1
|
Azulay A, Cohen-Lavi L, Friedman LM, McGargill MA, Hertz T. Mapping antibody footprints using binding profiles. CELL REPORTS METHODS 2023; 3:100566. [PMID: 37671022 PMCID: PMC10475849 DOI: 10.1016/j.crmeth.2023.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023]
Abstract
The increasing use of monoclonal antibodies (mAbs) in biology and medicine necessitates efficient methods for characterizing their binding epitopes. Here, we developed a high-throughput antibody footprinting method based on binding profiles. We used an antigen microarray to profile 23 human anti-influenza hemagglutinin (HA) mAbs using HA proteins of 43 human influenza strains isolated between 1918 and 2018. We showed that the mAb's binding profile can be used to characterize its influenza subtype specificity, binding region, and binding site. We present mAb-Patch-an epitope prediction method that is based on a mAb's binding profile and the 3D structure of its antigen. mAb-Patch was evaluated using four mAbs with known solved mAb-HA structures. mAb-Patch identifies over 67% of the true epitope when considering only 50-60 positions along the antigen. Our work provides proof of concept for utilizing antibody binding profiles to screen large panels of mAbs and to down-select antibodies for further functional studies.
Collapse
Affiliation(s)
- Asaf Azulay
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Liel Cohen-Lavi
- National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lilach M. Friedman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Maureen A. McGargill
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Tomer Hertz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
2
|
Antoine D, Mohammadi M, Vitt M, Dickie JM, Jyoti SS, Tilbury MA, Johnson PA, Wawrousek KE, Wall JG. Rapid, Point-of-Care scFv-SERS Assay for Femtogram Level Detection of SARS-CoV-2. ACS Sens 2022; 7:866-873. [PMID: 35271769 PMCID: PMC8961876 DOI: 10.1021/acssensors.1c02664] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/02/2022] [Indexed: 12/19/2022]
Abstract
Rapid, sensitive, on-site identification of SARS-CoV-2 infections is an important tool in the control and management of COVID-19. We have developed a surface-enhanced Raman scattering (SERS) immunoassay for highly sensitive detection of SARS-CoV-2. Single-chain Fv (scFv) recombinant antibody fragments that bind the SARS-CoV-2 spike protein were isolated by biopanning a human scFv library. ScFvs were conjugated to magnetic nanoparticles and SERS nanotags, followed by immunocomplex formation and detection of the SARS-CoV-2 spike protein with a limit of detection of 257 fg/mL in 30 min in viral transport medium. The assay also detected B.1.1.7 ("alpha"), B.1.351 ("beta"), and B.1.617.2 ("delta") spike proteins, while no cross-reactivity was observed with the common human coronavirus HKU1 spike protein. Inactivated whole SARS-CoV-2 virus was detected at 4.1 × 104 genomes/mL, which was 10-100-fold lower than virus loads typical of infectious individuals. The assay exhibited higher sensitivity for SARS-CoV-2 than commercial lateral flow assays, was compatible with viral transport media and saliva, enabled rapid pivoting to detect new virus variants, and facilitated highly sensitive, point-of-care diagnosis of COVID-19 in clinical and public health settings.
Collapse
Affiliation(s)
- Delphine Antoine
- Microbiology,
College of Science and Engineering, and SFI Centre for Medical Devices
(CÚRAM), National University of Ireland,
Galway (NUI Galway), Galway H91 TK33, Ireland
| | - Moein Mohammadi
- Chemical
Engineering, University of Wyoming, Laramie, Wyoming 82072, United States
| | - Madison Vitt
- Chemical
Engineering, University of Wyoming, Laramie, Wyoming 82072, United States
| | - Julia Marie Dickie
- Chemical
Engineering, University of Wyoming, Laramie, Wyoming 82072, United States
| | | | - Maura A. Tilbury
- Microbiology,
College of Science and Engineering, and SFI Centre for Medical Devices
(CÚRAM), National University of Ireland,
Galway (NUI Galway), Galway H91 TK33, Ireland
| | - Patrick A. Johnson
- Chemical
Engineering, University of Wyoming, Laramie, Wyoming 82072, United States
| | - Karen E. Wawrousek
- Chemical
Engineering, University of Wyoming, Laramie, Wyoming 82072, United States
| | - J. Gerard Wall
- Microbiology,
College of Science and Engineering, and SFI Centre for Medical Devices
(CÚRAM), National University of Ireland,
Galway (NUI Galway), Galway H91 TK33, Ireland
| |
Collapse
|
3
|
Internalization of HIV-1 by phagocytes is increased when virions are opsonized with multimeric antibody in the presence of complement. J Virol 2021; 96:e0168921. [PMID: 34730392 DOI: 10.1128/jvi.01689-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The low abundance of envelope spikes and the inability of IgG to aggregate virions render HIV-1 an inadequate target for antibody-mediated clearance by phagocytes. In an attempt to improve the ability of antibody to mediate the internalization of HIV-1 virions, we generated multimers of the broadly neutralizing HIV-1-specific monoclonal antibody (mAb) VRC01 using site-directed mutagenesis of the Fc segment. We then measured virion internalization using primary human monocytes and neutrophils. We found that, in the absence of complement, immune complexes consisting of HIV-1 virions and VRC01 multimers were slightly more efficiently internalized than were complexes formed with monomeric VRC01. The presence of complement, however, greatly augmented internalization of immune complexes formed with the multimeric mAb but had little impact on monomeric mAb-mediated internalization. Multimerization and the presence of complement overcome the limited ability of monomeric antibody to mediate internalization of HIV-1 virions and may thus provide a therapeutic approach to clearing virus. IMPORTANCE Antibody-mediated internalization of HIV-1 by phagocytes, a potential mechanism for clearing virus, is very inefficient. In an effort to improve viral clearance, we produced a multimeric form of the broadly neutralizing monoclonal antibody VRC01. We found that VRC01 antibody multimers (primarily hexamers) were only slightly more efficient in mediating HIV-1 internalization than was monomeric VRC01. However, the addition of complement resulted in substantially greater internalization of multimer-opsonized virus. In contrast, complement had little if any impact on internalization of monomer-opsonized virus. Therefore, antibody multimerization in combination with complement may overcome the limited ability of monomeric antibody to mediate internalization of HIV-1 virions. Our findings may provide a therapeutic approach to clearing virus.
Collapse
|
4
|
Kammers K, Chen A, Monaco DR, Hudelson SE, Grant-McAuley W, Moore RD, Alter G, Deeks SG, Morrison CS, Eller LA, Blankson JN, Laeyendecker O, Ruczinski I, Eshleman SH, Larman HB. HIV Antibody Profiles in HIV Controllers and Persons With Treatment-Induced Viral Suppression. Front Immunol 2021; 12:740395. [PMID: 34512672 PMCID: PMC8428532 DOI: 10.3389/fimmu.2021.740395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Low HIV viral load is associated with delayed disease progression and reduced HIV transmission. HIV controllers suppress viral load to low levels in the absence of antiretroviral treatment (ART). We used an antibody profiling system, VirScan, to compare antibody reactivity and specificity in HIV controllers, non-controllers with treatment-induced viral suppression, and viremic non-controllers. Methods The VirScan library contains 3,384 phage-displayed peptides spanning the HIV proteome. Antibody reactivity to these peptides was measured in plasma from a Discovery Cohort that included 13 elite controllers, 27 viremic controllers, 12 viremic non-controllers, and 21 non-controllers who were virally suppressed on ART. Antibody reactivity to selected peptides was also assessed in an independent cohort of 29 elite controllers and 37 non-controllers who were virally suppressed on ART (Validation Cohort) and in a longitudinal cohort of non-controllers. Results In the Discovery Cohort, 62 peptides were preferentially targeted in HIV controllers compared to non-controllers who were virally suppressed on ART. These specificities were not significantly different when comparing controllers versus viremic non-controllers. Aggregate reactivity to these peptides was also high in elite controllers from the independent Validation Cohort. The 62 peptides formed seven clusters of homologous epitopes in env, gag, integrase, and vpu. Reactivity to one of these clusters located in gag p17 was inversely correlated with viral load set point in an independent cohort of non-controllers. Conclusions Antibody reactivity was low in non-controllers suppressed on ART, but remained high in viremic controllers despite viral suppression. Antibodies in controllers and viremic non-controllers were directed against epitopes in diverse HIV proteins; higher reactivity against p17 peptides was associated with lower viral load set point. Further studies are needed to determine if these antibodies play a role in regulation of HIV viral load.
Collapse
Affiliation(s)
- Kai Kammers
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Athena Chen
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daniel R. Monaco
- Department of Pathology and the Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah E. Hudelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wendy Grant-McAuley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard D. Moore
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Galit Alter
- Department of Medicine, Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Charles S. Morrison
- Behavioral, Epidemiologic and Clinical Sciences, Family Health International (FHI) 360, Durham, NC, United States
| | - Leigh A. Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Joel N. Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Oliver Laeyendecker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, MD, United States
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Susan H. Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: H. Benjamin Larman, ; Susan H. Eshleman,
| | - H. Benjamin Larman
- Department of Pathology and the Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: H. Benjamin Larman, ; Susan H. Eshleman,
| |
Collapse
|
5
|
Enzyme Therapy: Current Challenges and Future Perspectives. Int J Mol Sci 2021; 22:ijms22179181. [PMID: 34502086 PMCID: PMC8431097 DOI: 10.3390/ijms22179181] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, enzymes have risen as promising therapeutic tools for different pathologies, from metabolic deficiencies, such as fibrosis conditions, ocular pathologies or joint problems, to cancer or cardiovascular diseases. Treatments based on the catalytic activity of enzymes are able to convert a wide range of target molecules to restore the correct physiological metabolism. These treatments present several advantages compared to established therapeutic approaches thanks to their affinity and specificity properties. However, enzymes present some challenges, such as short in vivo half-life, lack of targeted action and, in particular, patient immune system reaction against the enzyme. For this reason, it is important to monitor serum immune response during treatment. This can be achieved by conventional techniques (ELISA) but also by new promising tools such as microarrays. These assays have gained popularity due to their high-throughput analysis capacity, their simplicity, and their potential to monitor the immune response of patients during enzyme therapies. In this growing field, research is still ongoing to solve current health problems such as COVID-19. Currently, promising therapeutic alternatives using the angiotensin-converting enzyme 2 (ACE2) are being studied to treat COVID-19.
Collapse
|
6
|
Syu GD, Dunn J, Zhu H. Developments and Applications of Functional Protein Microarrays. Mol Cell Proteomics 2020; 19:916-927. [PMID: 32303587 PMCID: PMC7261817 DOI: 10.1074/mcp.r120.001936] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
Protein microarrays are crucial tools in the study of proteins in an unbiased, high-throughput manner, as they allow for characterization of up to thousands of individually purified proteins in parallel. The adaptability of this technology has enabled its use in a wide variety of applications, including the study of proteome-wide molecular interactions, analysis of post-translational modifications, identification of novel drug targets, and examination of pathogen-host interactions. In addition, the technology has also been shown to be useful in profiling antibody specificity, as well as in the discovery of novel biomarkers, especially for autoimmune diseases and cancers. In this review, we will summarize the developments that have been made in protein microarray technology in both in basic and translational research over the past decade. We will also introduce a novel membrane protein array, the GPCR-VirD array, and discuss the future directions of functional protein microarrays.
Collapse
Affiliation(s)
- Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan R.O.C..
| | - Jessica Dunn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231.
| |
Collapse
|
7
|
Bailey JA, Berry AA, Travassos MA, Ouattara A, Boudova S, Dotsey EY, Pike A, Jacob CG, Adams M, Tan JC, Bannen RM, Patel JJ, Pablo J, Nakajima R, Jasinskas A, Dutta S, Takala-Harrison S, Lyke KE, Laurens MB, Niangaly A, Coulibaly D, Kouriba B, Doumbo OK, Thera MA, Felgner PL, Plowe CV. Microarray analyses reveal strain-specific antibody responses to Plasmodium falciparum apical membrane antigen 1 variants following natural infection and vaccination. Sci Rep 2020; 10:3952. [PMID: 32127565 PMCID: PMC7054363 DOI: 10.1038/s41598-020-60551-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/13/2020] [Indexed: 11/30/2022] Open
Abstract
Vaccines based on Plasmodium falciparum apical membrane antigen 1 (AMA1) have failed due to extensive polymorphism in AMA1. To assess the strain-specificity of antibody responses to malaria infection and AMA1 vaccination, we designed protein and peptide microarrays representing hundreds of unique AMA1 variants. Following clinical malaria episodes, children had short-lived, sequence-independent increases in average whole-protein seroreactivity, as well as strain-specific responses to peptides representing diverse epitopes. Vaccination resulted in dramatically increased seroreactivity to all 263 AMA1 whole-protein variants. High-density peptide analysis revealed that vaccinated children had increases in seroreactivity to four distinct epitopes that exceeded responses to natural infection. A single amino acid change was critical to seroreactivity to peptides in a region of AMA1 associated with strain-specific vaccine efficacy. Antibody measurements using whole antigens may be biased towards conserved, immunodominant epitopes. Peptide microarrays may help to identify immunogenic epitopes, define correlates of vaccine protection, and measure strain-specific vaccine-induced antibodies.
Collapse
Affiliation(s)
- Jason A Bailey
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark A Travassos
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amed Ouattara
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah Boudova
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emmanuel Y Dotsey
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Andrew Pike
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Matthew Adams
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John C Tan
- Previous address: Roche Sequencing Solutions, Madison, WI, USA
- Nimble Therapeutics, Madison, WI, USA
| | - Ryan M Bannen
- Previous address: Roche Sequencing Solutions, Madison, WI, USA
- Nimble Therapeutics, Madison, WI, USA
| | - Jigar J Patel
- Previous address: Roche Sequencing Solutions, Madison, WI, USA
- Nimble Therapeutics, Madison, WI, USA
| | - Jozelyn Pablo
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Rie Nakajima
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Algis Jasinskas
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Sheetij Dutta
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew B Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou A Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Philip L Felgner
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Christopher V Plowe
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
- Duke Global Health Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
Eshleman SH, Laeyendecker O, Kammers K, Chen A, Sivay MV, Kottapalli S, Sie BM, Yuan T, Monaco DR, Mohan D, Wansley D, Kula T, Morrison C, Elledge SJ, Brookmeyer R, Ruczinski I, Larman HB. Comprehensive Profiling of HIV Antibody Evolution. Cell Rep 2019; 27:1422-1433.e4. [PMID: 31042470 PMCID: PMC6519133 DOI: 10.1016/j.celrep.2019.03.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/06/2018] [Accepted: 03/26/2019] [Indexed: 01/02/2023] Open
Abstract
This study evaluates HIV antibody responses and their evolution during the course of HIV infection. A phage display system is used to characterize antibody binding to >3,300 HIV peptides in 57 adults with early- to late-stage infection. We find that the number of unique epitopes targeted ("antibody breadth") increases early in infection and then stabilizes or declines. A decline in antibody breadth 9 months to 2 years after infection is associated with subsequent antiretroviral treatment (ART) initiation, and a faster decline in antibody breadth is associated with a shorter time to ART initiation. We identify 266 peptides with increasing antibody reactivity over time and 43 peptides with decreasing reactivity over time. These data are used to design a prototype four-peptide "serosignature" to predict duration of HIV infection. We also demonstrate that epitope engineering can be used to optimize peptide binding properties for applications such as cross-sectional HIV incidence estimation.
Collapse
Affiliation(s)
- Susan H Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Oliver Laeyendecker
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kai Kammers
- Division of Biostatistics and Bioinformatics, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Athena Chen
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mariya V Sivay
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanjay Kottapalli
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brandon M Sie
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tiezheng Yuan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Monaco
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Divya Mohan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Wansley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tomasz Kula
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA
| | | | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA
| | - Ron Brookmeyer
- Department of Biostatistics, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - H Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Trattnig N, Mayrhofer P, Kunert R, Mach L, Pantophlet R, Kosma P. Comparative Antigenicity of Thiourea and Adipic Amide Linked Neoglycoconjugates Containing Modified Oligomannose Epitopes for the Carbohydrate-Specific anti-HIV Antibody 2G12. Bioconjug Chem 2019; 30:70-82. [PMID: 30525492 PMCID: PMC6340131 DOI: 10.1021/acs.bioconjchem.8b00731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/04/2018] [Indexed: 11/29/2022]
Abstract
Novel neoglycoproteins containing oligomannosidic penta- and heptasaccharides as structural variants of oligomannose-type N-glycans found on human immunodeficiency virus type 1 gp120 have been prepared using different conjugation methods. Two series of synthetic ligands equipped with 3-aminopropyl spacer moieties and differing in the anomeric configuration of the reducing mannose residue were activated either as isothiocyanates or as adipic acid succinimidoyl esters and coupled to bovine serum albumin. Coupling efficiency for adipic acid connected neoglycoconjugates was better than for the thiourea-linked derivatives; the latter constructs, however, exhibited higher reactivity toward antibody 2G12, an HIV-neutralizing antibody with exquisite specificity for oligomannose-type glycans. 2G12 binding avidities for the conjugates, as determined by Bio-Layer Interferometry, were mostly higher for the β-linked ligands and, as expected, increased with the numbers of covalently linked glycans, leading to approximate KD values of 10 to 34 nM for optimized ligand-to-BSA ratios. A similar correlation was observed by enzyme-linked immunosorbent assays. In addition, dendrimer-type ligands presenting trimeric oligomannose epitopes were generated by conversion of the amino-spacer group into a terminal azide, followed by triazole formation using "click chemistry". The severe steric bulk of the ligands, however, led to poor efficiency in the coupling step and no increased antibody binding by the resulting neoglycoconjugates, indicating that the low degree of substitution and the spatial orientation of the oligomannose epitopes within these trimeric ligands are not conducive to multivalent 2G12 binding.
Collapse
Affiliation(s)
- Nino Trattnig
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Patrick Mayrhofer
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Renate Kunert
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Lukas Mach
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Ralph Pantophlet
- Faculty
of Health Sciences and Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A1S6, Canada
| | - Paul Kosma
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
10
|
Shivatare SS, Shivatare VS, Wu CY, Wong CH. Chemo-enzymatic Synthesis of N-glycans for Array Development and HIV Antibody Profiling. J Vis Exp 2018:55855. [PMID: 29443078 PMCID: PMC5912354 DOI: 10.3791/55855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We present a highly efficient way for the rapid preparation of a wide range of N-linked oligosaccharides (estimated to exceed 20,000 structures) that are commonly found on human glycoproteins. To achieve the desired structural diversity, the strategy began with the chemo-enzymatic synthesis of three kinds of oligosaccharyl fluoride modules, followed by their stepwise α-selective glycosylations at the 3-O and 6-O positions of the mannose residue of the common core trisaccharide having a crucial β-mannoside linkage. We further attached the N-glycans to the surface of an aluminum oxide-coated glass (ACG) slide to create a covalent mixed array for the analysis of hetero-ligand interaction with an HIV antibody. In particular, the binding behavior of a newly isolated HIV-1 broadly neutralizing antibody (bNAb), PG9, to the mixture of closely spaced Man5GlcNAc2 (Man5) and 2,6-di-sialylated bi-antennary complex type N-glycan (SCT) on an ACG array, opens a new avenue to guide the effective immunogen design for HIV vaccine development. In addition, our ACG array embodies a powerful tool to study other HIV antibodies for hetero-ligand binding behavior.
Collapse
|
11
|
Becerra JC, Bildstein LS, Gach JS. Recent Insights into the HIV/AIDS Pandemic. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:451-475. [PMID: 28357381 PMCID: PMC5354571 DOI: 10.15698/mic2016.09.529] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 12/21/2022]
Abstract
Etiology, transmission and protection: Transmission of HIV, the causative agent of AIDS, occurs predominantly through bodily fluids. Factors that significantly alter the risk of HIV transmission include male circumcision, condom use, high viral load, and the presence of other sexually transmitted diseases. Pathology/Symptomatology: HIV infects preferentially CD4+ T lymphocytes, and Monocytes. Because of their central role in regulating the immune response, depletion of CD4+ T cells renders the infected individual incapable of adequately responding to microorganisms otherwise inconsequential. Epidemiology, incidence and prevalence: New HIV infections affect predominantly young heterosexual women and homosexual men. While the mortality rates of AIDS related causes have decreased globally in recent years due to the use of highly active antiretroviral therapy (HAART) treatment, a vaccine remains an elusive goal. Treatment and curability: For those afflicted HIV infection remains a serious illness. Nonetheless, the use of advanced therapeutics have transformed a dire scenario into a chronic condition with near average life spans. When to apply those remedies appears to be as important as the remedies themselves. The high rate of HIV replication and the ability to generate variants are central to the viral survival strategy and major barriers to be overcome. Molecular mechanisms of infection: In this review, we assemble new details on the molecular events from the attachment of the virus, to the assembly and release of the viral progeny. Yet, much remains to be learned as understanding of the molecular mechanisms used in viral replication and the measures engaged in the evasion of immune surveillance will be important to develop effective interventions to address the global HIV pandemic.
Collapse
Affiliation(s)
- Juan C. Becerra
- Department of Medicine, Division of Infectious Diseases, University
of California, Irvine, Irvine, CA 92697, USA
| | | | - Johannes S. Gach
- Department of Medicine, Division of Infectious Diseases, University
of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
12
|
HIV-1-Specific Antibody Response and Function after DNA Prime and Recombinant Adenovirus 5 Boost HIV Vaccine in HIV-Infected Subjects. PLoS One 2016; 11:e0160341. [PMID: 27500639 PMCID: PMC4976892 DOI: 10.1371/journal.pone.0160341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/18/2016] [Indexed: 01/12/2023] Open
Abstract
Little is known about the humoral immune response against DNA prime-recombinant adenovirus 5 (rAd5) boost HIV vaccine among HIV-infected patients on long-term suppressive antiretroviral therapy (ART). Previous studies emphasized cellular immune responses; however, current research suggests both cellular and humoral responses are likely required for a successful therapeutic vaccine. Thus, we aimed to understand antibody response and function induced by vaccination of ART-treated HIV-1-infected patients with immune recovery. All subjects participated in EraMune 02, an open-label randomized clinical trial of ART intensification followed by a six plasmid DNA prime (envA, envB, envC, gagB, polB, nefB) and rAd5 boost HIV vaccine with matching inserts. Antibody binding levels were determined with a recently developed microarray approach. We also analyzed neutralization efficiency and antibody-dependent cellular cytotoxicity (ADCC). We found that the DNA prime-rAd5 boost vaccine induced a significant cross-clade HIV-specific antibody response, which correlated with antibody neutralization efficiency. However, despite the increase in antibody binding levels, the vaccine did not significantly stimulate neutralization or ADCC responses. This finding was also reflected by a lack of change in total CD4+ cell associated HIV DNA in those who received the vaccine. Our results have important implications for further therapeutic vaccine design and administration, especially in HIV-1 infected patients, as boosting of preexisting antibody responses are unlikely to lead to clearance of latent proviruses in the HIV reservoir.
Collapse
|
13
|
Applications in high-content functional protein microarrays. Curr Opin Chem Biol 2016; 30:21-27. [DOI: 10.1016/j.cbpa.2015.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/11/2015] [Indexed: 12/19/2022]
|