
- School of Environment and Sustainability , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5C3 , Canada
- National Institute of Environmental Health , Chinese Center for Disease Control and Prevention , No. 7 Panjiayuan Nanli , Chaoyang District, Beijing 100021 , China
| | - Xiaohui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management , Guangdong Institute of Eco-environment Science & Technology , Guangzhou , Guangdong 510650 , China
| | - Steve B Wiseman
- Department of Biological Sciences , University of Lethbridge , Lethbridge , AB T1K 3M4 , Canada
| | - Cindy Xin Feng
- School of Public Health , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5E5 , Canada
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - John P Giesy
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Global Institute for Water Security , University of Saskatchewan , Saskatoon , Saskatchewan S7N 3H5 , Canada
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
- Zoology Department, Center for Integrative Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
- School of Biological Sciences , University of Hong Kong , Hong Kong , SAR 999077 , China
| | - Markus Hecker
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Global Institute for Water Security , University of Saskatchewan , Saskatoon , Saskatchewan S7N 3H5 , Canada
- School of Environment and Sustainability , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5C3 , Canada
| | - Paul D Jones
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Global Institute for Water Security , University of Saskatchewan , Saskatoon , Saskatchewan S7N 3H5 , Canada
- School of Environment and Sustainability , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5C3 , Canada
| |
Collapse
|
27
|
Lezcano MÁ, Quesada A, El-Shehawy R. Seasonal dynamics of microcystin-degrading bacteria and toxic cyanobacterial blooms: Interaction and influence of abiotic factors. HARMFUL ALGAE 2018; 71:19-28. [PMID: 29306393 DOI: 10.1016/j.hal.2017.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 06/07/2023]
Abstract
Massive proliferations of cyanobacteria coexist and have different interactions with other microorganisms, including microcystin (MC)-degrading bacteria. Despite their relevance in the environment for the removal of MCs, this bacterial community has been scarcely studied. The influence of physicochemical factors and the seasonal dynamics of toxic cyanobacteria on the relative abundance and seasonal dynamics of the MC-degrading bacterial community with mlr genes (mlr+) were investigated during a two-year study at a water reservoir in central Spain. The capacity of the total bacterial community on the degradation of MCs during the whole period of study was also evaluated. The results showed that the relative abundance of mlr+ bacteria started to increase after the increase in the relative abundance of toxic cyanobacteria and MC concentrations in the water, indicating a related seasonal dynamic and an important interaction between the two communities. The correspondence of several peaks of mlr+ bacteria with decreases in the relative abundance of toxic cyanobacteria and vice versa may also suggest a possible antagonistic relationship that deserves an in-depth study. The lack of a significant relationship between the physicochemical factors and the temporal shifts of both MC producers and degraders also supports the notion that the interaction of the two communities is an important driver of their seasonal dynamics in nature. Regarding the capacity of the total bacterial community for the degradation of MCs, this capacity was only observed during the toxic cyanobacterial bloom episodes, highlighting the importance of the pre-exposure to MCs in the reservoir for triggering the MC biodegradation process.
Collapse
Affiliation(s)
- María Ángeles Lezcano
- IMDEA Water Institute, Av. Punto Com, 2, Alcalá de Henares, Madrid, 28805, Spain; Departamento de Biología, C. Darwin 2, Universidad Autónoma de Madrid, Cantoblanco, 28049, Spain.
| | - Antonio Quesada
- Departamento de Biología, C. Darwin 2, Universidad Autónoma de Madrid, Cantoblanco, 28049, Spain.
| | - Rehab El-Shehawy
- IMDEA Water Institute, Av. Punto Com, 2, Alcalá de Henares, Madrid, 28805, Spain.
| |
Collapse
|
28
|
Cantoral Uriza EA, Asencio AD, Aboal M. Are We Underestimating Benthic Cyanotoxins? Extensive Sampling Results from Spain. Toxins (Basel) 2017; 9:toxins9120385. [PMID: 29182536 PMCID: PMC5744105 DOI: 10.3390/toxins9120385] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/29/2022] Open
Abstract
Microcystins (MCs) are potent hepatotoxins, and their presence in water bodies poses a threat to wildlife and human populations. Most of the available information refers to plankton, and much less is known about microcystins in other habitats. To broaden our understanding of the presence and environmental distribution of this group of toxins, we conducted extensive sampling throughout Spain, under a range of conditions and in distinct aquatic and terrestrial habitats. More than half of the tested strains were toxic; concentrations of the hepatotoxin were low compared with planktic communities, and the number of toxic variants identified in each sample of the Spanish strains ranged from 1–3. The presence of microcystins LF and LY (MC-LF and MC-LY) in the tested samples was significant, and ranged from 21.4% to 100% of the total microcystins per strain. These strains were only detected in cyanobacteria Oscillatoriales and Nostocales. We can report, for the first time, seven new species of microcystin producers in high mountain rivers and chasmoendolithic communities. This is the first report of these species in Geitlerinema and the confirmation of Anatoxin-a in Phormidium uncinatum. Our findings show that microcystins are widespread in all habitat types, including both aerophytic and endolithic peat bogs and that it is necessary to identify all the variants of microcystins in aquatic bodies as the commonest toxins sometimes represent a very low proportion of the total.
Collapse
Affiliation(s)
- Enrique A Cantoral Uriza
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias, Universidad Nacional Autónoma de México, Campus Juriquilla, C.P. Querétaro 76230, Mexico.
| | - Antonia D Asencio
- Departamento de Biología Aplicada (Botánica), Facultad de Ciencias Experimentales, Universidad Miguel Hernández, Campus de Elche, E-03202 Alicante, Spain.
| | - Marina Aboal
- Laboratorio de Algología, Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain.
| |
Collapse
|
29
|
Ecogenomics of virophages and their giant virus hosts assessed through time series metagenomics. Nat Commun 2017; 8:858. [PMID: 29021524 PMCID: PMC5636890 DOI: 10.1038/s41467-017-01086-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/16/2017] [Indexed: 11/30/2022] Open
Abstract
Virophages are small viruses that co-infect eukaryotic cells alongside giant viruses (Mimiviridae) and hijack their machinery to replicate. While two types of virophages have been isolated, their genomic diversity and ecology remain largely unknown. Here we use time series metagenomics to identify and study the dynamics of 25 uncultivated virophage populations, 17 of which represented by complete or near-complete genomes, in two North American freshwater lakes. Taxonomic analysis suggests that these freshwater virophages represent at least three new candidate genera. Ecologically, virophage populations are repeatedly detected over years and evolutionary stable, yet their distinct abundance profiles and gene content suggest that virophage genera occupy different ecological niches. Co-occurrence analyses reveal 11 virophages strongly associated with uncultivated Mimiviridae, and three associated with eukaryotes among the Dinophyceae, Rhizaria, Alveolata, and Cryptophyceae groups. Together, these findings significantly augment virophage databases, help refine virophage taxonomy, and establish baseline ecological hypotheses and tools to study virophages in nature. Virophages are recently-identified small viruses that infect larger viruses, yet their diversity and ecological roles are poorly understood. Here, Roux and colleagues present time series metagenomics data revealing new virophage genera and their putative ecological interactions in two freshwater lakes.
Collapse
|
30
|
Bukowska A, Kaliński T, Koper M, Kostrzewska-Szlakowska I, Kwiatowski J, Mazur-Marzec H, Jasser I. Predicting blooms of toxic cyanobacteria in eutrophic lakes with diverse cyanobacterial communities. Sci Rep 2017; 7:8342. [PMID: 28827675 PMCID: PMC5566422 DOI: 10.1038/s41598-017-08701-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/14/2017] [Indexed: 11/09/2022] Open
Abstract
We investigated possibility of predicting whether blooms, if they occur, would be formed of microcystin-producing cyanobacteria. DGGE analysis of 16S-ITS and mcyA genes revealed that only Planktothrix and Microcystis possessed mcy-genes and Planktothrix was the main microcystin producer. qPCR analysis revealed that the proportion of cells with mcy-genes in Planktothrix populations was almost 100%. Microcystin concentration correlated with the number of potentially toxic and total Planktothrix cells and the proportion of Planktothrix within all cyanobacteria, but not with the proportion of cells with mcy-genes in total Planktothrix. The share of Microcystis cells with mcy-genes was low and variable in time. Neither the number of mcy-possessing cells, nor the proportion of these cells in total Microcystis, correlated with the concentration of microcystins. This suggests that it is possible to predict whether the bloom in the Masurian Lakes will be toxic based on Planktothrix occurrence. Two species of toxin producing Planktothrix, P. agardhii and P. rubescens, were identified by phylogenetic analysis of 16S-ITS. Based on morphological and ecological features, the toxic Planktothrix was identified as P. agardhii. However, the very high proportion of cells with mcy-genes suggests P. rubescens. Our study reveals the need of universal primers for mcyA genes from environment.
Collapse
Affiliation(s)
- Aleksandra Bukowska
- Department of Microbial Ecology & Environmental Biotechnology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warszawa, Poland
| | - Tomasz Kaliński
- Department of Microbial Ecology & Environmental Biotechnology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warszawa, Poland
| | - Michał Koper
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, A. Pawińskiego 5a, 02-106, Warszawa, Poland
| | | | - Jan Kwiatowski
- Department of Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warszawa, Poland
| | - Hanna Mazur-Marzec
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Iwona Jasser
- Department of Plant Ecology & Environmental Conservation, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warszawa, Poland.
| |
Collapse
|
31
|
Miller TR, Beversdorf LJ, Weirich CA, Bartlett SL. Cyanobacterial Toxins of the Laurentian Great Lakes, Their Toxicological Effects, and Numerical Limits in Drinking Water. Mar Drugs 2017; 15:E160. [PMID: 28574457 PMCID: PMC5484110 DOI: 10.3390/md15060160] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/22/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are ubiquitous phototrophic bacteria that inhabit diverse environments across the planet. Seasonally, they dominate many eutrophic lakes impacted by excess nitrogen (N) and phosphorus (P) forming dense accumulations of biomass known as cyanobacterial harmful algal blooms or cyanoHABs. Their dominance in eutrophic lakes is attributed to a variety of unique adaptations including N and P concentrating mechanisms, N₂ fixation, colony formation that inhibits predation, vertical movement via gas vesicles, and the production of toxic or otherwise bioactive molecules. While some of these molecules have been explored for their medicinal benefits, others are potent toxins harmful to humans, animals, and other wildlife known as cyanotoxins. In humans these cyanotoxins affect various tissues, including the liver, central and peripheral nervous system, kidneys, and reproductive organs among others. They induce acute effects at low doses in the parts-per-billion range and some are tumor promoters linked to chronic diseases such as liver and colorectal cancer. The occurrence of cyanoHABs and cyanotoxins in lakes presents challenges for maintaining safe recreational aquatic environments and the production of potable drinking water. CyanoHABs are a growing problem in the North American (Laurentian) Great Lakes basin. This review summarizes information on the occurrence of cyanoHABs in the Great Lakes, toxicological effects of cyanotoxins, and appropriate numerical limits on cyanotoxins in finished drinking water.
Collapse
Affiliation(s)
- Todd R Miller
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Lucas J Beversdorf
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Chelsea A Weirich
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Sarah L Bartlett
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| |
Collapse
|
32
|
Variable Cyanobacterial Toxin and Metabolite Profiles across Six Eutrophic Lakes of Differing Physiochemical Characteristics. Toxins (Basel) 2017; 9:toxins9020062. [PMID: 28208628 PMCID: PMC5331441 DOI: 10.3390/toxins9020062] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/06/2017] [Indexed: 11/23/2022] Open
Abstract
Future sustainability of freshwater resources is seriously threatened due to the presence of harmful cyanobacterial blooms, and yet, the number, extent, and distribution of most cyanobacterial toxins—including “emerging” toxins and other bioactive compounds—are poorly understood. We measured 15 cyanobacterial compounds—including four microcystins (MC), saxitoxin (SXT), cylindrospermopsin (CYL), anatoxin-a (ATX) and homo-anatoxin-a (hATX), two anabaenopeptins (Apt), three cyanopeptolins (Cpt), microginin (Mgn), and nodularin (NOD)—in six freshwater lakes that regularly experience noxious cHABs. MC, a human liver toxin, was present in all six lakes and was detected in 80% of all samples. Similarly, Apt, Cpt, and Mgn were detected in all lakes in roughly 86%, 50%, and 35% of all samples, respectively. Despite being a notable brackish water toxin, NOD was detected in the two shallowest lakes—Wingra (4.3 m) and Koshkonong (2.1 m). All compounds were highly variable temporally, and spatially. Metabolite profiles were significantly different between lakes suggesting lake characteristics influenced the cyanobacterial community and/or metabolite production. Understanding how cyanobacterial toxins are distributed across eutrophic lakes may shed light onto the ecological function of these metabolites, provide valuable information for their remediation and removal, and aid in the protection of public health.
Collapse
|
33
|
Martínez de la Escalera G, Kruk C, Segura AM, Nogueira L, Alcántara I, Piccini C. Dynamics of toxic genotypes of Microcystis aeruginosa complex (MAC) through a wide freshwater to marine environmental gradient. HARMFUL ALGAE 2017; 62:73-83. [PMID: 28118894 DOI: 10.1016/j.hal.2016.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Bloom-forming species belonging to Microcystis aeruginosa complex (MAC) are the most commonly reported worldwide. MAC blooms are composed by toxic and non-toxic genotypes and the environmental conditions favouring the dominance of toxic genotypes are still a matter of debate among the scientific community. In this study, we evaluated the distribution of toxic MAC genotypes along a seasonal cycle and over an environmental gradient spanning 800km, from a eutrophic freshwater reservoir in Río Uruguay to marine water in the outer limit of Río de la Plata. Abundance of four mcy genes, mcyB, mcyD, mcyE and mcyJ was determined by qPCR and used as a proxy of abundance of toxic MAC genotypes. All the mcy genes were detected through the seasonal cycle at all sampling sites, being systematically higher in the freshwater reservoir and decreasing towards the marine site. The highest toxic genotype abundance was found during the austral summer months. According to generalized linear regressions and random forest models, temperature and conductivity were the most relevant explanatory variables. This suggests that although toxic MAC genotypes grow optimally in freshwater, they are also able to tolerate the high-salinity and low temperature conditions found in estuarine and marine waters. This ability to resist harsh conditions impose a health risk and a management challenge. To our knowledge, this is the first report addressing several mcy genes in a broad gradient that includes a wide array of different environmental conditions.
Collapse
Affiliation(s)
| | - Carla Kruk
- Ecología Funcional de Sistemas Acuáticos, CURE, Rocha, Universidad de la República, Uruguay; Sección Limnología, IECA, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Angel M Segura
- Polo de Desarrollo Universitario, Modelización y Análisis de Recursos Naturales, CURE, Rocha, Universidad de la República, Uruguay
| | - Lucía Nogueira
- Sección Limnología, IECA, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Ignacio Alcántara
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay; Sección Limnología, IECA, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Claudia Piccini
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay.
| |
Collapse
|
34
|
Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 2017; 91:1049-1130. [DOI: 10.1007/s00204-016-1913-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
|
35
|
Martínez-Ruiz EB, Martínez-Jerónimo F. How do toxic metals affect harmful cyanobacteria? An integrative study with a toxigenic strain of Microcystis aeruginosa exposed to nickel stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:36-46. [PMID: 27400062 DOI: 10.1016/j.ecoenv.2016.06.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Nickel (Ni) is an essential metal for some organisms, but also a common toxic pollutant released into the water. Toxicity of Ni has not been completely established for cyanobacteria; for this reason, we evaluated the effect of sub-inhibitory Ni concentrations on a toxigenic strain of Microcystis aeruginosa and on microcystins production. Population growth, photosynthetic pigments concentration, biomarkers, including antioxidant enzymes (catalase [CAT], glutathione peroxidase [GPx], and superoxide dismutase [SOD]), as well as macromolecules (proteins, carbohydrates and lipids) were quantified; SEM and TEM observations were also performed. Population growth was affected starting at 3µgL(-1), and at 24µgL(-1) growth was completely inhibited; the 96-h Ni(2+) IC50 was 3.7µgL(-1). Ni exposure increased pigments concentration, augmented all the macromolecules, and increased activities of CAT and GPx; alterations on the internal cell structure were also observed. The integrated biomarker response revealed that Ni(2+) augmented the antioxidant response and the macromolecules content. Ni stress also increased microcystins production. M. aeruginosa was affected by Ni at very low concentrations, even lower than those established as safe limit to protect aquatic biota. Aside from the toxic effects produced in this cyanobacterium, stimulation to produce toxins could potentiate the environmental risks associated with water pollution and eutrophication.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico, D.F. 11340, Mexico
| | - Fernando Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico, D.F. 11340, Mexico.
| |
Collapse
|
36
|
Elucidation of Taste- and Odor-Producing Bacteria and Toxigenic Cyanobacteria in a Midwestern Drinking Water Supply Reservoir by Shotgun Metagenomic Analysis. Appl Environ Microbiol 2016; 82:5410-20. [PMID: 27342564 DOI: 10.1128/aem.01334-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/22/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED While commonplace in clinical settings, DNA-based assays for identification or enumeration of drinking water pathogens and other biological contaminants remain widely unadopted by the monitoring community. In this study, shotgun metagenomics was used to identify taste-and-odor producers and toxin-producing cyanobacteria over a 2-year period in a drinking water reservoir. The sequencing data implicated several cyanobacteria, including Anabaena spp., Microcystis spp., and an unresolved member of the order Oscillatoriales as the likely principal producers of geosmin, microcystin, and 2-methylisoborneol (MIB), respectively. To further demonstrate this, quantitative PCR (qPCR) assays targeting geosmin-producing Anabaena and microcystin-producing Microcystis were utilized, and these data were fitted using generalized linear models and compared with routine monitoring data, including microscopic cell counts, sonde-based physicochemical analyses, and assays of all inorganic and organic nitrogen and phosphorus forms and fractions. The qPCR assays explained the greatest variation in observed geosmin (adjusted R(2) = 0.71) and microcystin (adjusted R(2) = 0.84) concentrations over the study period, highlighting their potential for routine monitoring applications. The origin of the monoterpene cyclase required for MIB biosynthesis was putatively linked to a periphytic cyanobacterial mat attached to the concrete drinking water inflow structure. We conclude that shotgun metagenomics can be used to identify microbial agents involved in water quality deterioration and to guide PCR assay selection or design for routine monitoring purposes. Finally, we offer estimates of microbial diversity and metagenomic coverage of our data sets for reference to others wishing to apply shotgun metagenomics to other lacustrine systems. IMPORTANCE Cyanobacterial toxins and microbial taste-and-odor compounds are a growing concern for drinking water utilities reliant upon surface water resources. Specific identification of the microorganism(s) responsible for water quality degradation is often complicated by the presence of co-occurring taxa capable of producing these undesirable metabolites. Here we present a framework for how shotgun metagenomics can be used to definitively identify problematic microorganisms and how these data can guide the development of rapid genetic assays for routine monitoring purposes.
Collapse
|
37
|
Pacheco ABF, Guedes IA, Azevedo SMFO. Is qPCR a Reliable Indicator of Cyanotoxin Risk in Freshwater? Toxins (Basel) 2016; 8:toxins8060172. [PMID: 27338471 PMCID: PMC4926139 DOI: 10.3390/toxins8060172] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023] Open
Abstract
The wide distribution of cyanobacteria in aquatic environments leads to the risk of water contamination by cyanotoxins, which generate environmental and public health issues. Measurements of cell densities or pigment contents allow both the early detection of cellular growth and bloom monitoring, but these methods are not sufficiently accurate to predict actual cyanobacterial risk. To quantify cyanotoxins, analytical methods are considered the gold standards, but they are laborious, expensive, time-consuming and available in a limited number of laboratories. In cyanobacterial species with toxic potential, cyanotoxin production is restricted to some strains, and blooms can contain varying proportions of both toxic and non-toxic cells, which are morphologically indistinguishable. The sequencing of cyanobacterial genomes led to the description of gene clusters responsible for cyanotoxin production, which paved the way for the use of these genes as targets for PCR and then quantitative PCR (qPCR). Thus, the quantification of cyanotoxin genes appeared as a new method for estimating the potential toxicity of blooms. This raises a question concerning whether qPCR-based methods would be a reliable indicator of toxin concentration in the environment. Here, we review studies that report the parallel detection of microcystin genes and microcystin concentrations in natural populations and also a smaller number of studies dedicated to cylindrospermopsin and saxitoxin. We discuss the possible issues associated with the contradictory findings reported to date, present methodological limitations and consider the use of qPCR as an indicator of cyanotoxin risk.
Collapse
Affiliation(s)
- Ana Beatriz F Pacheco
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil.
| | - Iame A Guedes
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil.
| | - Sandra M F O Azevedo
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil.
| |
Collapse
|
38
|
Touzet N, McCarthy D, Gill A, Fleming GTA. Comparative summer dynamics of surface cyanobacterial communities in two connected lakes from the west of Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 553:416-428. [PMID: 26930314 DOI: 10.1016/j.scitotenv.2016.02.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/27/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
The eutrophication of lakes is typically associated with high biomass proliferations of potentially toxic cyanobacteria. At a regional level, the sustainable management of water resources necessitates an approach that recognises the interconnectivity of multiple water systems within river catchments. This study examined the dynamics in summer diversity of planktonic cyanobacterial communities and microcystin toxin concentrations in two inter-connected lakes from the west of Ireland prone to nutrient enrichment. DGGE analysis of 16S rRNA gene amplicons of genotype-I cyanobacteria (typically spherical) showed changes in the communities of both Lough Corrib and Ballyquirke Lough throughout the summer, and identified cyanobacterial genotypes both unique and shared to both lakes. Microcystin concentrations, estimated via the protein phosphatase 2A inhibition assay, were greater in August than in July and June in both lakes. This was concomitant to the increased occurrence of Microcystis as evidenced by DGGE band excision and subsequent sequencing and BLAST analysis. RFLP analysis of PCR amplified mcy-A/E genes clustered together the August samples of both lakes, highlighting a potential change in microcystin producers across the two lakes. Finally, the multiple factor analysis of the combined environmental data set for the two lakes highlighted the expected pattern opposing greater water temperature and chlorophyll concentration against macronutrient concentrations, but also indicated a negative relationship between microcystin concentration and cyanobacterial diversity, possibly underlining allelopathic interactions. Despite some element of connectivity, the dissimilarity in the composition of the cyanobacterial assemblages and the timing of community change in the two lakes likely were a reflexion of niche differences determined by meteorologically-forced variation in physico-chemical parameters in the two water bodies.
Collapse
Affiliation(s)
- N Touzet
- Centre for Environmental Research, Innovation and Sustainability, School of Science, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland.
| | - D McCarthy
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | - A Gill
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | - G T A Fleming
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
39
|
Kundapur RR, Nema V. Loop-mediated isothermal amplification: Beyond microbial identification. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/23312025.2015.1137110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Rajesh R. Kundapur
- Division of Molecular Biology, National AIDS Research Institute, 73 ‘G’ MIDC, Bhosari, Pune 411026, India
| | - Vijay Nema
- Division of Molecular Biology, National AIDS Research Institute, 73 ‘G’ MIDC, Bhosari, Pune 411026, India
| |
Collapse
|
40
|
Han ZL, Shi XS, Ji YT, Tan XM, Bai FL, Yuan XZ, Wang YQ, Guo RB. Stable isotope labeling to study the nitrogen metabolism in microcystin biosynthesis. RSC Adv 2016. [DOI: 10.1039/c6ra03031a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
15N-labeled MC-LR was biosynthesized successfully inM. aeruginosabyin vivostable isotopic enrichment and its biosynthesis and metabolic flux was explored using LC-MS and Raman analysis.
Collapse
Affiliation(s)
- Zhen-Lian Han
- State Key Laboratory of Biological Fermentation Engineering of Beer
- Tsingtao Brewery Co., Ltd
- Qingdao 266100
- China
- College Material Science & Engineering
| | - Xiao-Shuang Shi
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| | - Yue-Tong Ji
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| | - Xiao-Ming Tan
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| | - Fa-Li Bai
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| | - Xian-Zheng Yuan
- State Key Laboratory of Biological Fermentation Engineering of Beer
- Tsingtao Brewery Co., Ltd
- Qingdao 266100
- China
- Key Laboratory of Biofuels
| | - Yi-Qian Wang
- Cultivation Base State Key Lab
- Qingdao University
- Qingdao
- P. R. China
| | - Rong-Bo Guo
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| |
Collapse
|
41
|
Affiliation(s)
- Susan D. Richardson
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Susana Y. Kimura
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
42
|
Beversdorf LJ, Miller TR, McMahon KD. Long-term monitoring reveals carbon-nitrogen metabolism key to microcystin production in eutrophic lakes. Front Microbiol 2015; 6:456. [PMID: 26029192 PMCID: PMC4428211 DOI: 10.3389/fmicb.2015.00456] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/27/2015] [Indexed: 02/04/2023] Open
Abstract
The environmental drivers contributing to cyanobacterial dominance in aquatic systems have been extensively studied. However, understanding of toxic vs. non-toxic cyanobacterial population dynamics and the mechanisms regulating cyanotoxin production remain elusive, both physiologically and ecologically. One reason is the disconnect between laboratory and field-based studies. Here, we combined 3 years of temporal data, including microcystin (MC) concentrations, 16 years of long-term ecological research, and 10 years of molecular data to investigate the potential factors leading to the selection of toxic Microcystis and MC production. Our analysis revealed that nitrogen (N) speciation and inorganic carbon (C) availability might be important drivers of Microcystis population dynamics and that an imbalance in cellular C: N ratios may trigger MC production. More specifically, precipitous declines in ammonium concentrations lead to a transitional period of N stress, even in the presence of high nitrate concentrations, that we call the “toxic phase.” Following the toxic phase, temperature and cyanobacterial abundance remained elevated but MC concentrations drastically declined. Increases in ammonium due to lake turnover may have led to down regulation of MC synthesis or a shift in the community from toxic to non-toxic species. While total phosphorus (P) to total N ratios were relatively low over the time-series, MC concentrations were highest when total N to total P ratios were also highest. Similarly, high C: N ratios were also strongly correlated to the toxic phase. We propose a metabolic model that corroborates molecular studies and reflects our ecological observations that C and N metabolism may regulate MC production physiologically and ecologically. In particular, we hypothesize that an imbalance between 2-oxoglutarate and ammonium in the cell regulates MC synthesis in the environment.
Collapse
Affiliation(s)
- Lucas J Beversdorf
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison Madison, WI, USA ; Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Todd R Miller
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Katherine D McMahon
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison Madison, WI, USA ; Department of Bacteriology, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|