1
|
Metzsch C, Lindahl O, Klarén M, Grins E, Ekroth A, Hansson SR, Åkerström B, Dardashti A. The course of plasma alpha-1-microglobulin and haemolysis during cardiac surgery and the relationship to acute kidney injury, a pilot study. Scand J Clin Lab Invest 2024:1-7. [PMID: 39729366 DOI: 10.1080/00365513.2024.2442022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/30/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
Haemolysis occurring during cardiac surgery with cardiopulmonary bypass (CPB) is assumed to be a risk factor for postoperative acute kidney injury (AKI). Plasma alpha-1 microglobulin (A1M) may have a protective role as haem scavenger. The aim of this study was to evaluate the association between AKI and the degree of haemolysis and the course of A1M concentrations during cardiac surgery, respectively. We analysed plasma concentrations of free haemoglobin (pfHb) and A1M in 25 patients undergoing cardiac surgery: before CPB; during CPB in 15 min intervals; after CPB; and at four additional time points until 24 h after surgery. Markers of kidney function were followed until 4 days after surgery. Detection of AKI was based on the KDIGO (Kidney Disease, Improving Global Outcome) criteria. The plasma concentration of free haemoglobin during CPB was found to be significantly higher in patients with postoperative AKI at 60 min after start of CPB [mean 1379 µg/mL (95% CI: 1037-1721)]; compared to [820 µg/mL (622-1018)]; p = 0.034, in patients without AKI, and at one hour post-CPB [2600 µg/mL (969-4230)] vs [1037 µg/mL (722-1353)]; p = 0.044]. There was no significant difference found for pA1M levels between the groups with and without postoperative AKI development. Haemolysis during cardiac surgery with CPB increases the risk of postoperative AKI. Levels of pA1M did not differ for patients who developed postoperative AKI compared with those who did not. The data did not allow conclusions regarding the hypothesis that pA1M has a reno-protective effect.
Collapse
Affiliation(s)
- Carsten Metzsch
- Department of Cardiothoracic Surgery, Anaesthesia, Perfusion, and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Oscar Lindahl
- Department of Cardiothoracic Surgery, Anaesthesia, Perfusion, and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Martina Klarén
- Department of Cardiothoracic Surgery, Anaesthesia, Perfusion, and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Edgars Grins
- Department of Cardiothoracic Surgery, Anaesthesia, Perfusion, and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Annika Ekroth
- Department of Cardiothoracic Surgery, Anaesthesia, Perfusion, and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Stefan R Hansson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Section of Obstetrics and Gynaecology, Lund, Sweden and Skane University Hospital (SUS), /Lund, Sweden
| | - Bo Åkerström
- Faculty of Medicine, Department of Clinical Sciences, Section of Infection Medicine, Lund University, Lund, Sweden
| | - Alain Dardashti
- Department of Cardiothoracic Surgery, Anaesthesia, Perfusion, and Intensive Care, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
2
|
Alattar AG, Kristiansson A, Karlsson H, Vallius S, Ahlstedt J, Forssell-Aronsson E, Åkerström B, Strand SE, Flygare J, Gram M. Recombinant α 1-Microglobulin (rA1M) Protects against Hematopoietic and Renal Toxicity, Alone and in Combination with Amino Acids, in a 177Lu-DOTATATE Mouse Radiation Model. Biomolecules 2023; 13:928. [PMID: 37371508 DOI: 10.3390/biom13060928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
177Lu-DOTATATE peptide receptor radionuclide therapy (PRRT) is used clinically to treat metastasized or unresectable neuroendocrine tumors (NETs). Although 177Lu-DOTATATE is mostly well tolerated in patients, bone marrow suppression and long-term renal toxicity are still side effects that should be considered. Amino acids are often used to minimize renal radiotoxicity, however, they are associated with nausea and vomiting in patients. α1-microglobulin (A1M) is an antioxidant with heme- and radical-scavenging abilities. A recombinant form (rA1M) has previously been shown to be renoprotective in preclinical models, including in PRRT-induced kidney damage. Here, we further investigated rA1M's renal protective effect in a mouse 177Lu-DOTATATE model in terms of administration route and dosing regimen and as a combined therapy with amino acids (Vamin). Moreover, we investigated the protective effect of rA1M on peripheral blood and bone marrow cells, as well as circulatory biomarkers. Intravenous (i.v.) administration of rA1M reduced albuminuria levels and circulatory levels of the oxidative stress-related protein fibroblast growth factor-21 (FGF-21). Dual injections of rA1M (i.e., at 0 and 24 h post-177Lu-DOTATATE administration) preserved bone marrow cellularity and peripheral blood reticulocytes. Administration of Vamin, alone or in combination with rA1M, did not show any protection of bone marrow cellularity or peripheral reticulocytes. In conclusion, this study suggests that rA1M, administered i.v. for two consecutive days in conjunction with 177Lu-DOTATATE, may reduce hematopoietic and kidney toxicity during PRRT with 177Lu-DOTATATE.
Collapse
Affiliation(s)
- Abdul Ghani Alattar
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Amanda Kristiansson
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, 221 84 Lund, Sweden
| | - Helena Karlsson
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, 221 84 Lund, Sweden
| | - Suvi Vallius
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, 221 84 Lund, Sweden
| | - Jonas Ahlstedt
- Department of Clinical Sciences Lund, CIPA, Lund University, 221 84 Lund, Sweden
| | - Eva Forssell-Aronsson
- Department of Medical Radiation Sciences, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Bo Åkerström
- Department of Clinical Sciences Lund, Section for Infection Medicine, Lund University, 221 84 Lund, Sweden
| | - Sven-Erik Strand
- Department of Clinical Sciences Lund, Oncology, Lund University, 222 42 Lund, Sweden
- Department of Clinical Sciences Lund, Medical Radiation Physics, Lund University, 221 85 Lund, Sweden
| | - Johan Flygare
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Magnus Gram
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
3
|
Wu M, Yan F, Liu Q, Liao G, Shen Y, Bai Z, Liu X. Effects of Xenobiotic Compounds on Preeclampsia and Potential Mechanisms. TOXICS 2023; 11:492. [PMID: 37368592 DOI: 10.3390/toxics11060492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023]
Abstract
Preeclampsia (PE) refers to a disease with new hypertension and albuminuria or other end-organ damage after 20 weeks of pregnancy. As a major complication of pregnancy, PE can increase the morbidity and mortality of pregnant women and fetuses and cause serious social burden. Recently, it has been found that exposure to xenobiotic compounds, especially endocrine disruptors in the environment, may contribute to the development of PE. However, the underlying mechanism is still unclear. It is generally believed that PE is related to placental dysplasia, spiral artery remodelling failure, oxidative stress, etc. Therefore, in order to better prevent the occurrence of PE and reduce the damage and impact on mother and fetus, this paper reviews the role and potential mechanism of PE induced by exogenous chemicals and provides an outlook on the environmental etiology of PE.
Collapse
Affiliation(s)
- Miaoliang Wu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Fuhui Yan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Qian Liu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Ganzhong Liao
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Yilin Shen
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Zhi Bai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoshan Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
4
|
Ljubić A, Bozanovic T, Piperski V, Đurić E, Begovic A, Sikiraš M, Perovic A, Vukovic J, Abazović D. Biological therapies in the prevention of maternal mortality. J Perinat Med 2023; 51:253-260. [PMID: 36437561 DOI: 10.1515/jpm-2022-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/13/2022] [Indexed: 11/29/2022]
Abstract
Although the maternal mortality rate has decreased and significant improvements have been made in maternal care, maternal death remains one of the substantial problems of our society. The leading causes of maternal death are postpartum hemorrhage, the most important cause of death in developing countries, and preeclampsia and venous thromboembolism, which are more prevalent in developed countries. To treat these conditions, a variety of therapeutic approaches, including pharmacologic agents and surgical techniques, have been adopted. However, a certain number of pregnant women do not respond to any of these options. That is the main reason for developing new therapeutic approaches. Biological medications are isolated from natural sources or produced by biotechnology methods. Heparin is already successfully used in the therapy of deep venous thrombosis and pulmonary embolism. Blood derivatives, used in an autologous or allogenic manner, have proven to be efficacious in achieving hemostasis in postpartum hemorrhage. Mesenchymal stem cells, alpha-1-microglobulin, and antithrombin exhibit promising results in the treatment of preeclampsia in experimental models. However, it is essential to evaluate these novel approaches' efficacy and safety profile throughout clinical trials before they can become a standard part of patient care.
Collapse
Affiliation(s)
- Aleksandar Ljubić
- Biocell Hospital, Belgrade, Serbia.,Special Gynecology Hospital with Maternity Ward Jevremova, Belgrade, Serbia.,Libertas International University, Dubrovnik, Croatia
| | - Tatjana Bozanovic
- Clinic of Gynecology and Obstetrics, Clinical Center of Serbia, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Emilija Đurić
- Biocell Hospital, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
5
|
Erlandsson L, Masoumi Z, Hansson LR, Hansson SR. The roles of free iron, heme, haemoglobin, and the scavenger proteins haemopexin and alpha-1-microglobulin in preeclampsia and fetal growth restriction. J Intern Med 2021; 290:952-968. [PMID: 34146434 DOI: 10.1111/joim.13349] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Preeclampsia (PE) is a complex pregnancy syndrome characterised by maternal hypertension and organ damage after 20 weeks of gestation and is associated with an increased risk of cardiovascular disease later in life. Extracellular haemoglobin (Hb) and its metabolites heme and iron are highly toxic molecules and several defence mechanisms have evolved to protect the tissue. OBJECTIVES We will discuss the roles of free iron, heme, Hb, and the scavenger proteins haemopexin and alpha-1-microglobulin in pregnancies complicated by PE and fetal growth restriction (FGR). CONCLUSION In PE, oxidative stress causes syncytiotrophoblast (STB) stress and increased shedding of placental STB-derived extracellular vesicles (STBEV). The level in maternal circulation correlates with the severity of hypertension and supports the involvement of STBEVs in causing maternal symptoms in PE. In PE and FGR, iron homeostasis is changed, and iron levels significantly correlate with the severity of the disease. The normal increase in plasma volume taking place during pregnancy is less for PE and FGR and therefore have a different impact on, for example, iron concentration, compared to normal pregnancy. Excess iron promotes ferroptosis is suggested to play a role in trophoblast stress and lipotoxicity. Non-erythroid α-globin regulates vasodilation through the endothelial nitric oxide synthase pathway, and hypoxia-induced α-globin expression in STBs in PE placentas is suggested to contribute to hypertension in PE. Underlying placental pathology in PE with and without FGR might be amplified by iron and heme overload causing oxidative stress and ferroptosis. As the placenta becomes stressed, the release of STBEVs increases and affects the maternal vasculature.
Collapse
Affiliation(s)
- Lena Erlandsson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Zahra Masoumi
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Lucas R Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Stefan R Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Obstetrics and Gynecology, Skåne University Hospital, Lund/Malmö, Sweden
| |
Collapse
|
6
|
Bergwik J, Kristiansson A, Larsson J, Ekström S, Åkerström B, Allhorn M. Binding of the human antioxidation protein α 1-microglobulin (A1M) to heparin and heparan sulfate. Mapping of binding site, molecular and functional characterization, and co-localization in vivo and in vitro. Redox Biol 2021; 41:101892. [PMID: 33607500 PMCID: PMC7900767 DOI: 10.1016/j.redox.2021.101892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/27/2022] Open
Abstract
Heparin and heparan sulfate (HS) are linear sulfated disaccharide polymers. Heparin is found mainly in mast cells, while heparan sulfate is found in connective tissue, extracellular matrix and on cell membranes in most tissues. α1-microglobulin (A1M) is a ubiquitous protein with thiol-dependent antioxidant properties, protecting cells and matrix against oxidative damage due to its reductase activities and radical- and heme-binding properties. In this work, it was shown that A1M binds to heparin and HS and can be purified from human plasma by heparin affinity chromatography and size exclusion chromatography. The binding strength is inversely dependent of salt concentration and proportional to the degree of sulfation of heparin and HS. Potential heparin binding sites, located on the outside of the barrel-shaped A1M molecule, were determined using hydrogen deuterium exchange mass spectrometry (HDX-MS). Immunostaining of endothelial cells revealed pericellular co-localization of A1M and HS and the staining of A1M was almost completely abolished after treatment with heparinase. A1M and HS were also found to be co-localized in vivo in the lungs, aorta, kidneys and skin of mice. The redox-active thiol group of A1M was unaffected by the binding to HS, and the cell protection and heme-binding abilities of A1M were slightly affected. The discovery of the binding of A1M to heparin and HS provides new insights into the biological role of A1M and represents the basis for a novel method for purification of A1M from plasma.
Collapse
Affiliation(s)
- Jesper Bergwik
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Amanda Kristiansson
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jörgen Larsson
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Simon Ekström
- Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Lund University, Lund, Sweden
| | - Bo Åkerström
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Maria Allhorn
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Bergwik J, Kristiansson A, Allhorn M, Gram M, Åkerström B. Structure, Functions, and Physiological Roles of the Lipocalin α 1-Microglobulin (A1M). Front Physiol 2021; 12:645650. [PMID: 33746781 PMCID: PMC7965949 DOI: 10.3389/fphys.2021.645650] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
α1-microglobulin (A1M) is found in all vertebrates including humans. A1M was, together with retinol-binding protein and β-lactoglobulin, one of the three original lipocalins when the family first was proposed in 1985. A1M is described as an antioxidant and tissue cleaning protein with reductase, heme- and radical-binding activities. These biochemical properties are driven by a strongly electronegative surface-exposed thiol group, C34, on loop 1 of the open end of the lipocalin barrel. A1M has been shown to have protective effects in vitro and in vivo in cell-, organ-, and animal models of oxidative stress-related medical conditions. The gene coding for A1M is unique among lipocalins since it is flanked downstream by four exons coding for another non-lipocalin protein, bikunin, and is consequently named α1-microglobulin-bikunin precursor gene (AMBP). The precursor is cleaved in the Golgi, and A1M and bikunin are secreted from the cell separately. Recent publications have suggested novel physiological roles of A1M in regulation of endoplasmic reticulum activities and erythrocyte homeostasis. This review summarizes the present knowledge of the structure and functions of the lipocalin A1M and presents a current model of its biological role(s).
Collapse
Affiliation(s)
- Jesper Bergwik
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden
| | - Amanda Kristiansson
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden.,Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Maria Allhorn
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden
| | - Magnus Gram
- Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden
| | - Bo Åkerström
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
8
|
177Lu-PSMA-617 Therapy in Mice, with or without the Antioxidant α 1-Microglobulin (A1M), Including Kidney Damage Assessment Using 99mTc-MAG3 Imaging. Biomolecules 2021; 11:biom11020263. [PMID: 33579037 PMCID: PMC7916794 DOI: 10.3390/biom11020263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/31/2022] Open
Abstract
Anti-prostate specific membrane antigen (PSMA) radioligand therapy is promising but not curative in castration resistant prostate cancer. One way to broaden the therapeutic index could be to administer higher doses in combination with radioprotectors, since administered radioactivity is kept low today in order to avoid side-effects from a high absorbed dose to healthy tissue. Here, we investigated the human radical scavenger α1-microglobulin (A1M) together with 177-Lutetium (177Lu) labeled PSMA-617 in preclinical models with respect to therapeutic efficacy and kidney toxicity. Nude mice with subcutaneous LNCaP xenografts were injected with 50 or 100 MBq of [177Lu]Lu-PSMA-617, with or without injections of recombinant A1M (rA1M) (at T = 0 and T = 24 h). Kidney absorbed dose was calculated to 7.36 Gy at 4 days post a 100 MBq injection. Activity distribution was imaged with Single-Photon Emission Computed Tomography (SPECT) at 24 h. Tumor volumes were measured continuously, and kidneys and blood were collected at termination (3–4 days and 3–4 weeks after injections). In a parallel set of experiments, mice were given [177Lu]Lu-PSMA-617 and rA1M as above and dynamic technetium-99m mercaptoacetyltriglycine ([99mTc]Tc-MAG3) SPECT imaging was performed prior to injection, and 3- and 6-months post injection. Blood and urine were continuously sampled. At termination (6 months) the kidneys were resected. Biomarkers of kidney function, expression of stress genes and kidney histopathology were analyzed. [177Lu]Lu-PSMA-617 uptake, in tumors and kidneys, as well as treatment efficacy did not differ between rA1M and vehicle groups. In mice given rA1M, [99mTc]Tc-MAG3 imaging revealed a significantly higher slope of initial uptake at three months compared to mice co-injected with [177Lu]Lu-PSMA-617 and vehicle. Little or no change compared to control was seen in urine albumin, serum/plasma urea levels, RT-qPCR analysis of stress response genes and in the kidney histopathological evaluation. In conclusion, [99mTc]Tc-MAG3 imaging presented itself as a sensitive tool to detect changes in kidney function revealing that administration of rA1M has a potentially positive effect on kidney perfusion and tubular function when combined with [177Lu]Lu-PSMA-617 therapy. Furthermore, we could show that rA1M did not affect anti-PSMA radioligand therapy efficacy.
Collapse
|
9
|
Block LN, Bowman BD, Schmidt JK, Keding LT, Stanic AK, Golos TG. The promise of placental extracellular vesicles: models and challenges for diagnosing placental dysfunction in utero†. Biol Reprod 2021; 104:27-57. [PMID: 32856695 PMCID: PMC7786267 DOI: 10.1093/biolre/ioaa152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Monitoring the health of a pregnancy is of utmost importance to both the fetus and the mother. The diagnosis of pregnancy complications typically occurs after the manifestation of symptoms, and limited preventative measures or effective treatments are available. Traditionally, pregnancy health is evaluated by analyzing maternal serum hormone levels, genetic testing, ultrasonographic imaging, and monitoring maternal symptoms. However, researchers have reported a difference in extracellular vesicle (EV) quantity and cargo between healthy and at-risk pregnancies. Thus, placental EVs (PEVs) may help to understand normal and aberrant placental development, monitor pregnancy health in terms of developing placental pathologies, and assess the impact of environmental influences, such as infection, on pregnancy. The diagnostic potential of PEVs could allow for earlier detection of pregnancy complications via noninvasive sampling and frequent monitoring. Understanding how PEVs serve as a means of communication with maternal cells and recognizing their potential utility as a readout of placental health have sparked a growing interest in basic and translational research. However, to date, PEV research with animal models lags behind human studies. The strength of animal pregnancy models is that they can be used to assess placental pathologies in conjunction with isolation of PEVs from fluid samples at different time points throughout gestation. Assessing PEV cargo in animals within normal and complicated pregnancies will accelerate the translation of PEV analysis into the clinic for potential use in prognostics. We propose that appropriate animal models of human pregnancy complications must be established in the PEV field.
Collapse
Affiliation(s)
- Lindsey N Block
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Brittany D Bowman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Logan T Keding
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Aleksandar K Stanic
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
10
|
Pregnant alpha-1-microglobulin (A1M) knockout mice exhibit features of kidney and placental damage, hemodynamic changes and intrauterine growth restriction. Sci Rep 2020; 10:20625. [PMID: 33244052 PMCID: PMC7691512 DOI: 10.1038/s41598-020-77561-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/11/2020] [Indexed: 11/09/2022] Open
Abstract
Alpha-1-microglobulin (A1M) is an antioxidant previously shown to be elevated in maternal blood during pregnancies complicated by preeclampsia and suggested to be important in the endogenous defense against oxidative stress. A knockout mouse model of A1M (A1Mko) was used in the present study to assess the importance of A1M during pregnancy in relation to the kidney, heart and placenta function. Systolic blood pressure (SBP) and heart rate (HR) were determined before and throughout gestation. The morphology of the organs was assessed by both light and electron microscopy. Gene expression profiles relating to vascular tone and oxidative stress were analyzed using RT-qPCR with validation of selected gene expression relating to vascular tone and oxidative stress response. Pregnant age-matched wild type mice were used as controls. In the A1Mko mice there was a significantly higher SBP before pregnancy that during pregnancy was significantly reduced compared to the control. In addition, the HR was higher both before and during pregnancy compared to the controls. Renal morphological abnormalities were more frequent in the A1Mko mice, and the gene expression profiles in the kidney and the heart showed downregulation of transcripts associated with vasodilation. Simultaneously, an upregulation of vasoconstrictors, blood pressure regulators, and genes for osmotic stress response, ion transport and reactive oxygen species (ROS) metabolism occurred. Fetal weight was lower in the A1Mko mice at E17.5. The vessels in the labyrinth zone of the placentas and the endoplasmic reticulum in the spongiotrophoblasts were collapsed. The gene profiles in the placenta showed downregulation of antioxidants, ROS metabolism and oxidative stress response genes. In conclusion, intact A1M expression is necessary for the maintenance of normal kidney, heart as well as placental structure and function for a normal pregnancy adaptation.
Collapse
|
11
|
Kristiansson A, Gram M, Flygare J, Hansson SR, Åkerström B, Storry JR. The Role of α 1-Microglobulin (A1M) in Erythropoiesis and Erythrocyte Homeostasis-Therapeutic Opportunities in Hemolytic Conditions. Int J Mol Sci 2020; 21:ijms21197234. [PMID: 33008134 PMCID: PMC7582998 DOI: 10.3390/ijms21197234] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
α1-microglobulin (A1M) is a small protein present in vertebrates including humans. It has several physiologically relevant properties, including binding of heme and radicals as well as enzymatic reduction, that are used in the protection of cells and tissue. Research has revealed that A1M can ameliorate heme and ROS-induced injuries in cell cultures, organs, explants and animal models. Recently, it was shown that A1M could reduce hemolysis in vitro, observed with several different types of insults and sources of RBCs. In addition, in a recently published study, it was observed that mice lacking A1M (A1M-KO) developed a macrocytic anemia phenotype. Altogether, this suggests that A1M may have a role in RBC development, stability and turnover. This opens up the possibility of utilizing A1M for therapeutic purposes in pathological conditions involving erythropoietic and hemolytic abnormalities. Here, we provide an overview of A1M and its potential therapeutic effect in the context of the following erythropoietic and hemolytic conditions: Diamond-Blackfan anemia (DBA), 5q-minus myelodysplastic syndrome (5q-MDS), blood transfusions (including storage), intraventricular hemorrhage (IVH), preeclampsia (PE) and atherosclerosis.
Collapse
Affiliation(s)
- Amanda Kristiansson
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden;
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden;
- Correspondence:
| | - Magnus Gram
- Department of Clinical Sciences Lund, Pediatrics, Lund University, 221 84 Lund, Sweden;
| | - Johan Flygare
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden;
| | - Stefan R. Hansson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden;
| | - Bo Åkerström
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden;
| | - Jill R. Storry
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden;
- Department of Clinical Immunology and Transfusion Medicine, Office of Medical Services, 221 85 Lund, Sweden
| |
Collapse
|
12
|
Youssef L, Erlandsson L, Åkerström B, Miranda J, Paules C, Crovetto F, Crispi F, Gratacos E, Hansson SR. Hemopexin and α1-microglobulin heme scavengers with differential involvement in preeclampsia and fetal growth restriction. PLoS One 2020; 15:e0239030. [PMID: 32915914 PMCID: PMC7485876 DOI: 10.1371/journal.pone.0239030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/30/2020] [Indexed: 12/22/2022] Open
Abstract
Hemopexin and α1-microglobulin act as scavengers to eliminate free heme-groups responsible for hemoglobin-induced oxidative stress. The present study evaluated maternal and fetal plasma concentrations of these scavengers in the different phenotypes of placenta-mediated disorders. Singleton pregnancies with normotensive fetal growth restriction [FGR] (n = 47), preeclampsia without FGR (n = 45) and preeclampsia with FGR (n = 51) were included prospectively as well as uncomplicated pregnancies (n = 49). Samples were collected at delivery and ELISA analysis was applied to measure the hemopexin and α1-microglobulin concentrations. In maternal blood in preeclampsia with and without FGR, hemopexin was significantly lower (p = 0.003 and p<0.001, respectively) and α1-microglobulin was significantly higher (p<0.001 in both) whereas no difference existed in normotensive FGR mothers compared to controls. In contrast, in fetal blood in growth restricted fetuses with and without preeclampsia, both hemopexin and α1-microglobulin were significantly lower (p<0.001 and p = 0.001 for hemopexin, p = 0.016 and p = 0.013 for α1-microglobulin, respectively) with no difference in fetuses from preeclampsia without FGR in comparison to controls. Thus, hemopexin and α1-microglobulin present significantly altered concentrations in maternal blood in the maternal disease -preeclampsia- and in cord blood in the fetal disease -FGR-, which supports their differential role in placenta-mediated disorders in accordance with the clinical presentation of these disorders.
Collapse
Affiliation(s)
- Lina Youssef
- Section of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- * E-mail: ,
| | - Lena Erlandsson
- Section of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Bo Åkerström
- Section of infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jezid Miranda
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Cristina Paules
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Francesca Crovetto
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Fatima Crispi
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Eduard Gratacos
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Stefan R. Hansson
- Section of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Skåne University Hospital, Lund/Malmö, Sweden
| |
Collapse
|
13
|
The Role of Highly Active Antiretroviral Therapy (HAART) on Interleukin 17A (IL-17A) in Normotensive and Preeclamptic Black South African Women. Infect Dis Obstet Gynecol 2020; 2020:3417632. [PMID: 32550763 PMCID: PMC7277031 DOI: 10.1155/2020/3417632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 01/16/2023] Open
Abstract
Introduction Interleukin 17A has been implicated in the pathophysiology of both human immune deficiency virus and preeclampsia. This study evaluated serum levels of IL-17A based on pregnancy type, gestational age, HIV status, and duration of HAART. Material and Methods. A sample size of 250 was analysed: normotensives (n = 150; N) and preeclamptics (n = 100; PE). Normotensives were further stratified into HIV negative (n = 90), HAART-acute (n = 30), and HAART-chronic (n = 30). The PE group was divided into early onset (n = 50; EOPE) and late onset (n = 50; LOPE). The EOPE and LOPE groups were subdivided into HIV negative (n = 30), HAART-acute (n = 10), and HAART-chronic (n = 10). Analysis of IL-17A was performed using a multiple Bio-Plex immunoassay method. Results Pregnancy type: the levels of IL-17A were increased in PE compared to N (P = 0.0014). Gestational age: the levels of IL-17A were increased in EOPE compared to N group (P = 0.0113). A significant increase in the levels of IL-17A in LOPE compared to N was observed (P = 0.0063). HIV status: the levels of IL-17A were increased in PE compared to N (P = 0.0114) and in EOPE compared to N groups (P = 0.0071). HAART duration: the concentration of IL-17A was increased in HAART-chronic PE compared to N groups (P = 0.0062). There was also an increase in the levels of IL-17A in EOPE compared to N (P = 0.0029). Conclusion The study demonstrates that IL-17A is involved in the pathophysiology of PE and that in the presence of HIV infection, chronic HAART administration predisposes women to the development of EOPE.
Collapse
|
14
|
Malaria in Pregnancy and Adverse Birth Outcomes: New Mechanisms and Therapeutic Opportunities. Trends Parasitol 2019; 36:127-137. [PMID: 31864896 DOI: 10.1016/j.pt.2019.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022]
Abstract
Malaria infection during pregnancy is associated with adverse birth outcomes but underlying mechanisms are poorly understood. Here, we discuss the impact of malaria in pregnancy on three pathways that are important regulators of healthy pregnancy outcomes: L-arginine-nitric oxide biogenesis, complement activation, and the heme axis. These pathways are not mutually exclusive, and they collectively create a proinflammatory, antiangiogenic milieu at the maternal-fetal interface that interferes with placental function and development. We hypothesize that targeting these host-response pathways would mitigate the burden of adverse birth outcomes attributable to malaria in pregnancy.
Collapse
|
15
|
Murtoniemi K, Kalapotharakos G, Vahlberg T, Räikkonen K, Kajantie E, Hämäläinen E, Åkerström B, Villa PM, Hansson SR, Laivuori H. Longitudinal changes in plasma hemopexin and alpha-1-microglobulin concentrations in women with and without clinical risk factors for pre-eclampsia. PLoS One 2019; 14:e0226520. [PMID: 31841544 PMCID: PMC6913989 DOI: 10.1371/journal.pone.0226520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Recent studies have shown increased concentration of fetal hemoglobin (HbF) in pre-eclamptic women. Plasma hemopexin (Hpx) and alpha-1-microglobulin (A1M) are hemoglobin scavenger proteins that protect against toxic effects of free heme released in the hemoglobin degradation process. We used an enzyme-linked immunosorbent assay to analyze maternal plasma Hpx and A1M concentrations at 12–14, 18–20 and 26–28 weeks of gestation in three groups: 1) 51 women with a low risk for pre-eclampsia (LRW), 2) 49 women with a high risk for pre-eclampsia (PE) who did not develop PE (HRW) and 3) 42 women with a high risk for PE who developed PE (HRPE). The study had three aims: 1) to investigate whether longitudinal differences exist between study groups, 2) to examine if Hpx and A1M concentrations develop differently in pre-eclamptic women with small for gestational age (SGA) fetuses vs. pre-eclamptic women with appropriate for gestational age fetuses, and 3) to examine if longitudinal Hpx and A1M profiles differ by PE subtype (early-onset vs. late-onset and severe vs. non-severe PE). Repeated measures analysis of variance was used to analyze differences in Hpx and A1M concentrations between the groups. We found that the differences in longitudinal plasma Hpx and A1M concentrations in HRW compared to HRPE and to LRW may be associated with reduced risk of PE regardless of clinical risk factors. In women who developed PE, a high A1M concentration from midgestation to late second trimester was associated with SGA. There were no differences in longitudinal Hpx and A1M concentrations from first to late second trimester in high-risk women who developed early-onset or. late-onset PE or in women who developed severe or. non-severe PE.
Collapse
Affiliation(s)
- Katja Murtoniemi
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Finland
- Department of Obstetrics and Gynaecology, University of Turku and Turku University Hospital, Turku, Finland
- * E-mail:
| | - Grigorios Kalapotharakos
- Skåne University Hospital, Department of Clinical Sciences Lund, Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
| | - Tero Vahlberg
- Department of Clinical Medicine, Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | - Katri Räikkonen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eero Kajantie
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- National Institute for Health and Welfare, Helsinki, Finland
- Children`s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Esa Hämäläinen
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | - Bo Åkerström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Pia M. Villa
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Stefan R. Hansson
- Skåne University Hospital, Department of Clinical Sciences Lund, Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital and Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| |
Collapse
|
16
|
Erlandsson L, Ducat A, Castille J, Zia I, Kalapotharakos G, Hedström E, Vilotte JL, Vaiman D, Hansson SR. Alpha-1 microglobulin as a potential therapeutic candidate for treatment of hypertension and oxidative stress in the STOX1 preeclampsia mouse model. Sci Rep 2019; 9:8561. [PMID: 31189914 PMCID: PMC6561956 DOI: 10.1038/s41598-019-44639-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/21/2019] [Indexed: 01/22/2023] Open
Abstract
Preeclampsia is a human placental disorder affecting 2–8% of pregnancies worldwide annually, with hypertension and proteinuria appearing after 20 weeks of gestation. The underlying cause is believed to be incomplete trophoblast invasion of the maternal spiral arteries during placentation in the first trimester, resulting in oxidative and nitrative stress as well as maternal inflammation and organ alterations. In the Storkhead box 1 (STOX1) preeclampsia mouse model, pregnant females develop severe and early onset manifestations as seen in human preeclampsia e.g. gestational hypertension, proteinuria, and organ alterations. Here we aimed to evaluate the therapeutic potential of human recombinant alpha-1 microglobulin (rA1M) to alleviate the manifestations observed. Human rA1M significantly reduced the hypertension during gestation and significantly reduced the level of hypoxia and nitrative stress in the placenta. In addition, rA1M treatment reduced cellular damage in both placenta and kidneys, thereby protecting the tissue and improving their function. This study confirms that rA1M has the potential as a therapeutic drug in preeclampsia, and likely also in other pathological conditions associated with oxidative stress, by preserving normal organ function.
Collapse
Affiliation(s)
- Lena Erlandsson
- Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| | - Aurélien Ducat
- INSERM U1016, CNRS UMR8104, Faculté de Médecine, Institut Cochin, Paris, France
| | - Johann Castille
- INRA-AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Isac Zia
- Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Erik Hedström
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jean-Luc Vilotte
- INRA-AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Daniel Vaiman
- INSERM U1016, CNRS UMR8104, Faculté de Médecine, Institut Cochin, Paris, France
| | - Stefan R Hansson
- Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Grimes S, Bombay K, Lanes A, Walker M, Corsi DJ. Potential biological therapies for severe preeclampsia: a systematic review and meta-analysis. BMC Pregnancy Childbirth 2019; 19:163. [PMID: 31072315 PMCID: PMC6509856 DOI: 10.1186/s12884-019-2268-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Preeclampsia remains a significant danger to both mother and child and current prevention and treatment management strategies are limited. The objective of this systematic review was to investigate the current literature on evidence for the use of the regenerative capacity of mesenchymal stem cell (MSC) therapy, the anticoagulant activity of antithrombin (AT), or the free radical scavenging activity of alpha-1-microglobulin (A1M) as potential novel treatments for severe preeclampsia and Hemolysis, Elevated Liver enzymes, Low Platelet count (HELLP). METHOD We conducted a systematic review of potential biological therapies for preeclampsia. We screened MEDLINE and Embase from inception through May 2017 for studies using AT, A1M or MSCs as potential treatments for preeclampsia and/or HELLP. A meta-analysis was performed to pool data from randomized control trials (RCTs) with homogenous outcomes using the inverse variance method. The Newcastle-Ottawa Scale, the Cochrane risk of bias tool for RCTs, and SYRCLE's risk of bias tool for animal studies were used to investigate potential bias of studies. RESULTS The literature search retrieved a total of 1015 articles, however, only 17 studies met the selection criteria: AT (n = 9, 8 human and 1 animal); A1M (n = 4, 3 animal and 1 ex-vivo); and, MSCs (n = 4, 3 animal and 1 ex-vivo). A meta-analysis of AT therapy versus placebo and a meta-analysis for AT therapy with heparin versus heparin alone did not show significant differences between study groups. Animal and ex-vivo studies demonstrated significant benefits in relevant outcomes for A1M and MSCs versus control treatments. Most RCT studies were rated as having a low risk of bias across categories with some studies showing an unclear risk of bias in some categories. The two cohort studies both received a total of four out of nine stars (a rating of "poor" quality). Most animal studies had an unclear risk of bias across most categories, with some studies having a low risk of bias in some categories. CONCLUSIONS The findings of this review are strengthened by rigorous systematic search and review of the literature. Results of our meta-analyses do not currently warrant further exploration of AT as a treatment of preeclampsia in human trials. Results of animal and ex-vivo studies of A1M and MSCs were encouraging and supportive of initiating human investigations.
Collapse
Affiliation(s)
- Sophia Grimes
- OMNI Research Group, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario Canada
| | - Kira Bombay
- OMNI Research Group, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario Canada
| | - Andrea Lanes
- OMNI Research Group, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario Canada
- School of Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, Ontario Canada
| | - Mark Walker
- OMNI Research Group, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario Canada
- School of Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, Ontario Canada
- Department of Obstetrics, Gynecology & Newborn Care, University of Ottawa, Ottawa, Ontario Canada
| | - Daniel J. Corsi
- OMNI Research Group, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario Canada
- School of Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, Ontario Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario Canada
- OMNI Research Group, Centre for Practice Changing Research, Ottawa Hospital Research Institute, L1242, Box 241, 501 Smyth Road, Ottawa, ON K1H 8L6 Canada
| |
Collapse
|
18
|
Kalapotharakos G, Murtoniemi K, Åkerström B, Hämäläinen E, Kajantie E, Räikkönen K, Villa P, Laivuori H, Hansson SR. Plasma Heme Scavengers Alpha-1-Microglobulin and Hemopexin as Biomarkers in High-Risk Pregnancies. Front Physiol 2019; 10:300. [PMID: 31019465 PMCID: PMC6458234 DOI: 10.3389/fphys.2019.00300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 03/06/2019] [Indexed: 12/27/2022] Open
Abstract
Women with established preeclampsia (PE) have increased plasma concentration of free fetal hemoglobin. We measured two hemoglobin scavenger system proteins, hemopexin (Hpx) and alpha-1-microglobulin (A1M) in maternal plasma using enzyme-linked immunosorbent assay during the late second trimester of pregnancy in women with high and low risk of developing PE. In total 142 women were included in nested case-control study: 42 women diagnosed with PE and 100 controls (49 randomly selected high-risk and 51 low-risk controls). The concentration of plasma A1M in high-risk controls was higher compared to low-risk controls. Women with severe PE had higher plasma A1M levels compared to women with non-severe PE. In conclusion, the concentration of plasma A1M is increased in the late second trimester in high-risk controls, suggesting activation of endogenous protective system against oxidative stress.
Collapse
Affiliation(s)
- Grigorios Kalapotharakos
- Department of Clinical Sciences Lund, Skåne University Hospital, Lund, Sweden.,Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
| | - Katja Murtoniemi
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, Turku, Finland
| | - Bo Åkerström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Esa Hämäläinen
- HUSLAB, Helsinki University Hospital, Helsinki, Finland.,Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | - Eero Kajantie
- National Institute for Health and Welfare, Helsinki, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Unit for Pediatrics, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pia Villa
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Stefan R Hansson
- Department of Clinical Sciences Lund, Skåne University Hospital, Lund, Sweden.,Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Åkerström B, Rosenlöf L, Hägerwall A, Rutardottir S, Ahlstedt J, Johansson ME, Erlandsson L, Allhorn M, Gram M. rA1M-035, a Physicochemically Improved Human Recombinant α 1-Microglobulin, Has Therapeutic Effects in Rhabdomyolysis-Induced Acute Kidney Injury. Antioxid Redox Signal 2019; 30:489-504. [PMID: 29471681 PMCID: PMC6338582 DOI: 10.1089/ars.2017.7181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Human α1-microglobulin (A1M) is an endogenous reductase and radical- and heme-binding protein with physiological antioxidant protective functions. Recombinant human A1M (rA1M) has been shown to have therapeutic properties in animal models of preeclampsia, a pregnancy disease associated with oxidative stress. Recombinant A1M, however, lacks glycosylation, and shows lower solubility and stability than A1M purified from human plasma. The aims of this work were to (i) use site-directed mutagenesis to improve the physicochemical properties of rA1M, (ii) demonstrate that the physicochemically improved rA1M displays full in vitro cell protective effects as recombinant wild-type A1M (rA1M-wt), and (iii) show its therapeutic potential in vivo against acute kidney injury (AKI), another disease associated with oxidative stress. RESULTS A novel recombinant A1M-variant (rA1M-035) with three amino acid substitutions was constructed, successfully expressed, and purified. rA1M-035 had improved solubility and stability compared with rA1M-wt, and showed intact in vitro heme-binding, reductase, antioxidation, and cell protective activities. Both rA1M-035 and rA1M-wt showed, for the first time, potential in vivo protective effects on kidneys using a mouse rhabdomyolysis glycerol injection model of AKI. INNOVATION A novel recombinant A1M-variant, rA1M-035, was engineered. This protein showed improved solubility and stability compared with rA1M-wt, full in vitro functional activity, and potential protection against AKI in an in vivo rhabdomyolysis mouse model. CONCLUSION The new rA1M-035 is a better drug candidate than rA1M-wt for treatment of AKI and preeclampsia in human patients.
Collapse
Affiliation(s)
- Bo Åkerström
- 1 Sections for Infection Medicine and Department of Clinical Sciences, Lund University , Lund, Sweden
| | | | | | | | - Jonas Ahlstedt
- 1 Sections for Infection Medicine and Department of Clinical Sciences, Lund University , Lund, Sweden
| | - Maria E Johansson
- 1 Sections for Infection Medicine and Department of Clinical Sciences, Lund University , Lund, Sweden
| | - Lena Erlandsson
- 3 Sections for Obstetrics and Gynecology, Department of Clinical Sciences, Lund University , Lund, Sweden
| | - Maria Allhorn
- 1 Sections for Infection Medicine and Department of Clinical Sciences, Lund University , Lund, Sweden
| | - Magnus Gram
- 1 Sections for Infection Medicine and Department of Clinical Sciences, Lund University , Lund, Sweden
| |
Collapse
|
20
|
Marshall SA, Cox AG, Parry LJ, Wallace EM. Targeting the vascular dysfunction: Potential treatments for preeclampsia. Microcirculation 2018; 26:e12522. [PMID: 30556222 DOI: 10.1111/micc.12522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022]
Abstract
Preeclampsia is a pregnancy-specific disorder, primarily characterized by new-onset hypertension in combination with a variety of other maternal or fetal signs. The pathophysiological mechanisms underlying the disease are still not entirely clear. Systemic maternal vascular dysfunction underlies the clinical features of preeclampsia. It is a result of oxidative stress and the actions of excessive anti-angiogenic factors, such as soluble fms-like tyrosine kinase, soluble endoglin, and activin A, released by a dysfunctional placenta. The vascular dysfunction then leads to impaired regulation and secretion of relaxation factors and an increase in sensitivity/production of constrictors. This results in a more constricted vasculature rather than the relaxed vasodilated state associated with normal pregnancy. Currently, the only effective "treatment" for preeclampsia is delivery of the placenta and therefore the baby. Often, this means a preterm delivery to save the life of the mother, with all the attendant risks and burdens associated with fetal prematurity. To lessen this burden, there is a pressing need for more effective treatments that target the maternal vascular dysfunction that underlies the hypertension. This review details the vascular effects of key drugs undergoing clinical assessment as potential treatments for women with preeclampsia.
Collapse
Affiliation(s)
- Sarah A Marshall
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| | - Annie G Cox
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Euan M Wallace
- Departments of Obstetrics and Gynaecology and Medicine, School of Clinical Sciences, The Ritchie Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
21
|
Cushen SC, Goulopoulou S. New Models of Pregnancy-Associated Hypertension. Am J Hypertens 2017; 30:1053-1062. [PMID: 28472224 DOI: 10.1093/ajh/hpx063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/22/2017] [Indexed: 12/26/2022] Open
Abstract
Pregnancy-associated hypertensive disorders are leading causes of maternal and fetal mortality. These include: pre-pregnancy hypertension that persists throughout gestation (chronic/preexisting hypertension), de novo hypertension that is diagnosed after 20 weeks of gestation and resolves after birth (gestational hypertension), de novo hypertension that is diagnosed after 20 weeks of gestation with or without proteinuria and end-organ damage (preeclampsia and eclampsia), and chronic hypertension with superimposed preeclampsia during gestation. Preeclampsia is the most severe form of these disorders. Animal models have been developed by employing surgical, genetic, and pharmacological approaches in order to recapitulate the maternal symptoms of preeclampsia and other hypertensive disorders of pregnancy. The scope of this brief review is to present an up-to-date synthesis of our knowledge of experimental models of pregnancy-associated hypertensive disorders. Novel models, defined in this review as characterized within the last 5 years, will be described and critically discussed. In this review, we will also discuss established experimental models of pregnancy-associated hypertensive disorders in the context of their contribution to new advances in our knowledge about the pathophysiology of these disorders and potential therapeutics. Emphasis will be placed on animal models of preeclampsia; however, models of other hypertensive disorders in pregnancy will also be reviewed.
Collapse
Affiliation(s)
- Spencer C Cushen
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Styliani Goulopoulou
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
22
|
Phipps EA, Khankin EV. Extracellular Vesicles in Preeclampsia: Evolving Contributors to Proteinuria. J Am Soc Nephrol 2017; 28:3135-3137. [PMID: 28928135 DOI: 10.1681/asn.2017070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Elizabeth A Phipps
- Renal Division, Brigham and Women's Hospital and.,Harvard Medical School, Boston, Massachusetts; and.,Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts
| | - Eliyahu V Khankin
- Harvard Medical School, Boston, Massachusetts; and .,Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
23
|
Gilani SI, Anderson UD, Jayachandran M, Weissgerber TL, Zand L, White WM, Milic N, Suarez MLG, Vallapureddy RR, Nääv Å, Erlandsson L, Lieske JC, Grande JP, Nath KA, Hansson SR, Garovic VD. Urinary Extracellular Vesicles of Podocyte Origin and Renal Injury in Preeclampsia. J Am Soc Nephrol 2017; 28:3363-3372. [PMID: 28729288 DOI: 10.1681/asn.2016111202] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
Renal histologic expression of the podocyte-specific protein, nephrin, but not podocin, is reduced in preeclamptic compared with normotensive pregnancies. We hypothesized that renal expression of podocyte-specific proteins would be reflected in urinary extracellular vesicles (EVs) of podocyte origin and accompanied by increased urinary soluble nephrin levels (nephrinuria) in preeclampsia. We further postulated that podocyte injury and attendant formation of EVs are related mechanistically to cellfree fetal hemoglobin (HbF) in maternal plasma. Our study population included preeclamptic (n=49) and normotensive (n=42) pregnant women recruited at delivery. Plasma measurements included HbF concentrations and concentrations of the endogenous chelators haptoglobin, hemopexin, and α1- microglobulin. We assessed concentrations of urinary EVs containing immunologically detectable podocyte-specific proteins by digital flow cytometry and measured nephrinuria by ELISA. The mechanistic role of HbF in podocyte injury was studied in pregnant rabbits. Compared with urine from women with normotensive pregnancies, urine from women with preeclamptic pregnancies contained a high ratio of podocin-positive to nephrin-positive urinary EVs (podocin+ EVs-to-nephrin+ EVs ratio) and increased nephrinuria, both of which correlated with proteinuria. Plasma levels of hemopexin, which were decreased in women with preeclampsia, negatively correlated with proteinuria, urinary podocin+ EVs-to-nephrin+ EVs ratio, and nephrinuria. Administration of HbF to pregnant rabbits increased the number of urinary EVs of podocyte origin. These findings provide evidence that urinary EVs are reflective of preeclampsia-related altered podocyte protein expression. Furthermore, renal injury in preeclampsia associated with an elevated urinary podocin+ EVs-to-nephrin+ EVs ratio and may be mediated by prolonged exposure to cellfree HbF.
Collapse
Affiliation(s)
| | - Ulrik Dolberg Anderson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences Lund, Lund University, Skåne University Hospital, Malmö, Sweden; and
| | | | | | | | - Wendy M White
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
| | - Natasa Milic
- Division of Nephrology and Hypertension.,Department of Biostatistics, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | | | | | - Åsa Nääv
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences Lund, Lund University, Skåne University Hospital, Malmö, Sweden; and
| | - Lena Erlandsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences Lund, Lund University, Skåne University Hospital, Malmö, Sweden; and
| | | | | | | | - Stefan R Hansson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences Lund, Lund University, Skåne University Hospital, Malmö, Sweden; and
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, .,Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
24
|
Cronqvist T, Tannetta D, Mörgelin M, Belting M, Sargent I, Familari M, Hansson SR. Syncytiotrophoblast derived extracellular vesicles transfer functional placental miRNAs to primary human endothelial cells. Sci Rep 2017; 7:4558. [PMID: 28676635 PMCID: PMC5496854 DOI: 10.1038/s41598-017-04468-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/02/2017] [Indexed: 01/19/2023] Open
Abstract
During the pregnancy associated syndrome preeclampsia (PE), there is increased release of placental syncytiotrophoblast extracellular vesicles (STBEVs) and free foetal haemoglobin (HbF) into the maternal circulation. In the present study we investigated the uptake of normal and PE STBEVs by primary human coronary artery endothelial cells (HCAEC) and the effects of free HbF on this uptake. Our results show internalization of STBEVs into primary HCAEC, and transfer of placenta specific miRNAs from STBEVs into the endoplasmic reticulum and mitochondria of these recipient cells. Further, the transferred miRNAs were functional, causing a down regulation of specific target genes, including the PE associated gene fms related tyrosine kinase 1 (FLT1). When co-treating normal STBEVs with HbF, the miRNA deposition is altered from the mitochondria to the ER and the cell membrane becomes ruffled, as was also seen with PE STBEVs. These findings suggest that STBEVs may cause endothelial damage and contribute to the endothelial dysfunction typical for PE. The miRNA mediated effects on gene expression may contribute to the oxidative and endoplasmic reticulum stress described in PE, as well as endothelial reprogramming that may underlay the increased risk of cardiovascular disease reported for women with PE later in life.
Collapse
Affiliation(s)
- Tina Cronqvist
- Lund University, Department of Clinical Sciences in Lund, Obstetrics and Gynecology, 22185, Lund, Sweden.
| | - Dionne Tannetta
- University of Reading, Department of Food and Nutritional Sciences, Whiteknights, Reading, UK
| | - Matthias Mörgelin
- Lund University, Department of Clinical Sciences in Lund, Division of Infection Medicine, 22185, Lund, Sweden
| | - Mattias Belting
- Lund University, Department of Clinical Sciences, Lund, Oncology and Pathology, 22185, Lund, Sweden
| | - Ian Sargent
- Nuffield Department of Obstetrics and Gynaecology, John Radcliffe Hospital University of Oxford, OX3 9DU, Oxford, UK
| | - Mary Familari
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Stefan R Hansson
- Lund University, Department of Clinical Sciences in Lund, Obstetrics and Gynecology, 22185, Lund, Sweden
| |
Collapse
|
25
|
Sex differences in ischaemic stroke: potential cellular mechanisms. Clin Sci (Lond) 2017; 131:533-552. [PMID: 28302915 DOI: 10.1042/cs20160841] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/16/2016] [Accepted: 01/09/2017] [Indexed: 12/12/2022]
Abstract
Stroke remains a leading cause of mortality and disability worldwide. More women than men have strokes each year, in part because women live longer. Women have poorer functional outcomes, are more likely to need nursing home care and have higher rates of recurrent stroke compared with men. Despite continued advancements in primary prevention, innovative acute therapies and ongoing developments in neurorehabilitation, stroke incidence and mortality continue to increase due to the aging of the U.S. POPULATION Sex chromosomes (XX compared with XY), sex hormones (oestrogen and androgen), epigenetic regulation and environmental factors all contribute to sex differences. Ischaemic sensitivity varies over the lifespan, with females having an "ischaemia resistant" phenotype that wanes after menopause, which has recently been modelled in the laboratory. Pharmacological therapies for acute ischaemic stroke are limited. The only pharmacological treatment for stroke approved by the Food and Drug Administration (FDA) is tissue plasminogen activator (tPA), which must be used within hours of stroke onset and has a number of contraindications. Pre-clinical studies have identified a number of potentially efficacious neuroprotective agents; however, nothing has been effectively translated into therapy in clinical practice. This may be due, in part, to the overwhelming use of young male rodents in pre-clinical research, as well as lack of sex-specific design and analysis in clinical trials. The review will summarize the current clinical evidence for sex differences in ischaemic stroke, and will discuss sex differences in the cellular mechanisms of acute ischaemic injury, highlighting cell death and immune/inflammatory pathways that may contribute to these clinical differences.
Collapse
|
26
|
Masoumi Z, Familari M, Källén K, Ranstam J, Olofsson P, Hansson SR. Fetal hemoglobin in umbilical cord blood in preeclamptic and normotensive pregnancies: A cross-sectional comparative study. PLoS One 2017; 12:e0176697. [PMID: 28453539 PMCID: PMC5409527 DOI: 10.1371/journal.pone.0176697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/14/2017] [Indexed: 12/14/2022] Open
Abstract
Preeclampsia (PE) is associated with increased fetal hemoglobin (HbF) in the maternal circulation but its source is unknown. To investigate whether excessive HbF is produced in the placenta or the fetus, the concentration of HbF (cHbF) in the arterial and venous umbilical cord blood (UCB) was compared in 15825 normotensive and 444 PE pregnancies. The effect of fetal gender on cHbF was also evaluated in both groups. Arterial and venous UCB sampled immediately after birth at 36-42 weeks of gestation were analyzed for total Hb concentration (ctHb) (g/L) and HbF% using a Radiometer blood gas analyzer. Non-parametric tests were used for statistical comparison and P values < 0.05 were considered significant. Our results indicated higher cHbF in venous compared to arterial UCB in both normotensive (118.90 vs 117.30) and PE (126.75 vs 120.12) groups. In PE compared to normotensive pregnancies, a significant increase was observed in arterial and venous ctHb (171.00 vs 166.00 and 168.00 vs 163.00, respectively) while cHbF was only significantly increased in venous UCB (126.75 vs 118.90). The pattern was similar in both genders. These results indicate a substantial placental contribution to HbF levels in UCB, which increases in PE and is independent of fetal gender, suggesting the elevated cHbF evident in PE results from placental dysfunction.
Collapse
Affiliation(s)
- Zahra Masoumi
- Department of Clinical Sciences Lund, Division of Obstetrics and Gynecology, Lund University, Lund, Sweden
| | - Mary Familari
- School of Biosciences, University of Melbourne, Parkville, Australia
| | - Karin Källén
- Center for Reproductive Epidemiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jonas Ranstam
- Department of Clinical Sciences Lund, Division of Orthopedics, Faculty of Medicine, Lund University, Lund, Sweden
| | - Per Olofsson
- Department of Clinical Sciences Malmö, Division of Obstetrics and Gynecology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Stefan R. Hansson
- Department of Clinical Sciences Lund, Division of Obstetrics and Gynecology, Lund University, Lund, Sweden
- Department of Clinical Sciences Malmö, Division of Obstetrics and Gynecology, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
27
|
Gunnarsson R, Åkerström B, Hansson SR, Gram M. Recombinant alpha-1-microglobulin: a potential treatment for preeclampsia. Drug Discov Today 2017; 22:736-743. [DOI: 10.1016/j.drudis.2016.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/21/2016] [Accepted: 12/08/2016] [Indexed: 01/31/2023]
|
28
|
|
29
|
Smith A, McCulloh RJ. Mechanisms of haem toxicity in haemolysis and protection by the haem-binding protein, haemopexin. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/voxs.12340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- A. Smith
- School of Biological Sciences; University of Missouri-Kansas City; Kansas City MO USA
| | - R. J. McCulloh
- Department of Pediatrics; Children's Mercy Hospital; Kansas City MO USA
- University of Missouri-Kansas City School of Medicine; Kansas City MO USA
| |
Collapse
|
30
|
Åkerström B, Cederlund M, Bergwik J, Manouchehrian O, Arnér K, Taylor IH, Ghosh F, Taylor L. The Role of Mitochondria, Oxidative Stress, and the Radical-binding Protein A1M in Cultured Porcine Retina. Curr Eye Res 2017; 42:948-961. [PMID: 28118055 DOI: 10.1080/02713683.2016.1254247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The purpose of this study was to explore the relationship between oxidative stress, antioxidant defense, mitochondrial structure, and biomechanical tissue support in the isolated porcine retina. METHODS Full-thickness retinal sheets were isolated from adult porcine eyes. Retinas were cultured for 2 or 48 h using (1) a previously established low-support explant protocol with photoreceptors positioned against the culture membrane (porous polycarbonate) or (2) a high-support procedure developed by our group, apposing the Müller cell endfeet and inner limiting membrane against the membrane. The grafts were analyzed by quantitative polymerase chain reaction (PCR), immunohistochemistry, and transmission electron microscopy (TEM), and culture medium was assayed for the cell damage and oxidative stress markers lactate dehydrogenase and protein carbonyls. RESULTS In explants cultured with physical support to the inner border, cone photoreceptors were preserved and lactate dehydrogenase levels were reduced, although an initial (2 h), transient, increased oxidative stress was observed. Elevated expression of the antioxidants α1-microglobulin and heme oxygenase-1 was seen in the mitochondria-rich inner segments after 48 h compared to low-support counterparts. Housekeeping gene expression suggested a higher degree of structural integrity of mitochondria in high-support explants, and TEM of inner segments confirmed preservation of a normal mitochondrial morphology. CONCLUSION Providing retinal explants with inner retinal support leads to mobilization of antioxidant proteins, preservation of mitochondrial function, and increased cell viability. Consequently, the failure of low-support retinal cultures to mobilize an adequate response to the oxidative environment may play a key role in their rapid demise. These findings shed new light on pathological reactions in biomechanically related conditions in vivo.
Collapse
Affiliation(s)
- Bo Åkerström
- a Section for Infection Medicine, Department of Clinical Sciences , Lund University , Lund , Sweden
| | - Martin Cederlund
- a Section for Infection Medicine, Department of Clinical Sciences , Lund University , Lund , Sweden
| | - Jesper Bergwik
- a Section for Infection Medicine, Department of Clinical Sciences , Lund University , Lund , Sweden
| | - Oscar Manouchehrian
- b Section for Ophthalmology, Department of Clinical Sciences , Lund University , Lund , Sweden
| | - Karin Arnér
- b Section for Ophthalmology, Department of Clinical Sciences , Lund University , Lund , Sweden
| | - Ingrid Holmgren Taylor
- b Section for Ophthalmology, Department of Clinical Sciences , Lund University , Lund , Sweden
| | - Fredrik Ghosh
- b Section for Ophthalmology, Department of Clinical Sciences , Lund University , Lund , Sweden
| | - Linnéa Taylor
- b Section for Ophthalmology, Department of Clinical Sciences , Lund University , Lund , Sweden
| |
Collapse
|
31
|
Maharaj NR, Phulukdaree A, Nagiah S, Ramkaran P, Tiloke C, Chuturgoon AA. Pro-Inflammatory Cytokine Levels in HIV Infected and Uninfected Pregnant Women with and without Preeclampsia. PLoS One 2017; 12:e0170063. [PMID: 28095491 PMCID: PMC5240954 DOI: 10.1371/journal.pone.0170063] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Preeclampsia and HIV/AIDS are inflammatory conditions that contribute significantly to adverse maternal and foetal outcomes. The immune reconstitution effects of HAART on inflammatory mediators has not been adequately studied in pregnancy and may impact on the inflammatory cytokine network in women with co-morbid preeclampsia. Our study evaluated changes in pro-inflammatory cytokines IL-2, TNF-α, IFN-γ and IL-6 in HIV infected preeclamptic women on HAART. METHODS A prospective experimental study was conducted at Prince Mshiyeni Memorial Hospital between July 2013 and September 2014. One hundred and ninety three pregnant women were recruited into 4 groups: uninfected normotensive (50; 26%), infected normotensive (45; 23%), uninfected preeclamptic (53; 28%) and infected preeclamptic women (45; 23%). Serum levels of cytokines TNF-α, IFN- γ, IL-2 and IL-6 were determined using commercially available kits and a Cytometric Bead Array (CBA). Comparative data was recorded and analysed descriptively. RESULTS In the control groups (normotensive), significantly lower values were found in IL-2 (p = 0.010), TNF-α (p = 0.045), and IL-6 (p = 0.005); and a non-significant decrease was observed in IFN-γ (p = 0.345) in HIV infected women on HAART compared to uninfected controls. In the experimental group (preeclamptic) women, significantly reduced levels were observed in IL-2 and TNF-α (p = 0.001; p = 0.000) and non-significant decreases were observed in IFN-γ and IL-6 (p = 0.023; p = 0.086) in HIV infected women on HAART compared with uninfected preeclamptic women. Non-significant differences were observed between uninfected preeclamptic and normotensive women. CONCLUSION In uncomplicated/normotensive pregnancies, HIV/HAART is associated with significant decreases in IL-2, TNF-α and IL-6, and in preeclamptic women significant decreases in IL-2 and TNF-α were observed. These findings suggest that HIV/HAART impacts on pro-inflammatory cytokines in women with co-morbid preeclampsia. This provides a platform for further research on immune reconstitution effects of HAART during pregnancy, and the development of potential immune modulation therapies for the management of preeclampsia.
Collapse
Affiliation(s)
- Niren Ray Maharaj
- Department of Obstetrics and Gynaecology, Prince Mshiyeni Memorial Hospital, KwaZulu-Natal, South Africa
- Discipline of Medical Biochemistry, College of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Alisa Phulukdaree
- Department of Obstetrics and Gynaecology, Prince Mshiyeni Memorial Hospital, KwaZulu-Natal, South Africa
| | - Savania Nagiah
- Department of Obstetrics and Gynaecology, Prince Mshiyeni Memorial Hospital, KwaZulu-Natal, South Africa
| | - Prithiksha Ramkaran
- Department of Obstetrics and Gynaecology, Prince Mshiyeni Memorial Hospital, KwaZulu-Natal, South Africa
| | - Charlette Tiloke
- Department of Obstetrics and Gynaecology, Prince Mshiyeni Memorial Hospital, KwaZulu-Natal, South Africa
| | - Anil Amichund Chuturgoon
- Department of Obstetrics and Gynaecology, Prince Mshiyeni Memorial Hospital, KwaZulu-Natal, South Africa
| |
Collapse
|
32
|
Abstract
INTRODUCTION Preeclampsia is a major pregnancy disease, explained partly by genetic predispositions. STOX1, a transcription factor discovered in 2005, was the first gene directly associated with genetic forms of the disease. Alterations of STOX1 expression as well as STOX1 variants have also been associated to Alzheimer's disease. These observations make of this gene a putative therapeutic target. Area covered: Two major isoforms (STOX1A and STOX1B) are encoded by the gene and are theoretically able to compete for the same binding site, while only the most complete (STOX1A) is supposed to be able to activate gene expression. This makes the ratio between STOX1A and STOX1B as well as their position inside the cell (nucleus or cytoplasm) crucial to understand how STOX1 functions. STOX1 appears to have multiple gene targets, especially in pathways connected to inflammation, oxidative stress, and cell cycle. Expert opinion: STOX1-directed therapies, could be directed either towards its targets (genes or pathways), or directly at STOX1. For this the addressing of STOX1 to various cell compartments could theoretically be modified; also it could be possible of altering the balance between the two isoforms, through selectively inhibiting one of them, possibly improving the outcomes in severe preeclampsia.
Collapse
Affiliation(s)
- Daniel Vaiman
- a Department of Development, Reproduction and Cancer , Institut Cochin , Paris , France
| | - Francisco Miralles
- a Department of Development, Reproduction and Cancer , Institut Cochin , Paris , France
| |
Collapse
|
33
|
Zager RA, Johnson ACM, Frostad K. An evaluation of the antioxidant protein α1-microglobulin as a renal tubular cytoprotectant. Am J Physiol Renal Physiol 2016; 311:F640-51. [DOI: 10.1152/ajprenal.00264.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 11/22/2022] Open
Abstract
α1-Microglobulin (A1M) is a low-molecular-weight heme-binding antioxidant protein that is readily filtered by the glomerulus and reabsorbed by proximal tubules. Given these properties, recombinant A1M (rA1M) has been proposed as a renal antioxidant and therapeutic agent. However, little direct evidence to support this hypothesis exists. Hence, we have sought “proof of concept” in this regard. Cultured proximal tubule (HK-2) cells or isolated mouse proximal tubule segments were challenged with a variety of prooxidant insults: 1) hemin, 2) myoglobin; 3) “catalytic” iron, 4) H2O2/Fenton reagents, 5) a Ca2+ ionophore, 6) antimycin A, or 7) hypoxia (with or without rA1M treatment). HK-2 injury was gauged by the percent lactate dehydrogenase release and 4,5-(dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide uptake. In vivo protection was sought in rA1M-treated mice subjected to 1) graded myohemoglobinura (2, 4, 8, or 9 ml/kg glycerol injection), 2) purified myoglobinemia/uria, or 3) endotoxemia. In vivo injury was assessed by blood urea nitrogen, creatinine, and the expression of redox-sensitive genes (heme oxygenase-1, neutrophil gelatinase-associated lipocalin, and monocyte chemoattractant protein-1 mRNAs). Although rA1M totally blocked in vitro hemin toxicity, equimolar albumin (another heme binder) or 10% serum induced equal protection. rA1M failed to mitigate any nonhemin forms of either in vitro or in vivo injury. A1M appeared to be rapidly degraded within proximal tubules (by Western blot analysis). Surprisingly, rA1M exerted select injury-promoting effects (increased in vitro catalytic iron/antimycin toxicities and increased in vivo monocyte chemoattractant protein-1/neutrophil gelatinase-associated lipocalin mRNA expression after glycerol or endotoxin injection). We conclude that rA1M has questionable utility as a renal antioxidant/cytoprotective agent, particularly in the presence of larger amounts of competitive free heme (e.g., albumin) binders.
Collapse
Affiliation(s)
- Richard A. Zager
- Fred Hutchinson Cancer Center, Seattle, Washington; and
- University of Washington, Seattle Washington
| | | | | |
Collapse
|
34
|
Johansson C. The 2015 Pregnancy Summit, London, UK. WOMENS HEALTH 2016; 12:167-70. [PMID: 26900652 DOI: 10.2217/whe.15.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pregnancy Summit, Cineworld, The O2, London, UK, 29 September to 1 October 2015 The 2015 Pregnancy Summit was held over 3 days from 29 September to 1 October at Cineworld, The O2, London, UK. The event brings together a multidisciplinary faculty of international researchers and clinicians to discuss both scientific and clinical aspects of pregnancy-related issues in an informal setting. The goal of the meeting was to provide delegates with an update of recent advances in management of pregnancy-related conditions, to present research data and to discuss the current attitudes and practices in relevant topics. An extensive range of topics were discussed, from preeclampsia and treatment of hypertension, to the psychological impact of termination of pregnancy and feticide. This report will summarize a selection of the lectures presented.
Collapse
Affiliation(s)
- Cherynne Johansson
- Department of Obstetrics & Gynaecology, Liverpool Hospital, Elizabeth & Campbell Streets, Liverpool, New South Wales 2170, Australia
| |
Collapse
|
35
|
Erlandsson L, Nääv Å, Hennessy A, Vaiman D, Gram M, Åkerström B, Hansson SR. Inventory of Novel Animal Models Addressing Etiology of Preeclampsia in the Development of New Therapeutic/Intervention Opportunities. Am J Reprod Immunol 2015; 75:402-10. [PMID: 26685057 DOI: 10.1111/aji.12460] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/12/2015] [Indexed: 11/29/2022] Open
Abstract
Preeclampsia is a pregnancy-related disease afflicting 3-7% of pregnancies worldwide and leads to maternal and infant morbidity and mortality. The disease is of placental origin and is commonly described as a disease of two stages. A variety of preeclampsia animal models have been proposed, but all of them have limitations in fully recapitulating the human disease. Based on the research question at hand, different or multiple models might be suitable. Multiple animal models in combination with in vitro or ex vivo studies on human placenta together offer a synergistic platform to further our understanding of the etiology of preeclampsia and potential therapeutic interventions. The described animal models of preeclampsia divide into four categories (i) spontaneous, (ii) surgically induced, (iii) pharmacologically/substance induced, and (iv) transgenic. This review aims at providing an inventory of novel models addressing etiology of the disease and or therapeutic/intervention opportunities.
Collapse
Affiliation(s)
- Lena Erlandsson
- Obstetrics and Gynecology, Institution of Clinical Sciences, Lund University, Lund, Sweden
| | - Åsa Nääv
- Obstetrics and Gynecology, Institution of Clinical Sciences, Lund University, Lund, Sweden
| | - Annemarie Hennessy
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Daniel Vaiman
- INSERM U1016, CNRS UMR8104, Faculté de Médecine, Institut Cochin, Paris, France
| | - Magnus Gram
- Infection Medicine, Institution of Clinical Sciences, Lund University, Lund, Sweden
| | - Bo Åkerström
- Infection Medicine, Institution of Clinical Sciences, Lund University, Lund, Sweden
| | - Stefan R Hansson
- Obstetrics and Gynecology, Institution of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
36
|
Ahlstedt J, Tran TA, Strand SE, Gram M, Åkerström B. Human Anti-Oxidation Protein A1M--A Potential Kidney Protection Agent in Peptide Receptor Radionuclide Therapy. Int J Mol Sci 2015; 16:30309-20. [PMID: 26694383 PMCID: PMC4691176 DOI: 10.3390/ijms161226234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 11/28/2015] [Accepted: 12/11/2015] [Indexed: 11/16/2022] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) has been in clinical use for 15 years to treat metastatic neuroendocrine tumors. PRRT is limited by reabsorption and retention of the administered radiolabeled somatostatin analogues in the proximal tubule. Consequently, it is essential to develop and employ methods to protect the kidneys during PRRT. Today, infusion of positively charged amino acids is the standard method of kidney protection. Other methods, such as administration of amifostine, are still under evaluation and show promising results. α1-microglobulin (A1M) is a reductase and radical scavenging protein ubiquitously present in plasma and extravascular tissue. Human A1M has antioxidation properties and has been shown to prevent radiation-induced in vitro cell damage and protect non-irradiated surrounding cells. It has recently been shown in mice that exogenously infused A1M and the somatostatin analogue octreotide are co-localized in proximal tubules of the kidney after intravenous infusion. In this review we describe the current situation of kidney protection during PRRT, discuss the necessity and implications of more precise dosimetry and present A1M as a new, potential candidate for renal protection during PRRT and related targeted radionuclide therapies.
Collapse
Affiliation(s)
- Jonas Ahlstedt
- Section for Infection Medicine, Department of Clinical Sciences in Lund, Lund University, Lund 221 84, Sweden.
| | - Thuy A Tran
- Lund University Bioimaging Center, Lund University, Lund 221 84, Sweden.
| | - Sven-Erik Strand
- Section of Medical Radiation Physics, Department of Clinical Sciences in Lund, Lund University, Lund 221 84, Sweden.
| | - Magnus Gram
- Section for Infection Medicine, Department of Clinical Sciences in Lund, Lund University, Lund 221 84, Sweden.
| | - Bo Åkerström
- Section for Infection Medicine, Department of Clinical Sciences in Lund, Lund University, Lund 221 84, Sweden.
| |
Collapse
|
37
|
Oxidative Stress in Placenta: Health and Diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:293271. [PMID: 26693479 PMCID: PMC4676991 DOI: 10.1155/2015/293271] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/12/2015] [Indexed: 12/23/2022]
Abstract
During pregnancy, development of the placenta is interrelated with the oxygen concentration. Embryo development takes place in a low oxygen environment until the beginning of the second trimester when large amounts of oxygen are conveyed to meet the growth requirements. High metabolism and oxidative stress are common in the placenta. Reactive oxidative species sometimes harm placental development, but they are also reported to regulate gene transcription and downstream activities such as trophoblast proliferation, invasion, and angiogenesis. Autophagy and apoptosis are two crucial, interconnected processes in the placenta that are often influenced by oxidative stress. The proper interactions between them play an important role in placental homeostasis. However, an imbalance between the protective and destructive mechanisms of autophagy and apoptosis seems to be linked with pregnancy-related disorders such as miscarriage, preeclampsia, and intrauterine growth restriction. Thus, potential therapies to hold oxidative stress in leash, promote placentation, and avoid unwanted apoptosis are discussed.
Collapse
|