1
|
Rroji O, Mucignat C. Factors influencing brain recovery from stroke via possible epigenetic changes. Future Sci OA 2024; 10:2409609. [PMID: 39429231 PMCID: PMC11497982 DOI: 10.1080/20565623.2024.2409609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Aim: To examine epigenetic changes leading to functional repair after damage to the central motor system.Data sources: A literature search was conducted using medical and health science electronic databases (PubMed, MEDLINE, Scopus) up to July 2023.Study selection: Data were summarized for type of intervention, study design, findings including human and animal studies.Data extraction: Data were extracted and double-checked independently for methodological quality. By means of the influence of environmental (calorie restriction or physical exercise) and other factors, epigenetic instructions were found to increase levels of BDNF and enhance synaptic neurotransmission, possibly leading to larger scale changes in structural and functional assets, which may end up to cognitive and motor repair after stroke.
Collapse
Affiliation(s)
- Orjon Rroji
- Department of Radiology & Imaging techniques, European University of Tirana, Albania
| | - Carla Mucignat
- Department of Molecular Medicine, University of Padova, Italy
- National Institute for Biostructures & Biosystems, Rome, Italy
| |
Collapse
|
2
|
Voskoboynik Y, McCulloch AD, Sahoo D. Macrophages on the run: Exercise balances macrophage polarization for improved health. Mol Metab 2024; 90:102058. [PMID: 39476967 PMCID: PMC11585839 DOI: 10.1016/j.molmet.2024.102058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/11/2024] [Accepted: 10/24/2024] [Indexed: 11/09/2024] Open
Abstract
OBJECTIVE Exercise plays a crucial role in maintaining and improving human health. However, the precise molecular mechanisms that govern the body's response to exercise or/compared to periods of inactivity remain elusive. Current evidence appears to suggest that exercise exerts a seemingly dual influence on macrophage polarization states, inducing both pro-immune response M1 activation and cell-repair-focused M2 activation. To reconcile this apparent paradox, we leveraged a comprehensive meta-analysis of 75 diverse exercise and immobilization published datasets (7000+ samples), encompassing various exercise modalities, sampling techniques, and species. METHODS 75 exercise and immobilization expression datasets were identified and processed for analysis. The data was analyzed using boolean relationships which uses binary gene expression relationships in order to increase the signal to noise achieved from the data, allowing for the use of comparison across such a diverse set of datasets. We utilized a boolean relationship-aided macrophage gene model [1], to model the macrophage polarization state in pre and post exercise samples in both immediate exercise and long term training. RESULTS Our modeling uncovered a key temporal dynamic: exercise triggers an immediate M1 surge, while long term training transitions to sustained M2 activation. These patterns were consistent across different species (human vs mouse), sampling methods (blood vs muscle biopsy), and exercise type (resistance vs endurance), and routinely showed statistically significant results. Immobilization was shown to have the opposite effect of exercise by triggering an immediate M2 activation. Individual characteristics like gender, exercise intensity and age were found to impact the degree of polarization without changing the overall patterns. To model macrophages within the specific context of muscle tissue, we identified a focused gene set signature of muscle resident macrophage polarization, allowing for the precise measurement of macrophage activity in response to exercise within the muscle. CONCLUSIONS These consistent patterns across all 75 examined studies suggest that the long term health benefits of exercise stem from its ability to orchestrate a balanced and temporally-regulated interplay between pro-immune response (M1) and reparative macrophage activity (M2). Similarly, it suggests that an imbalance between pro-immune and cell repair responses could facilitate disease development. Our findings shed light on the intricate molecular choreography behind exercise-induced health benefits with a particular insight on its effect on the macrophages within the muscle.
Collapse
Affiliation(s)
- Yotam Voskoboynik
- Department of Bioinformatics and System Biology, Jacobs School of Engineering, University of California San Diego, San Diego, United States
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, United States; Department of Medicine, University of California San Diego, United States
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, United States; Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, United States.
| |
Collapse
|
3
|
Noone J, Mucinski JM, DeLany JP, Sparks LM, Goodpaster BH. Understanding the variation in exercise responses to guide personalized physical activity prescriptions. Cell Metab 2024; 36:702-724. [PMID: 38262420 DOI: 10.1016/j.cmet.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Understanding the factors that contribute to exercise response variation is the first step in achieving the goal of developing personalized exercise prescriptions. This review discusses the key molecular and other mechanistic factors, both extrinsic and intrinsic, that influence exercise responses and health outcomes. Extrinsic characteristics include the timing and dose of exercise, circadian rhythms, sleep habits, dietary interactions, and medication use, whereas intrinsic factors such as sex, age, hormonal status, race/ethnicity, and genetics are also integral. The molecular transducers of exercise (i.e., genomic/epigenomic, proteomic/post-translational, transcriptomic, metabolic/metabolomic, and lipidomic elements) are considered with respect to variability in physiological and health outcomes. Finally, this review highlights the current challenges that impede our ability to develop effective personalized exercise prescriptions. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) aims to fill significant gaps in the understanding of exercise response variability, yet further investigations are needed to address additional health outcomes across all populations.
Collapse
Affiliation(s)
- John Noone
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | | | - James P DeLany
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Bret H Goodpaster
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA.
| |
Collapse
|
4
|
Pacak CA, Suzuki-Hatano S, Khadir F, Daugherty AL, Sriramvenugopal M, Gosiker BJ, Kang PB, Cade WT. One episode of low intensity aerobic exercise prior to systemic AAV9 administration augments transgene delivery to the heart and skeletal muscle. J Transl Med 2023; 21:748. [PMID: 37875924 PMCID: PMC10598899 DOI: 10.1186/s12967-023-04626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
INTRODUCTION The promising potential of adeno-associated virus (AAV) gene delivery strategies to treat genetic disorders continues to grow with an additional three AAV-based therapies recently approved by the Food and Drug Administration and dozens of others currently under evaluation in clinical trials. With these developments, it has become increasingly apparent that the high doses currently needed for efficacy carry risks of toxicity and entail enormous manufacturing costs, especially for clinical grade products. Strategies to increase the therapeutic efficacy of AAV-mediated gene delivery and reduce the minimal effective dose would have a substantial impact on this field. We hypothesized that an exercise-induced redistribution of tissue perfusion in the body to favor specific target organs via acute aerobic exercise prior to systemic intravenous (IV) AAV administration could increase efficacy. BACKGROUND Aerobic exercise triggers an array of downstream physiological effects including increased perfusion of heart and skeletal muscle, which we expected could enhance AAV transduction. Prior preclinical studies have shown promising results for a gene therapy approach to treat Barth syndrome (BTHS), a rare monogenic cardioskeletal myopathy, and clinical studies have shown the benefit of low intensity exercise in these patients, making this a suitable disease in which to test the ability of aerobic exercise to enhance AAV transduction. METHODS Wild-type (WT) and BTHS mice were either systemically administered AAV9 or completed one episode of low intensity treadmill exercise immediately prior to systemic administration of AAV9. RESULTS We demonstrate that a single episode of acute low intensity aerobic exercise immediately prior to IV AAV9 administration improves marker transgene delivery in WT mice as compared to mice injected without the exercise pre-treatment. In BTHS mice, prior exercise improved transgene delivery and additionally increased improvement in mitochondrial gene transcription levels and mitochondrial function in the heart and gastrocnemius muscles as compared to mice treated without exercise. CONCLUSIONS Our findings suggest that one episode of acute low intensity aerobic exercise improves AAV9 transduction of heart and skeletal muscle. This low-risk, cost effective intervention could be implemented in clinical trials of individuals with inherited cardioskeletal disease as a potential means of improving patient safety for human gene therapy.
Collapse
Affiliation(s)
- Christina A Pacak
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| | - Silveli Suzuki-Hatano
- College of Medicine, Department of Pediatrics, University of Florida, Gainesville, USA
| | - Fatemeh Khadir
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Audrey L Daugherty
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | | | - Bennett J Gosiker
- College of Medicine, Department of Pediatrics, University of Florida, Gainesville, USA
| | - Peter B Kang
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - William Todd Cade
- Physical Therapy Division, Department of Orthopaedic Surgery, Duke University School of Medicine, 311 Trent Drive, Durham, NC, 27710, USA.
| |
Collapse
|
5
|
Zeng X, Li L, Xia Z, Zou L, Kwok T, Su Y. Transcriptomic Analysis of Human Skeletal Muscle in Response to Aerobic Exercise and Protein Intake. Nutrients 2023; 15:3485. [PMID: 37571423 PMCID: PMC10421363 DOI: 10.3390/nu15153485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
This study aimed to provide a more comprehensive molecular insight into the effects of aerobic exercise (AE), protein intake (PI), and AE combined with PI on human skeletal muscle by comparing their transcriptomic profiles. Fourteen published datasets obtained from the Gene Expression Omnibus (GEO) database were used. The hub genes were identified in response to acute AE (ACTB, IL6), training AE (UBB, COL1A1), PI (EZH2), acute AE combined with PI (DDIT3), and training AE combined with PI (MYC). Both FOS and MYC were upregulated in response to acute AE, and they were, respectively, downregulated by higher PI and a combination of AE and PI. COL1A1 was upregulated by training AE but was downregulated by higher PI. Results from the gene set enrichment analysis (p < 0.05 and FDR < 25%) showed that AE and PI delivered their impacts on human skeletal muscle in analogous pathways, including aerobic respiration, mitochondrial complexes, extracellular matrix (ECM) remodeling, metabolic process, and immune/inflammatory responses, whereas, PI may attenuate the response of immune/inflammation and ECM remodeling which would be promoted by AE, irrespective of its types. Compared to PI alone, acute AE combined with PI would further promote protein turnover and synthesis, but suppress skeletal muscle contraction and movement.
Collapse
Affiliation(s)
- Xueqing Zeng
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China (Z.X.)
| | - Linghong Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China (Z.X.)
| | - Zhilin Xia
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China (Z.X.)
| | - Lianhong Zou
- Hunan Provincial Institute of Emergency Medicine, Hunan Provincial People’s Hospital, Changsha 410009, China
| | - Timothy Kwok
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China (Z.X.)
| |
Collapse
|
6
|
Grieb A, Schmitt A, Fragasso A, Widmann M, Mattioni Maturana F, Burgstahler C, Erz G, Schellhorn P, Nieß AM, Munz B. Skeletal Muscle MicroRNA Patterns in Response to a Single Bout of Exercise in Females: Biomarkers for Subsequent Training Adaptation? Biomolecules 2023; 13:884. [PMID: 37371465 DOI: 10.3390/biom13060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
microRNAs (miRs) have been proposed as a promising new class of biomarkers in the context of training adaptation. Using microarray analysis, we studied skeletal muscle miR patterns in sedentary young healthy females (n = 6) before and after a single submaximal bout of endurance exercise ('reference training'). Subsequently, participants were subjected to a structured training program, consisting of six weeks of moderate-intensity continuous endurance training (MICT) and six weeks of high-intensity interval training (HIIT) in randomized order. In vastus lateralis muscle, we found significant downregulation of myomiRs, specifically miR-1, 133a-3p, and -5p, -133b, and -499a-5p. Similarly, exercise-associated miRs-23a-3p, -378a-5p, -128-3p, -21-5p, -107, -27a-3p, -126-3p, and -152-3p were significantly downregulated, whereas miR-23a-5p was upregulated. Furthermore, in an untargeted approach for differential expression in response to acute exercise, we identified n = 35 miRs that were downregulated and n = 20 miRs that were upregulated by factor 4.5 or more. Remarkably, KEGG pathway analysis indicated central involvement of this set of miRs in fatty acid metabolism. To reproduce these data in a larger cohort of all-female subjects (n = 29), qPCR analysis was carried out on n = 15 miRs selected from the microarray, which confirmed their differential expression. Furthermore, the acute response, i.e., the difference between miR concentrations before and after the reference training, was correlated with changes in maximum oxygen uptake (V̇O2max) in response to the training program. Here, we found that miRs-199a-3p and -19b-3p might be suitable acute-response candidates that correlate with individual degrees of training adaptation in females.
Collapse
Affiliation(s)
- Alexandra Grieb
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Angelika Schmitt
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Annunziata Fragasso
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Manuel Widmann
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Felipe Mattioni Maturana
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Christof Burgstahler
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Gunnar Erz
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Philipp Schellhorn
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Andreas M Nieß
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Barbara Munz
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| |
Collapse
|
7
|
Zhelankin AV, Iulmetova LN, Ahmetov II, Generozov EV, Sharova EI. Diversity and Differential Expression of MicroRNAs in the Human Skeletal Muscle with Distinct Fiber Type Composition. Life (Basel) 2023; 13:659. [PMID: 36983815 PMCID: PMC10056610 DOI: 10.3390/life13030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The ratio of fast- and slow-twitch fibers in human skeletal muscle is variable and largely determined by genetic factors. In this study, we investigated the contribution of microRNA (miRNA) in skeletal muscle fiber type composition. The study involved biopsy samples of the vastus lateralis muscle from 24 male participants with distinct fiber type ratios. The miRNA study included samples from five endurance athletes and five power athletes with the predominance of slow-twitch (61.6-72.8%) and fast-twitch (69.3-80.7%) fibers, respectively. Total and small RNA were extracted from tissue samples. Total RNA sequencing (N = 24) revealed 352 differentially expressed genes between the groups with the predominance of fast- and slow-twitch muscle fibers. Small RNA sequencing showed upregulation of miR-206, miR-501-3p and miR-185-5p, and downregulation of miR-499a-5p and miR-208-5p in the group of power athletes with fast-twitch fiber predominance. Two miRtronic miRNAs, miR-208b-3p and miR-499a-5p, had strong correlations in expression with their host genes (MYH7 and MYH7B, respectively). Correlations between the expression of miRNAs and their experimentally validated messenger RNA (mRNA) targets were calculated, and 11 miRNA-mRNA interactions with strong negative correlations were identified. Two of them belonged to miR-208b-3p and miR-499a-5p, indicating their regulatory links with the expression of CDKN1A and FOXO4, respectively.
Collapse
Affiliation(s)
- Andrey V. Zhelankin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Liliia N. Iulmetova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ildus I. Ahmetov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| | - Eduard V. Generozov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Elena I. Sharova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| |
Collapse
|
8
|
Sun B, Zhang Y, Zhang M, Liu R, Yang W. Gene therapy targeting miR‑212‑3p exerts therapeutic effects on MAFLD similar to those of exercise. Int J Mol Med 2023; 51:16. [PMID: 36633140 PMCID: PMC9869725 DOI: 10.3892/ijmm.2023.5219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/03/2022] [Indexed: 01/12/2023] Open
Abstract
Exercise is the main treatment for patients with metabolic‑associated fatty liver disease (MAFLD); however, it may be difficult for some patients to adhere to or tolerate an exercise regime. Thus, finding a treatment alternative to exercise is of particular importance. The authors have previously demonstrated that the high expression of microRNA (miRNA/miR)‑212 promotes lipogenesis in vitro. The present study aimed to explore the therapeutic potential, as well as the mechanisms of action of miR‑212 in MAFLD. The expression of miR‑212‑3p, but not that of miR‑212‑5p, was found to be significantly elevated in MAFLD and to be decreased by exercise. Compared with exercise treatment, the inhibition of miR‑212‑3p expression in a mouse model fed a high‑fat diet exerted beneficial effects on MAFLD similar to those of exercise. Conversely, the overexpression of miR‑212‑3p abolished the ameliorative effects of exercise on MAFLD. Fibroblast growth factor 21 (FGF21) and chromodomain helicase DNA binding protein 1 (CHD1) were identified as target genes of miR‑212‑3p in lipid metabolism using bioinformatics analysis. Mechanistically, the inhibition of miR‑212‑3p mimicked the effects of exercise on lipid metabolism by regulating FGF21, but not CHD1. The exercise‑related transcription factor, early growth response 1 (EGR1), was identified upstream of miR‑212‑3p through promoter motif analysis. EGR1 overexpression inhibited miR‑212‑3p expression. The overexpression of miR‑212‑3p abolished the effects of exercise on lipid metabolism by exogenously attenuating the transcriptional repression of EGR1. Moreover, the overexpression of miR‑212‑3p abolished the regulatory effects of EGR1 on FGF21. On the whole, the present study demonstrates that miR‑212‑3p plays a key role in the effects of exercise on MAFLD. The findings presented herein suggest a potential therapeutic effect of targeting miR‑212‑3p in MAFLD.
Collapse
Affiliation(s)
- Bo Sun
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Yu Zhang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Minbo Zhang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Ruilin Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China,Dr Ruilin Liu, Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, P.R. China, E-mail:
| | - Wenzhuo Yang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China,Correspondence to: Dr Wenzhuo Yang, Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, P.R. China, E-mail:
| |
Collapse
|
9
|
Heianza Y, Xue Q, Rood J, Bray GA, Sacks FM, Qi L. Circulating thrifty microRNA is related to insulin sensitivity, adiposity, and energy metabolism in adults with overweight and obesity: the POUNDS Lost trial. Am J Clin Nutr 2023; 117:121-129. [PMID: 36789931 PMCID: PMC10196610 DOI: 10.1016/j.ajcnut.2022.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/27/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND MicroRNA 128-1 (miR-128-1) was recently linked to the evolutionary adaptation to famine and identified as a thrifty microRNA that controls energy expenditure, contributing to obesity and impaired glucose metabolism. OBJECTIVES We investigated whether circulating miR-128-1-5p and its temporal changes in response to weight-loss diet interventions were related to regulating insulin resistance, adiposity, and energy expenditure in adults with overweight and obesity. We also examined whether habitual physical activity (PA) and different macronutrient intakes modified associations of changes in miR-128-1-5p with improved metabolic outcomes. METHODS This study included 495 adults who consumed weight-loss diets with different macronutrient intakes. Circulating levels of miR-128-1-5p were assessed at baseline and 6 mo after the interventions. Outcome measurements included changes in insulin resistance HOMA-IR, adiposity, and resting energy expenditure. RESULTS We observed significant relations between circulating miR-128-1-5p and the positive selection signals at the 2q21.3 locus assessed by the single nucleotide polymorphisms rs1446585 and rs4988235. Higher miR-128-1-5p levels were associated with greater HOMA-IR (β per 1 SD: 0.08 [SE 0.03]; P = 0.009), waist circumference (β, 1.16 [0.55]; P = 0.036), whole-body total % fat mass (β, 0.75 [0.30]; P = 0.013), and REE (β, 23 [11]; P = 0.037). In addition, higher miR-128-1-5p level was related to lower total PA index (β, -0.23 [0.07]; P = 0.001) and interacted with PA (Pinteraction < 0.05) on changes in HOMA-IR and adiposity. We found that greater increases in miR-128-1-5p levels after the interventions were associated with lesser improvements in HOMA-IR and adiposity in participants with no change/decreases in PA. Furthermore, we found that dietary fat (Pinteraction = 0.027) and protein (Pinteraction= 0.055) intakes modified relations between changes in miR-128-1-5p and REE. CONCLUSIONS Circulating thrifty miRNA was linked to regulating body fat, insulin resistance, and energy metabolism. Temporal changes in circulating miR-128-1-5p were associated with better weight-loss outcomes during the interventions; habitual PA and dietary macronutrient intake may modify such relations. This trial was registered at clinicaltrials.gov as NCT00072995.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
| | - Qiaochu Xue
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Jennifer Rood
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
10
|
Ma T, Li W, Chen Y, Cobo E, Windeyer C, Gamsjäger L, Diao Q, Tu Y, Guan L. Assessment of microRNA profiles in small extracellular vesicles isolated from bovine colostrum with different immunoglobulin G concentrations. JDS COMMUNICATIONS 2022; 3:328-333. [PMID: 36340908 PMCID: PMC9623635 DOI: 10.3168/jdsc.2022-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/19/2022] [Indexed: 12/03/2022]
Abstract
The RNA concentration in sEV isolated from bovine colostrum was highest using the combination of the miRCURY Cell/Urine/CSF and miRNeasy Mini kits. The top 50 miRNA were the same using miRDeep2 and sRNAbench, predominated by let-7b, let-7a-5p, miR-30a-5p, and miR-148a. Predicted target genes of the top 50 miRNA regulate PI3K-Akt and MAPK signaling pathways, axon guidance, and focal adhesion. The abundance of miR-27a-3p was higher in colostrum with high IgG concentrations.
The consumption of bovine colostrum by newborn calves during the first days of life is essential to ensure the transfer of passive immunity. In addition to critical IgG, colostrum also contains non-IgG biomolecules, including microRNA (miRNA). The present study investigated the profiles of miRNA in small extracellular vesicles (sEV) isolated from bovine colostrum with high (256.5 ± 5.7 mg/mL, mean ± standard deviation, n = 4) and low (62.8 ± 3.6 mg/mL, n = 4) concentrations of IgG. Different combination of sEV extraction methods and bioinformatic pipelines (miRDeep2 and sRNAbench) for miRNA analysis were evaluated. Results showed that miRCURY exosome Cell/Urine/CSF and miRNeasy Mini kits yielded the highest RNA concentration. The miRNA-seq data analysis showed miRDeep2 yielded more comprehensive miRNAome compared with sRNAbench (527 versus 392 unique miRNA), whereas 389 shared miRNA were identified using both approaches. The profiles of top 50 miRNA were the same using both approaches, and their abundance contributed to 91.7% and 94.3% of total abundance of miRNA using miRDeep2 and sRNAbennch, respectively. These core miRNA were predicted to target 2,655 genes, which regulate 78 KEGG (Kyoto Encyclopedia of Genes and Genomes) level-3 pathways including PI3K-Akt and MAPK signaling pathway, axon guidance, and focal adhesion. The expression profiles of sEV-associated miRNA were similar between high- and low-IgG colostrum samples, despite the fact that the abundance of miR-27a-3p was higher in colostrum with high concentrations of IgG. In conclusion, a core miRNAome in bovine colostrum may play a role in regulating health and developmental stages in neonatal calves, independent of IgG concentration.
Collapse
Affiliation(s)
- T. Ma
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - W. Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - Y. Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - E.R. Cobo
- Department of Production Animal Health, University of Calgary, Faculty of Veterinary Medicine, Calgary, AB T2N1N4, Canada
| | - C. Windeyer
- Department of Production Animal Health, University of Calgary, Faculty of Veterinary Medicine, Calgary, AB T2N1N4, Canada
| | - L. Gamsjäger
- Department of Ruminant Medicine, Vetsuisse Faculty of Veterinary Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Q. Diao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Y. Tu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - L.L. Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada
- Corresponding author
| |
Collapse
|
11
|
Garcia LA, Zapata-Bustos R, Day SE, Campos B, Hamzaoui Y, Wu L, Leon AD, Krentzel J, Coletta RL, De Filippis E, Roust LR, Mandarino LJ, Coletta DK. Can Exercise Training Alter Human Skeletal Muscle DNA Methylation? Metabolites 2022; 12:metabo12030222. [PMID: 35323665 PMCID: PMC8953782 DOI: 10.3390/metabo12030222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle is highly plastic and dynamically regulated by the body’s physical demands. This study aimed to determine the plasticity of skeletal muscle DNA methylation in response to 8 weeks of supervised exercise training in volunteers with a range of insulin sensitivities. We studied 13 sedentary participants and performed euglycemic hyperinsulinemic clamps with basal vastus lateralis muscle biopsies and peak aerobic activity (VO2 peak) tests before and after training. We extracted DNA from the muscle biopsies and performed global methylation using Illumina’s Methylation EPIC 850K BeadChip. Training significantly increased peak aerobic capacity and insulin-stimulated glucose disposal. Fasting serum insulin and insulin levels during the steady state of the clamp were significantly lower post-training. Insulin clearance rates during the clamp increased following the training. We identified 13 increased and 90 decreased differentially methylated cytosines (DMCs) in response to 8 weeks of training. Of the 13 increased DMCs, 2 were within the following genes, FSTL3, and RP11-624M8.1. Of the 90 decreased DMCs, 9 were within the genes CNGA1, FCGR2A, KIF21A, MEIS1, NT5DC1, OR4D1, PRPF4B, SLC26A7, and ZNF280C. Moreover, pathway analysis showed an enrichment in metabolic and actin-cytoskeleton pathways for the decreased DMCs, and for the increased DMCs, an enrichment in signal-dependent regulation of myogenesis, NOTCH2 activation and transmission, and SMAD2/3: SMAD4 transcriptional activity pathways. Our findings showed that 8 weeks of exercise training alters skeletal muscle DNA methylation of specific genes and pathways in people with varying degrees of insulin sensitivity.
Collapse
Affiliation(s)
- Luis A. Garcia
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Rocio Zapata-Bustos
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Samantha E. Day
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85004, USA;
| | - Baltazar Campos
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Yassin Hamzaoui
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA; (Y.H.); (L.W.)
| | - Linda Wu
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA; (Y.H.); (L.W.)
| | - Alma D. Leon
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Judith Krentzel
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Richard L. Coletta
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Eleanna De Filippis
- Department of Endocrinology, Metabolism and Diabetes, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA; (E.D.F.); (L.R.R.)
| | - Lori R. Roust
- Department of Endocrinology, Metabolism and Diabetes, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA; (E.D.F.); (L.R.R.)
| | - Lawrence J. Mandarino
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Dawn K. Coletta
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA; (Y.H.); (L.W.)
- Correspondence: ; Tel.: +1-(520)-626-9316
| |
Collapse
|
12
|
Kuang J, McGinley C, Lee MJC, Saner NJ, Garnham A, Bishop DJ. Interpretation of exercise-induced changes in human skeletal muscle mRNA expression depends on the timing of the post-exercise biopsies. PeerJ 2022; 10:e12856. [PMID: 35186464 PMCID: PMC8820226 DOI: 10.7717/peerj.12856] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Exercise elicits a range of adaptive responses in skeletal muscle, which include changes in mRNA expression. To better understand the health benefits of exercise training, it is important to investigate the underlying molecular mechanisms of skeletal muscle adaptation to exercise. However, most studies have assessed the molecular events at only a few time-points within a short time frame post-exercise, and the variations of gene expression kinetics have not been addressed systematically. METHODS We assessed the mRNA expression of 23 gene isoforms implicated in the adaptive response to exercise at six time-points (0, 3, 9, 24, 48, and 72 h post exercise) over a 3-day period following a single session of high-intensity interval exercise. RESULTS The temporal patterns of target gene expression were highly variable and the expression of mRNA transcripts detected was largely dependent on the timing of muscle sampling. The largest fold change in mRNA expression of each tested target gene was observed between 3 and 72 h post-exercise. DISCUSSION AND CONCLUSIONS Our findings highlight an important gap in knowledge regarding the molecular response to exercise, where the use of limited time-points within a short period post-exercise has led to an incomplete understanding of the molecular response to exercise. Muscle sampling timing for individual studies needs to be carefully chosen based on existing literature and preliminary analysis of the molecular targets of interest. We propose that a comprehensive time-course analysis on the exercise-induced transcriptional response in humans will significantly benefit the field of exercise molecular biology.
Collapse
Affiliation(s)
- Jujiao Kuang
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia,Australia Institute for Musculoskeletal Sciences, Melbourne, Victoria, Australia
| | - Cian McGinley
- Sportscotland Institute of Sport, Stirling, United Kingdom
| | - Matthew J-C Lee
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Nicholas J. Saner
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia,Human Integrative Physiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Andrew Garnham
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - David J. Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Mahmoud AM. An Overview of Epigenetics in Obesity: The Role of Lifestyle and Therapeutic Interventions. Int J Mol Sci 2022; 23:ijms23031341. [PMID: 35163268 PMCID: PMC8836029 DOI: 10.3390/ijms23031341] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity has become a global epidemic that has a negative impact on population health and the economy of nations. Genetic predispositions have been demonstrated to have a substantial role in the unbalanced energy metabolism seen in obesity. However, these genetic variations cannot entirely explain the massive growth in obesity over the last few decades. Accumulating evidence suggests that modern lifestyle characteristics such as the intake of energy-dense foods, adopting sedentary behavior, or exposure to environmental factors such as industrial endocrine disruptors all contribute to the rising obesity epidemic. Recent advances in the study of DNA and its alterations have considerably increased our understanding of the function of epigenetics in regulating energy metabolism and expenditure in obesity and metabolic diseases. These epigenetic modifications influence how DNA is transcribed without altering its sequence. They are dynamic, reflecting the interplay between the body and its surroundings. Notably, these epigenetic changes are reversible, making them appealing targets for therapeutic and corrective interventions. In this review, I discuss how these epigenetic modifications contribute to the disordered energy metabolism in obesity and to what degree lifestyle and weight reduction strategies and pharmacological drugs can restore energy balance by restoring normal epigenetic profiles.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
14
|
Massart J, Sjögren RJO, Egan B, Garde C, Lindgren M, Gu W, Ferreira DMS, Katayama M, Ruas JL, Barrès R, O'Gorman DJ, Zierath JR, Krook A. Endurance exercise training-responsive miR-19b-3p improves skeletal muscle glucose metabolism. Nat Commun 2021; 12:5948. [PMID: 34642330 PMCID: PMC8511155 DOI: 10.1038/s41467-021-26095-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is a highly adaptable tissue and remodels in response to exercise training. Using short RNA sequencing, we determine the miRNA profile of skeletal muscle from healthy male volunteers before and after a 14-day aerobic exercise training regime. Among the exercise training-responsive miRNAs identified, miR-19b-3p was selected for further validation. Overexpression of miR-19b-3p in human skeletal muscle cells increases insulin signaling, glucose uptake, and maximal oxygen consumption, recapitulating the adaptive response to aerobic exercise training. Overexpression of miR-19b-3p in mouse flexor digitorum brevis muscle enhances contraction-induced glucose uptake, indicating that miR-19b-3p exerts control on exercise training-induced adaptations in skeletal muscle. Potential targets of miR-19b-3p that are reduced after aerobic exercise training include KIF13A, MAPK6, RNF11, and VPS37A. Amongst these, RNF11 silencing potentiates glucose uptake in human skeletal muscle cells. Collectively, we identify miR-19b-3p as an aerobic exercise training-induced miRNA that regulates skeletal muscle glucose metabolism.
Collapse
Affiliation(s)
- Julie Massart
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Rasmus J O Sjögren
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Brendan Egan
- Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Department of Health & Human Performance, Dublin City University, Dublin, Ireland
| | - Christian Garde
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Lindgren
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Weifeng Gu
- University of Massachusetts Medical School, Worchester, MA, USA
- Department of Cell Biology and Neuroscience, University of California at Riverside, Riverside, CA, USA
| | - Duarte M S Ferreira
- Department of Physiology and Pharmacology, Section of Molecular and Cellular Exercise Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Mutsumi Katayama
- Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Section of Molecular and Cellular Exercise Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Donal J O'Gorman
- Department of Health & Human Performance, Dublin City University, Dublin, Ireland
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anna Krook
- Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
15
|
Tarnowski M, Kopytko P, Piotrowska K. Epigenetic Regulation of Inflammatory Responses in the Context of Physical Activity. Genes (Basel) 2021; 12:1313. [PMID: 34573295 PMCID: PMC8465911 DOI: 10.3390/genes12091313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Epigenetic modifications occur in response to environmental changes and play a fundamental role in the regulation of gene expression. PA is found to elicit an inflammatory response, both from the innate and adaptive divisions of the immunological system. The inflammatory reaction is considered a vital trigger of epigenetic changes that in turn modulate inflammatory actions. The tissue responses to PA involve local and general changes. The epigenetic mechanisms involved include: DNA methylation, histone proteins modification and microRNA. All of them affect genetic expression in an inflammatory milieu in physical exercise depending on the magnitude of physiological stress experienced by the exerciser. PA may evoke acute or chronic biochemical and physiological responses and have a positive or negative immunomodulatory effect.
Collapse
Affiliation(s)
- Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (P.K.); (K.P.)
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Patrycja Kopytko
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (P.K.); (K.P.)
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (P.K.); (K.P.)
| |
Collapse
|
16
|
Da Silva FC, Rode MP, Vietta GG, Iop RDR, Creczynski-Pasa TB, Martin AS, Da Silva R. Expression levels of specific microRNAs are increased after exercise and are associated with cognitive improvement in Parkinson's disease. Mol Med Rep 2021; 24:618. [PMID: 34184078 PMCID: PMC8258464 DOI: 10.3892/mmr.2021.12257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
There is a consensus regarding the efficacy of physical exercise in maintaining or improving human health; however, there are few studies examining the effect of physical exercise on the expression levels of microRNAs (miRNA/miRs) in Parkinson's disease (PD). The aim of the present study was to investigate the effects of an interval training program on a cycle ergometer on the expression levels of miR‑106a‑5p, miR‑103a‑3p and miR‑29a‑3p in serum samples from men with PD. This was a quasi‑experimental study with pre‑ and post‑testing and with a non‑equivalent group design. The participants were selected based on the eligibility criteria and subsequently classified into two groups: Experimental group and control group. The evaluations were performed at the beginning of the study (week 0) and after 8 weeks of the intervention program (week 9). The interval training program was performed on a cycle ergometer for 30 min, three times a week during an 8‑week period. The expression levels of miR‑106a‑5p, miR‑103a‑3p and miR‑29a‑3p in the experimental group were increased after physical exercise and were associated with cognitive improvement in men with PD. However, further studies are required to clarify the potential use of these circulating miRNAs as markers of adaptation to physical exercise. Collectively, the present results indicated that these three miRNAs may be associated with the exercise response and cognitive improvement in men with PD.
Collapse
Affiliation(s)
- Franciele Cascaes Da Silva
- Center for Health Sciences and Sports, Adapted Physical Activity Laboratory, Santa Catarina State University, Florianópolis, Santa Catarina 88080‑350, Brazil
| | - Michele Patrícia Rode
- Pharmaceutical Sciences Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88010‑970, Brazil
| | - Giovanna Grunewald Vietta
- Nucleus of Epidemiology, University of Southern Santa Catarina, Palhoça, Santa Catarina 88137‑270, Brazil
| | - Rodrigo Da Rosa Iop
- Center for Health Sciences and Sports, Adapted Physical Activity Laboratory, Santa Catarina State University, Florianópolis, Santa Catarina 88080‑350, Brazil
| | - Tânia Beatriz Creczynski-Pasa
- Pharmaceutical Sciences Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88010‑970, Brazil
| | - Alessandra Swarowsky Martin
- Center for Health and Sport Sciences, Physical Therapy Department, Santa Catarina State University, Florianópolis, Santa Catarina 88080‑350, Brazil
| | - Rudney Da Silva
- Center for Health Sciences and Sports, Adapted Physical Activity Laboratory, Santa Catarina State University, Florianópolis, Santa Catarina 88080‑350, Brazil
| |
Collapse
|
17
|
Zapata-Bustos R, Finlayson J, Langlais PR, Coletta DK, Luo M, Grandjean D, De Filippis EA, Mandarino L. Altered Transcription Factor Expression Responses to Exercise in Insulin Resistance. Front Physiol 2021; 12:649461. [PMID: 33897458 PMCID: PMC8058368 DOI: 10.3389/fphys.2021.649461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Insulin resistant muscle is resistant to gene expression changes induced by acute exercise. This study was undertaken to identify transcription factors that differentially respond to exercise in insulin resistance. Candidate transcription factors were identified from analysis of 5'-untranslated regions (5'-UTRs) of exercise responsive genes and from analysis of the 5'-UTRs of genes coding for proteins that differ in abundance in insulin resistance. RESEARCH DESIGN AND METHODS Twenty participants took part in this study. Insulin sensitivity was assessed by an euglycemic clamp. Participants were matched for aerobic capacity and performed a single 48 min bout of exercise with sets at 70 and 90% of maximum heart rate. Muscle biopsies were obtained at resting conditions, 30 min and 24 h after exercise. Global proteomics analysis identified differentially abundant proteins in muscle. The 5'-UTRs of genes coding for significant proteins were subjected to transcription factor enrichment analysis to identify candidate transcription factors. Q-rt-PCR to determine expression of candidate transcription factors was performed on RNA from resting and post-exercise muscle biopsies; immunoblots quantified protein abundance. RESULTS Proteins involved in mitochondrial function, protein targeting and translation, and metabolism were among those significantly different between lean and obese groups. Transcription factor enrichment analysis of genes coding for these proteins revealed new candidate transcription factors to be evaluated along the previously identified factors. Q-rt-PCR analysis of RNA and immunoblot analysis from pre- and post-exercise muscle biopsies revealed several transcription and growth factors that had altered responses to exercise in insulin resistant participants. A significant increase (EGR3 and CTGF) and decrease (RELA and ATF2) in the mRNA expression of transcription and growth factors was found after exercise in the lean group, but not in the obese participants. CONCLUSIONS These results confirm findings of an association between insulin sensitivity and transcription factor mRNA response to exercise and show that obesity also may be a sufficient prerequisite for exercise resistance. Analysis of the muscle proteome together with determination of effects of exercise on expression of transcription factors suggests that abnormal responses of transcription factors to exercise may be responsible for differences in protein abundances in insulin resistant muscle.
Collapse
Affiliation(s)
- Rocio Zapata-Bustos
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Jean Finlayson
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Paul R. Langlais
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Dawn K. Coletta
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Moulun Luo
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, University of Arizona Health Sciences, Tucson, AZ, United States
| | | | | | - Lawrence Mandarino
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, University of Arizona Health Sciences, Tucson, AZ, United States
| |
Collapse
|
18
|
Foudi N, Legeay S. Effects of physical activity on cell-to-cell communication during type 2 diabetes: A focus on miRNA signaling. Fundam Clin Pharmacol 2021; 35:808-821. [PMID: 33675090 DOI: 10.1111/fcp.12665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 02/13/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (TD2) is a progressive disease characterized by hyperglycemia that results from alteration in insulin secretion, insulin resistance, or both. A number of alterations involving different tissues and organs have been reported to the development and the progression of T2D, and more relevantly, through cell-to-cell communication pathways. Recent studies demonstrated that miRNAs are considerably implicated to cell-to-cell communication during T2D. Physical activity (PA) is associated with decreasing risks of developing T2D and acts as insulin-like factor. Cumulative evidence suggests that this effect could be mediated in part through improving insulin sensitivity in T2D and obese patients and modulating miRNAs synthesis and release in healthy patients. Therefore, the practice of PA should ideally be established before the initiation of T2D. This review describes cell-to-cell communications involved in the pathophysiology of T2D during PA.
Collapse
Affiliation(s)
- Nabil Foudi
- Department of Pharmacy, UNIV Angers, Angers, France.,Faculty of Medicine, Department of Pharmacy, University Ferhat Abbas Setif 1, Setif, Algeria
| | - Samuel Legeay
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, Angers, France
| |
Collapse
|
19
|
Makhnovskii PA, Bokov RO, Kolpakov FA, Popov DV. Transcriptomic Signatures and Upstream Regulation in Human Skeletal Muscle Adapted to Disuse and Aerobic Exercise. Int J Mol Sci 2021; 22:ijms22031208. [PMID: 33530535 PMCID: PMC7866200 DOI: 10.3390/ijms22031208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 02/08/2023] Open
Abstract
Inactivity is associated with the development of numerous disorders. Regular aerobic exercise is broadly used as a key intervention to prevent and treat these pathological conditions. In our meta-analysis we aimed to identify and compare (i) the transcriptomic signatures related to disuse, regular and acute aerobic exercise in human skeletal muscle and (ii) the biological effects and transcription factors associated with these transcriptomic changes. A standardized workflow with robust cut-off criteria was used to analyze 27 transcriptomic datasets for the vastus lateralis muscle of healthy humans subjected to disuse, regular and acute aerobic exercise. We evaluated the role of transcriptional regulation in the phenotypic changes described in the literature. The responses to chronic interventions (disuse and regular training) partially correspond to the phenotypic effects. Acute exercise induces changes that are mainly related to the regulation of gene expression, including a strong enrichment of several transcription factors (most of which are related to the ATF/CREB/AP-1 superfamily) and a massive increase in the expression levels of genes encoding transcription factors and co-activators. Overall, the adaptation strategies of skeletal muscle to decreased and increased levels of physical activity differ in direction and demonstrate qualitative differences that are closely associated with the activation of different sets of transcription factors.
Collapse
Affiliation(s)
- Pavel A. Makhnovskii
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (P.A.M.); (R.O.B.)
| | - Roman O. Bokov
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (P.A.M.); (R.O.B.)
| | - Fedor A. Kolpakov
- Institute of Computational Technologies of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Daniil V. Popov
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (P.A.M.); (R.O.B.)
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
20
|
Melo L, Tilmant K, Hagar A, Klaunig JE. Effect of endurance exercise training on liver gene expression in male and female mice. Appl Physiol Nutr Metab 2020; 46:356-367. [PMID: 33052711 DOI: 10.1139/apnm-2020-0379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic endurance exercise is a therapeutic strategy in the treatment of many chronic diseases in humans, including the prevention and treatment of metabolic diseases such as diabetes mellitus. Metabolic, cardiorespiratory, and endocrine pathways targeted by chronic endurance exercise have been identified. In the liver, however, the cellular and molecular pathways that are modified by exercise and have preventive or therapeutic relevance to metabolic disease need to be elucidated. The mouse model used in the current study allows for the quantification of a human-relevant exercise "dosage". In this study we show hepatic gene expression differences between sedentary female and sedentary male mice and that chronic exercise modifies the transcription of hepatic genes related to metabolic disease and steatosis in both male and female mice. Chronic exercise induces molecular pathways involved in glucose tolerance, glycolysis, and gluconeogenesis while producing a decrease in pathways related to insulin resistance, steatosis, fibrosis, and inflammation. Given these findings, this mouse exercise model has potential to dissect the cellular and molecular hepatic changes following chronic exercise with application to understanding the role that chronic exercise plays in preventing human diseases. Novelty: Exercise modifies the hepatic gene expression and hepatic pathways related to metabolic disease in male and female mice. Sex differences were seen in hepatic gene expression between sedentary and exercised mice. The mouse exercise model used in this study allows for application and evaluation of exercise effects in human disease.
Collapse
Affiliation(s)
- Luma Melo
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, IN 47405, USA
| | - Karen Tilmant
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, IN 47405, USA
| | - Amit Hagar
- History & Philosophy of Science & Medicine Department, Indiana University, Bloomington, IN 47405, USA.,Intelligent Systems Engineering Department, Indiana University, Bloomington, IN, USA
| | - James E Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
21
|
Regulation of microRNAs in Satellite Cell Renewal, Muscle Function, Sarcopenia and the Role of Exercise. Int J Mol Sci 2020; 21:ijms21186732. [PMID: 32937893 PMCID: PMC7555198 DOI: 10.3390/ijms21186732] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Sarcopenia refers to a condition of progressive loss of skeletal muscle mass and function associated with a higher risk of falls and fractures in older adults. Musculoskeletal aging leads to reduced muscle mass and strength, affecting the quality of life in elderly people. In recent years, several studies contributed to improve the knowledge of the pathophysiological alterations that lead to skeletal muscle dysfunction; however, the molecular mechanisms underlying sarcopenia are still not fully understood. Muscle development and homeostasis require a fine gene expression modulation by mechanisms in which microRNAs (miRNAs) play a crucial role. miRNAs modulate key steps of skeletal myogenesis including satellite cells renewal, skeletal muscle plasticity, and regeneration. Here, we provide an overview of the general aspects of muscle regeneration and miRNAs role in skeletal mass homeostasis and plasticity with a special interest in their expression in sarcopenia and skeletal muscle adaptation to exercise in the elderly.
Collapse
|
22
|
The Role of Nutri(epi)genomics in Achieving the Body's Full Potential in Physical Activity. Antioxidants (Basel) 2020; 9:antiox9060498. [PMID: 32517297 PMCID: PMC7346155 DOI: 10.3390/antiox9060498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Physical activity represents a powerful tool to achieve optimal health. The overall activation of several molecular pathways is associated with many beneficial effects, mainly converging towards a reduced systemic inflammation. Not surprisingly, regular activity can contribute to lowering the “epigenetic age”, acting as a modulator of risk toward several diseases and enhancing longevity. Behind this, there are complex molecular mechanisms induced by exercise, which modulate gene expression, also through epigenetic modifications. The exercise-induced epigenetic imprint can be transient or permanent and contributes to the muscle memory, which allows the skeletal muscle adaptation to environmental stimuli previously encountered. Nutrition, through key macro- and micronutrients with antioxidant properties, can play an important role in supporting skeletal muscle trophism and those molecular pathways triggering the beneficial effects of physical activity. Nutrients and antioxidant food components, reversibly altering the epigenetic imprint, have a big impact on the phenotype. This assigns a role of primary importance to nutri(epi)genomics, not only in optimizing physical performance, but also in promoting long term health. The crosstalk between physical activity and nutrition represents a major environmental pressure able to shape human genotypes and phenotypes, thus, choosing the right combination of lifestyle factors ensures health and longevity.
Collapse
|
23
|
Benrick A, Pillon NJ, Nilsson E, Lindgren E, Krook A, Ling C, Stener-Victorin E. Electroacupuncture Mimics Exercise-Induced Changes in Skeletal Muscle Gene Expression in Women With Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2020; 105:5813905. [PMID: 32232327 PMCID: PMC7185955 DOI: 10.1210/clinem/dgaa165] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/27/2020] [Indexed: 12/29/2022]
Abstract
CONTEXT Autonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture but the mechanisms are largely unknown. OBJECTIVE To identify the molecular mechanisms underlying electroacupuncture-induced glucose uptake in skeletal muscle in insulin-resistant overweight/obese women with and without polycystic ovary syndrome (PCOS). DESIGN/PARTICIPANTS In a case-control study, skeletal muscle biopsies were collected from 15 women with PCOS and 14 controls before and after electroacupuncture. Gene expression and methylation was analyzed using Illumina BeadChips arrays. RESULTS A single bout of electroacupuncture restores metabolic and transcriptional alterations and induces epigenetic changes in skeletal muscle. Transcriptomic analysis revealed 180 unique genes (q < 0.05) whose expression was changed by electroacupuncture, with 95% of the changes towards a healthier phenotype. We identified DNA methylation changes at 304 unique sites (q < 0.20), and these changes correlated with altered expression of 101 genes (P < 0.05). Among the 50 most upregulated genes in response to electroacupuncture, 38% were also upregulated in response to exercise. We identified a subset of genes that were selectively altered by electroacupuncture in women with PCOS. For example, MSX1 and SRNX1 were decreased in muscle tissue of women with PCOS and were increased by electroacupuncture and exercise. siRNA-mediated silencing of these 2 genes in cultured myotubes decreased glycogen synthesis, supporting a role for these genes in glucose homeostasis. CONCLUSION Our findings provide evidence that electroacupuncture normalizes gene expression in skeletal muscle in a manner similar to acute exercise. Electroacupuncture might therefore be a useful way of assisting those who have difficulties performing exercise.
Collapse
Affiliation(s)
- Anna Benrick
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health Sciences, University of Skövde, Skövde, Sweden
- Correspondence and Reprint Requests: Anna Benrick, University of Gothenburg, Institute of Neuroscience and Physiology, Department of Physiology, Box 423, 405 30 Gothenburg, Sweden. E-mail: ; Elisabet Stener-Victorin- reprint requests, Karolinska Institutet, Department of Physiology and Pharmacology, Biomedicum, B5, Solnavägen 9, 171 77 Stockholm, Sweden. E-mail:
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Emma Nilsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Eva Lindgren
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Elisabet Stener-Victorin
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
- Correspondence and Reprint Requests: Anna Benrick, University of Gothenburg, Institute of Neuroscience and Physiology, Department of Physiology, Box 423, 405 30 Gothenburg, Sweden. E-mail: ; Elisabet Stener-Victorin- reprint requests, Karolinska Institutet, Department of Physiology and Pharmacology, Biomedicum, B5, Solnavägen 9, 171 77 Stockholm, Sweden. E-mail:
| |
Collapse
|
24
|
Prodromidou K, Vlachos IS, Gaitanou M, Kouroupi G, Hatzigeorgiou AG, Matsas R. MicroRNA-934 is a novel primate-specific small non-coding RNA with neurogenic function during early development. eLife 2020; 9:e50561. [PMID: 32459171 PMCID: PMC7295570 DOI: 10.7554/elife.50561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Integrating differential RNA and miRNA expression during neuronal lineage induction of human embryonic stem cells we identified miR-934, a primate-specific miRNA that displays a stage-specific expression pattern during progenitor expansion and early neuron generation. We demonstrate the biological relevance of this finding by comparison with data from early to mid-gestation human cortical tissue. Further we find that miR-934 directly controls progenitor to neuroblast transition and impacts on neurite growth of newborn neurons. In agreement, miR-934 targets are involved in progenitor proliferation and neuronal differentiation whilst miR-934 inhibition results in profound global transcriptome changes associated with neurogenesis, axonogenesis, neuronal migration and neurotransmission. Interestingly, miR-934 inhibition affects the expression of genes associated with the subplate zone, a transient compartment most prominent in primates that emerges during early corticogenesis. Our data suggest that mir-934 is a novel regulator of early human neurogenesis with potential implications for a species-specific evolutionary role in brain function.
Collapse
Affiliation(s)
- Kanella Prodromidou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| | - Ioannis S Vlachos
- Department of Pathology, Beth Israel Deaconess Medical CenterBostonUnited States
- DIANA-Lab, Hellenic Pasteur InstituteAthensGreece
- Harvard Medical SchoolBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| | | | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| |
Collapse
|
25
|
Silva FCD, Iop RDR, Andrade A, Costa VP, Gutierres Filho PJB, Silva RD. Effects of Physical Exercise on the Expression of MicroRNAs: A Systematic Review. J Strength Cond Res 2020; 34:270-280. [PMID: 31877120 DOI: 10.1519/jsc.0000000000003103] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Silva, FCd, Iop, RdR, Andrade, A, Costa, VP, Gutierres Filho, PJB, and Silva, Rd. Effects of physical exercise on the expression of microRNAs: A systematic review 34(1): 270-280, 2020-Studies have detected changes in the expression of miRNAs after physical exercise, which brings new insight into the molecular control of adaptation to exercise. Therefore, the objective of the current systematic review of experimental and quasiexperimental studies published in the past 10 years was to assess evidence related to acute effects, chronic effects, and both acute and chronic effects of physical exercise on miRNA expression in humans, as well as its functions, evaluated in serum, plasma, whole blood, saliva, or muscle biopsy. For this purpose, the following electronic databases were selected: MEDLINE by Pubmed, SCOPUS, Web of Science, and also a manual search in references of the selected articles to April 2017. Experimental and quasiexperimental studies were included. Results indicate that, of the 345 studies retrieved, 40 studies met the inclusion criteria and two articles were included as a result of the manual search. The 42 studies were analyzed, and it can be observed acute and chronic effects of physical exercises (aerobic and resistance) on the expression of several miRNAs in healthy subjects, athletes, young, elderly and in patients with congestive heart failure, chronic kidney disease, diabetes mellitus type 2 associated with morbid obesity, prediabetic, and patients with intermittent claudication. It is safe to assume that miRNA changes, both in muscle tissues and bodily fluids, are presumably associated with the benefits induced by acute and chronic physical exercise. Thus, a better understanding of changes in miRNAs as a response to physical exercise might contribute to the development of miRNAs as therapeutic targets for the improvement of exercise capacity in individuals with any given disease. However, additional studies are necessary to draw accurate conclusions.
Collapse
Affiliation(s)
- Franciele Cascaes da Silva
- Adapted Physical Activity Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| | - Rodrigo da Rosa Iop
- Adapted Physical Activity Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| | - Alexandro Andrade
- Laboratory of Psychology of Sport and Exercise, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| | - Vitor Pereira Costa
- Exercise Physiology Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil; and
| | | | - Rudney da Silva
- Adapted Physical Activity Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
26
|
Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nat Commun 2020; 11:470. [PMID: 31980607 PMCID: PMC6981202 DOI: 10.1038/s41467-019-13869-w] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/29/2019] [Indexed: 12/26/2022] Open
Abstract
The molecular mechanisms underlying the response to exercise and inactivity are not fully understood. We propose an innovative approach to profile the skeletal muscle transcriptome to exercise and inactivity using 66 published datasets. Data collected from human studies of aerobic and resistance exercise, including acute and chronic exercise training, were integrated using meta-analysis methods (www.metamex.eu). Here we use gene ontology and pathway analyses to reveal selective pathways activated by inactivity, aerobic versus resistance and acute versus chronic exercise training. We identify NR4A3 as one of the most exercise- and inactivity-responsive genes, and establish a role for this nuclear receptor in mediating the metabolic responses to exercise-like stimuli in vitro. The meta-analysis (MetaMEx) also highlights the differential response to exercise in individuals with metabolic impairments. MetaMEx provides the most extensive dataset of skeletal muscle transcriptional responses to different modes of exercise and an online interface to readily interrogate the database. The pathways that underlie the effects of exercise on metabolism remain incompletely described. Here, the authors perform a meta-analysis of transcriptomic data from 66 published datasets of human skeletal muscle. They identify pathways selectively activated by inactivity, aerobic or resistance exercise, and characterize NR4A3 as one of the genes responsive to inactivity.
Collapse
|
27
|
Acute sprint exercise transcriptome in human skeletal muscle. PLoS One 2019; 14:e0223024. [PMID: 31647849 PMCID: PMC6812755 DOI: 10.1371/journal.pone.0223024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022] Open
Abstract
Aim To examine global gene expression response to profound metabolic and hormonal stress induced by acute sprint exercise. Methods Healthy men and women (n = 14) performed three all-out cycle sprints interspersed by 20 min recovery. Muscle biopsies were obtained before the first, and 2h and 20 min after last sprint. Microarray analysis was performed to analyse acute gene expression response and repeated blood samples were obtained. Results In skeletal muscle, a set of immediate early genes, FOS, NR4A3, MAFF, EGR1, JUNB were markedly upregulated after sprint exercise. Gene ontology analysis from 879 differentially expressed genes revealed predicted activation of various upstream regulators and downstream biofunctions. Gene signatures predicted an enhanced turnover of skeletal muscle mass after sprint exercise and some novel induced genes such as WNT9A, FZD7 and KLHL40 were presented. A substantial increase in circulating free fatty acids (FFA) was noted after sprint exercise, in parallel with upregulation of PGC-1A and the downstream gene PERM1 and gene signatures predicting enhanced lipid turnover. Increase in growth hormone and insulin in blood were related to changes in gene expressions and both hormones were predicted as upstream regulators. Conclusion This is the first study reporting global gene expression in skeletal muscle in response to acute sprint exercise and several novel findings are presented. First, in line with that muscle hypertrophy is not a typical finding after a period of sprint training, both hypertrophy and atrophy factors were regulated. Second, systemic FFA and hormonal and exposure might be involved in the sprint exercise-induced changes in gene expression.
Collapse
|
28
|
Sabaratnam R, Pedersen AJ, Eskildsen TV, Kristensen JM, Wojtaszewski JFP, Højlund K. Exercise Induction of Key Transcriptional Regulators of Metabolic Adaptation in Muscle Is Preserved in Type 2 Diabetes. J Clin Endocrinol Metab 2019; 104:4909-4920. [PMID: 31135885 DOI: 10.1210/jc.2018-02679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/22/2019] [Indexed: 12/30/2022]
Abstract
CONTEXT Type 2 diabetes (T2D) is characterized by insulin resistance in skeletal muscle. Regular exercise improves insulin sensitivity, mitochondrial function, and energy metabolism. Thus, an impaired response to exercise may contribute to insulin resistance. OBJECTIVE We hypothesized that key transcriptional regulators of metabolic adaptation to exercise show an attenuated response in skeletal muscle in T2D. DESIGN AND PATIENTS Skeletal muscle biopsies were obtained from 13 patients with T2D and 14 age- and weight-matched controls before, immediately after 1 hour acute exercise (70% maximal pulmonary oxygen uptake), and 3 hours into recovery to examine mRNA expression of key transcription factors and downstream targets and activity of key upstream kinases underlying the metabolic adaptation to exercise. RESULTS Acute exercise increased gene expression of the nuclear hormone receptor 4A (NR4A) subfamily (∼4- to 36-fold) and other key transcription factors, including ATF3, EGR1, JUNB, SIK1, PPARA, and PPARG (∼1.5- to 12-fold), but with no differences between groups. The expression of NR4A1 (approximately eightfold) and NR4A3 (∼75-fold) was further increased 3 hours into recovery, whereas most muscle transcripts sustained elevated or returned to basal levels, again with no differences between groups. Muscle expression of HKII and SLC2A4 and hexokinase II protein content were reduced in patients with T2D. The phosphorylation of p38 MAPK, Erk1/2, Ca2+/calmodulin-dependent kinase II, and cAMP-responsive element-binding protein was equally increased in response to exercise and/or recovery in both groups. CONCLUSION Acute exercise elicits a pronounced and overall similar increase in expression of key transcription factors and activation of key upstream kinases involved in muscle metabolic adaptation to exercise in patients with T2D and weight-matched controls.
Collapse
Affiliation(s)
- Rugivan Sabaratnam
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Section of Molecular Diabetes and Metabolism, Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Andreas J Pedersen
- Section of Molecular Diabetes and Metabolism, Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Tilde V Eskildsen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense M, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Jonas M Kristensen
- Section of Molecular Physiology, August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark
- Section of Molecular Diabetes and Metabolism, Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
29
|
Barrón-Cabrera E, Ramos-Lopez O, González-Becerra K, Riezu-Boj JI, Milagro FI, Martínez-López E, Martínez JA. Epigenetic Modifications as Outcomes of Exercise Interventions Related to Specific Metabolic Alterations: A Systematic Review. Lifestyle Genom 2019; 12:25-44. [PMID: 31546245 DOI: 10.1159/000503289] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chronic diseases arise as a consequence of an unhealthy lifestyle primarily characterized by physical inactivity and unbalanced diets. Regular physical activity can improve health, and there is consistent evidence that these improvements may be the result of epigenetic modifications. OBJECTIVE To identify epigenetic modificationsas outcomes of exercise interventions related to specific metabolic alterations. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) methodology for manuscript research and preparation was followed using PubMed and EBSCO databases for literature review. Out of 2,638 articles identified, only 34 articles met the inclusion criteria. RESULTS The sections of the review were organized by metabolic alterations in which studies were grouped according to healthy, diseased, and trained individuals. Resistance exercise in humans induced epigenetic changes in pathways associated with energy metabolism and insulin sensitivity, contributing to healthy skeletal muscle. Endurance exercise also caused modifications in biomarkers associated to metabolic alterations through changes in DNA methylation and the expression of specific miRNAs. However, both resistance and endurance exercise are necessary to obtain a better physiological adaptation and a combination of both seems to be needed to properly tackle the increasing prevalence of non-communicable pathologies. CONCLUSION Given the heterogeneity and complexity of the existing literature, it is currently not possible to propose a specific recommendation about the type, intensity, or duration of exercise that could be beneficial for different subsets of the population (healthy, diseased, and/or trained). Nevertheless, this review highlights the importance of exercise for health and shows the need to perform more research in this emerging area to identify epigenetic biomarkers that could serve as indicators of exercise adaptations.
Collapse
Affiliation(s)
- Elisa Barrón-Cabrera
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Omar Ramos-Lopez
- Centre for Nutrition Research, Department of Nutrition, Food Science, Physiology and Toxicology, University of Navarra, Pamplona, Spain.,Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana, Mexico
| | - Karina González-Becerra
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Jose Ignacio Riezu-Boj
- Centre for Nutrition Research, Department of Nutrition, Food Science, Physiology and Toxicology, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Fermin I Milagro
- Centre for Nutrition Research, Department of Nutrition, Food Science, Physiology and Toxicology, University of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Carlos III Health Institute, Madrid, Spain
| | - Erika Martínez-López
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Jose Alfredo Martínez
- Centre for Nutrition Research, Department of Nutrition, Food Science, Physiology and Toxicology, University of Navarra, Pamplona, Spain, .,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain, .,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Carlos III Health Institute, Madrid, Spain, .,Madrid Institute of Advanced Studies (IMDEA Food), Madrid, Spain,
| |
Collapse
|
30
|
Jacques M, Hiam D, Craig J, Barrès R, Eynon N, Voisin S. Epigenetic changes in healthy human skeletal muscle following exercise- a systematic review. Epigenetics 2019; 14:633-648. [PMID: 31046576 PMCID: PMC6557592 DOI: 10.1080/15592294.2019.1614416] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022] Open
Abstract
Exercise training is continually challenging whole-body homeostasis, leading to improvements in performance and health. Adaptations to exercise training are complex and are influenced by both environmental and genetic factors. Epigenetic factors regulate gene expression in a tissue-specific manner and constitute a link between the genotype and the environment. Moreover, epigenetic factors are emerging as potential biomarkers that could predict the response to exercise training. This systematic review aimed to identify epigenetic changes that have been reported in skeletal muscle following exercise training in healthy populations. A literature search of five databases (PUBMED, MEDLINE, CINHAL, SCOPUS and SportDiscuss) was conducted in November 2018. Articles were included if they examined epigenetic modifications (DNA methylation, histone modifications and non-coding RNAs) in skeletal muscle, following either an acute bout of exercise, an exercise intervention in a pre/post design, or a case/control type of study. Twenty-two studies met the inclusion criteria. Several epigenetic markers including DNA methylation of genes known to be differentially expressed after exercise and myomiRs were reported to be modified after exercise. Several epigenetic marks were identified to be altered in response to exercise, with potential influence on skeletal muscle metabolism. However, whether these epigenetic marks play a role in the physiological impact of exercise is unclear. Exercise epigenetics is still a very young research field, and it is expected that in the future the causality of such changes will be elucidated via the utilization of emerging experimental models able to target the epigenome.
Collapse
Affiliation(s)
- Macsue Jacques
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Danielle Hiam
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Jeffrey Craig
- Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
- Environmental & Genetic Epidemiology Research, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| |
Collapse
|
31
|
Nair PS, Kuusi T, Ahvenainen M, Philips AK, Järvelä I. Music-performance regulates microRNAs in professional musicians. PeerJ 2019; 7:e6660. [PMID: 30956902 PMCID: PMC6442922 DOI: 10.7717/peerj.6660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Musical training and performance require precise integration of multisensory and motor centres of the human brain and can be regarded as an epigenetic modifier of brain functions. Numerous studies have identified structural and functional differences between the brains of musicians and non-musicians and superior cognitive functions in musicians. Recently, music-listening and performance has also been shown to affect the regulation of several genes, many of which were identified in songbird singing. MicroRNAs affect gene regulation and studying their expression may give new insights into the epigenetic effect of music. Here, we studied the effect of 2 hours of classical music-performance on the peripheral blood microRNA expressions in professional musicians with respect to a control activity without music for the same duration. As detecting transcriptomic changes in the functional human brain remains a challenge for geneticists, we used peripheral blood to study music-performance induced microRNA changes and interpreted the results in terms of potential effects on brain function, based on the current knowledge about the microRNA function in blood and brain. We identified significant (FDR <0.05) up-regulation of five microRNAs; hsa-miR-3909, hsa-miR-30d-5p, hsa-miR-92a-3p, hsa-miR-222-3p and hsa-miR-30a-5p; and down-regulation of two microRNAs; hsa-miR-6803-3p and hsa-miR-1249-3p. hsa-miR-222-3p and hsa-miR-92a-3p putatively target FOXP2, which was found down-regulated by microRNA regulation in songbird singing. miR-30d and miR-222 corroborate microRNA response observed in zebra finch song-listening/learning. miR-222 is induced by ERK cascade, which is important for memory formation, motor neuron functions and neuronal plasticity. miR-222 is also activated by FOSL1, an immediate early gene from the FOS family of transcriptional regulators which are activated by auditory-motor stimuli. miR-222 and miR-92 promote neurite outgrowth by negatively regulating the neuronal growth inhibitor, PTEN, and by activating CREB expression and phosphorylation. The up-regulation of microRNAs previously found to be regulators of auditory and nervous system functions (miR-30d, miR-92a and miR-222) is indicative of the sensory perception processes associated with music-performance. Akt signalling pathway which has roles in cell survival, cell differentiation, activation of CREB signalling and dopamine transmission was one of the functions regulated by the up-regulated microRNAs; in accordance with functions identified from songbird learning. The up-regulated microRNAs were also found to be regulators of apoptosis, suggesting repression of apoptotic mechanisms in connection with music-performance. Furthermore, comparative analyses of the target genes of differentially expressed microRNAs with that of the song-responsive microRNAs in songbirds suggest convergent regulatory mechanisms underlying auditory perception.
Collapse
Affiliation(s)
| | - Tuire Kuusi
- DocMus Doctoral School, Sibelius Academy, University of the Arts, Helsinki, Finland
| | - Minna Ahvenainen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Anju K Philips
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Whitham M, Febbraio MA. Redefining Tissue Crosstalk via Shotgun Proteomic Analyses of Plasma Extracellular Vesicles. Proteomics 2018; 19:e1800154. [PMID: 30350444 DOI: 10.1002/pmic.201800154] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/13/2018] [Indexed: 01/04/2023]
Abstract
Protein signaling between tissues, or tissue cross-talk is becoming recognized as a fundamental biological process that is incompletely understood. Shotgun proteomic analyses of tissues and plasma to explore this concept are regularly challenged by high dynamic range of protein abundance, which limits the identification of lower abundance proteins. In this viewpoint article, it is highlighted how a focus on proteins contained within extracellular vesicles (EVs) not only partially addresses this issue, but can also reveal an underappreciated complexity of the circulating proteome in various physiological and pathological contexts. Furthermore, how quantitative proteomics can inform EV mediated crosstalk is highlighted and the importance of high coverage, sensitive proteomic analyses of EVs to identify both the optimal methods to isolate EV subtypes of interest and proteins that characterize them is stressed.
Collapse
Affiliation(s)
- Martin Whitham
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom.,Diabetes & Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Mark A Febbraio
- Diabetes & Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| |
Collapse
|
33
|
Willis WT, Miranda-Grandjean D, Hudgens J, Willis EA, Finlayson J, De Filippis EA, Zapata Bustos R, Langlais PR, Mielke C, Mandarino LJ. Dominant and sensitive control of oxidative flux by the ATP-ADP carrier in human skeletal muscle mitochondria: Effect of lysine acetylation. Arch Biochem Biophys 2018; 647:93-103. [PMID: 29653079 DOI: 10.1016/j.abb.2018.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/29/2018] [Accepted: 04/08/2018] [Indexed: 02/01/2023]
Abstract
The adenine nucleotide translocase (ANT) of the mitochondrial inner membrane exchanges ADP for ATP. Mitochondria were isolated from human vastus lateralis muscle (n = 9). Carboxyatractyloside titration of O2 consumption rate (Jo) at clamped [ADP] of 21 μM gave ANT abundance of 0.97 ± 0.14 nmol ANT/mg and a flux control coefficient of 82% ± 6%. Flux control fell to 1% ± 1% at saturating (2 mM) [ADP]. The KmADP for Jo was 32.4 ± 1.8 μM. In terms of the free (-3) ADP anion this KmADP was 12.0 ± 0.7 μM. A novel luciferase-based assay for ATP production gave KmADP of 13.1 ± 1.9 μM in the absence of ATP competition. The free anion KmADP in this case was 2.0 ± 0.3 μM. Targeted proteomic analyses showed significant acetylation of ANT Lysine23 and that ANT1 was the most abundant isoform. Acetylation of Lysine23 correlated positively with KmADP, r = 0.74, P = 0.022. The findings underscore the central role played by ANT in the control of oxidative phosphorylation, particularly at the energy phosphate levels associated with low ATP demand. As predicted by molecular dynamic modeling, ANT Lysine23 acetylation decreased the apparent affinity of ADP for ANT binding.
Collapse
Affiliation(s)
- W T Willis
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| | - D Miranda-Grandjean
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - J Hudgens
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - E A Willis
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - J Finlayson
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| | - E A De Filippis
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - R Zapata Bustos
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| | - P R Langlais
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| | - C Mielke
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - L J Mandarino
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| |
Collapse
|
34
|
Mitchell CJ, D'Souza RF, Schierding W, Zeng N, Ramzan F, O'Sullivan JM, Poppitt SD, Cameron-Smith D. Identification of human skeletal muscle miRNA related to strength by high-throughput sequencing. Physiol Genomics 2018; 50:416-424. [PMID: 29602299 DOI: 10.1152/physiolgenomics.00112.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The loss of muscle size, strength, and quality with aging is a major determinant of morbidity and mortality in the elderly. The regulatory pathways that impact the muscle phenotype include the translational regulation maintained by microRNAs (miRNA). Yet the miRNAs that are expressed in human skeletal muscle and relationship to muscle size, strength, and quality are unknown. Using next-generation sequencing, we selected the 50 most abundantly expressed miRNAs and then analyzed them in vastus lateralis muscle, obtained by biopsy from middle-aged males ( n = 48; 50.0 ± 4.3 yr). Isokinetic strength testing and midthigh computed tomography was undertaken for muscle phenotype analysis. Muscle attenuation was measured by computerized tomography and is inversely proportional to myofiber lipid content. miR-486-5p accounted for 21% of total miR sequence reads, with miR-10b-5p, miR-133a-3p, and miR-22-3p accounting for a further 15, 12, and 10%, respectively. Isokinetic knee extension strength and muscle cross-sectional area were positively correlated with miR-100-5p, miR-99b-5p, and miR-191-5p expression. Muscle attenuation was negatively correlated to let-7f-5p, miR-30d-5p, and miR-125b-5p expression. In silico analysis implicates miRNAs related to strength and muscle size in the regulation of mammalian target of rapamycin, while miRNAs related to muscle attenuation may have potential roles regulating the transforming growth factor-β/SMAD3 pathway.
Collapse
Affiliation(s)
| | | | | | - Nina Zeng
- Liggins Institute, University of Auckland , Auckland , New Zealand
| | - Farha Ramzan
- Liggins Institute, University of Auckland , Auckland , New Zealand
| | | | - Sally D Poppitt
- School of Biological Sciences, University of Auckland , Auckland , New Zealand.,Riddet Institute , Palmerston North , New Zealand
| | - David Cameron-Smith
- Liggins Institute, University of Auckland , Auckland , New Zealand.,Food & Bio-based Products Group, AgResearch, Palmerston North , New Zealand.,Riddet Institute , Palmerston North , New Zealand
| |
Collapse
|
35
|
Reibe S, Hjorth M, Febbraio MA, Whitham M. GeneXX: an online tool for the exploration of transcript changes in skeletal muscle associated with exercise. Physiol Genomics 2018; 50:376-384. [PMID: 29547064 DOI: 10.1152/physiolgenomics.00127.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Exercise stimulates a wide array of biological processes, but the mechanisms involved are incompletely understood. Many previous studies have adopted transcriptomic analyses of skeletal muscle to address particular research questions, a process that ultimately results in the collection of large amounts of publicly available data that has not been fully integrated or interrogated. To maximize the use of these available transcriptomic exercise data sets, we have downloaded and reanalyzed them and formulated the data into a searchable online tool, geneXX. GeneXX is highly intuitive and free and provides immediate information regarding the response of a transcript of interest to exercise in skeletal muscle. To demonstrate its utility, we carried out a meta-analysis on the included data sets and show transcript changes in skeletal muscle that persist regardless of sex, exercise mode, and duration, some of which have had minimal attention in the context of exercise. We also demonstrate how geneXX can be used to formulate novel hypotheses on the complex effects of exercise, using preliminary data already generated. This resource represents a valuable tool for researchers with interests in human skeletal muscle adaptation to exercise.
Collapse
Affiliation(s)
- Saskia Reibe
- Cellular and Molecular Metabolism Laboratory, Diabetes and Metabolism Division, Garvan Institute of Medical Research , Sydney, New South Wales , Australia.,St. Vincent's Clinical School, University of New South Wales , Sydney, New South Wales , Australia
| | - Marit Hjorth
- Cellular and Molecular Metabolism Laboratory, Diabetes and Metabolism Division, Garvan Institute of Medical Research , Sydney, New South Wales , Australia.,St. Vincent's Clinical School, University of New South Wales , Sydney, New South Wales , Australia
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Diabetes and Metabolism Division, Garvan Institute of Medical Research , Sydney, New South Wales , Australia.,St. Vincent's Clinical School, University of New South Wales , Sydney, New South Wales , Australia
| | - Martin Whitham
- Cellular and Molecular Metabolism Laboratory, Diabetes and Metabolism Division, Garvan Institute of Medical Research , Sydney, New South Wales , Australia.,St. Vincent's Clinical School, University of New South Wales , Sydney, New South Wales , Australia
| |
Collapse
|
36
|
Safdar A, Tarnopolsky MA. Exosomes as Mediators of the Systemic Adaptations to Endurance Exercise. Cold Spring Harb Perspect Med 2018; 8:a029827. [PMID: 28490541 PMCID: PMC5830902 DOI: 10.1101/cshperspect.a029827] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Habitual endurance exercise training is associated with multisystemic metabolic adaptations that lower the risk of inactivity-associated disorders such as obesity and type 2 diabetes mellitus (T2DM). Identification of complex systemic signaling networks responsible for these benefits are of great interest because of their therapeutic potential in metabolic diseases; however, specific signals that modulate the multisystemic benefits of exercise in multiple tissues and organs are only recently being discovered. Accumulated evidence suggests that muscle and other tissues have an endocrine function and release peptides and nucleic acids into the circulation in response to acute endurance exercise to mediate the multisystemic adaptations. Factors released from skeletal muscle have been termed myokines and we propose that the total of all factors released in response to endurance exercise (including peptides, nucleic acids, and metabolites) be termed, "exerkines." We propose that many of the exerkines are released within extracellular vesicles called exosomes, which regulate peripheral organ cross talk. Exosomes (30-140 nm) and larger microvesicles [MVs] (100-1000 nm) are subcategories of extracellular vesicles that are released into the circulation. Exosomes contain peptides and several nucleic acids (microRNA [miRNA], messenger RNA [mRNA], mitochondrial DNA [mtDNA]) and are involved in intercellular/tissue exchange of their contents. An acute bout of endurance exercise increases circulating exosomes that are hypothesized to mediate organ cross talk to promote systemic adaptation to endurance exercise. Further support for the role of exosomes (and possibly MVs) in mediating the systemic benefits of exercise comes from the fact that the majority of the previously reported myokines/exerkines are found in extracellular vesicles databases (Vesiclepedia and ExoCarta). We propose that exosomes isolated from athletes following exercise or exosomes bioengineered to incorporate one or many of known exerkines will be therapeutically useful in the treatment of obesity, T2DM, and other aging-associated metabolic disorders.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Pediatrics, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
- Department of Pediatrics & Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
37
|
Denham J. Exercise and epigenetic inheritance of disease risk. Acta Physiol (Oxf) 2018; 222. [PMID: 28371392 DOI: 10.1111/apha.12881] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/18/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
Epigenetics is the study of gene expression changes that occur in the absence of altered genotype. Current evidence indicates a role for environmentally induced alterations to epigenetic modifications leading to health and disease changes across multiple generations. This phenomenon is called intergenerational or transgenerational epigenetic inheritance of health or disease. Environmental insults, in the form of toxins, plastics and particular dietary interventions, perturb the epigenetic landscape and influence the health of F1 through to F4 generations in rodents. There is, however, the possibility that healthy lifestyles and environmental factors, such as exercise training, could lead to favourable, heritable epigenetic modifications that augment transcriptional programmes protective of disease, including metabolic dysfunction, heart disease and cancer. The health benefits conferred by regular physical exercise training are unquestionable, yet many of the molecular changes may have heritable health implications for future generations. Similar to other environmental factors, exercise modulates the epigenome of somatic cells and researchers are beginning to study exercise epigenetics in germ cells. The germ cell epigenetic modifications affected by exercise offer a molecular mechanism for the inheritance of health and disease risk. The aims of this review are to: (i) provide an update on the expanding field of exercise epigenetics; (ii) offer an overview of data on intergenerational/transgenerational epigenetic inheritance of disease by environmental insults; (iii) to discuss the potential of exercise-induced intergenerational inheritance of health and disease risk; and finally, outline potential mechanisms and avenues for future work on epigenetic inheritance through exercise.
Collapse
Affiliation(s)
- J. Denham
- School of Science and Technology; University of New England; Armidale NSW Australia
| |
Collapse
|
38
|
Saliani N, Montazersaheb S, Montasser Kouhsari S. Micromanaging Glucose Tolerance and Diabetes. Adv Pharm Bull 2017; 7:547-556. [PMID: 29399544 PMCID: PMC5788209 DOI: 10.15171/apb.2017.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs that have significant roles in biological processes such as glucose homoeostasis. MiRNAs fine-tune target genes expression via sequence-specific binding of their seed sequence to the untranslated region of mRNAs and degrade target mRNAs. MicroRNAs in islet β-cells regulate β-cell differentiation, proliferation, insulin transcription and glucose-stimulated insulin secretion. Furthermore, miRNAs play key roles in the regulation of glucose and lipid metabolisms and modify insulin sensitivity by controlling metabolic functions in main target organs of insulin such as skeletal muscle, liver and adipose tissue. Moreover, since circulating miRNAs are detectable and stable in serum, levels of certain miRNAs seem to be novel biomarkers for prediction of diabetes mellitus. In this article, due to the prominent impact of miRNAs on diabetes, we overviewed the microRNAs regulatory functions in organs related to insulin resistance and diabetes and shed light on their potential as diagnostic and therapeutic markers for diabetes.
Collapse
Affiliation(s)
- Negar Saliani
- Department of Cellular and Molecular Biology, School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | | | - Shideh Montasser Kouhsari
- Department of Cellular and Molecular Biology, School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
39
|
Maqueda M, Roca E, Brotons D, Soria JM, Perera A. Affected pathways and transcriptional regulators in gene expression response to an ultra-marathon trail: Global and independent activity approaches. PLoS One 2017; 12:e0180322. [PMID: 29028836 PMCID: PMC5640184 DOI: 10.1371/journal.pone.0180322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/14/2017] [Indexed: 12/18/2022] Open
Abstract
Gene expression (GE) analyses on blood samples from marathon and half-marathon runners have reported significant impacts on the immune and inflammatory systems. An ultra-marathon trail (UMT) represents a greater effort due to its more testing conditions. For the first time, we report the genome-wide GE profiling in a group of 16 runners participating in an 82 km UMT competition. We quantified their differential GE profile before and after the race using HuGene2.0st microarrays (Affymetrix Inc., California, US). The results obtained were decomposed by means of an independent component analysis (ICA) targeting independent expression modes. We observed significant differences in the expression levels of 5,084 protein coding genes resulting in an overrepresentation of 14% of the human biological pathways from the Kyoto Encyclopedia of Genes and Genomes database. These were mainly clustered on terms related with protein synthesis repression, altered immune system and infectious diseases related mechanisms. In a second analysis, 27 out of the 196 transcriptional regulators (TRs) included in the Open Regulatory Annotation database were overrepresented. Among these TRs, we identified transcription factors from the hypoxia-inducible factors (HIF) family EPAS1 (p< 0.01) and HIF1A (p<0.001), and others jointly described in the gluconeogenesis program such as HNF4 (p< 0.001), EGR1 (p<0.001), CEBPA (p< 0.001) and a highly specific TR, YY1 (p<0.01). The five independent components, obtained from ICA, further revealed a down-regulation of 10 genes distributed in the complex I, III and V from the electron transport chain. This mitochondrial activity reduction is compatible with HIF-1 system activation. The vascular endothelial growth factor (VEGF) pathway, known to be regulated by HIF, also emerged (p<0.05). Additionally, and related to the brain rewarding circuit, the endocannabinoid signalling pathway was overrepresented (p<0.05).
Collapse
Affiliation(s)
- Maria Maqueda
- Department of ESAII, Center for Biomedical Engineering Research, Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Catalonia, Spain
- * E-mail:
| | - Emma Roca
- Summit 2014 S.L., Centelles, Barcelona, Catalonia Spain
- Department of Electronic Engineering, Center for Biomedical Engineering Research, Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain
| | | | - Jose Manuel Soria
- Unit of Genomics of Complex Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
| | - Alexandre Perera
- Department of ESAII, Center for Biomedical Engineering Research, Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Catalonia, Spain
| |
Collapse
|
40
|
Jones A, Danielson KM, Benton MC, Ziegler O, Shah R, Stubbs RS, Das S, Macartney-Coxson D. miRNA Signatures of Insulin Resistance in Obesity. Obesity (Silver Spring) 2017; 25:1734-1744. [PMID: 28834285 PMCID: PMC5614819 DOI: 10.1002/oby.21950] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Extracellular microRNAs (miRNAs) represent functional biomarkers for obesity and related disorders; this study investigated plasma miRNAs in insulin resistance phenotypes in obesity. METHODS One hundred seventy-five miRNAs were analyzed in females with obesity (insulin sensitivity, n = 11; insulin resistance, n = 19; type 2 diabetes, n = 15) and without obesity (n = 12). Correlations between miRNA level and clinical parameters and levels of 15 miRNAs in a murine obesity model were investigated. RESULTS One hundred six miRNAs were significantly (adjusted P ≤ 0.05) different between controls and at least one obesity phenotype, including miRNAs with the following attributes: previously reported roles in obesity and altered circulating levels (e.g., miR-122, miR-192); known roles in obesity but no reported changes in circulating levels (e.g., miR-378a); and no current reported role in, or association with, obesity (e.g., miR-28-5p, miR-374b, miR-32). The miRNAs in the latter group were found to be associated with extracellular vesicles. Forty-eight miRNAs showed significant correlations with clinical parameters; stepwise regression retained let-7b, miR-144-5p, miR-34a, and miR-532-5p in a model predictive of insulin resistance (R2 = 0.57, P = 7.5 × 10-8 ). Both miR-378a and miR-122 were perturbed in metabolically relevant tissues in a murine model of obesity. CONCLUSIONS This study expands on the role of extracellular miRNAs in insulin-resistant phenotypes of obesity and identifies candidate miRNAs not previously associated with obesity.
Collapse
Affiliation(s)
- Angela Jones
- Biomarkers Group, Institute of Environmental Science and Research (ESR), Wellington, New Zealand
| | - Kirsty M Danielson
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, USA
| | - Miles C Benton
- Biomarkers Group, Institute of Environmental Science and Research (ESR), Wellington, New Zealand
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia
| | - Olivia Ziegler
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, USA
| | - Ravi Shah
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, USA
| | | | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, USA
| | - Donia Macartney-Coxson
- Biomarkers Group, Institute of Environmental Science and Research (ESR), Wellington, New Zealand
- corresponding author Contact: Donia Macartney-Coxson, Biomarkers Group, Institute of Environmental Science and Research (ESR), Wellington, 5022, New Zealand. Telephone: +64 4 917 5931 Fax: +64 4 914 0770
| |
Collapse
|
41
|
D’Souza RF, Markworth JF, Aasen KMM, Zeng N, Cameron-Smith D, Mitchell CJ. Acute resistance exercise modulates microRNA expression profiles: Combined tissue and circulatory targeted analyses. PLoS One 2017; 12:e0181594. [PMID: 28750051 PMCID: PMC5531502 DOI: 10.1371/journal.pone.0181594] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/03/2017] [Indexed: 12/17/2022] Open
Abstract
A subset of short non-coding RNAs, microRNAs (miRs), have been identified in the regulation of skeletal muscle hypertrophy and atrophy. Expressed within cells, miRs are also present in circulation (c-miR) and have a putative role in cross-tissue signalling. The aim of this study was to examine the impact of a single bout of high intensity resistance exercise (RE) on skeletal muscle and circulatory miRs harvested simultaneously. Resistance trained males (n = 9, 24.6 ± 4.9 years) undertook a single bout of high volume RE with venous blood and muscle biopsies collected before, 2 and 4hr post-exercise. Real time polymerase chain reaction (Rt-PCR) analyses was performed on 30 miRs that have previously been shown to be required for skeletal muscle function. Of these, 6 miRs were significantly altered within muscle following exercise; miR-23a, -133a, -146a, -206, -378b and 486. Analysis of these same miRs in circulation demonstrated minimal alterations with exercise, although c-miR-133a (~4 fold, p = 0.049) and c-miR-149 (~2.4 fold; p = 0.006) were increased 4hr post-exercise. Thus a single bout of RE results in the increased abundance of a subset of miRs within the skeletal muscle, which was not evident in plasma. The lack a qualitative agreement in the response pattern of intramuscular and circulating miR expression suggests the analysis of circulatory miRs is not reflective of the miR responses within skeletal muscle after exercise.
Collapse
Affiliation(s)
| | - James F. Markworth
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Nina Zeng
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | | | - Cameron J. Mitchell
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
42
|
Goodpaster BH, Sparks LM. Metabolic Flexibility in Health and Disease. Cell Metab 2017; 25:1027-1036. [PMID: 28467922 PMCID: PMC5513193 DOI: 10.1016/j.cmet.2017.04.015] [Citation(s) in RCA: 564] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/07/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
Abstract
Metabolic flexibility is the ability to respond or adapt to conditional changes in metabolic demand. This broad concept has been propagated to explain insulin resistance and mechanisms governing fuel selection between glucose and fatty acids, highlighting the metabolic inflexibility of obesity and type 2 diabetes. In parallel, contemporary exercise physiology research has helped to identify potential mechanisms underlying altered fuel metabolism in obesity and diabetes. Advances in "omics" technologies have further stimulated additional basic and clinical-translational research to further interrogate mechanisms for improved metabolic flexibility in skeletal muscle and adipose tissue with the goal of preventing and treating metabolic disease.
Collapse
Affiliation(s)
- Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford Burnham Prebys Medical Discovery Institute, 301 East Princeton Street, Orlando, FL 32804, USA.
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford Burnham Prebys Medical Discovery Institute, 301 East Princeton Street, Orlando, FL 32804, USA
| |
Collapse
|
43
|
O'Brien K. TaqMan Low Density Array: MicroRNA Profiling for Biomarker and Oncosuppressor Discovery. Methods Mol Biol 2017; 1509:71-84. [PMID: 27826919 DOI: 10.1007/978-1-4939-6524-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs) have gained a lot of interest as biomarkers and biotherapeutics in recent years. The discovery of miRNAs in circulation as recently as 2008, aided by rapid advances in high-throughput profiling techniques initiated an explosion of investigations dedicated to discovering circulating miRNAs as minimally invasive biomarkers. As miRNAs regulate many cellular processes, investigators are actively exploring their relevance in disease treatment by miRNA restoration. This chapter demonstrates an approach to discover miRNAs of biomarker and therapeutic potential by isolating miRNAs from cell lines, performing global miRNA profiling, investigating miRNA expression in clinical specimens and examining their therapeutic relevance by restoring miRNA expression using Lipofectamine in vitro.
Collapse
Affiliation(s)
- Keith O'Brien
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland.
- APC Ltd., Building 11, Cherrywood Business Park, Loughlinstown, Co., Dublin, D18 DH50, Ireland.
| |
Collapse
|
44
|
Fernández-Verdejo R, Vanwynsberghe AM, Essaghir A, Demoulin JB, Hai T, Deldicque L, Francaux M. Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training. FASEB J 2016; 31:840-851. [PMID: 27856557 DOI: 10.1096/fj.201600987r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/31/2016] [Indexed: 12/17/2022]
Abstract
Activating transcription factor (ATF)3 regulates the expression of inflammation-related genes in several tissues under pathological contexts. In skeletal muscle, atf3 expression increases after exercise, but its target genes remain unknown. We aimed to identify those genes and to determine the influence of ATF3 on muscle adaptation to training. Skeletal muscles of ATF3-knockout (ATF3-KO) and control mice were analyzed at rest, after exercise, and after training. In resting muscles, there was no difference between genotypes in enzymatic activities or fiber type. After exercise, a microarray analysis in quadriceps revealed ATF3 affects genes modulating chemotaxis and chemokine/cytokine activity. Quantitative PCR showed that the mRNA levels of chemokine C-C motif ligand (ccl)8 and chemokine C-X-C motif ligand (cxcl)13 were higher in quadriceps of ATF3-KO mice than in control mice. The same was observed for ccl9 and cxcl13 in soleus. Also in soleus, ccl2, interleukin (il)6, il1β, and cluster of differentiation (cd)68 mRNA levels increased after exercise only in ATF3-KO mice. Endurance training increased the basal mRNA level of hexokinase-2, hormone sensitive lipase, glutathione peroxidase-1, and myosin heavy chain IIa in quadriceps of control mice but not in ATF3-KO mice. In summary, ATF3 attenuates the expression of inflammation-related genes after exercise and thus facilitates molecular adaptation to training.-Fernández-Verdejo, R., Vanwynsberghe, A. M., Essaghir, A., Demoulin, J.-B., Hai, T., Deldicque, L., Francaux, M. Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training.
Collapse
Affiliation(s)
| | - Aline M Vanwynsberghe
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Ahmed Essaghir
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium; and
| | | | - Tsonwin Hai
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio, USA
| | - Louise Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marc Francaux
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium;
| |
Collapse
|
45
|
The TreadWheel: A Novel Apparatus to Measure Genetic Variation in Response to Gently Induced Exercise for Drosophila. PLoS One 2016; 11:e0164706. [PMID: 27736996 PMCID: PMC5063428 DOI: 10.1371/journal.pone.0164706] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/29/2016] [Indexed: 01/09/2023] Open
Abstract
Obesity is one of the dramatic health issues affecting developed and developing nations, and exercise is a well-established intervention strategy. While exercise-by-genotype interactions have been shown in humans, overall little is known. Using the natural negative geotaxis of Drosophila melanogaster, an important model organism for the study of genetic interactions, a novel exercise machine, the TreadWheel, can be used to shed light on this interaction. The mechanism for inducing exercise with the TreadWheel is inherently gentle, thus minimizing possible confounding effects of other stressors. Using this machine, we were able to assess large cohorts of adult flies from eight genetic lines for their response to exercise after one week of training. We measured their triglyceride, glycerol, protein, glycogen, glucose content, and body weight, as well as their climbing ability and feeding behavior in response to exercise. Exercised flies showed decreased stored triglycerides, glycogen, and body weight, and increased stored protein and climbing ability. In addition to demonstrating an overall effect of TreadWheel exercise on flies, we found significant interactions of exercise with genotype, sex, or genotype-by-sex effects for most of the measured phenotypes. We also observed interaction effects between exercise, genotype, and tissue (abdomen or thorax) for metabolite profiles, and those differences can be partially linked to innate differences in the flies' persistence in maintaining activity during exercise bouts. In addition, we assessed gene expression levels for a panel of 13 genes known to be associated with respiratory fitness and found that many responded to exercise. With this study, we have established the TreadWheel as a useful tool to study the effect of exercise in flies, shown significant genotype-specific and sex-specific impacts of exercise, and have laid the ground work for more extensive studies of how genetics, sex, environment, and aging interact with exercise to influence metabolic fitness in Drosophila.
Collapse
|
46
|
Safdar A, Saleem A, Tarnopolsky MA. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 2016; 12:504-17. [PMID: 27230949 DOI: 10.1038/nrendo.2016.76] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endurance exercise-mediated multisystemic adaptations are known to mitigate metabolism-related disorders such as obesity and type 2 diabetes mellitus (T2DM). However, the underlying molecular mechanisms that promote crosstalk between organs and orchestrate the pro-metabolic effects of endurance exercise remain unclear. Exercise-induced release of peptides and nucleic acids from skeletal muscle and other organs (collectively termed 'exerkines') has been implicated in mediating these systemic adaptations. Given that the extracellular milieu is probably not a hospitable environment for labile exerkines, a lipid vehicle-based mode of delivery has originated over the course of evolution. Two types of extracellular vesicles, exosomes and microvesicles, have been shown to contain proteins and nucleic acids that participate in a variety of physiological and pathological processes. Exosomes, in particular, have been shown to facilitate the exchange of peptides, microRNA, mRNA and mitochondrial DNA between cells and tissues. Intriguingly, circulatory extracellular vesicle content increases in an intensity-dependant manner in response to endurance exercise. We propose that the systemic benefits of exercise are modulated by exosomes and/or microvesicles functioning in an autocrine, paracrine and/or endocrine manner. Furthermore, we posit that native or modified exosomes, and/or microvesicles enriched with exerkines will have therapeutic utility in the treatment of obesity and T2DM.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Ayesha Saleem
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
47
|
Changes in Pre- and Post-Exercise Gene Expression among Patients with Chronic Kidney Disease and Kidney Transplant Recipients. PLoS One 2016; 11:e0160327. [PMID: 27518102 PMCID: PMC4982681 DOI: 10.1371/journal.pone.0160327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/18/2016] [Indexed: 11/19/2022] Open
Abstract
Introduction Decreased insulin sensitivity blunts the normal increase in gene expression from skeletal muscle after exercise. In addition, chronic inflammation decreases insulin sensitivity. Chronic kidney disease (CKD) is an inflammatory state. How CKD and, subsequently, kidney transplantation affects skeletal muscle gene expression after exercise are unknown. Methods Study cohort: non-diabetic male/female 4/1, age 52±2 years, with end-stage CKD who underwent successful kidney transplantation. The following were measured both pre-transplant and post-transplant and compared to normals: Inflammatory markers, euglycemic insulin clamp studies determine insulin sensitivity, and skeletal muscle biopsies performed before and within 30 minutes after an acute exercise protocol. Microarray analyses were performed on the skeletal muscle using the 4x44K Whole Human Genome Microarrays. Since nuclear factor of activated T cells (NFAT) plays an important role in T cell activation and calcineurin inhibitors are mainstay immunosuppression, calcineurin/NFAT pathway gene expression was compared at rest and after exercise. Log transformation was performed to prevent skewing of data and regression analyses comparing measures pre- and post-transplant performed. Result Markers of inflammation significantly improved post-transplantation. Insulin infusion raised glucose disposal slightly lower post-transplant compared to pre-transplant, but not significantly, thus concluding differences in insulin sensitivity were similar. The overall pattern of gene expression in response to exercise was reduced both pre-and post-transplant compared to healthy volunteers. Although significant changes were observed among NFAT/Calcineurin gene at rest and after exercise in normal cohort, there were no significant differences comparing NFAT/calcineurin pathway gene expression pre- and post-transplant. Conclusions Despite an improvement in serum inflammatory markers, no significant differences in glucose disposal were observed post-transplant. The reduced skeletal muscle gene expression, including NFAT/calcineurin gene expression, in response to a single bout of exercise was not improved post-transplant. This study suggests that the improvements in inflammatory mediators post-transplant are unrelated to changes of NFAT/calcineurin gene expression.
Collapse
|
48
|
Li R, Dudemaine PL, Zhao X, Lei C, Ibeagha-Awemu EM. Comparative Analysis of the miRNome of Bovine Milk Fat, Whey and Cells. PLoS One 2016; 11:e0154129. [PMID: 27100870 PMCID: PMC4839614 DOI: 10.1371/journal.pone.0154129] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 04/08/2016] [Indexed: 12/19/2022] Open
Abstract
Abundant miRNAs have been identified in milk and mammary gland tissues of different species. Typically, RNA in milk can be extracted from different fractions including fat, whey and cells and the mRNA transcriptome of milk could serve as an indicator of the transcriptome of mammary gland tissue. However, it has not been adequately validated if the miRNA transcriptome of any milk fraction could be representative of that of mammary gland tissue. The objectives of this study were to (1) characterize the miRNA expression spectra from three milk fractions- fat, whey and cells; (2) compare miRNome profiles of milk fractions (fat, whey and cells) with mammary gland tissue miRNome, and (3) determine which milk fraction miRNome profile could be a better representative of the miRNome profile of mammary gland tissue. Milk from four healthy Canadian Holstein cows in mid lactation was collected and fractionated. Total RNA extracted from each fraction was used for library preparation followed by small RNA sequencing. In addition, miRNA transcripts of mammary gland tissues from twelve Holstein cows in our previous study were used to compare our data. We identified 210, 200 and 249 known miRNAs from milk fat, whey and cells, respectively, with 188 universally expressed in the three fractions. In addition, 33, 31 and 36 novel miRNAs from milk fat, whey and cells were identified, with 28 common in the three fractions. Among 20 most highly expressed miRNAs in each fraction, 14 were expressed in common and 11 were further shared with mammary gland tissue. The three milk fractions demonstrated a clear separation from each other using a hierarchical cluster analysis with milk fat and whey being most closely related. The miRNome correlation between milk fat and mammary gland tissue (rmean = 0.866) was significantly higher than the other two pairs (p < 0.01), whey/mammary gland tissue (rmean = 0.755) and milk cell/mammary gland tissue (rmean = 0.75), suggesting that milk fat could be an alternative non-invasive source of RNA in assessing miRNA activities in bovine mammary gland. Predicted target genes (1802) of 14 highly expressed miRNAs in milk fractions were enriched in fundamental cellular functions, infection, organ and tissue development. Furthermore, some miRNAs were highly enriched (FDR <0.05) in milk whey (3), cells (11) and mammary gland tissue (14) suggesting specific regulatory functions in the various fractions. In conclusion, we have obtained a comprehensive miRNA profile of the different milk fractions using high throughput sequencing. Our comparative analysis showed that miRNAs from milk fat accurately portrayed the miRNome of mammary gland tissue. Functional annotation of the top expressed miRNAs in milk confirmed their critical regulatory roles in mammary gland functions and potentially to milk recipients.
Collapse
Affiliation(s)
- Ran Li
- College of Animal Science and Technology, Northwest A & F University, Xi’an, Shaanxi, 712100, China
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada
| | - Pier-Luc Dudemaine
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A & F University, Xi’an, Shaanxi, 712100, China
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Ste-Anne-de Bellevue, Quebec, J1M 0C8, Canada
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A & F University, Xi’an, Shaanxi, 712100, China
| | - Eveline Mengwi Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada
| |
Collapse
|
49
|
Böhm A, Weigert C, Staiger H, Häring HU. Exercise and diabetes: relevance and causes for response variability. Endocrine 2016; 51:390-401. [PMID: 26643313 PMCID: PMC4762932 DOI: 10.1007/s12020-015-0792-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/28/2015] [Indexed: 12/31/2022]
Abstract
Exercise as a key prevention strategy for diabetes and obesity is commonly accepted and recommended throughout the world. Unfortunately, not all individuals profit to the same extent, some exhibit exercise resistance. This phenomenon of non-response to exercise is found for several endpoints, including glucose tolerance and insulin sensitivity. Since these non-responders are of notable quantity, there is the need to understand the underlying mechanisms and to identify predictors of response. This displays the basis to develop personalized training intervention regimes. In this review, we summarize the current knowledge on response variability, with focus on human studies and improvement of glucose homeostasis as outcome.
Collapse
Affiliation(s)
- Anja Böhm
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Cora Weigert
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Harald Staiger
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| |
Collapse
|