1
|
Zhang X, Du X, Cui Y. The Lymphatic Highway: How Lymphatics Drive Lung Health and Disease. Lung 2024; 202:487-499. [PMID: 39164594 DOI: 10.1007/s00408-024-00739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
The pulmonary lymphatic system has emerged as a critical regulator of lung homeostasis and a key contributor to the pathogenesis of respiratory diseases. As the primary conduit responsible for maintaining fluid balance and facilitating immune cell trafficking, the integrity of lymphatic vessels is essential for preserving normal pulmonary structure and function. Lymphatic abnormalities manifest across a broad spectrum of pulmonary disorders, underscoring their significance in respiratory health and disease. This review provides an overview of pulmonary lymphatic biology and delves into the involvement of lymphatics in four major lung diseases: chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, and lung transplant rejection. We examine how lymphatic abnormalities manifest in each of these conditions and investigate the mechanisms through which lymphatic remodeling and dysfunction contribute to disease progression. Furthermore, we explore the therapeutic potential of targeting the lymphatic system to ameliorate these debilitating respiratory conditions. Despite the current knowledge, several crucial questions remain unanswered, such as the spatial and temporal dynamics of lymphatic changes, the molecular crosstalk between lymphatics and the lung microenvironment, and the distinction between protective versus detrimental lymphatic phenotypes. Unraveling these mysteries holds the promise of identifying novel molecular regulators, characterizing lymphatic endothelial phenotypes, and uncovering bioactive mediators. By harnessing this knowledge, we can pave the way for the development of innovative disease-modifying therapies targeting the lymphatic highway in lung disorders.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, #10 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, People's Republic of China
| | - Xinqian Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, #10 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, People's Republic of China
| | - Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, #10 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, People's Republic of China.
| |
Collapse
|
2
|
Bessell E, Finlay RE, James LK, Ludewig B, Harris NL, Krebs P, Hepworth MR, Dubey LK. Stromal cell and B cell dialogue potentiates IL-33-enriched lymphoid niches to support eosinophil recruitment and function during type 2 immunity. Cell Rep 2024; 43:114620. [PMID: 39141517 DOI: 10.1016/j.celrep.2024.114620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/27/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
Eosinophils are involved in host protection against multicellular organisms. However, their recruitment to the mesenteric lymph node (mLN) during type 2 immunity is understudied. Our results demonstrate that eosinophil association with lymphoid stromal niches constructed by fibroblastic reticular cells (FRCs) and lymphatic endothelial cells is diminished in mice selectively lacking interleukin (IL)-4Rα or lymphotoxin-β (LTβ) expression on B cells. Furthermore, eosinophil survival, activation, and enhanced Il1rl1 receptor expression are driven by stromal cell and B cell dialogue. The ligation of lymphotoxin-β receptor (LTβR) on FRCs improves eosinophil survival and significantly augments IL-33 expression and eosinophil homing to the mLN, thus confirming the significance of lymphotoxin signaling for granulocyte recruitment. Eosinophil-deficient ΔdblGATA-1 mice show diminished mLN expansion, reduced interfollicular region (IFR) alarmin expression, and delayed helminth clearance, elucidating their importance in type 2 immunity. These findings provide insight into dialogue between stromal cells and B cells, which govern mLN eosinophilia, and the relevance of these mechanisms during type 2 immunity.
Collapse
Affiliation(s)
- Emily Bessell
- William Harvey Research Institute (WHRI), Barts & The London School of Medicine & Dentistry, Queen Mary University of London (QMUL), London, UK; Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland; Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Rachel E Finlay
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
| | - Louisa K James
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Nicola L Harris
- Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC, Australia
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Matthew R Hepworth
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
| | - Lalit Kumar Dubey
- William Harvey Research Institute (WHRI), Barts & The London School of Medicine & Dentistry, Queen Mary University of London (QMUL), London, UK; Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Lee SO, Kim IK. Molecular pathophysiology of secondary lymphedema. Front Cell Dev Biol 2024; 12:1363811. [PMID: 39045461 PMCID: PMC11264244 DOI: 10.3389/fcell.2024.1363811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Lymphedema occurs as a result of lymphatic vessel damage or obstruction, leading to the lymphatic fluid stasis, which triggers inflammation, tissue fibrosis, and adipose tissue deposition with adipocyte hypertrophy. The treatment of lymphedema is divided into conservative and surgical approaches. Among surgical treatments, methods like lymphaticovenular anastomosis and vascularized lymph node transfer are gaining attention as they focus on restoring lymphatic flow, constituting a physiologic treatment approach. Lymphatic endothelial cells form the structure of lymphatic vessels. These cells possess button-like junctions that facilitate the influx of fluid and leukocytes. Approximately 10% of interstitial fluid is connected to venous return through lymphatic capillaries. Damage to lymphatic vessels leads to lymphatic fluid stasis, resulting in the clinical condition of lymphedema through three mechanisms: Inflammation involving CD4+ T cells as the principal contributing factor, along with the effects of immune cells on the VEGF-C/VEGFR axis, consequently resulting in abnormal lymphangiogenesis; adipocyte hypertrophy and adipose tissue deposition regulated by the interaction of CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor-γ; and tissue fibrosis initiated by the overactivity of Th2 cells, leading to the secretion of profibrotic cytokines such as IL-4, IL-13, and the growth factor TGF-β1. Surgical treatments aimed at reconstructing the lymphatic system help facilitate lymphatic fluid drainage, but their effectiveness in treating already damaged lymphatic vessels is limited. Therefore, reviewing the pathophysiology and molecular mechanisms of lymphedema is crucial to complement surgical treatments and explore novel therapeutic approaches.
Collapse
|
4
|
Johannessen AL, Alstrup M, Hjortdal VE, Palmfeldt J, Offersen BV, Mohanakumar S. Increased Microvascular Filtration and Vascular Endothelial Growth Factor-D associated with Changed Lymphatic Vessel Morphology in Breast Cancer Treated Patients. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5968. [PMID: 39036591 PMCID: PMC11259384 DOI: 10.1097/gox.0000000000005968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/01/2024] [Indexed: 07/23/2024]
Abstract
Background Vascular endothelial growth factors (VEGF) and inflammatory cytokines are indicated to be implicated in lymphedema development. We aimed to describe changes in microvascular filtration and VEGFs in a patient cohort vulnerable to breast cancer-related lymphedema development correlated with data on lymphatic morphology and function. Methods Consecutive node-positive breast cancer patients operated in the axilla and evaluated approximately 12 months after adjuvant locoregional radiotherapy were studied. Capillary filtration rate (CFR) and isovolumetric pressure of the arms were measured by strain gauge plethysmography, and 13 blood proteins were quantified by Luminex and Elisa technology in 28 patients and 18 healthy controls. Results The CFR was reduced in both arms from baseline to 1-year follow-up (ipsilateral: P = 0.016 and contralateral: P = 0.001). When stratifying lymphatic complications (morphologic abnormalities and/or breast cancer-related lymphedema), CFR reached a lower steady-state in the arms with normal morphology (I:P = 0.013 and C:P = 0.013) whereas the ipsilateral arm with lymphatic complications remained unchanged (P = 0.457). In patients with lymphatic abnormal vessels, the levels of VEGF-D were 86% higher than in patients with normal lymphatic vessels (P = 0.042), whereas levels of VEGFR-3 were 64% higher (P = 0.016). Conclusions Through one year of follow-up, CFR did not decrease in the lymphatic complicated treated arms as observed in noncomplicated treated arms. The patients had increased levels of VEGF-D and VEGFR-3. This correlation suggests that VEGF plays a role in the appearance of subcutaneous abnormal lymphatic vessels in the treated arms, which also maintain a fluid filtration/drainage mismatch up to one year after breast cancer treatment.
Collapse
Affiliation(s)
- Andreas L. Johannessen
- From the Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Vascular Surgery, Hospitalsenheden Midt, Viborg, Denmark
| | - Mathias Alstrup
- From the Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Vibeke E. Hjortdal
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen, Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Research Unit for Molecular Medicine Research, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitte V. Offersen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sheyanth Mohanakumar
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Radiology, Regionshospitalet Horsens, Horsens, Denmark
| |
Collapse
|
5
|
Karakousi T, Mudianto T, Lund AW. Lymphatic vessels in the age of cancer immunotherapy. Nat Rev Cancer 2024; 24:363-381. [PMID: 38605228 DOI: 10.1038/s41568-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Lymphatic transport maintains homeostatic health and is necessary for immune surveillance, and yet lymphatic growth is often associated with solid tumour development and dissemination. Although tumour-associated lymphatic remodelling and growth were initially presumed to simply expand a passive route for regional metastasis, emerging research puts lymphatic vessels and their active transport at the interface of metastasis, tumour-associated inflammation and systemic immune surveillance. Here, we discuss active mechanisms through which lymphatic vessels shape their transport function to influence peripheral tissue immunity and the current understanding of how tumour-associated lymphatic vessels may both augment and disrupt antitumour immune surveillance. We end by looking forward to emerging areas of interest in the field of cancer immunotherapy in which lymphatic vessels and their transport function are likely key players: the formation of tertiary lymphoid structures, immune surveillance in the central nervous system, the microbiome, obesity and ageing. The lessons learnt support a working framework that defines the lymphatic system as a key determinant of both local and systemic inflammatory networks and thereby a crucial player in the response to cancer immunotherapy.
Collapse
Affiliation(s)
- Triantafyllia Karakousi
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Tenny Mudianto
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
6
|
Cristina de Sousa Pedrosa B, Machado Manhães de Castro P, Santos LVSE, Lima de Andrade D, Florencio Vilaça A, Pinheiro Júnior JEG, Paula de Lima Ferreira A, Lins EM, Maia JN, do Amparo Andrade M, de Castro CMMB. Effects of complex decongestive therapy and aquatic physiotherapy on markers of the inflammatory process in individuals with lymphedema. Physiother Theory Pract 2024; 40:900-908. [PMID: 36394217 DOI: 10.1080/09593985.2022.2143252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Chronic lymphedema is a progressive and inflammatory disease caused by impaired lymphatic transport. PURPOSE This study evaluates the effects of complex decongestive therapy (CDT) and aquatic physiotherapy on markers of the inflammatory process and lower limb volumes in individuals with lymphedema. METHODS A randomized controlled clinical trial was carried out with three groups: patients with lymphedema submitted to CDT, patients with lymphedema submitted to aquatic physiotherapy, and control group of individuals without lymphedema. The evaluation was performed through blood count, CRP measurements, C3, C4 complement, measurement of serum levels of cytokines interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), interleukins 4 (IL-4), 6 (IL-6), and 10 (IL-10), and the volume of a lower limb using the volume formula of a truncated cone. The study was registered with the Brazilian Clinical Trials Registry (RBR-4tpkszn). RESULTS Our work showed a reduction in the TNF-α levels of patients in the CDT group (p = .028). Significant differences were found between the control group and the CDT group for IL-10 (p = .049) and Monocytes (p = .039). No significant reduction in limb volume was found. CONCLUSION Our results show that CDT was able to significantly reduce the inflammatory marker TNF-α in patients with lymphedema, suggesting an anti-inflammatory effect of the therapy.
Collapse
Affiliation(s)
| | | | | | | | - Adriano Florencio Vilaça
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | | | | | - Esdras Marques Lins
- Department of Surgery, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - Juliana Netto Maia
- Department of Physiotherapy, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | | | - Célia Maria Machado Barbosa de Castro
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
- Department of Tropical Medicine, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| |
Collapse
|
7
|
Wang ZT, Deng ZM, Dai FF, Yuan MQ, Liu SY, Li BS, Cheng YX. Tumor immunity: A brief overview of tumor‑infiltrating immune cells and research advances into tumor‑infiltrating lymphocytes in gynecological malignancies (Review). Exp Ther Med 2024; 27:166. [PMID: 38476909 PMCID: PMC10928974 DOI: 10.3892/etm.2024.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/03/2023] [Indexed: 03/14/2024] Open
Abstract
Tumor immunity is a promising topic in the area of cancer therapy. The 'soil' function of the tumor microenvironment (TME) for tumor growth has attracted wide attention from scientists. Tumor-infiltrating immune cells in the TME, especially the tumor-infiltrating lymphocytes (TILs), serve a key role in cancer. Firstly, relevant literature was searched in the PubMed and Web of Science databases with the following key words: 'Tumor microenvironment'; 'TME'; 'tumor-infiltrating immunity cells'; 'gynecologic malignancies'; 'the adoptive cell therapy (ACT) of TILs'; and 'TIL-ACT' (https://pubmed.ncbi.nlm.nih.gov/). According to the title and abstract of the articles, relevant items were screened out in the preliminary screening. The most relevant selected items were of two types: All kinds of tumor-infiltrating immune cells; and advanced research on TILs in gynecological malignancies. The results showed that the subsets of TILs were various and complex, while each subpopulation influenced each other and their effects on tumor prognosis were diverse. Moreover, the related research and clinical trials on TILs were mostly concentrated in melanoma and breast cancer, but relatively few focused on gynecological tumors. In conclusion, the present review summarized the biological classification of TILs and the mechanisms of their involvement in the regulation of the immune microenvironment, and subsequently analyzed the development of tumor immunotherapy for TILs. Collectively, the present review provides ideas for the current treatment dilemma of gynecological tumor immune checkpoints, such as adverse reactions, safety, personal specificity and efficacy.
Collapse
Affiliation(s)
- Zi-Tao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Min Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang-Fang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Meng-Qin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shi-Yi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bing-Shu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
8
|
McCright J, Yarmovsky J, Maisel K. Para- and Transcellular Transport Kinetics of Nanoparticles across Lymphatic Endothelial Cells. Mol Pharm 2024; 21:1160-1169. [PMID: 37851841 PMCID: PMC10923144 DOI: 10.1021/acs.molpharmaceut.3c00720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Lymphatic vessels have received significant attention as drug delivery targets, as they shuttle materials from peripheral tissues to the lymph nodes, where adaptive immunity is formed. Delivery of immune modulatory materials to the lymph nodes via lymphatic vessels has been shown to enhance their efficacy and also improve the bioavailability of drugs when delivered to intestinal lymphatic vessels. In this study, we generated a three-compartment model of a lymphatic vessel with a set of kinematic differential equations to describe the transport of nanoparticles from the surrounding tissues into lymphatic vessels. We used previously published data and collected additional experimental parameters, including the transport efficiency of nanoparticles over time, and also examined how nanoparticle formulation affected the cellular transport mechanisms using small molecule inhibitors. These experimental data were incorporated into a system of kinematic differential equations, and nonlinear, least-squares curve fitting algorithms were employed to extrapolate transport coefficients within our model. The subsequent computational framework produced some of the first parameters to describe transport kinetics across lymphatic endothelial cells and allowed for the quantitative analysis of the driving mechanisms of transport into lymphatic vessels. Our model indicates that transcellular mechanisms, such as micro- and macropinocytosis, drive transport into lymphatics. This information is crucial to further design strategies that will modulate lymphatic transport for drug delivery, particularly in diseases like lymphedema, where normal lymphatic functions are impaired.
Collapse
Affiliation(s)
- Jacob McCright
- Department of Bioengineering, University of Maryland College Park, College Park, Maryland 20742, United States
| | - Jenny Yarmovsky
- Department of Bioengineering, University of Maryland College Park, College Park, Maryland 20742, United States
| | - Katharina Maisel
- Department of Bioengineering, University of Maryland College Park, College Park, Maryland 20742, United States
| |
Collapse
|
9
|
Abstract
Lymphedema is a debilitating disease characterized by extremity edema, fibroadipose deposition, impaired lymphangiogenesis, and dysfunctional lymphatics, often with lymphatic injury secondary to the treatment of malignancies. Emerging evidence has shown that immune dysfunction regulated by T cells plays a pivotal role in development of lymphedema. Specifically, Th1, Th2, Treg, and Th17 cells have been identified as critical regulators of pathological changes in lymphedema. In this review, our aim is to provide an overview of the current understanding of the roles of CD4+ T cells, including Th1, Th2, Treg, and Th17 subsets, in the progression of lymphedema and to discuss associated therapies targeting T cell inflammation for management of lymphedema.
Collapse
Affiliation(s)
- Ao Fu
- Department of Oncoplastic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunjun Liu
- Department of Oncoplastic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Fu A, Liu C. Analysis of CD4 + T-helper-associated hub gene signature and immune dysregulation via RNA-sequencing data in a mouse tail model of lymphedema. Gland Surg 2023; 12:1141-1157. [PMID: 37842538 PMCID: PMC10570970 DOI: 10.21037/gs-23-48] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/02/2023] [Indexed: 10/17/2023]
Abstract
Background T-helper cells play an essential role in the progression of lymphedema. This study aimed to explore the biological significance of T-helper cell-associated genes (THAGs) in a mouse tail model of lymphedema by RNA-sequencing (RNA-seq) data. Methods The expression profiles of a murine model of secondary lymphedema were obtained from European Nucleotide Archive (ENA) database. Differentially expressed genes (DEGs) were screened and the enrichment analysis of DEGs was conducted. THAGs were constructed by crossing the T-helper-related gene sets obtained from Molecular Signatures Database with DEGs. Protein-protein interaction (PPI) network analysis was utilized to establish T-helper-associated hub genes (THAHGs). Single-sample gene set enrichment analysis (ssGSEA) was employed to decipher differences in immune cell infiltration. The correlation between THAHGs and immune infiltration was calculated by Pearson correlation analysis. Receiver operating characteristic (ROC) curves of THAHGs were drawn to evaluate their diagnostic properties. Additionally, potential drugs and upstream transcription factors (TFs) were predicted based on THAHGs. Results Enrichment analysis showed that lymphedematous tissue presented higher activation of biological process (BP) of T-helper 1 (Th1), T-helper 2 (Th2), T-helper 17 (Th17). The immune infiltration analysis further calculated that the relative immune abundance of follicular B cells, memory B cells, M1 macrophage, and CD4+ Tm cells was significantly elevated while the relative immune abundance of neutrophils and plasma cells were down-regulated in lymphedema. We established a list of THAHGs consisting of eight hub genes, compassing Cd4, Foxp3, Irf4, Ccr6, Il12rb1, Batf, Il1b, Cd74. THAHGs were shown to be significantly interrelated and related to immune infiltration by Pearson correlation analysis. ROC curves showcased that the area under curve (AUC) values of THAHGs were larger than 0.70. Gata3 was the most potential TF and thalidomide might be the immunoregulatory drug for lymphedema based on THAHGs. Conclusions Biological pathways associated with T-helpers were significantly enriched in mouse lymphedema tissue. The relative immune infiltration abundance of M1 macrophage, CD4+ Tm cells, and T-helper cells was higher in the lymphedema group. Besides, we identified the THAHGs containing eight genes, namely, Cd4, Foxp3, Irf4, Ccr6, Il12rb1, Batf, Il1b, and Cd74. The THAHGs were closely correlated with immune infiltration results and with good diagnostic properties.
Collapse
Affiliation(s)
- Ao Fu
- Department of Oncoplastic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunjun Liu
- Department of Oncoplastic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Zhou J, Guo L, Song D, Li J, Liu Z, Sun J, Niu Y. Cytological and Biochemical Analyses of Lymphatic Fluid from Patients with Lymphatic Malformations. Lymphat Res Biol 2023; 21:339-342. [PMID: 36780016 DOI: 10.1089/lrb.2021.0068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Background: Intracystic hemorrhage from lymphangiomas is a common phenomenon in lymphatic malformations (LMs); however, little is known about the associated compositional changes in the lymphatic fluid. Materials and Methods: We prospectively collected lymphatic fluid from children with LMs. Lymphatic fluid was divided depending on the bleeding status into the bleeding and nonbleeding groups. The fluid was subjected to cytological and biochemical analyses to determine protein and cytokine levels. The Mann-Whitney U test was used to compare the two groups. Results: There were significant differences in the levels of interleukin (IL)-6, IL-10, and glucose, and the percentage of white blood cells between the bleeding and nonbleeding groups. There was no significant difference in chlorine and protein content; white blood cell count; and IL-2, IL-4, tumor necrosis factor α, and interferon γ levels between the two groups. Conclusion: Lymphatic fluid is less stable in bleeding LMs than in non-bleeding LMs and is prone to inflammatory reactions. The inflammatory reaction in lymphatic fluid does not stimulate the cytokine storm in blood. The inflammatory reaction due to LMs does not affect the contents of protein and chlorine in lymphatic cyst fluid.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Vascular Anomalies and Interventional Radiology, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Lei Guo
- Department of Vascular Anomalies and Interventional Radiology, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Dan Song
- Department of Vascular Anomalies and Interventional Radiology, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Jing Li
- Department of Vascular Anomalies and Interventional Radiology, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Zhuang Liu
- Department of Vascular Anomalies and Interventional Radiology, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Jiali Sun
- Department of Vascular Anomalies and Interventional Radiology, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Yanli Niu
- Department of Vascular Anomalies and Interventional Radiology, Children's Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
12
|
A Novel Dressing Composed of Adipose Stem Cells and Decellularized Wharton's Jelly Facilitated Wound Healing and Relieved Lymphedema by Enhancing Angiogenesis and Lymphangiogenesis in a Rat Model. J Funct Biomater 2023; 14:jfb14020104. [PMID: 36826903 PMCID: PMC9960849 DOI: 10.3390/jfb14020104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Lymphedema causes tissue swelling due to the accumulation of lymphatic fluid in the tissue, which delays the process of wound-healing. Developing effective treatment options of lymphedema is still an urgent issue. In this study, we aim to fabricate tissue-engineered moist wound dressings with adipose stem cells (ASCs) and decellularized Wharton's jelly (dWJ) from the human umbilical cord in order to ameliorate lymphedema. Rat ASCs were proliferated and an apparent layer was observed on dWJ at day 7 and 14. A rat tail lymphedema model was developed to evaluate the efficacy of the treatment. Approximately 1 cm of skin near the base of the rat tail was circularly excised. The wounds were treated by secondary healing (control) (n = 5), decellularized Wharton's jelly (n = 5) and ASC-seeded dWJ (n = 5). The wound-healing rate and the tail volume were recorded once a week from week one to week five. Angiogenesis and lymphangiogenesis were assessed by immunochemistry staining with anti-CD31 and anti-LYVE1. The results showed that the wound-healing rate was faster and the tail volume was lesser in the ASC-seeded dWJ group than in the control group. More CD31+ and LYVE-1+ cells were observed at the wound-healing area in the ASC-seeded dWJ group than in the control group. This proves that tissue-engineered moist wound dressings can accelerate wound-healing and reduce lymphedema by promoting angiogenesis and lymphangiogenesis.
Collapse
|
13
|
Brown S, Dayan JH, Kataru RP, Mehrara BJ. The Vicious Circle of Stasis, Inflammation, and Fibrosis in Lymphedema. Plast Reconstr Surg 2023; 151:330e-341e. [PMID: 36696336 PMCID: PMC9881755 DOI: 10.1097/prs.0000000000009866] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
SUMMARY Lymphedema is a progressive disease of the lymphatic system arising from impaired lymphatic drainage, accumulation of interstitial fluid, and fibroadipose deposition. Secondary lymphedema resulting from cancer treatment is the most common form of the disease in developed countries, affecting 15% to 40% of patients with breast cancer after lymph node dissection. Despite recent advances in microsurgery, outcomes remain variable and, in some cases, inadequate. Thus, development of novel treatment strategies is an important goal. Research over the past decade suggests that lymphatic injury initiates a chronic inflammatory response that regulates the pathophysiology of lymphedema. T-cell inflammation plays a key role in this response. In this review, the authors highlight the cellular and molecular mechanisms of lymphedema and discuss promising preclinical therapies.
Collapse
Affiliation(s)
- Stav Brown
- From the Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center
| | - Joseph H Dayan
- From the Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center
| | - Raghu P Kataru
- From the Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center
| | - Babak J Mehrara
- From the Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center
| |
Collapse
|
14
|
Park HJ, Kataru RP, Shin J, Garc A Nores GD, Encarnacion EM, Klang MG, Riedel E, Coriddi M, Dayan JH, Mehrara BJ. Keratinocytes coordinate inflammatory responses and regulate development of secondary lymphedema. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524936. [PMID: 36711669 PMCID: PMC9882288 DOI: 10.1101/2023.01.20.524936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epidermal changes are histological hallmarks of secondary lymphedema, but it is unknown if keratinocytes contribute to its pathophysiology. Using clinical lymphedema specimens and mouse models, we show that keratinocytes play a primary role in lymphedema development by producing T-helper 2 (Th2) -inducing cytokines. Specifically, we find that keratinocyte proliferation and expression of protease-activated receptor 2 (PAR2) are early responses following lymphatic injury and regulate the expression of Th2-inducing cytokines, migration of Langerhans cells, and skin infiltration of Th2-differentiated T cells. Furthermore, inhibition of PAR2 activation with a small molecule inhibitor or the proliferation inhibitor teriflunomide (TF) prevents activation of keratinocytes stimulated with lymphedema fluid. Finally, topical TF is highly effective for decreasing swelling, fibrosis, and inflammation in a preclinical mouse model. Our findings suggest that lymphedema is a chronic inflammatory skin disease, and topically targeting keratinocyte activation may be a clinically effective therapy for this condition.
Collapse
|
15
|
Sung C, Jiao W, Park SY, Cooper M, Bouz A, Choi D, Jung E, Kim G, Hong YK, Wong AK. Lymphatic endothelial cell RXRα is critical for 9-cis-retinoic acid-mediated lymphangiogenesis and prevention of secondary lymphedema. FASEB J 2023; 37:e22674. [PMID: 36520015 DOI: 10.1096/fj.202200146rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Secondary lymphedema is a debilitating disease characterized by abnormal soft tissue swelling and caused by lymphatic system dysfunction. Despite a high prevalence of secondary lymphedema after cancer treatments, current management is supportive and there are no approved therapeutic agents that can thwart disease progression. We have previously demonstrated that 9-cis-retinoic acid (9-cisRA) has the potential to be repurposed for lymphedema as it mitigates disease by promoting lymphangiogenesis at the site of lymphatic injury. Although the efficacy of 9-cisRA has been demonstrated in previous studies, the mechanism of action is not completely understood. In this study, we demonstrate that when RXRα is specifically deleted in lymphatic endothelial cells, 9-cisRA fails to induce lymphangiogenesis in vitro and prevent pathologic progression of postsurgical lymphedema in vivo. These findings demonstrate that downstream nuclear receptor RXRα plays a critical role in the therapeutic efficacy of 9-cisRA in postsurgical lymphedema.
Collapse
Affiliation(s)
- Cynthia Sung
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Keck School of Medicine of USC, Los Angeles, California, USA
| | - Wan Jiao
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Sun Young Park
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Michael Cooper
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Antoun Bouz
- Herbert Wertheim College of Medicine of FIU, Miami, Florida, USA
| | - Dahae Choi
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Eunson Jung
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Gene Kim
- Keck School of Medicine of USC, Los Angeles, California, USA
| | - Young Kwon Hong
- Keck School of Medicine of USC, Los Angeles, California, USA.,Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Alex K Wong
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| |
Collapse
|
16
|
What do we know about treating breast-cancer-related lymphedema? Review of the current knowledge about therapeutic options. Breast Cancer 2023; 30:187-199. [PMID: 36571707 PMCID: PMC9950281 DOI: 10.1007/s12282-022-01428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
Breast-cancer-related lymphedema (BCRL) is a common consequence of oncological treatment. Its management is a complicated, chronic, and arduous process. Therapeutic options can be divided on non-surgical and surgical methods, although there is still no clear consensus about their effectiveness in preventing or stopping the disease. That brings problems in everyday practice, as there are no guidelines about proper time for starting therapy and no agreement about which management will be beneficial for each patient. The aim of this review is to summarize current knowledge about possible treatment choices, non-surgical so as surgical, indicate knowledge gaps, and try to direct pathways for future studies.
Collapse
|
17
|
The Impact of Stem/Progenitor Cells on Lymphangiogenesis in Vascular Disease. Cells 2022; 11:cells11244056. [PMID: 36552820 PMCID: PMC9776475 DOI: 10.3390/cells11244056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022] Open
Abstract
Lymphatic vessels, as the main tube network of fluid drainage and leukocyte transfer, are responsible for the maintenance of homeostasis and pathological repairment. Recently, by using genetic lineage tracing and single-cell RNA sequencing techniques, significant cognitive progress has been made about the impact of stem/progenitor cells during lymphangiogenesis. In the embryonic stage, the lymphatic network is primarily formed through self-proliferation and polarized-sprouting from the lymph sacs. However, the assembly of lymphatic stem/progenitor cells also guarantees the sustained growth of lymphvasculogenesis to obtain the entire function. In addition, there are abundant sources of stem/progenitor cells in postnatal tissues, including circulating progenitors, mesenchymal stem cells, and adipose tissue stem cells, which can directly differentiate into lymphatic endothelial cells and participate in lymphangiogenesis. Specifically, recent reports indicated a novel function of lymphangiogenesis in transplant arteriosclerosis and atherosclerosis. In the present review, we summarized the latest evidence about the diversity and incorporation of stem/progenitor cells in lymphatic vasculature during both the embryonic and postnatal stages, with emphasis on the impact of lymphangiogenesis in the development of vascular diseases to provide a rational guidance for future research.
Collapse
|
18
|
Brown S, Mehrara BJ, Coriddi M, McGrath L, Cavalli M, Dayan JH. A Prospective Study on the Safety and Efficacy of Vascularized Lymph Node Transplant. Ann Surg 2022; 276:635-653. [PMID: 35837897 PMCID: PMC9463125 DOI: 10.1097/sla.0000000000005591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE While vascularized lymph node transplant (VLNT) has gained popularity, there are a lack of prospective long-term studies and standardized outcomes. The purpose of this study was to evaluate the safety and efficacy of VLNT using all available outcome measures. METHODS This was a prospective study on all consecutive patients who underwent VLNT. Outcomes were assessed with 2 patient-reported outcome metrics, limb volume, bioimpedance, need for compression, and incidence of cellulitis. RESULTS There were 89 patients with the following donor sites: omentum (73%), axilla (13%), supraclavicular (7%), groin (3.5%). The mean follow-up was 23.7±12 months. There was a significant improvement at 2 years postoperatively across all outcome measures: 28.4% improvement in the Lymphedema Life Impact Scale, 20% average reduction in limb volume, 27.5% improvement in bioimpedance score, 93% reduction in cellulitis, and 34% of patients no longer required compression. Complications were transient and low without any donor site lymphedema. CONCLUSIONS VLNT is a safe and effective treatment for lymphedema with significant benefits fully manifesting at 2 years postoperatively. Omentum does not have any donor site lymphedema risk making it an attractive first choice.
Collapse
Affiliation(s)
- Stav Brown
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | | |
Collapse
|
19
|
Ogino R, Yokooji T, Hayashida M, Suda S, Yamakawa S, Hayashida K. Emerging Anti-Inflammatory Pharmacotherapy and Cell-Based Therapy for Lymphedema. Int J Mol Sci 2022; 23:ijms23147614. [PMID: 35886961 PMCID: PMC9322118 DOI: 10.3390/ijms23147614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Secondary lymphedema is a common complication of lymph node dissection or radiation therapy for cancer treatment. Conventional therapies such as compression sleeve therapy, complete decongestive physiotherapy, and surgical therapies decrease edema; however, they are not curative because they cannot modulate the pathophysiology of lymphedema. Recent advances reveal that the activation and accumulation of CD4+ T cells are key in the development of lymphedema. Based on this pathophysiology, the efficacy of pharmacotherapy (tacrolimus, anti-IL-4/IL-13 antibody, or fingolimod) and cell-based therapy for lymphedema has been demonstrated in animal models and pilot studies. In addition, mesenchymal stem/stromal cells (MSCs) have attracted attention as candidates for cell-based lymphedema therapy because they improve symptoms and decrease edema volume in the long term with no serious adverse effects in pilot studies. Furthermore, MSC transplantation promotes functional lymphatic regeneration and improves the microenvironment in animal models. In this review, we focus on inflammatory cells involved in the pathogenesis of lymphedema and discuss the efficacy and challenges of pharmacotherapy and cell-based therapies for lymphedema.
Collapse
Affiliation(s)
- Ryohei Ogino
- Department of Frontier Science for Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (R.O.); (T.Y.)
| | - Tomoharu Yokooji
- Department of Frontier Science for Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (R.O.); (T.Y.)
| | - Maiko Hayashida
- Department of Psychiatry, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan;
| | - Shota Suda
- Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (S.S.); (S.Y.)
| | - Sho Yamakawa
- Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (S.S.); (S.Y.)
| | - Kenji Hayashida
- Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (S.S.); (S.Y.)
- Correspondence: ; Tel.: +81-853-20-2210
| |
Collapse
|
20
|
Sung C, Wang S, Hsu J, Yu R, Wong AK. Current Understanding of Pathological Mechanisms of Lymphedema. Adv Wound Care (New Rochelle) 2022; 11:361-373. [PMID: 34521256 PMCID: PMC9051876 DOI: 10.1089/wound.2021.0041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Significance: Lymphedema is a common disease that affects hundreds of millions of people worldwide with significant financial and social burdens. Despite increasing prevalence and associated morbidities, the mainstay treatment of lymphedema is largely palliative without an effective cure due to incomplete understanding of the disease. Recent Advances: Recent studies have described key histological and pathological processes that contribute to the progression of lymphedema, including lymphatic stasis, inflammation, adipose tissue deposition, and fibrosis. This review aims to highlight cellular and molecular mechanisms involved in each of these pathological processes. Critical Issues: Despite recent advances in the understanding of the pathophysiology of lymphedema, cellular and molecular mechanisms underlying the disease remains elusive due to its complex nature. Future Directions: Additional research is needed to gain a better insight into the cellular and molecular mechanisms underlying the pathophysiology of lymphedema, which will guide the development of therapeutic strategies that target specific pathology of the disease.
Collapse
Affiliation(s)
- Cynthia Sung
- Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Sarah Wang
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Jerry Hsu
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Roy Yu
- Keck School of Medicine of USC, Los Angeles, California, USA
| | - Alex K. Wong
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Correspondence: Division of Plastic Surgery, City of Hope National Medical Center, 1500 Duarte Road, Familian Science Building 1018, Duarte, CA 91010, USA.
| |
Collapse
|
21
|
Jeong J, Tanaka M, Iwakiri Y. Hepatic lymphatic vascular system in health and disease. J Hepatol 2022; 77:206-218. [PMID: 35157960 PMCID: PMC9870070 DOI: 10.1016/j.jhep.2022.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/13/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023]
Abstract
In recent years, significant advances have been made in the study of lymphatic vessels with the identification of their specific markers and the development of research tools that have accelerated our understanding of their role in tissue homeostasis and disease pathogenesis in many organs. Compared to other organs, the lymphatic system in the liver is understudied despite its obvious importance for hepatic physiology and pathophysiology. In this review, we describe fundamental aspects of the hepatic lymphatic system and its role in a range of liver-related pathological conditions such as portal hypertension, ascites formation, malignant tumours, liver transplantation, congenital liver diseases, non-alcoholic fatty liver disease, and hepatic encephalopathy. The article concludes with a discussion regarding the modulation of lymphangiogenesis as a potential therapeutic strategy for liver diseases.
Collapse
Affiliation(s)
- Jain Jeong
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Masatake Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
22
|
Duhon BH, Phan TT, Taylor SL, Crescenzi RL, Rutkowski JM. Current Mechanistic Understandings of Lymphedema and Lipedema: Tales of Fluid, Fat, and Fibrosis. Int J Mol Sci 2022; 23:6621. [PMID: 35743063 PMCID: PMC9223758 DOI: 10.3390/ijms23126621] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022] Open
Abstract
Lymphedema and lipedema are complex diseases. While the external presentation of swollen legs in lower-extremity lymphedema and lipedema appear similar, current mechanistic understandings of these diseases indicate unique aspects of their underlying pathophysiology. They share certain clinical features, such as fluid (edema), fat (adipose expansion), and fibrosis (extracellular matrix remodeling). Yet, these diverge on their time course and known molecular regulators of pathophysiology and genetics. This divergence likely indicates a unique route leading to interstitial fluid accumulation and subsequent inflammation in lymphedema versus lipedema. Identifying disease mechanisms that are causal and which are merely indicative of the condition is far more explored in lymphedema than in lipedema. In primary lymphedema, discoveries of genetic mutations link molecular markers to mechanisms of lymphatic disease. Much work remains in this area towards better risk assessment of secondary lymphedema and the hopeful discovery of validated genetic diagnostics for lipedema. The purpose of this review is to expose the distinct and shared (i) clinical criteria and symptomatology, (ii) molecular regulators and pathophysiology, and (iii) genetic markers of lymphedema and lipedema to help inform future research in this field.
Collapse
Affiliation(s)
- Bailey H. Duhon
- Department of Medical Physiology, Texas A & M University College of Medicine, Bryan, TX 77807, USA; (B.H.D.); (T.T.P.)
| | - Thien T. Phan
- Department of Medical Physiology, Texas A & M University College of Medicine, Bryan, TX 77807, USA; (B.H.D.); (T.T.P.)
| | - Shannon L. Taylor
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA;
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle L. Crescenzi
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA;
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A & M University College of Medicine, Bryan, TX 77807, USA; (B.H.D.); (T.T.P.)
| |
Collapse
|
23
|
Baik JE, Park HJ, Kataru RP, Savetsky IL, Ly CL, Shin J, Encarnacion EM, Cavali MR, Klang MG, Riedel E, Coriddi M, Dayan JH, Mehrara BJ. TGF-β1 mediates pathologic changes of secondary lymphedema by promoting fibrosis and inflammation. Clin Transl Med 2022; 12:e758. [PMID: 35652284 PMCID: PMC9160979 DOI: 10.1002/ctm2.758] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/15/2022] Open
Abstract
Background Secondary lymphedema is a common complication of cancer treatment, and previous studies have shown that the expression of transforming growth factor‐beta 1 (TGF‐β1), a pro‐fibrotic and anti‐lymphangiogenic growth factor, is increased in this disease. Inhibition of TGF‐β1 decreases the severity of the disease in mouse models; however, the mechanisms that regulate this improvement remain unknown. Methods Expression of TGF‐β1 and extracellular matrix molecules (ECM) was assessed in biopsy specimens from patients with unilateral breast cancer‐related lymphedema (BCRL). The effects of TGF‐β1 inhibition using neutralizing antibodies or a topical formulation of pirfenidone (PFD) were analyzed in mouse models of lymphedema. We also assessed the direct effects of TGF‐β1 on lymphatic endothelial cells (LECs) using transgenic mice that expressed a dominant‐negative TGF‐β receptor selectively on LECs (LECDN‐RII). Results The expression of TGF‐β1 and ECM molecules is significantly increased in BCRL skin biopsies. Inhibition of TGF‐β1 in mouse models of lymphedema using neutralizing antibodies or with topical PFD decreased ECM deposition, increased the formation of collateral lymphatics, and inhibited infiltration of T cells. In vitro studies showed that TGF‐β1 in lymphedematous tissues increases fibroblast, lymphatic endothelial cell (LEC), and lymphatic smooth muscle cell stiffness. Knockdown of TGF‐β1 responsiveness in LECDN‐RII resulted in increased lymphangiogenesis and collateral lymphatic formation; however, ECM deposition and fibrosis persisted, and the severity of lymphedema was indistinguishable from controls. Conclusions Our results show that TGF‐β1 is an essential regulator of ECM deposition in secondary lymphedema and that inhibition of this response is a promising means of treating lymphedema.
Collapse
Affiliation(s)
- Jung Eun Baik
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hyeung Ju Park
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Raghu P Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ira L Savetsky
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Catherine L Ly
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jinyeon Shin
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elizabeth M Encarnacion
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michele R Cavali
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark G Klang
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elyn Riedel
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michelle Coriddi
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph H Dayan
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Babak J Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
24
|
Masood F, Bhattaram R, Rosenblatt MI, Kazlauskas A, Chang JH, Azar DT. Lymphatic Vessel Regression and Its Therapeutic Applications: Learning From Principles of Blood Vessel Regression. Front Physiol 2022; 13:846936. [PMID: 35392370 PMCID: PMC8980686 DOI: 10.3389/fphys.2022.846936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/25/2022] [Indexed: 02/03/2023] Open
Abstract
Aberrant lymphatic system function has been increasingly implicated in pathologies such as lymphedema, organ transplant rejection, cardiovascular disease, obesity, and neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. While some pathologies are exacerbated by lymphatic vessel regression and dysfunction, induced lymphatic regression could be therapeutically beneficial in others. Despite its importance, our understanding of lymphatic vessel regression is far behind that of blood vessel regression. Herein, we review the current understanding of blood vessel regression to identify several hallmarks of this phenomenon that can be extended to further our understanding of lymphatic vessel regression. We also summarize current research on lymphatic vessel regression and an array of research tools and models that can be utilized to advance this field. Additionally, we discuss the roles of lymphatic vessel regression and dysfunction in select pathologies, highlighting how an improved understanding of lymphatic vessel regression may yield therapeutic insights for these disease states.
Collapse
|
25
|
Peluzzo AM, Autieri MV. Challenging the Paradigm: Anti-Inflammatory Interleukins and Angiogenesis. Cells 2022; 11:cells11030587. [PMID: 35159396 PMCID: PMC8834461 DOI: 10.3390/cells11030587] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis is a vital biological process, and neovascularization is essential for the development, wound repair, and perfusion of ischemic tissue. Neovascularization and inflammation are independent biological processes that are linked in response to injury and ischemia. While clear that pro-inflammatory factors drive angiogenesis, the role of anti-inflammatory interleukins in angiogenesis remains less defined. An interleukin with anti-inflammatory yet pro-angiogenic effects would hold great promise as a therapeutic modality to treat many disease states where inflammation needs to be limited, but revascularization and reperfusion still need to be supported. As immune modulators, interleukins can polarize macrophages to a pro-angiogenic and reparative phenotype, which indirectly influences angiogenesis. Interleukins could also potentially directly induce angiogenesis by binding and activating its receptor on endothelial cells. Although a great deal of attention is given to the negative effects of pro-inflammatory interleukins, less is described concerning the potential protective effects of anti-inflammatory interleukins on various disease processes. To focus this review, we will consider IL-4, IL-10, IL-13, IL-19, and IL-33 to be anti-inflammatory interleukins, all of which have recognized immunomodulatory effects. This review will summarize current research concerning anti-inflammatory interleukins as potential drivers of direct and indirect angiogenesis, emphasizing their role in future therapeutics.
Collapse
|
26
|
Brown S, Dayan JH, Coriddi M, Campbell A, Kuonqui K, Shin J, Park HJ, Mehrara BJ, Kataru RP. Pharmacological Treatment of Secondary Lymphedema. Front Pharmacol 2022; 13:828513. [PMID: 35145417 PMCID: PMC8822213 DOI: 10.3389/fphar.2022.828513] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Lymphedema is a chronic disease that results in swelling and decreased function due to abnormal lymphatic fluid clearance and chronic inflammation. In Western countries, lymphedema most commonly develops following an iatrogenic injury to the lymphatic system during cancer treatment. It is estimated that as many as 10 million patients suffer from lymphedema in the United States alone. Current treatments for lymphedema are palliative in nature, relying on compression garments and physical therapy to decrease interstitial fluid accumulation in the affected extremity. However, recent discoveries have increased the hopes of therapeutic interventions that may promote lymphatic regeneration and function. The purpose of this review is to summarize current experimental pharmacological strategies in the treatment of lymphedema.
Collapse
|
27
|
Abstract
Adipose tissue, once thought to be an inert receptacle for energy storage, is now recognized as a complex tissue with multiple resident cell populations that actively collaborate in response to diverse local and systemic metabolic, thermal, and inflammatory signals. A key participant in adipose tissue homeostasis that has only recently captured broad scientific attention is the lymphatic vasculature. The lymphatic system's role in lipid trafficking and mediating inflammation makes it a natural partner in regulating adipose tissue, and evidence supporting a bidirectional relationship between lymphatics and adipose tissue has accumulated in recent years. Obesity is now understood to impair lymphatic function, whereas altered lymphatic function results in aberrant adipose tissue deposition, though the molecular mechanisms governing these phenomena have yet to be fully elucidated. We will review our current understanding of the relationship between adipose tissue and the lymphatic system here, focusing on known mechanisms of lymphatic-adipose crosstalk.
Collapse
Affiliation(s)
- Gregory P Westcott
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Joslin Diabetes Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
- Broad Institute, Cambridge, MA 02142, USA
- Correspondence: Evan D. Rosen, MD, PhD, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
28
|
Lee HK, Lee SM, Lee DI. Corneal Lymphangiogenesis: Current Pathophysiological Understandings and Its Functional Role in Ocular Surface Disease. Int J Mol Sci 2021; 22:ijms222111628. [PMID: 34769057 PMCID: PMC8583961 DOI: 10.3390/ijms222111628] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 12/23/2022] Open
Abstract
The cornea is a transparent and avascular tissue that plays a central role in light refraction and provides a physical barrier to the external environment. Corneal avascularity is a unique histological feature that distinguishes it from the other parts of the body. Functionally, corneal immune privilege critically relies on corneal avascularity. Corneal lymphangiogenesis is now recognized as a general pathological feature in many pathologies, including dry eye disease (DED), corneal allograft rejection, ocular allergy, bacterial and viral keratitis, and transient corneal edema. Currently, sizable data from clinical and basic research have accumulated on the pathogenesis and functional role of ocular lymphangiogenesis. However, because of the invisibility of lymphatic vessels, ocular lymphangiogenesis has not been studied as much as hemangiogenesis. We reviewed the basic mechanisms of lymphangiogenesis and summarized recent advances in the pathogenesis of ocular lymphangiogenesis, focusing on corneal allograft rejection and DED. In addition, we discuss future directions for lymphangiogenesis research.
Collapse
Affiliation(s)
- Hyung-Keun Lee
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: ; Tel.: +82-2-2019-3444
| | - Sang-Mok Lee
- Department of Ophthalmology, HanGil Eye Hospital, Catholic Kwandong University College of Medicine, Incheon 21388, Korea;
| | - Dong-Ihll Lee
- Medical School, Capital Medical University, Beijing 100069, China;
| |
Collapse
|
29
|
Pilot Study of Anti-Th2 Immunotherapy for the Treatment of Breast Cancer-Related Upper Extremity Lymphedema. BIOLOGY 2021; 10:biology10090934. [PMID: 34571811 PMCID: PMC8466465 DOI: 10.3390/biology10090934] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 01/02/2023]
Abstract
Recent studies suggest that Th2 cells play a key role in the pathology of secondary lymphedema by elaborating cytokines such as IL4 and IL13. The aim of this study was to test the efficacy of QBX258, a monoclonal IL4/IL13 neutralizing antibody, in women with breast cancer-related lymphedema (BCRL). We enrolled nine women with unilateral stage I/II BCRL and treated them once monthly with intravenous infusions of QBX258 for 4 months. We measured limb volumes, bioimpedance, and skin tonometry, and analyzed the quality of life (QOL) using a validated lymphedema questionnaire (Upper Limb Lymphedema 27, ULL-27) before treatment, immediately after treatment, and 4 months following treatment withdrawal. We also obtained 5 mm skin biopsies from the normal and lymphedematous limbs before and after treatment. Treatment was well-tolerated; however, one patient with a history of cellulitis developed cellulitis during the trial and was excluded from further analysis. We found no differences in limb volumes or bioimpedance measurements after drug treatment. However, QBX258 treatment improved skin stiffness (p < 0.001) and improved QOL measurements (Physical p < 0.05, Social p = 0.01). These improvements returned to baseline after treatment withdrawal. Histologically, treatment decreased epidermal thickness, the number of proliferating keratinocytes, type III collagen deposition, infiltration of mast cells, and the expression of Th2-inducing cytokines in the lymphedematous skin. Our limited study suggests that immunotherapy against Th2 cytokines may improve skin changes and QOL of women with BCRL. This treatment appears to be less effective for decreasing limb volumes; however, additional studies are needed.
Collapse
|
30
|
Antoniak K, Hansdorfer-Korzon R, Mrugacz M, Zorena K. Adipose Tissue and Biological Factors. Possible Link between Lymphatic System Dysfunction and Obesity. Metabolites 2021; 11:metabo11090617. [PMID: 34564433 PMCID: PMC8464765 DOI: 10.3390/metabo11090617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
The World Health Organization (WHO) has recognised obesity as one of the top ten threats to human health. Obesity is not only a state of abnormally increased adipose tissue in the body, but also of an increased release of biologically active metabolites. Moreover, obesity predisposes the development of metabolic syndrome and increases the incidence of type 2 diabetes (T2DM), increases the risk of developing insulin resistance, atherosclerosis, ischemic heart disease, polycystic ovary syndrome, hypertension and cancer. The lymphatic system is a one-directional network of thin-walled capillaries and larger vessels covered by a continuous layer of endothelial cells that provides a unidirectional conduit to return filtered arterial and tissue metabolites towards the venous circulation. Recent studies have shown that obesity can markedly impair lymphatic function. Conversely, dysfunction in the lymphatic system may also be involved in the pathogenesis of obesity. This review highlights the important findings regarding obesity related to lymphatic system dysfunction, including clinical implications and experimental studies. Moreover, we present the role of biological factors in the pathophysiology of the lymphatic system and we propose the possibility of a therapy supporting the function of the lymphatic system in the course of obesity.
Collapse
Affiliation(s)
- Klaudia Antoniak
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
| | - Rita Hansdorfer-Korzon
- Department of Physical Therapy, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
| | - Małgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, Kilinskiego 1, 15-089 Białystok, Poland;
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
- Correspondence: ; Tel./Fax: +48-583491765
| |
Collapse
|
31
|
Abstract
Lymphedema is a common, complex, and inexplicably underappreciated human disease. Despite a history of relative neglect by health care providers and by governmental health care agencies, the last decade has seen an explosive growth of insights into, and approaches to, the problem of human lymphedema. The current review highlights the significant advances that have occurred in the investigative and clinical approaches to lymphedema, particularly over the last decade. This review summarizes the progress that has been attained in the realms of genetics, lymphatic imaging, and lymphatic surgery. Newer molecular insights are explored, along with their relationship to future molecular therapeutics. Growing insights into the relationships among lymphedema, obesity, and other comorbidities are important to consider in current and future responses to patients with lymphedema.
Collapse
Affiliation(s)
- Stanley G Rockson
- Allan and Tina Neill Professor of Lymphatic Research and Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
32
|
Kimura S, Noguchi H, Nanbu U, Nakayama T. Macrophage CCL22 expression promotes lymphangiogenesis in patients with tongue squamous cell carcinoma via IL-4/STAT6 in the tumor microenvironment. Oncol Lett 2021; 21:383. [PMID: 33777206 PMCID: PMC7988704 DOI: 10.3892/ol.2021.12644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/15/2021] [Indexed: 01/04/2023] Open
Abstract
The C-C motif chemokine ligand 22 (CCL22) chemokine is produced by M2-like tumor-associated macrophages (TAMs) in the tumor microenvironment. Chemokine C-C motif receptor 4 (CCR4), the CCL22 receptor, on T helper2 (Th2) cells leads to a Th2 cytokine-dominant environment. In our previous study, lymph node metastasis was the main predictor of tongue squamous cell carcinoma (SCC) via CCL22. Therefore, the present study aimed to investigate the effects of CCL22 and a Th2 cytokine-predominant tumor microenvironment on vascular endothelial growth factor (VEGF)-C expression and lymphangiogenesis. The post-operative courses of 110 patients with early-stage tongue SCC with a histopathological diagnosis based on the 8th TNM classification were followed up (mean/median follow-up time, 47.1/42.0 months) from surgery until death or the last follow-up visit, and subsequent lymph node relapse was assessed. Lymphangiogenesis and the immunohistochemical expression of several markers (CCL22, CCR4 and VEGF-C) were evaluated. The Kaplan-Meier method was used to plot lymph node relapse-free survival and overall survival curves, which were compared using the log-rank test. In vitro, the association between CCL22 and VEGF-C by interleukin (IL)-4/signal transducer and activator of transcription 6 (STAT6) stimulation was examined. Lymphangiogenesis was significantly associated with lymph node relapse (P<0.001) and a CCL22+ macrophage ratio (P<0.001). CCL22+ TAMs were positive for VEGF-C and surrounded by CCR4+ cells. Additionally, VEGF-C expression was increased in IL-4/STAT6-stimulated macrophages. In addition, the STAT6 signaling pathway was activated in the SCC cells in the deeply invaded part of the tumor along with the aggregated macrophages. In conclusion, TAM CCL22 expression led to lymph node relapse via VEGF-C expression within the tumor microenvironment and the IL-4/STAT6 signaling pathway in early stage tongue SCC. Additionally, the worst pattern of invasion and depth of invasion were revealed to be useful parameters for lymph node relapse in patients with tongue SCC. The present study suggested that CCL22 contributed to the role of M2-like differentiated TAMs in prognosis and lymph node relapse via IL-4/STAT6 and VEGF. The IL-4/STAT6 signaling pathway may be a new molecular target for tongue SCC.
Collapse
Affiliation(s)
- Satoshi Kimura
- Department of Clinical Pathology, Kitakyushu City Yahata Hospital, Kitakyushu, Fukuoka 805-8534, Japan.,Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Hirotsugu Noguchi
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Uki Nanbu
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| |
Collapse
|
33
|
Miller A. Lymphödem, Inflammation und neue Therapieansätze. PHLEBOLOGIE 2021. [DOI: 10.1055/a-1383-7624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
ZusammenfassungDer fehlende Abtransport eiweißreicher interstitieller Flüssigkeit führt zu den bekannten klinischen Zeichen der Lymphödems an der Haut, die im Wesentlichen durch eine Fibrosierung ausgelöst werden. Bisher basiert die Therapie auf der mechanischen Anregung des Lymphtransports durch die komplexe physikalische Entstauung (KPE) oder operativen Maßnahmen, um das Ödem zu reduzieren. Der komplexe Ablauf der Entzündungsvorgänge im Gewebe wurde in den vergangenen Jahren untersucht und zeigt die zentrale Bedeutung von T-Lymphozyten, Makrophagen, LTB4 und diversen Zytokinen. Ausgehend von diesen Erkenntnissen gibt es Erfolg versprechende Therapieansätze mit Ketoprofen, Hydroxytyrosol und weiteren Immunmodulatoren.
Collapse
Affiliation(s)
- Anya Miller
- Praxis für Dermatologie, Allergologie, Lymphologie und Phlebologie, Berlin
| |
Collapse
|
34
|
Burger F, Miteva K, Baptista D, Roth A, Fraga-Silva RA, Martel C, Stergiopulos N, Mach F, Brandt KJ. Follicular regulatory helper T cells control the response of regulatory B cells to a high-cholesterol diet. Cardiovasc Res 2021; 117:743-755. [PMID: 32219371 PMCID: PMC7898950 DOI: 10.1093/cvr/cvaa069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 10/14/2019] [Accepted: 03/23/2020] [Indexed: 01/01/2023] Open
Abstract
AIMS B cell functions in the process of atherogenesis have been investigated but several aspects remain to be clarified. METHODS AND RESULTS In this study, we show that follicular regulatory helper T cells (TFR) control regulatory B cell (BREG) populations in Apoe-/- mice models on a high-cholesterol diet (HCD). Feeding mice with HCD resulted in up-regulation of TFR and BREG cell populations, causing the suppression of proatherogenic follicular helper T cell (TFH) response. TFH cell modulation is correlated with the growth of atherosclerotic plaque size in thoracoabdominal aortas and aortic root plaques, suggesting that TFR cells are atheroprotective. During adoptive transfer experiments, TFR cells transferred into HCD mice decreased TFH cell populations, atherosclerotic plaque size, while BREG cell population and lymphangiogenesis are significantly increased. CONCLUSION Our results demonstrate that, through different strategies, both TFR and TFH cells modulate anti- and pro-atherosclerotic immune processes in an Apoe-/- mice model since TFR cells are able to regulate both TFH and BREG cell populations as well as lymphangiogenesis and lipoprotein metabolism.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Aorta/immunology
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/immunology
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- B-Lymphocytes, Regulatory/immunology
- B-Lymphocytes, Regulatory/metabolism
- B-Lymphocytes, Regulatory/transplantation
- Cell Differentiation
- Cells, Cultured
- Cholesterol, Dietary
- Diet, High-Fat
- Disease Models, Animal
- Lymphangiogenesis
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Phenotype
- Plaque, Atherosclerotic
- T Follicular Helper Cells/immunology
- T Follicular Helper Cells/metabolism
- T Follicular Helper Cells/transplantation
- Mice
Collapse
Affiliation(s)
- Fabienne Burger
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| | - Kapka Miteva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| | - Daniela Baptista
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| | - Aline Roth
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| | - Rodrigo A Fraga-Silva
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Montreal Heart Institute Research Center, Université de Montréal, 5000, Belanger St, Room S5100, Montreal, Quebec, Canada
| | - Nikolaos Stergiopulos
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| | - Karim J Brandt
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
35
|
Lymphangiogenesis in renal fibrosis arises from macrophages via VEGF-C/VEGFR3-dependent autophagy and polarization. Cell Death Dis 2021; 12:109. [PMID: 33479195 PMCID: PMC7820012 DOI: 10.1038/s41419-020-03385-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
Inflammation plays a crucial role in the occurrence and development of renal fibrosis, which ultimately results in end-stage renal disease (ESRD). There is new focus on lymphangiogenesis in the field of inflammation. Recent studies have revealed the association between lymphangiogenesis and renal fibrosis, but the source of lymphatic endothelial cells (LECs) is not clear. It has also been reported that macrophages are involved in lymphangiogenesis through direct and indirect mechanisms in other tissues. We hypothesized that there was a close relationship between macrophages and lymphatic endothelial progenitor cells in renal fibrosis. In this study, we demonstrated that lymphangiogenesis occurred in a renal fibrosis model and was positively correlated with the degree of fibrosis and macrophage infiltration. Compared to resting (M0) macrophages and alternatively activated (M2) macrophages, classically activated (M1) macrophages predominantly transdifferentiated into LECs in vivo and in vitro. VEGF-C further increased M1 macrophage polarization and transdifferentiation into LECs by activating VEGFR3. It was suggested that VEGF-C/VEGFR3 pathway activation downregulated macrophage autophagy and subsequently regulated macrophage phenotype. The induction of autophagy in macrophages by rapamycin decreased M1 macrophage polarization and differentiation into LECs. These results suggested that M1 macrophages promoted lymphangiogenesis and contributed to newly formed lymphatic vessels in the renal fibrosis microenvironment, and VEGF-C/VEGFR3 signaling promoted macrophage M1 polarization by suppressing macrophage autophagy and then increased the transdifferentiation of M1 macrophages into LECs.
Collapse
|
36
|
Creed HA, Rutkowski JM. Emerging roles for lymphatics in acute kidney injury: Beneficial or maleficent? Exp Biol Med (Maywood) 2021; 246:845-850. [PMID: 33467886 DOI: 10.1177/1535370220983235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury, a sudden decline in renal filtration, is a surprisingly common pathology resulting from ischemic events, local or systemic infection, or drug-induced toxicity in the kidney. Unchecked, acute kidney injury can progress to renal failure and even recovered acute kidney injury patients are at an increased risk for developing future chronic kidney disease. The initial extent of inflammation, the specific immune response, and how well inflammation resolves are likely determinants in acute kidney injury-to-chronic kidney disease progression. Lymphatic vessels and their roles in fluid, solute, antigen, and immune cell transport make them likely to have a role in the acute kidney injury response. Lymphatics have proven to be an attractive target in regulating inflammation and immunomodulation in other pathologies: might these strategies be employed in acute kidney injury? Acute kidney injury studies have identified elevated levels of lymphangiogenic ligands following acute kidney injury, with an expansion of the lymphatics in several models post-injury. Manipulating the lymphatics in acute kidney injury, by augmenting or inhibiting their growth or through targeting lymphatic-immune interactions, has met with a range of positive, negative, and sometimes inconclusive results. This minireview briefly summarizes the findings of lymphatic changes and lymphatic roles in the inflammatory response in the kidney following acute kidney injury to discuss whether renal lymphatics are a beneficial, maleficent, or a passive contributor to acute kidney injury recovery.
Collapse
Affiliation(s)
- Heidi A Creed
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Joseph M Rutkowski
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| |
Collapse
|
37
|
Pro-lymphangiogenic VEGFR-3 signaling modulates memory T cell responses in allergic airway inflammation. Mucosal Immunol 2021; 14:144-151. [PMID: 32518367 PMCID: PMC7725864 DOI: 10.1038/s41385-020-0308-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/06/2020] [Accepted: 05/20/2020] [Indexed: 02/04/2023]
Abstract
In allergic airway inflammation, VEGFR-3-mediated lymphangiogenesis occurs in humans and mouse models, yet its immunological roles, particularly in adaptive immunity, are poorly understood. Here, we explored how pro-lymphangiogenic signaling affects the allergic response to house dust mite (HDM). In the acute inflammatory phase, the lungs of mice treated with blocking antibodies against VEGFR-3 (mF4-31C1) displayed less inflammation overall, with dramatically reduced innate and T-cell numbers and reduced inflammatory chemokine levels. However, when inflammation was allowed to resolve and memory recall was induced 2 months later, mice treated with mF4-31C1 as well as VEGF-C/-D knockout models showed exacerbated type 2 memory response to HDM, with increased Th2 cells, eosinophils, type 2 chemokines, and pathological inflammation scores. This was associated with lower CCL21 and decreased TRegs in the lymph nodes. Together, our data imply that VEGFR-3 activation in allergic airways helps to both initiate the acute inflammatory response and regulate the adaptive (memory) response, possibly in part by shifting the TReg/Th2 balance. This introduces new immunomodulatory roles for pro-lymphangiogenic VEGFR-3 signaling in allergic airway inflammation and suggests that airway lymphatics may be a novel target for treating allergic responses.
Collapse
|
38
|
Munir H, Mazzaglia C, Shields JD. Stromal regulation of tumor-associated lymphatics. Adv Drug Deliv Rev 2020; 161-162:75-89. [PMID: 32783989 DOI: 10.1016/j.addr.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Recent advances have identified a growing array of roles played by lymphatics in the tumor microenvironment, from providing a route of metastasis to immune modulation. The tumor microenvironment represents an exceptionally complex, dynamic niche comprised of a diverse mixture of cancer cells and normal host cells termed the stroma. This review discusses our current understanding of stromal elements and how they regulate lymphatic growth and functional properties in the tumor context.
Collapse
Affiliation(s)
- Hafsa Munir
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ
| | - Corrado Mazzaglia
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ
| | - Jacqueline D Shields
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ.
| |
Collapse
|
39
|
Kataru RP, Park HJ, Baik JE, Li C, Shin J, Mehrara BJ. Regulation of Lymphatic Function in Obesity. Front Physiol 2020; 11:459. [PMID: 32499718 PMCID: PMC7242657 DOI: 10.3389/fphys.2020.00459] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
The lymphatic system has many functions, including macromolecules transport, fat absorption, regulation and modulation of adaptive immune responses, clearance of inflammatory cytokines, and cholesterol metabolism. Thus, it is evident that lymphatic function can play a key role in the regulation of a wide array of biologic phenomenon, and that physiologic changes that alter lymphatic function may have profound pathologic effects. Recent studies have shown that obesity can markedly impair lymphatic function. Obesity-induced pathologic changes in the lymphatic system result, at least in part, from the accumulation of inflammatory cells around lymphatic vessel leading to impaired lymphatic collecting vessel pumping capacity, leaky initial and collecting lymphatics, alterations in lymphatic endothelial cell (LEC) gene expression, and degradation of junctional proteins. These changes are important since impaired lymphatic function in obesity may contribute to the pathology of obesity in other organ systems in a feed-forward manner by increasing low-grade tissue inflammation and the accumulation of inflammatory cytokines. More importantly, recent studies have suggested that interventions that inhibit inflammatory responses, either pharmacologically or by lifestyle modifications such as aerobic exercise and weight loss, improve lymphatic function and metabolic parameters in obese mice. The purpose of this review is to summarize the pathologic effects of obesity on the lymphatic system, the cellular mechanisms that regulate these responses, the effects of impaired lymphatic function on metabolic syndrome in obesity, and the interventions that may improve lymphatic function in obesity.
Collapse
Affiliation(s)
- Raghu P Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hyeong Ju Park
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jung Eun Baik
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Claire Li
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jinyeon Shin
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Babak J Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
40
|
Norden PR, Kume T. The Role of Lymphatic Vascular Function in Metabolic Disorders. Front Physiol 2020; 11:404. [PMID: 32477160 PMCID: PMC7232548 DOI: 10.3389/fphys.2020.00404] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to its roles in the maintenance of interstitial fluid homeostasis and immunosurveillance, the lymphatic system has a critical role in regulating transport of dietary lipids to the blood circulation. Recent work within the past two decades has identified an important relationship between lymphatic dysfunction and patients with metabolic disorders, such as obesity and type 2 diabetes, in part characterized by abnormal lipid metabolism and transport. Utilization of several genetic mouse models, as well as non-genetic models of diet-induced obesity and metabolic syndrome, has demonstrated that abnormal lymphangiogenesis and poor collecting vessel function, characterized by impaired contractile ability and perturbed barrier integrity, underlie lymphatic dysfunction relating to obesity, diabetes, and metabolic syndrome. Despite the progress made by these models, the contribution of the lymphatic system to metabolic disorders remains understudied and new insights into molecular signaling mechanisms involved are continuously developing. Here, we review the current knowledge related to molecular mechanisms resulting in impaired lymphatic function within the context of obesity and diabetes. We discuss the role of inflammation, transcription factor signaling, vascular endothelial growth factor-mediated signaling, and nitric oxide signaling contributing to impaired lymphangiogenesis and perturbed lymphatic endothelial cell barrier integrity, valve function, and contractile ability in collecting vessels as well as their viability as therapeutic targets to correct lymphatic dysfunction and improve metabolic syndromes.
Collapse
Affiliation(s)
- Pieter R. Norden
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Tsutomu Kume
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
41
|
Pfister C, Dawczynski H, Schingale FJ. Selenium Deficiency in Lymphedema and Lipedema-A Retrospective Cross-Sectional Study from a Specialized Clinic. Nutrients 2020; 12:nu12051211. [PMID: 32344864 PMCID: PMC7281982 DOI: 10.3390/nu12051211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/29/2023] Open
Abstract
Background: Selenium is a trace element, which is utilized by the human body in selenoproteins. Their main function is to reduce oxidative stress, which plays an important role in lymphedema and lipedema. In addition, selenium deficiency is associated with an impaired immune function. The aim of this study was to determine the prevalence of selenium deficiency in these conditions, and if it is associated with disease severity and an associated medical condition such as obesity. Methods: This cross-sectional study is an anonymized, retrospective analysis of clinical data that was routinely recorded in a clinic specialized in lymphology. The data was comprised from 791 patients during 2012–2019, in which the selenium status was determined as part of their treatment. Results: Selenium deficiency proved common in patients with lymphedema, lipedema, and lipo-lymphedema affecting 47.5% of the study population. Selenium levels were significantly lower in patients with obesity-related lymphedema compared to patients with cancer-related lymphedema (96.6 ± 18.0 μg/L vs. 105.1 ± 20.2 μg/L; p < 0.0001). Obesity was a risk factor for selenium deficiency in lymphedema (OR 2.19; 95% CI 1.49 to 3.21), but not in lipedema. Conclusions: In countries with low selenium supply, selenium deficiency is common, especially in lymphedema patients. Therefore, it would be sensible to check the selenium status in lymphedema patients, especially those with obesity, as the infection risk of lymphedema is already increased.
Collapse
Affiliation(s)
- Christina Pfister
- Biosyn Arzneimittel GmbH, Schorndorfer Straße 32, 70734 Fellbach, Germany;
- Correspondence: ; Tel.: +49-711-57532-321
| | - Horst Dawczynski
- Biosyn Arzneimittel GmbH, Schorndorfer Straße 32, 70734 Fellbach, Germany;
| | | |
Collapse
|
42
|
Histopathologic Features of Lymphedema: A Molecular Review. Int J Mol Sci 2020; 21:ijms21072546. [PMID: 32268536 PMCID: PMC7177532 DOI: 10.3390/ijms21072546] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
An estimated 5 million people in the United States are affected by secondary lymphedema, with most cases attributed to malignancies or malignancy-related treatments. The pathogenesis of secondary lymphedema has historically been attributed to lymphatic injury or dysfunction; however, recent studies illustrate the complexity of lymphedema as a disease process in which many of its clinical features such as inflammation, fibrosis, adipogenesis, and recurrent infections contribute to on-going lymphatic dysfunction in a vicious cycle. Investigations into the molecular underpinning of these features further our understanding of the pathophysiology of this disease and suggests new therapeutics.
Collapse
|
43
|
Azhar SH, Lim HY, Tan BK, Angeli V. The Unresolved Pathophysiology of Lymphedema. Front Physiol 2020; 11:137. [PMID: 32256375 PMCID: PMC7090140 DOI: 10.3389/fphys.2020.00137] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/11/2020] [Indexed: 12/29/2022] Open
Abstract
Lymphedema is the clinical manifestation of impaired lymphatic transport. It remains an under-recognized and under-documented clinical condition that still lacks a cure. Despite the substantial advances in the understanding of lymphatic vessel biology and function in the past two decades, there are still unsolved questions regarding the pathophysiology of lymphedema, especially in humans. As a consequence of impaired lymphatic drainage, proteins and lipids accumulate in the interstitial space, causing the regional tissue to undergo extensive and progressive architectural changes, including adipose tissue deposition and fibrosis. These changes are also associated with inflammation. However, the temporal sequence of these events, the relationship between these events, and their interplay during the progression are not clearly understood. Here, we review our current knowledge on the pathophysiology of lymphedema derived from human and animal studies. We also discuss the possible cellular and molecular mechanisms involved in adipose tissue and collagen accumulation during lymphedema. We suggest that more studies should be dedicated to enhancing our understanding of the human pathophysiology of lymphedema to pave the way for new diagnostic and therapeutic avenues for this condition.
Collapse
Affiliation(s)
- Syaza Hazwany Azhar
- Department of Microbiology and Immunology, Life Science Institute, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hwee Ying Lim
- Department of Microbiology and Immunology, Life Science Institute, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bien-Keem Tan
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Singapore General Hospital, Singapore, Singapore
| | - Veronique Angeli
- Department of Microbiology and Immunology, Life Science Institute, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
44
|
Role of Endogenous Regulators of Hem- And Lymphangiogenesis in Corneal Transplantation. J Clin Med 2020; 9:jcm9020479. [PMID: 32050484 PMCID: PMC7073692 DOI: 10.3390/jcm9020479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Under normal conditions, the cornea, being the transparent “windscreen” of the eye, is free of both blood and lymphatic vessels. However, various diseases of the eye, like infections, can interfere with the balance between promoting and inhibiting factors, which leads to ingrowth of blood and lymphatic vessels. The newly formed lymphatic vessels increase the risk of graft rejection after subsequent corneal transplantation. Corneal transplantation is one of the most commonly performed transplantations worldwide, with more than 40,000 surgeries per year in Europe. To date, various anti-hem- and anti-lymphangiogenic treatment strategies have been developed specifically for the corneal vascular endothelial growth factor (VEGF) pathway. Currently, however, no treatment strategies are clinically available to specifically modulate lymphangiogenesis. In this review, we will give an overview about endogenous regulators of hem- and lymphangiogenesis and discuss potential new strategies for targeting pathological lymphangiogenesis. Furthermore, we will review recently identified modulators and demonstrate that the cornea is a suitable model for the identification of novel endogenous modulators of lymphangiogenesis. The identification of novel modulators of lymphangiogenesis and a better understanding of the signaling pathways involved will contribute to the development of new therapeutic targets for the treatment of pathological lymphangiogenesis. This, in turn, will improve graft rejection, not only for the cornea.
Collapse
|
45
|
Burchill MA, Goldberg AR, Tamburini BAJ. Emerging Roles for Lymphatics in Chronic Liver Disease. Front Physiol 2020; 10:1579. [PMID: 31992991 PMCID: PMC6971163 DOI: 10.3389/fphys.2019.01579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Chronic liver disease (CLD) is a global health epidemic causing ∼2 million deaths annually worldwide. As the incidence of CLD is expected to rise over the next decade, understanding the cellular and molecular mediators of CLD is critical for developing novel therapeutics. Common characteristics of CLD include steatosis, inflammation, and cholesterol accumulation in the liver. While the lymphatic system in the liver has largely been overlooked, the liver lymphatics, as in other organs, are thought to play a critical role in maintaining normal hepatic function by assisting in the removal of protein, cholesterol, and immune infiltrate. Lymphatic growth, permeability, and/or hyperplasia in non-liver organs has been demonstrated to be caused by obesity or hypercholesterolemia in humans and animal models. While it is still unclear if changes in permeability occur in liver lymphatics, the lymphatics do expand in number and size in all disease etiologies tested. This is consistent with the lymphatic endothelial cells (LEC) upregulating proliferation specific genes, however, other transcriptional changes occur in liver LECs that are dependent on the inflammatory mediators that are specific to the disease etiology. Whether these changes induce lymphatic dysfunction or if they impact liver function has yet to be directly addressed. Here, we will review what is known about liver lymphatics in health and disease, what can be learned from recent work on the influence of obesity and hypercholesterolemia on the lymphatics in other organs, changes that occur in LECs in the liver during disease and outstanding questions in the field.
Collapse
Affiliation(s)
- Matthew A Burchill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, United States
| | - Alyssa R Goldberg
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, United States.,Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children's Hospital Colorado, Aurora, CO, United States
| | - Beth A Jirón Tamburini
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, United States.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, United States
| |
Collapse
|
46
|
Bertelli M, Kiani AK, Paolacci S, Manara E, Dautaj A, Beccari T, Michelini S. Molecular pathways involved in lymphedema: Hydroxytyrosol as a candidate natural compound for treating the effects of lymph accumulation. J Biotechnol 2019; 308:82-86. [PMID: 31794783 DOI: 10.1016/j.jbiotec.2019.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
Abstract
Lymphedema is a chronic accumulation of interstitial fluid due to inefficient lymph drainage. Major causes of lymphedema are malformations of lymphatic vessels, trauma, toxic damage and surgery. The swelling typically affects the limbs. Lymphedema may be primary, caused by genetic mutations and relatively rare, or secondary (acquired), due to external causes such as infections or surgery. Fluid accumulation induces pathological changes: activation of the inflammatory cascade, immune cell infiltration, tissue fibrosis, adipose accumulation. We focused on the inflammatory phenotype mediated by leukotriene B4, a lipid mediator of the inflammatory pathway, and the potential therapeutic effect of hydroxytyrosol. We conducted an electronic search in PubMed using "lymphedema", "lymphedema pathway", "hydroxytyrosol" as keywords. We found that lymphedema deregulates at least six molecular pathways and that hydroxytyrosol, a compound with antioxidant activity, can improve endothelial dysfunction, hemostatic and lipid profiles, and decrease oxidative stress and inflammation through inhibition of leukotriene B4 activity. This review is the first to highlight the possibility of using hydroxytyrosol to treat the secondary effects of lymphedema, especially inflammation. The possible effects of hydroxytyrosol on lymphedema should be tested in vitro and in vivo to find the best way to treat patients with lymphedema in order to improve their health status.
Collapse
Affiliation(s)
- Matteo Bertelli
- EBTNA-Lab, Via Delle Maioliche, 57/G, 38068, Rovereto, TN, Italy.
| | - Aysha Karim Kiani
- Allama Iqbal Open University, Sector H-8, 44000, Islamabad, Pakistan.
| | - Stefano Paolacci
- MAGI's Lab, Via Delle Maioliche, 57/D, 38068, Rovereto, TN, Italy.
| | - Elena Manara
- MAGI Euregio, Via Maso della Pieve, 60/A, 39100, Bolzano, Italy.
| | - Astrit Dautaj
- MAGI Balkans, Rruga Andon Zako Cajupi, 1019, Tirana, Albania.
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Via Ariodante Fabretti, 48, 06123, Perugia, Italy.
| | - Sandro Michelini
- Department of Vascular Rehabilitation, San Giovanni Battista Hospital, Via Luigi Ercole Morselli, 13, 00148, Rome, Italy.
| |
Collapse
|
47
|
|
48
|
Lin T, Zhang X, Lu Y, Gong L. Identification of Circular RNA Related to Inflammation-Induced Lymphangiogenesis by Microarray Analysis. DNA Cell Biol 2019; 38:887-894. [PMID: 31295021 DOI: 10.1089/dna.2018.4590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Circular RNAs (circRNAs), as with other noncoding RNAs, have emerged as novel molecules of interest in gene regulation and in the development of many diseases. However, the expression and function of circRNAs in inflammation-induced lymphangiogenesis (LG) are still unknown. Microarray profiling in inflamed human lymphatic endothelial cells identified 82 differentially expressed circRNAs, including 6 downregulated and 76 upregulated circRNAs. One of the top 10 upregulated circRNAs, cZNF609, was selected for subsequent quantitative real-time PCR validation, and was found to be significantly upregulated in inflamed corneas from both mouse and human eyes. The expression of miR-184 was significantly lower in inflamed corneas than in control ones, which suggested that cZNF609 might serve as a sponge for miR-184. The expression of heparanase, a potential target gene of miR-184, was significantly increased in inflamed corneas. Therefore, circRNAs may serve as potential regulators of corneal LG. These findings lay a foundation for functional research on circRNAs in corneal LG pathogenesis.
Collapse
Affiliation(s)
- Tong Lin
- 1Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, People's Republic of China.,2NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China.,3Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, People's Republic of China
| | - Xiaozhao Zhang
- 1Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, People's Republic of China.,2NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China.,3Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, People's Republic of China
| | - Yang Lu
- 1Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, People's Republic of China.,2NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China.,3Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, People's Republic of China
| | - Lan Gong
- 1Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, People's Republic of China.,2NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China.,3Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
49
|
Hos D, Matthaei M, Bock F, Maruyama K, Notara M, Clahsen T, Hou Y, Le VNH, Salabarria AC, Horstmann J, Bachmann BO, Cursiefen C. Immune reactions after modern lamellar (DALK, DSAEK, DMEK) versus conventional penetrating corneal transplantation. Prog Retin Eye Res 2019; 73:100768. [PMID: 31279005 DOI: 10.1016/j.preteyeres.2019.07.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
In the past decade, novel lamellar keratoplasty techniques such as Deep Anterior Lamellar Keratoplasty (DALK) for anterior keratoplasty and Descemet stripping automated endothelial keratoplasty (DSAEK)/Descemet membrane endothelial keratoplasty (DMEK) for posterior keratoplasty have been developed. DALK eliminates the possibility of endothelial allograft rejection, which is the main reason for graft failure after penetrating keratoplasty (PK). Compared to PK, the risk of endothelial graft rejection is significantly reduced after DSAEK/DMEK. Thus, with modern lamellar techniques, the clinical problem of endothelial graft rejection seems to be nearly solved in the low-risk situation. However, even with lamellar grafts there are epithelial, subepithelial and stromal immune reactions in DALK and endothelial immune reactions in DSAEK/DMEK, and not all keratoplasties can be performed in a lamellar fashion. Therefore, endothelial graft rejection in PK is still highly relevant, especially in the "high-risk" setting, where the cornea's (lymph)angiogenic and immune privilege is lost due to severe inflammation and pathological neovascularization. For these eyes, currently available treatment options are still unsatisfactory. In this review, we will describe currently used keratoplasty techniques, namely PK, DALK, DSAEK, and DMEK. We will summarize their indications, provide surgical descriptions, and comment on their complications and outcomes. Furthermore, we will give an overview on corneal transplant immunology. A specific focus will be placed on endothelial graft rejection and we will report on its incidence, clinical presentation, and current/future treatment and prevention options. Finally, we will speculate how the field of keratoplasty and prevention of corneal allograft rejection will develop in the future.
Collapse
Affiliation(s)
- Deniz Hos
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Kazuichi Maruyama
- Department of Innovative Visual Science, Graduate School of Medicine, Osaka University, Japan
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Viet Nhat Hung Le
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Department of Ophthalmology, Hue College of Medicine and Pharmacy, Hue University, Viet Nam
| | | | - Jens Horstmann
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Bjoern O Bachmann
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
50
|
Kataru RP, Wiser I, Baik JE, Park HJ, Rehal S, Shin JY, Mehrara BJ. Fibrosis and secondary lymphedema: chicken or egg? Transl Res 2019; 209:68-76. [PMID: 31022376 PMCID: PMC7400991 DOI: 10.1016/j.trsl.2019.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 01/06/2023]
Abstract
Secondary lymphedema is a common complication of cancer treatment resulting in progressive fibroadipose tissue deposition, increased risk of infections, and, in rare cases, secondary malignancies. Until recently, the pathophysiology of secondary lymphedema was thought to be related to impaired collateral lymphatic formation after surgical injury. However, more recent studies have shown that chronic inflammation-induced fibrosis plays a key role in the pathophysiology of this disease. In this review, we will discuss the evidence supporting this hypothesis and summarize recent publications demonstrating that lymphatic injury activates chronic immune responses that promote fibrosis and lymphatic leakiness, decrease collecting lymphatic pumping, and impair collateral lymphatic formation. We will review how chronic mixed T-helper cell inflammatory reactions regulate this process and how this response may be used to design novel therapies for lymphedema.
Collapse
Affiliation(s)
- Raghu P Kataru
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Itay Wiser
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jung Eun Baik
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hyeung Ju Park
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sonia Rehal
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jin Yeon Shin
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Babak J Mehrara
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|