1
|
Jiang L, Koh JHZ, Seah SHY, Dan YS, Wang Z, Chan X, Zhou L, Barathi VA, Hoang QV. Key role for inflammation-related signaling in the pathogenesis of myopia based on evidence from proteomics analysis. Sci Rep 2024; 14:23486. [PMID: 39379387 PMCID: PMC11461836 DOI: 10.1038/s41598-024-67337-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/10/2024] [Indexed: 10/10/2024] Open
Abstract
The mechanisms underlying myopia pathogenesis are not well understood. Using publicly-available human and animal datasets, we expound on the roles of known, implicated proteins, and new myopia-related signaling pathways were hypothesized. Proteins identified from human serum or ocular fluids, and from ocular tissues in myopic animal models, were uploaded and analyzed with the QIAGEN Ingenuity Pathway Analysis (IPA) software (March 2023). With each IPA database update, more potentially-relevant proteins and signaling pathways previously unavailable during data acquisition are added, allowing extraction of novel conclusions from existing data. Canonical pathway analysis was used to analyze these data and calculate an IPA activation z-score-which indicates not only whether an association is significant, but also whether the pathway is likely activated or inhibited. Cellular immune response and cytokine signaling were frequently found to be affected in both human and animal myopia studies. Analysis of two publicly-available proteomic datasets highlighted a potential role of the innate immune system and inflammation in myopia development, detailing specific signaling pathways involved such as Granzyme A (GzmA) and S100 family signaling in the retina, and activation of myofibroblast trans-differentiation in the sclera. This perspective in myopia research may facilitate development of more effective and targeted therapeutic agents.
Collapse
Affiliation(s)
- Liqin Jiang
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, 20 College Rd, Singapore, 169856, Singapore
| | - James H Z Koh
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, 20 College Rd, Singapore, 169856, Singapore
| | - Sherlyn H Y Seah
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, 20 College Rd, Singapore, 169856, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yee Shan Dan
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, 20 College Rd, Singapore, 169856, Singapore
| | - Zhaoran Wang
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, 20 College Rd, Singapore, 169856, Singapore
| | - Xavier Chan
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, 20 College Rd, Singapore, 169856, Singapore
| | - Lei Zhou
- School of Optometry, Department of Applied Biology and Chemical Technology, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, 20 College Rd, Singapore, 169856, Singapore.
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Quan V Hoang
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, 20 College Rd, Singapore, 169856, Singapore.
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Ophthalmology, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Hammid A, Honkakoski P. Ocular Drug-Metabolizing Enzymes: Focus on Esterases. Drug Metab Rev 2024:1-23. [PMID: 38888291 DOI: 10.1080/03602532.2024.2368247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Affiliation(s)
- Anam Hammid
- School of Pharmacy, University of Eastern Finland, Yliopistonrinne3, FI-70210 Kuopio, Finland
| | - Paavo Honkakoski
- School of Pharmacy, University of Eastern Finland, Yliopistonrinne3, FI-70210 Kuopio, Finland
| |
Collapse
|
3
|
Pucchio A, Krance SH, Pur DR, Bhatti J, Bassi A, Manichavagan K, Brahmbhatt S, Aggarwal I, Singh P, Virani A, Stanley M, Miranda RN, Felfeli T. Applications of artificial intelligence and bioinformatics methodologies in the analysis of ocular biofluid markers: a scoping review. Graefes Arch Clin Exp Ophthalmol 2024; 262:1041-1091. [PMID: 37421481 DOI: 10.1007/s00417-023-06100-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE This scoping review summarizes the applications of artificial intelligence (AI) and bioinformatics methodologies in analysis of ocular biofluid markers. The secondary objective was to explore supervised and unsupervised AI techniques and their predictive accuracies. We also evaluate the integration of bioinformatics with AI tools. METHODS This scoping review was conducted across five electronic databases including EMBASE, Medline, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Web of Science from inception to July 14, 2021. Studies pertaining to biofluid marker analysis using AI or bioinformatics were included. RESULTS A total of 10,262 articles were retrieved from all databases and 177 studies met the inclusion criteria. The most commonly studied ocular diseases were diabetic eye diseases, with 50 papers (28%), while glaucoma was explored in 25 studies (14%), age-related macular degeneration in 20 (11%), dry eye disease in 10 (6%), and uveitis in 9 (5%). Supervised learning was used in 91 papers (51%), unsupervised AI in 83 (46%), and bioinformatics in 85 (48%). Ninety-eight papers (55%) used more than one class of AI (e.g. > 1 of supervised, unsupervised, bioinformatics, or statistical techniques), while 79 (45%) used only one. Supervised learning techniques were often used to predict disease status or prognosis, and demonstrated strong accuracy. Unsupervised AI algorithms were used to bolster the accuracy of other algorithms, identify molecularly distinct subgroups, or cluster cases into distinct subgroups that are useful for prediction of the disease course. Finally, bioinformatic tools were used to translate complex biomarker profiles or findings into interpretable data. CONCLUSION AI analysis of biofluid markers displayed diagnostic accuracy, provided insight into mechanisms of molecular etiologies, and had the ability to provide individualized targeted therapeutic treatment for patients. Given the progression of AI towards use in both research and the clinic, ophthalmologists should be broadly aware of the commonly used algorithms and their applications. Future research may be aimed at validating algorithms and integrating them in clinical practice.
Collapse
Affiliation(s)
- Aidan Pucchio
- Department of Ophthalmology, Queen's University, Kingston, ON, Canada
- Queens School of Medicine, Kingston, ON, Canada
| | - Saffire H Krance
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Daiana R Pur
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jasmine Bhatti
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Arshpreet Bassi
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Shaily Brahmbhatt
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Priyanka Singh
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Aleena Virani
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Rafael N Miranda
- The Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Tina Felfeli
- The Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada.
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College Street, Suite 400, Toronto, ON, M5T 3A9, Canada.
| |
Collapse
|
4
|
Velez G, Wolf J, Dufour A, Mruthyunjaya P, Mahajan VB. Cross-Platform Identification and Validation of Uveal Melanoma Vitreous Protein Biomarkers. Invest Ophthalmol Vis Sci 2023; 64:14. [PMID: 37955612 PMCID: PMC10653261 DOI: 10.1167/iovs.64.14.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Purpose The purpose of this study was to profile protein expression liquid vitreous biopsies from patients with uveal melanoma (UM) using mass spectrometry to identify prognostic biomarkers, signaling pathways, and therapeutic targets. Methods Vitreous biopsies were collected from two cohorts in a pilot study: comparative control eyes with epiretinal membranes (ERM; n = 3) and test eyes with UM (n = 8). Samples were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Identified proteins were compared to data from a targeted multiplex ELISA proteomics platform. Results A total of 69 significantly elevated proteins were detected in the UM vitreous, including LYVE-1. LC-MS/MS identified 62 significantly upregulated proteins in UM vitreous that were not previously identified by ELISA. Analysis of differential protein expression by tumor molecular classification (gene expression profiling [GEP] and preferentially expressed antigen in melanoma [PRAME]) further identified proteins that correlated with these classifications. Patients with high-risk GEP tumors displayed elevated vitreous expression of HGFR (fold-change [FC] = 2.66E + 03, P value = 0.003) and PYGL (FC = 1.02E + 04, P = 1.72E-08). Patients with PRAME positive tumors displayed elevated vitreous expression of ENPP-2 (FC = 3.21, P = 0.04), NEO1 (FC = 2.65E + 03, P = 0.002), and LRP1 (FC = 5.59E + 02, P value = 0.01). IGF regulatory effectors were highly represented (P value = 1.74E-16). Cross-platform analysis validated seven proteins identified by ELISA and LC-MS/MS. Conclusions Proteomic analysis of liquid biopsies may provide prognostic information supporting gene expression of tumor biopsies. The use of multiple protein detection platforms in the same patient samples increases the sensitivity of candidate biomarker detection and allows for precise characterization of the vitreous proteome.
Collapse
Affiliation(s)
- Gabriel Velez
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, United States
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Julian Wolf
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, United States
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Antoine Dufour
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Prithvi Mruthyunjaya
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Vinit B. Mahajan
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, United States
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States
| |
Collapse
|
5
|
Marquina S, Ozgul M, Robertson-Brown K, Kenney MC. A review on PLGA particles as a sustained drug-delivery system and its effect on the retina. Exp Eye Res 2023; 235:109626. [PMID: 37652091 DOI: 10.1016/j.exer.2023.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/01/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
In this review, the designs and recent developments of polymer-based drug delivery of Poly(lactic-co-glycolic acid) (PLGA) will be discussed for the possible treatment of age-related macular degeneration (AMD). PLGA is a versatile co-polymer that consists of synthetic lactic acid and glycolic acid monomers that are constructed to produce nanoparticles, microparticles, and scaffolds for the intraocular delivery of various drugs. As an FDA-approved polymer, PLGA has historically been well-suited for systemic slow-sustained release therapies due to its performance in biodegradability and biocompatibility. This review will examine recent in vitro and in vivo studies that provide evidence for PLGA-based particles as a therapeutic drug carrier for the treatment of AMD. Anti-angiogenic and antiproliferative effects of small peptides, small molecules, RNA molecules, and proteins within PLGA particles are briefly discussed. AMD is a leading cause of central vision loss in people over 55 years and the number of those afflicted will rise as the aging population increases. AMD has two forms that are often sequential. Dry AMD and wet AMD account for 85-90% and 10-15% of cases, respectively. The distinct categories of PLGA-based drug delivery vehicles are important for dispensing novel small molecules, RNA molecules, peptides, and proteins as a long-term effective treatment of AMD.
Collapse
Affiliation(s)
- Sylvana Marquina
- School of Medicine, University of California Irvine, 843 Health Sciences Road, Irvine, CA, 92697, USA.
| | - Mustafa Ozgul
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, 843 Health Sciences Road, Irvine, CA, 92697, USA.
| | - Kenneth Robertson-Brown
- School of Medicine, University of California Irvine, 843 Health Sciences Road, Irvine, CA, 92697, USA
| | - M Cristina Kenney
- Department of Pathology and Laboratory Medicine, University of California Irvine, 843 Health Sciences Road, Irvine, CA, 92697, USA
| |
Collapse
|
6
|
Sen S, Udaya P, Jeya Maheshwari J, Kohli P, Parida H, Kannan NB, Ramasamy K, Dharmalingam K. Comparative proteomics of proliferative diabetic retinopathy in people with Type 2 diabetes highlights the role of inflammation, visual transduction, and extracellular matrix pathways. Indian J Ophthalmol 2023; 71:3069-3079. [PMID: 37530283 PMCID: PMC10538831 DOI: 10.4103/ijo.ijo_276_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Accepted: 06/09/2023] [Indexed: 08/03/2023] Open
Abstract
Purpose To explore the vitreous humor proteome from type 2 diabetes subjects with proliferative diabetic retinopathy (PDR) in the Indian population. Methods We performed mass spectrometry-based label-free quantitative analysis of vitreous proteome of PDR (n = 13) and idiopathic macular hole (IMH; control) subjects (n = 14). Nine samples of PDR and 10 samples of IMH were pooled as case and control, respectively, and compared. Four samples each of PDR and IMH were analyzed individually without pooling to validate the results of the pooled analysis. Comparative quantification was performed using Scaffold software which calculated the fold changes of differential expression. Bioinformatics analysis was performed using DAVID and STRING software. Results We identified 469 proteins in PDR and 517 proteins in IMH vitreous, with an overlap of 172 proteins. Also, 297 unique proteins were identified in PDR and 345 in IMH. In PDR vitreous, 37 proteins were upregulated (P < 0.05) and 19 proteins were downregulated compared to IMH. Protein distribution analysis clearly demonstrated a separation of protein expression in PDR and IMH. Significantly upregulated proteins included fibrinogen gamma chain, fibrinogen beta chain, and carbonic anhydrase 1 and downregulated proteins included alpha-1-antitrypsin, retinol-binding protein 3, neuroserpin, cystatin C, carboxypeptidase E and cathepsin-D. Conclusion Diabetic retinopathy pathogenesis involves proteins which belong to inflammation, visual transduction, and extracellular matrix pathways. Validation-based experiments using enzyme-linked immunosorbent assay (ELISA) or western blotting are needed to establish cause and effect relationships of these proteins to the disease state, to develop them as biomarkers or drug molecules.
Collapse
Affiliation(s)
- Sagnik Sen
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
- Department of Proteomics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Prithviraj Udaya
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
- Department of Proteomics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | | | - Piyush Kohli
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Haemoglobin Parida
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Naresh Babu Kannan
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Kim Ramasamy
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | | |
Collapse
|
7
|
Chatterjee A, Singh R. Extracellular vesicles: an emerging player in retinal homeostasis. Front Cell Dev Biol 2023; 11:1059141. [PMID: 37181750 PMCID: PMC10166895 DOI: 10.3389/fcell.2023.1059141] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Extracellular vesicles (EVs) encompass secreted membrane vesicles of varied sizes, including exosomes (-30-200 nm) and microvesicles (MVs) that are ∼100-1,000 nm in size. EVs play an important role in autocrine, paracrine, and endocrine signaling and are implicated in myriad human disorders including prominent retinal degenerative diseases, like age related macular degeneration (AMD) and diabetic retinopathy (DR). Studies of EVs in vitro using transformed cell lines, primary cultures, and more recently, induced pluripotent stem cell derived retinal cell type(s) (e.g., retinal pigment epithelium) have provided insights into the composition and function of EVs in the retina. Furthermore, consistent with a causal role of EVs in retinal degenerative diseases, altering EV composition has promoted pro-retinopathy cellular and molecular events in both in vitro and in vivo models. In this review, we summarize the current understanding of the role of EVs in retinal (patho)physiology. Specifically, we will focus on disease-associated EV alterations in specific retinal diseases. Furthermore, we discuss the potential utility of EVs in diagnostic and therapeutic strategies for targeting retinal diseases.
Collapse
Affiliation(s)
- Amit Chatterjee
- Department of Ophthalmology, University of Rochester, Rochester, NY, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, United States
- Center for Visual Science, University of Rochester, Rochester, NY, United States
| | - Ruchira Singh
- Department of Ophthalmology, University of Rochester, Rochester, NY, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, United States
- Center for Visual Science, University of Rochester, Rochester, NY, United States
- UR Stem Cell and Regenerative Medicine Center, University of Rochester, Rochester, NY, United States
| |
Collapse
|
8
|
Weber S, Carruthers N, Gates C, Zhao Y, Sundstrom J. Mass Spectrometry-Based Vitreous Proteomics: Validated Methods and Analysis Pipeline. Methods Mol Biol 2023; 2678:157-167. [PMID: 37326711 DOI: 10.1007/978-1-0716-3255-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Retinal diseases like diabetic retinopathy and age-related macular degeneration affect millions of individuals worldwide and often lead to vision loss. Vitreous fluid abuts the retina, is accessible for sampling, and contains many proteins related to retinal disease. Therefore, analysis of vitreous is an important tool for studying retinal disease. Because it is rich in proteins and extracellular vesicles, mass spectrometry-based proteomics is an excellent method for vitreous analysis. Here, we discuss important variables to consider when performing vitreous proteomics via mass spectrometry.
Collapse
Affiliation(s)
- Sarah Weber
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, USA
| | - Nick Carruthers
- Bioinformatics Core, Biomedical Research Core Facilities, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chris Gates
- Bioinformatics Core, Biomedical Research Core Facilities, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yuanjun Zhao
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, USA
| | - Jeffrey Sundstrom
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
9
|
Hammid A, Fallon JK, Lassila T, Vieiro P, Balla A, Gonzalez F, Urtti A, Smith PC, Tolonen A, Honkakoski P. Activity and Expression of Carboxylesterases and Arylacetamide Deacetylase in Human Ocular Tissues. Drug Metab Dispos 2022; 50:1483-1492. [PMID: 36195336 DOI: 10.1124/dmd.122.000993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
As a multitissue organ, the eye possesses unique anatomy and physiology, including differential expression of drug-metabolizing enzymes. Several hydrolytic enzymes that play a major role in drug metabolism and bioactivation of prodrugs have been detected in ocular tissues, but data on their quantitative expression is scarce. Also, many ophthalmic drugs are prone to hydrolysis. Metabolic characterization of individual ocular tissues is useful for the drug development process, and therefore, seven individual ocular tissues from human eyes were analyzed for the activity and expression of carboxylesterases (CESs) and arylacetamide deacetylase (AADAC). Generic and selective human esterase substrates 4-nitrophenyl acetate (most esterases), D-luciferin methyl ester (CES1), fluorescein diacetate and procaine (CES2), and phenacetin (AADAC) were applied to determine the enzymes' specific activities. Enzyme kinetics and inhibition studies were performed with isoform-selective inhibitors digitonin (CES1) and verapamil and diltiazem (CES2). Enzyme contents were determined using quantitative targeted proteomics, and CES2 expression was confirmed by western blotting. The expression and activity of human CES1 among ocular tissues varied by >10-fold, with the highest levels found in the retina and iris-ciliary body. In contrast, human CES2 expression appeared lower and more similar between tissues, whereas AADAC could not be detected. Inhibition studies showed that hydrolysis of fluorescein diacetate is also catalyzed by enzymes other than CES2. This study provides, for the first time, quantitative information on the tissue-dependent expression of human ocular esterases, which can be useful for the development of ocular drugs, prodrugs, and in pharmacokinetic modeling of the eye. SIGNIFICANCE STATEMENT: Novel and comprehensive data on the protein expression and activities of carboxylesterases from individual human eye tissues are generated. In combination with previous reports on preclinical species, this study will improve the understanding of interspecies differences in ocular drug metabolism and aid the development of ocular pharmacokinetics models.
Collapse
Affiliation(s)
- Anam Hammid
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| | - John K Fallon
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| | - Toni Lassila
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| | - Paula Vieiro
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| | - Anusha Balla
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| | - Francisco Gonzalez
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| | - Arto Urtti
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| | - Philip C Smith
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| | - Ari Tolonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| | - Paavo Honkakoski
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland (A.H., A.B., A.U., P.H.); Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.K.F., P.C.S.); Admescope Ltd, Oulu, Finland (T.L., A.T.); Biobank at the University Hospital at Santiago de Compostela, Santiago de Compostela, Spain (P.V.); Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain (F.G.); Service of Ophthalmology, University Hospital of Santiago de Compostela and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela, Santiago de Compostela (F.G.); and Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.U.)
| |
Collapse
|
10
|
Suh S, Choi EH, Raguram A, Liu DR, Palczewski K. Precision genome editing in the eye. Proc Natl Acad Sci U S A 2022; 119:e2210104119. [PMID: 36122230 PMCID: PMC9522375 DOI: 10.1073/pnas.2210104119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CRISPR-Cas-based genome editing technologies could, in principle, be used to treat a wide variety of inherited diseases, including genetic disorders of vision. Programmable CRISPR-Cas nucleases are effective tools for gene disruption, but they are poorly suited for precisely correcting pathogenic mutations in most therapeutic settings. Recently developed precision genome editing agents, including base editors and prime editors, have enabled precise gene correction and disease rescue in multiple preclinical models of genetic disorders. Additionally, new delivery technologies that transiently deliver precision genome editing agents in vivo offer minimized off-target editing and improved safety profiles. These improvements to precision genome editing and delivery technologies are expected to revolutionize the treatment of genetic disorders of vision and other diseases. In this Perspective, we describe current preclinical and clinical genome editing approaches for treating inherited retinal degenerative diseases, and we discuss important considerations that should be addressed as these approaches are translated into clinical practice.
Collapse
Affiliation(s)
- Susie Suh
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697
| | - Elliot H. Choi
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
- Department of Chemistry, University of California, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| |
Collapse
|
11
|
Gharbiya M, Visioli G, Iannetti L, Iannaccone A, Tamburrelli AC, Marenco M, Albanese GM. COMPARISON BETWEEN SCLERAL BUCKLING AND VITRECTOMY IN THE ONSET OF CYSTOID MACULAR EDEMA AND EPIRETINAL MEMBRANE AFTER RHEGMATOGENOUS RETINAL DETACHMENT REPAIR. Retina 2022; 42:1268-1276. [PMID: 35316255 PMCID: PMC9205297 DOI: 10.1097/iae.0000000000003475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To investigate the incidence and risk factors for the main complications in patients with rhegmatogenous retinal detachment treated with scleral buckling (SB) or pars plana vitrectomy (PPV). METHODS A retrospective, comparative, observational study was conducted. The medical records of 107 patients with primary rhegmatogenous retinal detachment who were managed with SB (n = 57) or PPV (n = 50) were reviewed. Scleral buckling was performed using scleral encircling solid silicone band and circumferential solid silicone exoplant to support the break. Pars plana vitrectomy was combined with phacoemulsification in phakic eyes and with scleral encircling in inferior detachments. Follow-ups, including spectral-domain optical coherence tomography examination, were scheduled at 1, 3, and 12 months after surgery. Propensity score matching was used to adjust for potential preoperative selection bias. RESULTS The overall incidence of postoperative cystoid macular edema (CME) and epiretinal membrane was 14.95% and 30.84%, respectively. Compared with SB, CME was more frequent in the PPV (P = 0.021) and in the PPV pseudophakic eyes (P = 0.027). Postoperative CME was an early, predominantly transient complication and regressed in 67% of SB and in 77% of PPV eyes within 12 months after surgery. No differences were observed regarding epiretinal membrane development. Except for the surgical technique, no preoperative factors associated with CME were identified. A correlation between epiretinal membrane and patients' age was found (P = 0.028). CONCLUSION The incidence of CME after rhegmatogenous retinal detachment repair was higher in patients who underwent PPV, either alone or combined with phacoemulsification, than in those treated with SB. Epiretinal membrane development was correlated to older age, regardless of the surgical procedure.
Collapse
Affiliation(s)
- Magda Gharbiya
- Department of Sense Organs, Sapienza University of Rome, Policlinico Umberto I University Hospital, Head and Neck Department, Rome, Italy
| | - Giacomo Visioli
- Department of Sense Organs, Sapienza University of Rome, Policlinico Umberto I University Hospital, Head and Neck Department, Rome, Italy
| | - Ludovico Iannetti
- Department of Sense Organs, Sapienza University of Rome, Policlinico Umberto I University Hospital, Head and Neck Department, Rome, Italy
| | - Andrea Iannaccone
- Department of Sense Organs, Sapienza University of Rome, Policlinico Umberto I University Hospital, Head and Neck Department, Rome, Italy
| | - Anna Clara Tamburrelli
- Department of Sense Organs, Sapienza University of Rome, Policlinico Umberto I University Hospital, Head and Neck Department, Rome, Italy
| | - Marco Marenco
- Department of Sense Organs, Sapienza University of Rome, Policlinico Umberto I University Hospital, Head and Neck Department, Rome, Italy
| | - Giuseppe Maria Albanese
- Department of Sense Organs, Sapienza University of Rome, Policlinico Umberto I University Hospital, Head and Neck Department, Rome, Italy
| |
Collapse
|
12
|
Comprehensive Proteomic Profiling of Vitreous Humor in Ocular Sarcoidosis Compared with Other Vitreoretinal Diseases. J Clin Med 2022; 11:jcm11133606. [PMID: 35806888 PMCID: PMC9267904 DOI: 10.3390/jcm11133606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/04/2022] [Accepted: 06/19/2022] [Indexed: 12/10/2022] Open
Abstract
Ocular sarcoidosis is an inflammatory disease that manifests as uveitis, and is often difficult to distinguish from other forms of uveitis based on nonspecific findings alone. Comprehensive proteomic analyses of vitreous humor using LC-MS/MS were performed in each patient with ocular sarcoidosis, vitreoretinal lymphoma (VRL), and controls with epiretinal membrane or macular hole. Differential expression proteins (DEPs) were identified by comparing with VRL and controls, and functional pathway analysis was performed. The candidate biomarker proteins for ocular sarcoidosis were validated using enzyme-linked immunosorbent assay. A total of 1590 proteins were identified in all samples. Of these, 290 and 174 DEPs were detected in vitreous of ocular sarcoidosis compared with controls and VRL, respectively. Enrichment pathway analysis revealed that pathways related to the immune system were most upregulated. Validation of two candidate biomarkers for ocular sarcoidosis, neutrophil gelatinase-associated lipocalin (NGAL) and junctional adhesion molecules B (JAMB), confirmed upregulated NGAL and JAMB protein expressions in ocular sarcoidosis compared to controls and VRL. The results of this study revealed that altered vitreous protein expression levels may discriminate ocular sarcoidosis from other uveitis diseases. Vitreous NGAL and JAMB are potential biomarkers and may serve as an auxiliary tool for the diagnosis of ocular sarcoidosis.
Collapse
|
13
|
Calpains as mechanistic drivers and therapeutic targets for ocular disease. Trends Mol Med 2022; 28:644-661. [PMID: 35641420 PMCID: PMC9345745 DOI: 10.1016/j.molmed.2022.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Ophthalmic neurodegenerative diseases encompass a wide array of molecular pathologies unified by calpain dysregulation. Calpains are calcium-dependent proteases that perpetuate cellular death and inflammation when hyperactivated. Calpain inhibition trials in other organs have faced pharmacological challenges, but the eye offers many advantages for the development and testing of targeted molecular therapeutics, including small molecules, peptides, engineered proteins, drug implants, and gene-based therapies. This review highlights structural mechanisms underlying calpain activation, distinct cellular expression patterns, and in vivo models that link calpain hyperactivity to human retinal and developmental disease. Optimizing therapeutic approaches for calpain-mediated eye diseases can help accelerate clinically feasible strategies for treating calpain dysregulation in other diseased tissues.
Collapse
|
14
|
Yeast-produced fructosamine-3-kinase retains mobility after ex vivo intravitreal injection in human and bovine eyes as determined by Fluorescence Correlation Spectroscopy. Int J Pharm 2022; 621:121772. [PMID: 35487399 DOI: 10.1016/j.ijpharm.2022.121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/20/2022]
Abstract
Globally, over 2 billion people suffer from vision impairment. Despite complex multifactorial etiology, advanced glycation end products are involved in the pathogenesis of many causative age- and diabetes-related eye diseases. Deglycating enzyme fructosamine-3-kinase (FN3K) was recently proposed as a potential therapeutic, but for further biopharmaceutical development, knowledge on its manufacturability and stability and mobility in the vitreous fluid of the eye is indispensable. We evaluated recombinant production of FN3K in two host systems, and its diffusion behavior in both bovine and human vitreous. Compared to Escherichia coli, intracellular production in Pichia pastoris yielded more and higher purity FN3K. The yeast-produced enzyme was used in a first attempt to use fluorescence correlation spectroscopy to study protein mobility in non-sonicated bovine vitreous, human vitreous, and intact bovine eyes. It was demonstrated that FN3K retained mobility upon intravitreal injection, although a certain delay in diffusion was observed. Alkylation of free cysteines was tolerated both in terms of enzymatic activity and vitreous diffusion. Ex vivo diffusion data gathered and the availability of yeast-produced high purity enzyme now clear the path for in vivo pharmacokinetics studies of FN3K.
Collapse
|
15
|
Toral MA, Charlesworth CT, Ng B, Chemudupati T, Homma S, Nakauchi H, Bassuk AG, Porteus MH, Mahajan VB. Investigation of Cas9 antibodies in the human eye. Nat Commun 2022; 13:1053. [PMID: 35217666 PMCID: PMC8881612 DOI: 10.1038/s41467-022-28674-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 02/04/2022] [Indexed: 12/04/2022] Open
Abstract
Preexisting immunity against Cas9 proteins in humans represents a safety risk for CRISPR–Cas9 technologies. However, it is unclear to what extent preexisting Cas9 immunity is relevant to the eye as it is targeted for early in vivo CRISPR–Cas9 clinical trials. While the eye lacks T-cells, it contains antibodies, cytokines, and resident immune cells. Although precise mechanisms are unclear, intraocular inflammation remains a major cause of vision loss. Here, we used immunoglobulin isotyping and ELISA platforms to profile antibodies in serum and vitreous fluid biopsies from human adult subjects and Cas9-immunized mice. We observed high prevalence of preexisting Cas9-reactive antibodies in serum but not in the eye. However, we detected intraocular antibodies reactive to S. pyogenes-derived Cas9 after S. pyogenes intraocular infection. Our data suggest that serum antibody concentration may determine whether specific intraocular antibodies develop, but preexisting immunity to Cas9 may represent a lower risk in human eyes than systemically. Pre-existing antibodies against Cas9 proteins represent a potential issue for gene therapies, including those targeting the eye. Here the authors assess the presence of intraocular antibodies, and show that Cas9 antibodies were prevalent in human serum but not the eye, unless prior bacterial infection occurred.
Collapse
Affiliation(s)
- Marcus A Toral
- Molecular Surgery Program, Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA.,Medical Scientist Training Program and Graduate Program in Molecular Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Benjamin Ng
- Molecular Surgery Program, Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA.,Medical Sciences Division, University of Oxford, Oxford, UK
| | - Teja Chemudupati
- Molecular Surgery Program, Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Shota Homma
- Department of Genetics, Stanford University, Palo Alto, CA, USA
| | - Hiromitsu Nakauchi
- Department of Genetics, Stanford University, Palo Alto, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA.,Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Alexander G Bassuk
- Departments of Pediatrics and Neurology and The Iowa Neuroscience Institute (INI), University of Iowa, Iowa City, IA, USA
| | | | - Vinit B Mahajan
- Molecular Surgery Program, Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA. .,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, Palo Alto, CA, USA.
| |
Collapse
|
16
|
Weber SR, Zhao Y, Ma J, Gates C, da Veiga Leprevost F, Basrur V, Nesvizhskii AI, Gardner TW, Sundstrom JM. A validated analysis pipeline for mass spectrometry-based vitreous proteomics: new insights into proliferative diabetic retinopathy. Clin Proteomics 2021; 18:28. [PMID: 34861815 PMCID: PMC8903510 DOI: 10.1186/s12014-021-09328-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
Background Vitreous is an accessible, information-rich biofluid that has recently been studied as a source of retinal disease-related proteins and pathways. However, the number of samples required to confidently identify perturbed pathways remains unknown. In order to confidently identify these pathways, power analysis must be performed to determine the number of samples required, and sample preparation and analysis must be rigorously defined. Methods Control (n = 27) and proliferative diabetic retinopathy (n = 23) vitreous samples were treated as biologically distinct individuals or pooled together and aliquoted into technical replicates. Quantitative mass spectrometry with tandem mass tag labeling was used to identify proteins in individual or pooled control samples to determine technical and biological variability. To determine effect size and perform power analysis, control and proliferative diabetic retinopathy samples were analyzed across four 10-plexes. Pooled samples were used to normalize the data across plexes and generate a single data matrix for downstream analysis. Results The total number of unique proteins identified was 1152 in experiment 1, 989 of which were measured in all samples. In experiment 2, 1191 proteins were identified, 727 of which were measured across all samples in all plexes. Data are available via ProteomeXchange with identifier PXD025986. Spearman correlations of protein abundance estimations revealed minimal technical (0.99–1.00) and biological (0.94–0.98) variability. Each plex contained two unique pooled samples: one for normalizing across each 10-plex, and one to internally validate the normalization algorithm. Spearman correlation of the validation pool following normalization was 0.86–0.90. Principal component analysis revealed stratification of samples by disease and not by plex. Subsequent differential expression and pathway analyses demonstrated significant activation of metabolic pathways and inhibition of neuroprotective pathways in proliferative diabetic retinopathy samples relative to controls. Conclusions This study demonstrates a feasible, rigorous, and scalable method that can be applied to future proteomic studies of vitreous and identifies previously unrecognized metabolic pathways that advance understanding of diabetic retinopathy. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09328-8.
Collapse
Affiliation(s)
- Sarah R Weber
- Department of Ophthalmology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.,Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Yuanjun Zhao
- Department of Ophthalmology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Jingqun Ma
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Christopher Gates
- Bioinformatics Core, Biomedical Research Core Facilities, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Felipe da Veiga Leprevost
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave, Ann Arbor, MI, 48109, USA
| | - Thomas W Gardner
- Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Jeffrey M Sundstrom
- Department of Ophthalmology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA. .,Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
17
|
Weber SR, Zhao Y, Gates C, Ma J, da Veiga Leprevost F, Basrur V, Nesvizhskii AI, Gardner TW, Sundstrom JM. Proteomic Analyses of Vitreous in Proliferative Diabetic Retinopathy: Prior Studies and Future Outlook. J Clin Med 2021; 10:jcm10112309. [PMID: 34070658 PMCID: PMC8199452 DOI: 10.3390/jcm10112309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
Vitreous fluid is becoming an increasingly popular medium for the study of retinal disease. Numerous studies have demonstrated that proteomic analysis of the vitreous from patients with proliferative diabetic retinopathy yields valuable molecular information regarding known and novel proteins and pathways involved in this disease. However, there is no standardized methodology for vitreous proteomic studies. Here, we share a suggested protocol for such studies and outline the various experimental and analytic methods that are currently available. We also review prior mass spectrometry-based proteomic studies of the vitreous from patients with proliferative diabetic retinopathy, discuss common pitfalls of these studies, and propose next steps for moving the field forward.
Collapse
Affiliation(s)
- Sarah R. Weber
- Department of Ophthalmology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (S.R.W.); (Y.Z.)
- Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA;
| | - Yuanjun Zhao
- Department of Ophthalmology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (S.R.W.); (Y.Z.)
| | - Christopher Gates
- Bioinformatics Core, Biomedical Research Core Facilities, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI 48109, USA;
| | - Jingqun Ma
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Felipe da Veiga Leprevost
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, USA; (F.d.V.L.); (V.B.); (A.I.N.)
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, USA; (F.d.V.L.); (V.B.); (A.I.N.)
| | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, USA; (F.d.V.L.); (V.B.); (A.I.N.)
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave, Ann Arbor, MI 48109, USA
| | - Thomas W. Gardner
- Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA;
| | - Jeffrey M. Sundstrom
- Department of Ophthalmology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (S.R.W.); (Y.Z.)
- Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA;
- Correspondence: ; Tel.: +1-717-531-6774
| |
Collapse
|
18
|
Coronado BNL, da Cunha FBS, de Toledo Nobrega O, Martins AMA. The impact of mass spectrometry application to screen new proteomics biomarkers in Ophthalmology. Int Ophthalmol 2021; 41:2619-2633. [PMID: 33811281 DOI: 10.1007/s10792-021-01807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/09/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION In the search for molecular markers that aid in the early diagnosis and treatment of various human diseases, many studies have focused on changes in genes, their transcripts and protein products. Recent advances in proteomic methodologies, such as mass spectrometry (MS), generate new opportunities to obtain relevant information on normal and abnormal processes that occur in many important cell pathways. The human eye is a highly specialized and compartmentalized organ, and the interpretation of molecular biomarkers helps to evaluate its cellular structure, providing a broader molecular understanding that corroborates in the pathophysiology of ophthalmological diseases, with marked improvements in their diagnosis, prognosis and treatment. This review summarizes the most important protein biomarkers in Ophthalmology screened by MS tools. CONCLUSION The use of translational medicine techniques (as MS), integrating basic and clinical research, still transforms scientific findings, from laboratory researches to clinical applications, from the bedside into the community.
Collapse
Affiliation(s)
- Bruno Nobre Lins Coronado
- School of Medicine, Universidade de Brasilia, Brasília, DF, Brazil. .,Department of Ophthalmology, University Center CESMAC, Maceio, AL, Brazil.
| | | | | | - Aline Maria Araujo Martins
- School of Medicine, Universidade de Brasilia, Brasília, DF, Brazil. .,Translational Medicine Group, School of Medicine, University Center of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
19
|
Robinson R, Youngblood H, Iyer H, Bloom J, Lee TJ, Chang L, Lukowski Z, Zhi W, Sharma A, Sharma S. Diabetes Induced Alterations in Murine Vitreous Proteome Are Mitigated by IL-6 Trans-Signaling Inhibition. Invest Ophthalmol Vis Sci 2021; 61:2. [PMID: 32870245 PMCID: PMC7476668 DOI: 10.1167/iovs.61.11.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Diabetic retinopathy (DR) is a microvascular complication caused by prolonged hyperglycemia and characterized by leaky retinal vasculature and ischemia-induced angiogenesis. Vitreous humor is a gel-like biofluid in the posterior segment of the eye between the lens and the retina. Disease-related changes are observed in the biochemical constituents of the vitreous, including proteins and macromolecules. Recently, we found that IL-6 trans-signaling plays a significant role in the vascular leakage and retinal pathology associated with DR. Therefore, in this study, comprehensive proteomic profiling of the murine vitreous was performed to identify diabetes-induced alterations and to determine effects of IL-6 trans-signaling inhibition on these changes. Methods Vitreous samples from mice were collected by evisceration, and proteomic analyses were performed using liquid chromatography–tandem mass spectrometry (LC-MS/MS). Results A total of 154 proteins were identified with high confidence in control mice and were considered to be characteristic of healthy murine vitreous fluid. The levels of 72 vitreous proteins were significantly altered in diabetic mice, including several members of heat shock proteins, 14-3-3 proteins, and tubulins. Alterations in 52 out of 72 proteins in diabetic mice were mitigated by IL-6 trans-signaling inhibition. Conclusions Proteomic analysis of murine vitreous fluid performed in this study provides important information about the changes caused by diabetes in the ocular microenvironment. These diabetes-induced alterations in the murine vitreous proteome were mitigated by IL-6 trans-signaling inhibition. These findings further support that IL-6 trans-signaling may be an important therapeutic target for the treatment of DR.
Collapse
Affiliation(s)
- Rebekah Robinson
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Hannah Youngblood
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States
| | - Hersha Iyer
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Justin Bloom
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Luke Chang
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| | - Zachary Lukowski
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States.,Department of Ophthalmology, Augusta University, Augusta, Georgia, United States.,Department of Population Health Sciences, Augusta University, Augusta, Georgia, United States.,Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States.,Department of Ophthalmology, Augusta University, Augusta, Georgia, United States.,Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
20
|
Baker AEG, Cui H, Ballios BG, Ing S, Yan P, Wolfer J, Wright T, Dang M, Gan NY, Cooke MJ, Ortín-Martínez A, Wallace VA, van der Kooy D, Devenyi R, Shoichet MS. Stable oxime-crosslinked hyaluronan-based hydrogel as a biomimetic vitreous substitute. Biomaterials 2021; 271:120750. [PMID: 33725584 DOI: 10.1016/j.biomaterials.2021.120750] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/30/2022]
Abstract
Vitreous substitutes are clinically used to maintain retinal apposition and preserve retinal function; yet the most used substitutes are gases and oils which have disadvantages including strict face-down positioning post-surgery and the need for subsequent surgical removal, respectively. We have engineered a vitreous substitute comprised of a novel hyaluronan-oxime crosslinked hydrogel. Hyaluronan, which is naturally abundant in the vitreous of the eye, is chemically modified to crosslink with poly(ethylene glycol)-tetraoxyamine via oxime chemistry to produce a vitreous substitute that has similar physical properties to the native vitreous including refractive index, density and transparency. The oxime hydrogel is cytocompatible in vitro with photoreceptors from mouse retinal explants and biocompatible in rabbit eyes as determined by histology of the inner nuclear layer and photoreceptors in the outer nuclear layer. The ocular pressure in the rabbit eyes was consistent over 56 d, demonstrating limited to no swelling. Our vitreous substitute was stable in vivo over 28 d after which it began to degrade, with approximately 50% loss by day 56. We confirmed that the implanted hydrogel did not impact retina function using electroretinography over 90 days versus eyes injected with balanced saline solution. This new oxime hydrogel provides a significant improvement over the status quo as a vitreous substitute.
Collapse
Affiliation(s)
- Alexander E G Baker
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, M5S 3E5, Canada; Institute of Biomedical Engineering, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
| | - Hong Cui
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, M5S 3E5, Canada
| | - Brian G Ballios
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College St, Toronto, ON, L0J 1C0, Canada
| | - Sonja Ing
- Institute of Biomedical Engineering, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
| | - Peng Yan
- Kensington Eye Institute, 340 College St, Toronto, ON, M5T 3A9, Canada
| | - Joe Wolfer
- Toronto Animal Eye Clinic, 150 Norseman St, Etobicoke, ON, M8Z 2R4, Canada
| | - Thomas Wright
- Kensington Eye Institute, 340 College St, Toronto, ON, M5T 3A9, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College St, Toronto, ON, L0J 1C0, Canada
| | - Mickael Dang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, M5S 3E5, Canada
| | - Nicola Y Gan
- Department of Ophthalmology, Tock Seng Hospital, National Healthcare Group Eye Institute, 11 Jln Tan Tock Seng, 308433, Singapore
| | - Michael J Cooke
- Institute of Biomedical Engineering, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
| | - Arturo Ortín-Martínez
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, 399 Bathurst St, Toronto, ON, M5T 2S8, Canada
| | - Valerie A Wallace
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College St, Toronto, ON, L0J 1C0, Canada; Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, 399 Bathurst St, Toronto, ON, M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, ON, M5S 1A8, Canada
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, ON, M5S 1A8, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, ON, M5S 1A8, Canada
| | - Robert Devenyi
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College St, Toronto, ON, L0J 1C0, Canada; Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, 399 Bathurst St, Toronto, ON, M5T 2S8, Canada; Toronto Western Hospital, 399 Bathurst St, Room 6 E W 438, Toronto, ON, M5T 2S8, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, M5S 3E5, Canada; Institute of Biomedical Engineering, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, ON, M5S 1A8, Canada.
| |
Collapse
|
21
|
Peptidomimetics Therapeutics for Retinal Disease. Biomolecules 2021; 11:biom11030339. [PMID: 33668179 PMCID: PMC7995992 DOI: 10.3390/biom11030339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/11/2021] [Accepted: 02/20/2021] [Indexed: 12/28/2022] Open
Abstract
Ocular disorders originating in the retina can result in a partial or total loss of vision, making drug delivery to the retina of vital importance. However, effectively delivering drugs to the retina remains a challenge for ophthalmologists due to various anatomical and physicochemical barriers in the eye. This review introduces diverse administration routes and the accordant pharmacokinetic profiles of ocular drugs to aid in the development of safe and efficient drug delivery systems to the retina with a focus on peptidomimetics as a growing class of retinal drugs, which have great therapeutic potential and a high degree of specificity. We also discuss the pharmacokinetic profiles of small molecule drugs due to their structural similarity to small peptidomimetics. Lastly, various formulation strategies are suggested to overcome pharmacokinetic hurdles such as solubility, retention time, enzymatic degradation, tissue targeting, and membrane permeability. This knowledge can be used to help design ocular delivery platforms for peptidomimetics, not only for the treatment of various retinal diseases, but also for the selection of potential peptidomimetic drug targets.
Collapse
|
22
|
de Jong S, Gagliardi G, Garanto A, de Breuk A, Lechanteur YTE, Katti S, van den Heuvel LP, Volokhina EB, den Hollander AI. Implications of genetic variation in the complement system in age-related macular degeneration. Prog Retin Eye Res 2021; 84:100952. [PMID: 33610747 DOI: 10.1016/j.preteyeres.2021.100952] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/23/2022]
Abstract
Age-related macular degeneration (AMD) is the main cause of vision loss among the elderly in the Western world. While AMD is a multifactorial disease, the complement system was identified as one of the main pathways contributing to disease risk. The strong link between the complement system and AMD was demonstrated by genetic associations, and by elevated complement activation in local eye tissue and in the systemic circulation of AMD patients. Several complement inhibitors have been and are being explored in clinical trials, but thus far with limited success, leaving the majority of AMD patients without treatment options to date. This indicates that there is still a gap of knowledge regarding the functional implications of the complement system in AMD pathogenesis and how to bring these towards clinical translation. Many different experimental set-ups and disease models have been used to study complement activation in vivo and in vitro, and recently emerging patient-derived induced pluripotent stem cells and genome-editing techniques open new opportunities to study AMD disease mechanisms and test new therapeutic strategies in the future. In this review we provide an extensive overview of methods employed to understand the molecular processes of complement activation in AMD pathogenesis. We discuss the findings, advantages and challenges of each approach and conclude with an outlook on how recent, exciting developments can fill in current knowledge gaps and can aid in the development of effective complement-targeting therapeutic strategies in AMD.
Collapse
Affiliation(s)
- Sarah de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Giuliana Gagliardi
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Pediatrics, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Amalia Children's Hospital, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Anita de Breuk
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Yara T E Lechanteur
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Suresh Katti
- Gemini Therapeutics Inc., Cambridge, MA, 02139, USA
| | - Lambert P van den Heuvel
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Amalia Children's Hospital, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Laboratory Medicine, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Elena B Volokhina
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Amalia Children's Hospital, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Laboratory Medicine, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands.
| |
Collapse
|
23
|
Tavakoli S, Kari OK, Turunen T, Lajunen T, Schmitt M, Lehtinen J, Tasaka F, Parkkila P, Ndika J, Viitala T, Alenius H, Urtti A, Subrizi A. Diffusion and Protein Corona Formation of Lipid-Based Nanoparticles in the Vitreous Humor: Profiling and Pharmacokinetic Considerations. Mol Pharm 2021; 18:699-713. [PMID: 32584047 PMCID: PMC7856631 DOI: 10.1021/acs.molpharmaceut.0c00411] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 12/30/2022]
Abstract
The vitreous humor is the first barrier encountered by intravitreally injected nanoparticles. Lipid-based nanoparticles in the vitreous are studied by evaluating their diffusion with single-particle tracking technology and by characterizing their protein coronae with surface plasmon resonance and high-resolution proteomics. Single-particle tracking results indicate that the vitreal mobility of the formulations is dependent on their charge. Anionic and neutral formulations are mobile, whereas larger (>200 nm) neutral particles have restricted diffusion, and cationic particles are immobilized in the vitreous. PEGylation increases the mobility of cationic and larger neutral formulations but does not affect anionic and smaller neutral particles. Convection has a significant role in the pharmacokinetics of nanoparticles, whereas diffusion drives the transport of antibodies. Surface plasmon resonance studies determine that the vitreal corona of anionic formulations is sparse. Proteomics data reveals 76 differentially abundant proteins, whose enrichment is specific to either the hard or the soft corona. PEGylation does not affect protein enrichment. This suggests that protein-specific rather than formulation-specific factors are drivers of protein adsorption on nanoparticles in the vitreous. In summary, our findings contribute to understanding the pharmacokinetics of nanoparticles in the vitreous and help advance the development of nanoparticle-based treatments for eye diseases.
Collapse
Affiliation(s)
- Shirin Tavakoli
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Otto Kalevi Kari
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Tiina Turunen
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Tatu Lajunen
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Mechthild Schmitt
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Julia Lehtinen
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Fumitaka Tasaka
- Pharmaceutics
& Pharmacology Department, Global R&D, Santen Pharmaceutical
Co., Ltd., 8916-16 Takayama-cho, Ikoma, Nara 630-0101, Japan
| | - Petteri Parkkila
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Joseph Ndika
- Human
Microbiome Research, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00290 Helsinki, Finland
| | - Tapani Viitala
- Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Harri Alenius
- Human
Microbiome Research, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00290 Helsinki, Finland
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Arto Urtti
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
- Institute
of Chemistry, St. Petersburg State University, Petergof, Universitetskii pr. 26, 198504 St. Petersburg, Russia
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Astrid Subrizi
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| |
Collapse
|
24
|
Age-related increase of let-7 family microRNA in rat retina and vitreous. Exp Eye Res 2021; 204:108434. [PMID: 33412132 DOI: 10.1016/j.exer.2020.108434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/01/2020] [Accepted: 12/28/2020] [Indexed: 11/21/2022]
Abstract
Vitreous alterations occur from early stages and continue through the normal aging, with gradual lamellae formation and the appearance of liquefied spaces, which eventually leads to complications, such as retinal tear, retinal detachment, and intravitreal hemorrhage. The aim of the present study was to investigate the expression of let-7 miRNA family in the vitreous and retina in newborn (1-3- day-old), young adult (2-month-old), and aging (12-month-old) rats, as well as their role as regulators of vitreous components. MicroRNAs are small, non-coding RNAs that post-transcriptionally regulate gene expression. Our results showed detection of all investigated let-7 isoforms (let-7a, let-7b, let-7c, let-7d, let-7e, let-7f and let-7i) in the retina and vitreous. Although most let-7 members were significantly upregulated in the vitreous during development, only let-7b, let-7c, and let-7e followed this same expression pattern in the retina. Let-7b and -7c increased in aging vitreous as well, and were expressed in vitro by Müller glial cells and their extracellular vesicles. Moreover, let-7 targeted hyaluronan synthase 2 (Has2) mRNA, a synthesizing enzyme of hyaluronan. These observations indicate that let-7 function is important during retina and vitreous development, and that isoforms of let-7 increased with aging, potentially modulating hyaluronan content.
Collapse
|
25
|
Pang J, Le L, Zhou Y, Tu R, Hou Q, Tsuchiya D, Thomas N, Wang Y, Yu Z, Alexander R, Thexton M, Lewis B, Corbin T, Durnin M, Li H, Ashery-Padan R, Yan D, Xie T. NOTCH Signaling Controls Ciliary Body Morphogenesis and Secretion by Directly Regulating Nectin Protein Expression. Cell Rep 2021; 34:108603. [PMID: 33440163 DOI: 10.1016/j.celrep.2020.108603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/20/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022] Open
Abstract
Anterior segment dysgenesis is often associated with cornea diseases, cataracts, and glaucoma. In the anterior segment, the ciliary body (CB) containing inner and outer ciliary epithelia (ICE and OCE) secretes aqueous humor that maintains intraocular pressure (IOP). However, CB development and function remain poorly understood. Here, this study shows that NOTCH signaling in the CB maintains the vitreous, IOP, and eye structures by regulating CB morphogenesis, aqueous humor secretion, and vitreous protein expression. Notch2 and Notch3 function via RBPJ in the CB to control ICE-OCE adhesion, CB morphogenesis, aqueous humor secretion, and protein expression, thus maintaining IOP and eye structures. Mechanistically, NOTCH signaling transcriptionally controls Nectin1 expression in the OCE to promote cell adhesion for driving CB morphogenesis and to directly stabilize Cx43 for controlling aqueous humor secretion. Finally, NOTCH signaling directly controls vitreous protein secretion in the ICE. Therefore, this study provides important insight into CB functions and involvement in eye diseases.
Collapse
Affiliation(s)
- Ji Pang
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liang Le
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Yi Zhou
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Renjun Tu
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Qiang Hou
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; State Key Laboratory and Key Laboratory of Vision Science, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Nancy Thomas
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Yongfu Wang
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Richard Alexander
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Marina Thexton
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Brandy Lewis
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Timothy Corbin
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Michael Durnin
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ting Xie
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| |
Collapse
|
26
|
Li AS, Velez G, Darbro B, Toral MA, Yang J, Tsang SH, Ferguson PJ, Folk JC, Bassuk AG, Mahajan VB. Whole-Exome Sequencing of Patients With Posterior Segment Uveitis. Am J Ophthalmol 2021; 221:246-259. [PMID: 32707200 DOI: 10.1016/j.ajo.2020.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To elucidate molecular risk factors for posterior segment uveitis using a functional genomics approach. DESIGN Genetic association cohort study. METHODS Setting: Single-center study at an academic referral center. STUDY POPULATION 164 patients with clinically diagnosed uveitis of the posterior segment. MAIN OUTCOME MEASURES Exome sequencing was used to detect variants identified in 164 patients with posterior segment uveitis. A phenotype-driven analysis, protein structural modeling, and in silico calculations were then used to rank and predict the functional consequences of key variants. RESULTS A total of 203 single nucleotide variants, in 23 genes across 164 patients, were included in this study. Both known and novel variants were identified in genes previously implicated in specific types of syndromic uveitis-such as NOD2 (Blau syndrome) and CAPN5 NIV (neovascular inflammatory vitreoretinopathy)-as well as variants in genes not previously linked to posterior segment uveitis. Based on a ranked list and protein-protein-interaction network, missense variants in NOD-like receptor family genes (NOD2, NLRC4, NLRP3, and NLRP1), CAPN5, and TYK2 were characterized via structural modeling and in silico calculations to predict how specific variants might alter protein structure and function. The majority of analyzed variants were notably different from wild type. CONCLUSIONS This study implicates new pathways and immune signaling proteins that may be associated with posterior segment uveitis susceptibility. A larger cohort and functional studies will help validate the pathogenicity of the mutations identified. In specific cases, whole-exome sequencing can help diagnose nonsyndromic uveitis in patients harboring known variants for syndromic inflammatory diseases.
Collapse
Affiliation(s)
- Angela S Li
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, USA; Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, USA
| | - Gabriel Velez
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, USA; Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, USA; Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, USA
| | - Benjamin Darbro
- Department of Pediatrics, Medical Genetics and Genomics, University of Iowa, Iowa City, Iowa, USA
| | - Marcus A Toral
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, USA; Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, USA; Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, USA
| | - Jing Yang
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, USA; Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, USA
| | - Stephen H Tsang
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, Columbia University, New York, New York, USA; Department of Pathology & Cell Biology, College of Physicians & Surgeons (S.H.T.), Columbia University, New York, New York, USA
| | - Polly J Ferguson
- Department of Pediatrics, Division of Pediatric Rheumatology, University of Iowa, Iowa City, Iowa, USA
| | - James C Folk
- Department of Ophthalmology, University of Iowa, Iowa City, Iowa, USA
| | - Alexander G Bassuk
- Department of Neurology and Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Vinit B Mahajan
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, USA; Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, USA; Veterans Affairs, Palo Alto HCS, Palo Alto, California, USA.
| |
Collapse
|
27
|
Abstract
The diseases affecting the retina or uvea (iris, ciliary body, or choroid) generate changes in the biochemical or protein composition of ocular fluids/tissues due to disruption of blood-retinal barrier. Ocular infections and inflammations are sight-threatening diseases associated with various infectious and non-infectious etiologies. Several etiological entities cause uveitis, a complex intraocular inflammatory disease. These causes of uveitis differ in different populations due to geographical, racial, and socioeconomic variations. While clinical appearance is sufficiently diagnostic in many diseases, some of the uveitic entities manifest nonspecific or atypical clinical presentation. Identification of biomarkers in such diseases is an important aid in their diagnostic armamentarium. Different diseases and their different severity states release varying concentrations of proteins, which can serve as biomarkers. Proteomics is a high throughput technology and a powerful screening tool for serum biomarkers in various diseases that identifies proteins by mass spectrometry and helps to improve the understanding of pathogenesis of a disease. Proteins determine the biological state of a cell. Once identified as biomarkers, they serve as future diagnostic and pharmaceutical targets. With a potential to redirect the diagnosis of idiopathic uveitis, ocular proteomics provide a new insight into the pathophysiology and therapeutics of various ocular inflammatory diseases. Tears, aqueous and vitreous humor represent potential repositories for proteomic biomarkers discovery in uveitis. With an extensive proteomics work done on animal models of uveitis, various types of human uveitis are being subjected to proteome analysis for biomarker discovery in different ocular fluids (vitreous, aqueous, or tears).
Collapse
Affiliation(s)
- Reema Bansal
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amod Gupta
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
28
|
Velez G, Mahajan VB. Molecular Surgery: Proteomics of a Rare Genetic Disease Gives Insight into Common Causes of Blindness. iScience 2020; 23:101667. [PMID: 33134897 PMCID: PMC7586135 DOI: 10.1016/j.isci.2020.101667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rare diseases are an emerging global health priority. Although individually rare, the prevalence of rare "orphan" diseases is high, affecting approximately 300 million people worldwide. Treatments for these conditions are often inadequate, leaving the disease to progress unabated. Here, we review the clinical features and pathophysiology of neovascular inflammatory vitreoretinopathy (NIV), a rare inflammatory retinal disease caused by mutations in the CAPN5 gene. Although the prevalence of NIV is low (1 in 1,000,000 people), the disease mimics more common causes of blindness (e.g. uveitis, retinitis pigmentosa, proliferative diabetic retinopathy, and proliferative vitreoretinopathy) at distinct clinical stages. There is no cure for NIV to date. We highlight how personalized proteomics helped identify potential stage-specific biomarkers and drug targets in liquid vitreous biopsies. The NIV vitreous proteome revealed enrichment of molecular pathways associated with common retinal pathologies and implicated superior targets for therapeutic drug repositioning. In addition, we review our pipeline for collecting, storing, and analyzing ophthalmic surgical samples. This approach can be adapted to treat a variety of rare genetic diseases.
Collapse
Affiliation(s)
- Gabriel Velez
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Vinit B. Mahajan
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
29
|
Wu W, Xia X, Tang L, Yao F, Xu H, Lei H. Normal vitreous promotes angiogenesis via activation of Axl. FASEB J 2020; 35:e21152. [PMID: 33151576 DOI: 10.1096/fj.201903105r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 09/30/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Vitreous has been reported to prevent tumor angiogenesis, but our previous findings indicate that vitreous activate the signaling pathway of phosphoinositide 3-kinase (PI3K)/Akt, which plays a critical role in angiogenesis. The goal of this research is to determine which role of vitreous plays in angiogenesis-related cellular responses in vitro. We found that in human retinal microvascular endothelial cells (HRECs) vitreous activates a number of receptor tyrosine kinases including Anexelekto (Axl), which plays an important role in angiogenesis. Subsequently, we discovered that depletion of Axl using CRISPR/Cas9 and an Axl-specific inhibitor R428 suppress vitreous-induced Akt activation and cell proliferation, migration, and tuber formation of HRECs. Therefore, this line of research not only demonstrate that vitreous promotes angiogenesis in vitro, but also reveal that Axl is one of receptor tyrosine kinases to mediate vitreous-induced angiogenesis in vitro, thereby providing a molecular basis for removal of vitreous as cleanly as possible when vitrectomy is performed in treating patients with proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- Wenyi Wu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Luosheng Tang
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yao
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Huizuo Xu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Hetian Lei
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.,Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| |
Collapse
|
30
|
Maia J, Batista S, Couto N, Gregório AC, Bodo C, Elzanowska J, Strano Moraes MC, Costa-Silva B. Employing Flow Cytometry to Extracellular Vesicles Sample Microvolume Analysis and Quality Control. Front Cell Dev Biol 2020; 8:593750. [PMID: 33195266 PMCID: PMC7661467 DOI: 10.3389/fcell.2020.593750] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022] Open
Abstract
Extracellular Vesicles (EVs), membrane vesicles released by all cells, are emerging mediators of cell-cell communication. By carrying biomolecules from tissues to biofluids, EVs have attracted attention as non-invasive sources of clinical biomarkers in liquid biopsies. EVs-based liquid biopsies usually require EVs isolation before content analysis, which frequently increases sample volume requirements. We here present a Flow Cytometry (FC) strategy that does not require isolation or concentration of EVs prior to staining. By doing so, it enables population analysis of EVs in samples characterized by challenging small volumes, while reducing overall sample processing time. To illustrate its application, we performed longitudinal non-lethal population analysis of EVs in mouse plasma and in single-animal collections of murine vitreous humor. By quantifying the proportion of vesicular particles in purified and non-purified biological samples, this method also serves as a precious tool to quality control isolates of EVs purified by different protocols. Our FC strategy has an unexplored clinical potential to analyze EVs in biofluids with intrinsically limited volumes and to multiply the number of different analytes in EVs that can be studied from a single collection of biofluid.
Collapse
Affiliation(s)
- Joana Maia
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Graduate Program in Areas of Basic and Applied Biology, University of Porto, Porto, Portugal
| | - Silvia Batista
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Nuno Couto
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Ana C Gregório
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Cristian Bodo
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Julia Elzanowska
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Bruno Costa-Silva
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
31
|
Nuñez-Amaro CD, Moreno-Vega AI, Adan-Castro E, Zamora M, Garcia-Franco R, Ramirez-Neria P, Garcia-Roa M, Villalpando Y, Robles JP, Ramirez-Hernandez G, Lopez M, Sanchez J, Lopez-Star E, Bertsch T, Martinez de la Escalera G, Robles-Osorio ML, Triebel J, Clapp C. Levosulpiride Increases the Levels of Prolactin and Antiangiogenic Vasoinhibin in the Vitreous of Patients with Proliferative Diabetic Retinopathy. Transl Vis Sci Technol 2020; 9:27. [PMID: 32879783 PMCID: PMC7442881 DOI: 10.1167/tvst.9.9.27] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose High circulating levels of the hormone prolactin (PRL) protect against experimental diabetic retinopathy (DR) due to the retinal accumulation of vasoinhibin, a PRL fragment that inhibits blood vessel permeability and growth. A phase 2 clinical trial is investigating a new therapy for DR based on elevating serum PRL levels with levosulpiride, a prokinetic dopamine D2 receptor blocker. Here, we tested whether levosulpiride-induced hyperprolactinemia elevates PRL and vasoinhibin in the vitreous of volunteer patients with proliferative DR (PDR) undergoing elective pars plana vitrectomy. Methods Patients were randomized to receive placebo (lactose pill, orally TID; n = 19) or levosulpiride (25 mg orally TID; n = 18) for the 7 days before vitrectomy. Vitreous samples from untreated non-diabetic (n = 10) and PDR (n = 17) patients were also studied. Results Levosulpiride elevated the systemic (101 ± 13 [SEM] vs. 9.2 ± 1.3 ng/mL, P < 0.0001) and vitreous (3.2 ± 0.4 vs. 1.5 ± 0.2 ng/mL, P < 0.0001) levels of PRL, and both levels were directly correlated (r = 0.58, P < 0.0002). The vitreous from non-diabetic patients or from PDR patients treated with levosulpiride, but not from placebo-treated PDR patients, inhibited the basic fibroblast growth factor (bFGF)- and vascular endothelial growth factor (VEGF)-induced proliferation of endothelial cells in culture. Vasoinhibin-neutralizing antibodies reduced the vitreous antiangiogenic effect. Matrix metalloproteases (MMPs) in the vitreous cleaved PRL to vasoinhibin, and their activity was higher in non-diabetic than in PDR patients. Conclusions Levosulpiride increases the levels of PRL in the vitreous of PDR patients and promotes its MMP-mediated conversion to vasoinhibin, which can inhibit angiogenesis in DR. Translational Relevance These findings support the potential therapeutic benefit of levosulpiride against vision loss in diabetes.
Collapse
Affiliation(s)
- Carlos D Nuñez-Amaro
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Aura Ileana Moreno-Vega
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Elva Adan-Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Magdalena Zamora
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | | | | | | | | | - Juan Pablo Robles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Gabriela Ramirez-Hernandez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Mariana Lopez
- Instituto Mexicano de Oftalmología, Querétaro, México
| | | | | | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital and Paracelsus Medical University, Nuremberg, Germany
| | | | | | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital and Paracelsus Medical University, Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| |
Collapse
|
32
|
Kari OK, Tavakoli S, Parkkila P, Baan S, Savolainen R, Ruoslahti T, Johansson NG, Ndika J, Alenius H, Viitala T, Urtti A, Lajunen T. Light-Activated Liposomes Coated with Hyaluronic Acid as a Potential Drug Delivery System. Pharmaceutics 2020; 12:E763. [PMID: 32806740 PMCID: PMC7465487 DOI: 10.3390/pharmaceutics12080763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 01/22/2023] Open
Abstract
Light-activated liposomes permit site and time-specific drug delivery to ocular and systemic targets. We combined a light activation technology based on indocyanine green with a hyaluronic acid (HA) coating by synthesizing HA-lipid conjugates. HA is an endogenous vitreal polysaccharide and a potential targeting moiety to cluster of differentiation 44 (CD44)-expressing cells. Light-activated drug release from 100 nm HA-coated liposomes was functional in buffer, plasma, and vitreous samples. The HA-coating improved stability in plasma compared to polyethylene glycol (PEG)-coated liposomes. Liposomal protein coronas on HA- and PEG-coated liposomes after dynamic exposure to undiluted human plasma and porcine vitreous samples were hydrophilic and negatively charged, thicker in plasma (~5 nm hard, ~10 nm soft coronas) than in vitreous (~2 nm hard, ~3 nm soft coronas) samples. Their compositions were dependent on liposome formulation and surface charge in plasma but not in vitreous samples. Compared to the PEG coating, the HA-coated liposomes bound more proteins in vitreous samples and enriched proteins related to collagen interactions, possibly explaining their slightly reduced vitreal mobility. The properties of the most abundant proteins did not correlate with liposome size or charge, but included proteins with surfactant and immune system functions in plasma and vitreous samples. The HA-coated light-activated liposomes are a functional and promising alternative for intravenous and ocular drug delivery.
Collapse
Affiliation(s)
- Otto K. Kari
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
| | - Shirin Tavakoli
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
| | - Petteri Parkkila
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
| | - Simone Baan
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
- Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80.082, 3508 TB Utrecht, The Netherlands
| | - Roosa Savolainen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
| | - Teemu Ruoslahti
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
| | - Niklas G. Johansson
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland;
| | - Joseph Ndika
- Human Microbiome Research, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (J.N.); (H.A.)
| | - Harri Alenius
- Human Microbiome Research, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (J.N.); (H.A.)
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Tapani Viitala
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland;
| | - Arto Urtti
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
- Institute of Chemistry, St. Petersburg State University, Petergof, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Tatu Lajunen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Science, Tokyo University of Pharmacy & Life Sciences, 1432-1 Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
33
|
Hansen U, Holmes DF, Bruckner P, Bishop PN. Analysis of opticin binding to collagen fibrils identifies a single binding site in the gap region and a high specificity towards thin heterotypic fibrils containing collagens II, and XI or V/XI. PLoS One 2020; 15:e0234672. [PMID: 32764753 PMCID: PMC7413481 DOI: 10.1371/journal.pone.0234672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 11/29/2022] Open
Abstract
Opticin is a class III member of the extracellular matrix small leucine-rich repeat protein/proteoglycan (SLRP) family found in vitreous humour and cartilage. It was first identified associated with the surface of vitreous collagen fibrils and several other SLRPs are also known to bind collagen fibrils and it some cases alter fibril morphology. The purpose of this study was to investigate the binding of opticin to the collagen II-containing fibrils found in vitreous and cartilage. Electron microscopic studies using gold labelling demonstrated that opticin binds vitreous and thin cartilage collagen fibrils specifically at a single site in the gap region of the collagen D-period corresponding to the e2 stain band; this is the first demonstration of the binding site of a class III SLRP on collagen fibrils. Opticin did not bind thick cartilage collagen fibrils from cartilage or tactoids formed in vitro from collagen II, but shows high specificity for thin, heterotypic collagen fibrils containing collagens II, and XI or V/XI. Vitreous collagen fibrils from opticin null and wild-type mice were compared and no difference in fibril morphology or diameter was observed. Similarly, in vitro fibrillogenesis experiments showed that opticin did not affect fibril formation. We propose that when opticin is bound to collagen fibrils, rather than influencing their morphology it instead hinders the binding of other molecules to the fibril surfaces and/or act as an intermediary bridge linking the collagen fibrils to other non-collagenous molecules.
Collapse
Affiliation(s)
- Uwe Hansen
- Department of Physiological Chemistry & Pathobiochemistry, University Hospital of Münster, Münster, Germany
- Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
- * E-mail: (PNB); (UH)
| | - David F. Holmes
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Peter Bruckner
- Department of Physiological Chemistry & Pathobiochemistry, University Hospital of Münster, Münster, Germany
| | - Paul N. Bishop
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail: (PNB); (UH)
| |
Collapse
|
34
|
Rangchian A, Hubschman JP, Kavehpour HP. Time dependent degradation of vitreous gel under enzymatic reaction: Polymeric network role in fluid properties. J Biomech 2020; 109:109921. [DOI: 10.1016/j.jbiomech.2020.109921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
|
35
|
Mohanty V, Pinto SM, Subbannayya Y, Najar MA, Murthy KB, Prasad TSK, Murthy KR. Digging Deeper for the Eye Proteome in Vitreous Substructures: A High-Resolution Proteome Map of the Normal Human Vitreous Base. ACTA ACUST UNITED AC 2020; 24:379-389. [DOI: 10.1089/omi.2020.0020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Varshasnata Mohanty
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sneha M. Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Mohd. Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Kalpana Babu Murthy
- Department of vitreo retina, Vittala International Institute of Ophthalmology, Bangalore, India
- Department of vitreo retina, Prabha Eye Clinic and Research Centre, Bangalore, India
| | | | - Krishna R. Murthy
- Department of vitreo retina, Vittala International Institute of Ophthalmology, Bangalore, India
- Department of vitreo retina, Prabha Eye Clinic and Research Centre, Bangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
36
|
Gharbiya M, Albanese GM, Plateroti AM, Marcelli M, Marenco M, Lambiase A. Macular Ganglion Cell Layer Thickness after Macula-Off Rhegmatogenous Retinal Detachment Repair: Scleral Buckling versus Pars Plana Vitrectomy. J Clin Med 2020; 9:jcm9051411. [PMID: 32397630 PMCID: PMC7290697 DOI: 10.3390/jcm9051411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
(1) Background: We evaluated macular ganglion cell layer–inner plexiform layer (GCL-IPL) thickness in patients with primary macula-off rhegmatogenous retinal detachment (RRD) treated with scleral buckling (SB) or pars plana vitrectomy (PPV) using spectral domain optical coherence tomography (SD-OCT). (2) Methods: In this retrospective, observational study, we reviewed the medical records of patients undergoing SB or PPV surgery for macula-off RRD. SD-OCT was performed at three and 12 months after surgery. The central and parafoveal GCL-IPL thicknesses in treated eyes were compared with those of healthy fellow eyes. OCT measurements between the SB and PPV group were also compared using the analysis of covariance. (3) Results: Seventy-one eyes of 71 patients with a mean age of 61.2 ± 11.7 years were included. The parafoveal GCL-IPL thickness of the PPV group was significantly reduced, with respect to fellow eyes, at three and 12 months (p < 0.01). After adjusting for age, axial length, spherical equivalent, RD extent, preoperative intraretinal cysts, duration of symptoms and postoperative IOP, the parafoveal GCL-IPL thickness in the PPV group was significantly reduced with respect to the SB group, both at three and 12 months (F = 11.45, p = 0.001 and F = 12.37, p = 0.001, respectively). (4) Conclusions: In conclusion, the GCL-IPL is reduced in thickness in eyes with macula-off RRD treated with vitrectomy and is significantly thinner compared to eyes undergoing scleral buckling surgery.
Collapse
|
37
|
Heikkinen EM, Ruponen M, Jasper LM, Leppänen J, Hellinen L, Urtti A, Auriola S, Rautio J, Vellonen KS. Prodrug Approach for Posterior Eye Drug Delivery: Synthesis of Novel Ganciclovir Prodrugs and in Vitro Screening with Cassette Dosing. Mol Pharm 2020; 17:1945-1953. [PMID: 32320251 DOI: 10.1021/acs.molpharmaceut.0c00037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Because of poor ocular drug bioavailability, intravitreal injections have become the gold standard for drug delivery to the posterior eye. The prodrug approach can be used for optimizing the biopharmaceutical properties of intravitreal drugs. The preclinical screening of prodrugs' properties, such as hydrolysis and bioconversion, should be conducted in a resource-efficient way for an extensive set of synthesized compounds with validated methods. Our objective was to explore cassette dosing in in vitro prodrug hydrolysis and bioconversion studies in buffer, vitreous, and retinal pigment epithelium (RPE) homogenate for rapid medium-throughput screening. Moreover, our aim was to correlate the prodrug structure with hydrolytic behavior. We synthesized 18 novel ganciclovir prodrugs and first studied their hydrolysis in aqueous buffer and porcine vitreous in vitro with cassette dosing for 35 h. A method for vitreous homogenate pH equilibration to a physiological level by using buffer and incubation under 5% carbon dioxide was validated. The hydrolysis of the prodrugs was evaluated in porcine RPE homogenate in vitro with cassette dosing, and five prodrugs were assayed individually to examine their bioconversion into ganciclovir in RPE after 2 h. Lastly, the prodrugs' binding to melanin was studied in vitro. The prodrugs showed a wide spectrum of hydrolysis rates, ranging from a few percentages to 100% in the vitreous and RPE; in general, hydrolysis in RPE was faster than in vitreous. Prodrugs with long carbon chains and disubstitution showed lability in the tissue homogenates, whereas prodrugs with branched carbon chains and aromatic groups were stable. All five prodrugs chosen for the bioconversion study in RPE were hydrolyzed into ganciclovir, and their hydrolytic behavior matched results from the cassette mix experiment, supporting the cassette mix approach for hydrolysis and bioconversion studies. None of the prodrugs bound highly to melanin (<50% bound). In conclusion, cassette dosing proved useful for the rapid screening of prodrug hydrolysis and bioconversion properties. Analyzing several compounds simultaneously can complicate the analytics, and thus, choosing the compounds of the cassette mix should be done carefully to avoid mutual interference of the compounds with the results. The methodology and results of the work are applicable in ocular drug research and prodrug design.
Collapse
Affiliation(s)
- Emma M Heikkinen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio 70211, Finland
| | - Marika Ruponen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio 70211, Finland
| | - Lisa-Marie Jasper
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio 70211, Finland
| | - Jukka Leppänen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio 70211, Finland
| | - Laura Hellinen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio 70211, Finland
| | - Arto Urtti
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio 70211, Finland.,Helsingin Yliopisto, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, Viikinkaari 5E, Helsinki 00014, Finland.,Institute of Chemistry, Saint Petersburg State University, Universitetskii Prospect 26, Sankt-Peterburg 198504, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio 70211, Finland
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio 70211, Finland
| | - Kati-Sisko Vellonen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio 70211, Finland
| |
Collapse
|
38
|
Sebag J. Vitreous and Vision Degrading Myodesopsia. Prog Retin Eye Res 2020; 79:100847. [PMID: 32151758 DOI: 10.1016/j.preteyeres.2020.100847] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Abstract
Macromolecules comprise only 2% of vitreous, yet are responsible for its gel state, transparency, and physiologic function(s) within the eye. Myopia and aging alter collagen and hyaluronan association causing concurrent gel liquefaction and fibrous degeneration. The resulting vitreous opacities and collapse of the vitreous body during posterior vitreous detachment are the most common causes for the visual phenomenon of vitreous floaters. Previously considered innocuous, the vitreous opacities that cause floaters sometimes impact vision by profoundly degrading contrast sensitivity function and impairing quality-of-life. While many people adapt to vitreous floaters, clinically significant cases can be diagnosed with Vision Degrading Myodesopsia based upon echographic assessment of vitreous structure and by measuring contrast sensitivity function. Perhaps due to the ubiquity of floaters, the medical profession has to date largely ignored the plight of those with Vision Degrading Myodesopsia. Improved diagnostics will enable better disease staging and more accurate identification of severe cases that merit therapy. YAG laser treatments may occasionally be slightly effective, but vitrectomy is currently the definitive cure. Future developments will usher in more informative diagnostic approaches as well as safer and more effective therapeutic strategies. Improved laser treatments, new pharmacotherapies, and possibly non-invasive optical corrections are exciting new approaches to pursue. Ultimately, enhanced understanding of the underlying pathogenesis of Vision Degrading Myodesopsia should result in prevention, the ultimate goal of modern Medicine.
Collapse
Affiliation(s)
- J Sebag
- VMR Institute for Vitreous Macula Retina, Huntington Beach, CA, USA; Doheny Eye Institute, Pasadena, CA, USA; Department of Ophthalmology, Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Ginseng for an eye: effects of ginseng on ocular diseases. J Ginseng Res 2020; 44:1-7. [PMID: 32095091 PMCID: PMC7033367 DOI: 10.1016/j.jgr.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/29/2018] [Accepted: 11/26/2018] [Indexed: 01/01/2023] Open
Abstract
The sense of vision is the primary means by which we gather information from our surroundings, and vision loss, therefore, severely compromises the life of the affected individuals, their families, and society. Loss of vision becomes more frequent with age, and diabetic retinopathy, age-related macular degeneration, cataracts, and glaucoma are the major causes of vision impairment. To find active pharmacological compounds that might prevent or ameliorate the vision-threatening eye diseases, numerous studies have been performed, and some botanical compounds, including those extracted from ginseng, have been shown to possess beneficial effects in the treatment or prevention of common ocular diseases. In this review, we summarize the recent reports investigating the therapeutic effects of ginseng and ginsenosides on diverse ocular diseases and discuss their therapeutic potential.
Collapse
|
40
|
Metabolite therapy guided by liquid biopsy proteomics delays retinal neurodegeneration. EBioMedicine 2020; 52:102636. [PMID: 32028070 PMCID: PMC7005447 DOI: 10.1016/j.ebiom.2020.102636] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/26/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background Neurodegenerative diseases are incurable disorders caused by progressive neuronal cell death. Retinitis pigmentosa (RP) is a blinding neurodegenerative disease that results in photoreceptor death and progresses to the loss of the entire retinal network. We previously found that proteomic analysis of the adjacent vitreous served as way to indirectly biopsy the retina and identify changes in the retinal proteome. Methods We analyzed protein expression in liquid vitreous biopsies from autosomal recessive (ar)RP patients with PDE6A mutations and arRP mice with Pde6ɑ mutations. Proteomic analysis of retina and vitreous samples identified molecular pathways affected at the onset of photoreceptor death. Based on affected molecular pathways, arRP mice were treated with a ketogenic diet or metabolites involved in fatty-acid synthesis, oxidative phosphorylation, and the tricarboxylic acid (TCA) cycle. Findings Dietary supplementation of a single metabolite, ɑ-ketoglutarate, increased docosahexaeonic acid levels, provided neuroprotection, and enhanced visual function in arRP mice. A ketogenic diet delayed photoreceptor cell loss, while vitamin B supplementation had a limited effect. Finally, desorption electrospray ionization mass spectrometry imaging (DESI-MSI) on ɑ-ketoglutarate-treated mice revealed restoration of metabolites that correlated with our proteomic findings: uridine, dihydrouridine, and thymidine (pyrimidine and purine metabolism), glutamine and glutamate (glutamine/glutamate conversion), and succinic and aconitic acid (TCA cycle). Interpretation This study demonstrates that replenishing TCA cycle metabolites via oral supplementation prolongs retinal function and provides a neuroprotective effect on the photoreceptor cells and inner retinal network. Funding NIH grants [R01EY026682, R01EY024665, R01EY025225, R01EY024698, R21AG050437, P30EY026877, 5P30EY019007, R01EY018213, F30EYE027986, T32GM007337, 5P30CA013696], NSF grant CHE-1734082.
Collapse
|
41
|
Novel Liposome Aggregate Platform (LAP) system for sustained retention of drugs in the posterior ocular segment following intravitreal injection. Int J Pharm 2019; 576:118987. [PMID: 31870961 DOI: 10.1016/j.ijpharm.2019.118987] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 01/17/2023]
Abstract
A novel Liposome Aggregate Platform (LAP) system for prolonged retention of drugs in the posterior eye segment after intravitreal injection (IVT) was developed and evaluated. Calcein, FITC-dextran-4000 (FD4) and Flurbiprofen (FLB), were encapsulated in negatively charged liposomes, and mixed with protamine to produce the LAP. The lipid/protamine ratio was fixed, in order to have a convenient aggregation rate permitting IVT injection and also a sustained release of liposome-entrapped molecules (in vitro) from LAP. In vitro release studies confirmed the potential of LAP system consisted of HPC/DPPG/Chol liposomes and protamine (at 1:1 w/w to lipid), to delay calcein, FD4 and FLB release, compared to free liposomes. In vivo studies demonstrated increased vitreous retention of liposomes and LAP for all molecules, compared to the corresponding solutions; however the retention of FD4 is similar for non-aggregated liposomes and LAP, and calcein retention is only slightly increased by LAP compared to liposomes. The later result may be connected with the visible ocular inflammation caused by both dyes; interestingly inflammation was moderately reduced when dyes were entrapped in liposomes and even more when in LAP. No visible inflammation was demonstrated for FLB, and the LAP system significantly increased the retention of FLB in the ocular tissues (compared to non-aggregated liposomes). Taking into account the capability of the novel LAP system to decrease inflammatory reactions towards calcein and FD4, and prolong the retention of FLB in ocular tissues, it is concluded that such systems, after further optimization, may be considered as promising effective and safe approaches for treatment of posterior segment ocular pathologies.
Collapse
|
42
|
Ankamah E, Sebag J, Ng E, Nolan JM. Vitreous Antioxidants, Degeneration, and Vitreo-Retinopathy: Exploring the Links. Antioxidants (Basel) 2019; 9:antiox9010007. [PMID: 31861871 PMCID: PMC7022282 DOI: 10.3390/antiox9010007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
The transparent vitreous body, which occupies about 80% of the eye’s volume, is laden with numerous enzymatic and non-enzymatic antioxidants that could protect the eye from oxidative stress and disease. Aging is associated with degeneration of vitreous structure as well as a reduction in its antioxidant capacity. A growing body of evidence suggests these age-related changes may be the precursor of numerous oxidative stress-induced vitreo-retinopathies, including vision degrading myodesopsia, the clinically significant entoptic phenomena that can result from advanced vitreous degeneration. Adequate intravitreal antioxidant levels may be protective against vitreous degeneration, possibly preventing and even improving vision degrading myodesopsia as well as mitigating various other vitreo-retinopathies. The present article is, therefore, a review of the different antioxidant molecules within vitreous and the inter-relationships between vitreous antioxidant capacity and degeneration.
Collapse
Affiliation(s)
- Emmanuel Ankamah
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Co., X91 K236 Waterford, Ireland;
- Institute of Eye Surgery, UPMC Whitfield, Buttlerstown, Co., X91 DH9W Waterford, Ireland
- Correspondence: (E.A.); (J.M.N.)
| | - J. Sebag
- VMR Consulting Inc., Huntington Beach, CA 92647, USA;
| | - Eugene Ng
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Co., X91 K236 Waterford, Ireland;
- Institute of Eye Surgery, UPMC Whitfield, Buttlerstown, Co., X91 DH9W Waterford, Ireland
| | - John M. Nolan
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Co., X91 K236 Waterford, Ireland;
- Correspondence: (E.A.); (J.M.N.)
| |
Collapse
|
43
|
Tang PH, Velez G, Tsang SH, Bassuk AG, Mahajan VB. VCAN Canonical Splice Site Mutation is Associated With Vitreoretinal Degeneration and Disrupts an MMP Proteolytic Site. Invest Ophthalmol Vis Sci 2019; 60:282-293. [PMID: 30657523 PMCID: PMC6735613 DOI: 10.1167/iovs.18-25624] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose To gain insight into the pathophysiology of vitreoretinal degeneration, the clinical course of three family members with Versican Vitreoretinopathy (VVR) is described, and a canonical splice site mutation in the gene encoding for versican (VCAN) protein was biochemically analyzed. Methods A retrospective chart review, human eye histopathology, Sanger DNA sequencing, protein structural modeling, and in vitro proteolysis assays were performed. Results The proband (II:1), mother (I:2), and younger sibling (II:2) suffered retinal degeneration with foveal sparing and retinal detachments with proliferative vitreoretinopathy, features that were confirmed on histopathologic analysis. All affected members carried a heterozygous adenine to guanine variant (c.4004-2A>G) predicted to result in exon 8 skipping or the deletion of 13 amino acids at the beginning of the GAGβ chain (VCAN p.1335-1347). This deleted region corresponded to a putative MMP cleavage site, validated using fluorescence resonance energy transfer (FRET)-based proteolysis assays. Proteomic network analysis identified 10 interacting partners in the human vitreous and retina linked to retinal detachment and degeneration. Conclusions VVR causes significant ocular disease, including retinal detachment and retinal dystrophy. The intronic VCAN mutation removes an MMP cleavage site, which alters versican structure and results in abnormal vitreous modeling. Disruption of a versican protein network may underlie clinicopathologic disease features and point to targeted therapies.
Collapse
Affiliation(s)
- Peter H Tang
- Byers Eye Institute, Omics Laboratory, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, United States.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States
| | - Gabriel Velez
- Byers Eye Institute, Omics Laboratory, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, United States.,Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, United States
| | - Stephen H Tsang
- Bernard and Shirlee Brown Glaucoma Laboratory, Department of Pathology and Cell Biology, Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, New York, United States
| | - Alexander G Bassuk
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
| | - Vinit B Mahajan
- Byers Eye Institute, Omics Laboratory, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, United States.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States
| |
Collapse
|
44
|
Proteomic insight into the pathogenesis of CAPN5-vitreoretinopathy. Sci Rep 2019; 9:7608. [PMID: 31110225 PMCID: PMC6527583 DOI: 10.1038/s41598-019-44031-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
CAPN5 Neovascular Inflammatory Vitreoretinopathy (CAPN5-NIV; OMIM 193235) is a poorly-understood rare, progressive inflammatory intraocular disease with limited therapeutic options. To profile disease effector proteins in CAPN5-NIV patient vitreous, liquid vitreous biopsies were collected from two groups: eyes from control subjects (n = 4) with idiopathic macular holes (IMH) and eyes from test subjects (n = 12) with different stages of CAPN5-NIV. Samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein expression changes were evaluated by principal component analysis, 1-way ANOVA (significant p-value < 0.05), hierarchical clustering, gene ontology, and pathway representation. There were 216 differentially-expressed proteins (between CAPN5-NIV and control vitreous), including those unique to and abundant in each clinical stage. Gene ontology analysis revealed decreased synaptic signaling proteins in CAPN5-NIV vitreous compared to controls. Pathway analysis revealed that inflammatory mediators of the acute phase response and the complement cascade were highly-represented. The CAPN5-NIV vitreous proteome displayed characteristic enrichment of proteins and pathways previously-associated with non-infectious posterior uveitis, rhegmatogenous retinal detachment (RRD), age-related macular degeneration (AMD), proliferative diabetic retinopathy (PDR), and proliferative vitreoretinopathy (PVR). This study expands our knowledge of affected molecular pathways in CAPN5-NIV using unbiased, shotgun proteomic analysis rather than targeted detection platforms. The high-levels and representation of acute phase response proteins suggests a functional role for the innate immune system in CAPN5-NIV pathogenesis.
Collapse
|
45
|
Nawaz IM, Rezzola S, Cancarini A, Russo A, Costagliola C, Semeraro F, Presta M. Human vitreous in proliferative diabetic retinopathy: Characterization and translational implications. Prog Retin Eye Res 2019; 72:100756. [PMID: 30951889 DOI: 10.1016/j.preteyeres.2019.03.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of visual impairment in the working-age population. DR is a progressive eye disease caused by long-term accumulation of hyperglycaemia-mediated pathological alterations in the retina of diabetic patients. DR begins with asymptomatic retinal abnormalities and may progress to advanced-stage proliferative diabetic retinopathy (PDR), characterized by neovascularization or preretinal/vitreous haemorrhages. The vitreous, a transparent gel that fills the posterior cavity of the eye, plays a vital role in maintaining ocular function. Structural and molecular alterations of the vitreous, observed during DR progression, are consequences of metabolic and functional modifications of the retinal tissue. Thus, vitreal alterations reflect the pathological events occurring at the vitreoretinal interface. These events are caused by hypoxic, oxidative, inflammatory, neurodegenerative, and leukostatic conditions that occur during diabetes. Conversely, PDR vitreous can exert pathological effects on the diabetic retina, resulting in activation of a vicious cycle that contributes to disease progression. In this review, we recapitulate the major pathological features of DR/PDR, and focus on the structural and molecular changes that characterize the vitreal structure and composition during DR and progression to PDR. In PDR, vitreous represents a reservoir of pathological signalling molecules. Therefore, in this review we discuss how studying the biological activity of the vitreous in different in vitro, ex vivo, and in vivo experimental models can provide insights into the pathogenesis of PDR. In addition, the vitreous from PDR patients can represent a novel tool to obtain preclinical experimental evidences for the development and characterization of new therapeutic drug candidates for PDR therapy.
Collapse
Affiliation(s)
- Imtiaz M Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Anna Cancarini
- Department of Ophthalmology, University of Brescia, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Brescia, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|
46
|
Ahmad MT, Zhang P, Dufresne C, Ferrucci L, Semba RD. The Human Eye Proteome Project: Updates on an Emerging Proteome. Proteomics 2019; 18:e1700394. [PMID: 29356342 DOI: 10.1002/pmic.201700394] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/08/2018] [Indexed: 01/05/2023]
Abstract
The human eye is a complex organ consisting of multiple compartments with unique and specialized properties that reflect their varied functions. Although there have been advancements in ocular imaging and therapeutics over the past decade, the pathogenesis of many common eye diseases remains poorly understood. Proteomics is an invaluable tool to gain insight into pathogenesis, diagnosis, and treatment of eye diseases. By 2013, when the Human Eye Proteome Project (also known as the EyeOme) was founded, there were 4842 nonredundant proteins identified in the human eye. Twenty-three recent papers on the human eye proteome were identified in PubMed searches. These papers were used to compile an updated resource of 9782 nonredundant proteins in the human eye. This updated catalogue sheds light on the molecular makeup of previously undescribed proteomes within the human eye, including optic nerve, sclera, iris, and ciliary body, while adding additional proteins to previously characterized proteomes such as aqueous humor, lens, vitreous, retina, and retinal pigment epithelium/choroid. Although considerable advances have been made to characterize the complete proteome of the human eye, additional high-quality data are needed to confirm and quantify previously discovered eye proteins in both health and disease.
Collapse
Affiliation(s)
- Meleha T Ahmad
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pingbo Zhang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
47
|
Kasudhan KS, Sarkar S, Gupta V, Gupta A, Chakraborti A. Identification of unique proteins in vitreous fluid of patients with noninfectious uveitis. Acta Ophthalmol 2018; 96:e989-e1003. [PMID: 30146788 DOI: 10.1111/aos.13801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/01/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Uveitis is a cause for concern in the developing countries like India. Its poor diagnosis and lack of proper therapeutics often cause blindness in children and young adults. Moreover, the exact mechanism of pathogenesis of different types of uveitis is still elusive. Modern proteomic techniques are found to be advantageous for an in-depth understanding of the ocular physiology using proteomic diversity. Our aim was to identify unique proteins involved in the pathogenesis of autoimmune or noninfectious uveitis. METHODS Vitreous fluid samples (n = 90) were obtained from infectious (N = 34) and noninfectious (N = 56) uveitis patients, and their protein profiles were compared by analysing sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and 2D electrophoresis. Unique proteins were identified through matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and further studied for pathway analysis. RESULTS Protein spots having different molecular weights were observed in noninfectious vitreous fluid samples. Enzymatic digestion of these spots after MALDI-TOF MS analysis revealed different proteins. We identified 25 different proteins through SDS-PAGE and 22 through 2D electrophoresis. 50% of the proteins from SDS-PAGE were associated with heterotrimeric G-protein signalling pathway-rod outer segment phototransduction. 50% proteins from SDS-PAGE and 20% from 2D electrophoresis revealed association with de novo purine biosynthesis. Carbonic anhydrase 1 and serpin B3 were found to be common in both analyses. CONCLUSION High-throughput proteomic and pathway analyses have exposed the potential association of these proteins with autoimmune pathogenesis in uveitis. The exact role of most of the proteins in autoimmune uveitis is yet to be unfurled.
Collapse
Affiliation(s)
| | - Subendu Sarkar
- Department of Experimental Medicine and Biotechnology; Chandigarh India
| | - Vishali Gupta
- Advance Eye Center; Postgraduate Institute of Medical Education and Research; Chandigarh India
| | - Amod Gupta
- Advance Eye Center; Postgraduate Institute of Medical Education and Research; Chandigarh India
| | | |
Collapse
|
48
|
Machlab DA, Velez G, Bassuk AG, Mahajan VB. ProSave: an application for restoring quantitative data to manipulated subsets of protein lists. SOURCE CODE FOR BIOLOGY AND MEDICINE 2018; 13:3. [PMID: 30459825 PMCID: PMC6233572 DOI: 10.1186/s13029-018-0070-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Background In proteomics studies, liquid chromatography tandem mass spectrometry data (LC-MS/MS) is quantified by spectral counts or by some measure of ion abundance. Downstream comparative analysis of protein content (e.g. Venn diagrams and network analysis) typically does not include this quantitative data and critical information is often lost. To avoid loss of spectral count data in comparative proteomic analyses, it is critical to implement a tool that can rapidly retrieve this information. Results We developed ProSave, a free and user-friendly Java-based program that retrieves spectral count data from a curated list of proteins in a large proteomics dataset. ProSave allows for the management of LC-MS/MS datasets and rapidly retrieves spectral count information for a desired list of proteins. Conclusions ProSave is open source and freely available at https://github.com/MahajanLab/ProSave. The user manual, implementation notes, and description of methodology and examples are available on the site.
Collapse
Affiliation(s)
| | - Gabriel Velez
- 1Omics Laboratory, Stanford University, Palo Alto, CA USA.,2Department of Ophthalmology, Byers Eye Institute, Stanford University, 1651 Page Mill Road, Palo Alto, CA 94304 USA.,3Medical Scientist Training Program, University of Iowa, Iowa City, IA USA
| | | | - Vinit B Mahajan
- 1Omics Laboratory, Stanford University, Palo Alto, CA USA.,2Department of Ophthalmology, Byers Eye Institute, Stanford University, 1651 Page Mill Road, Palo Alto, CA 94304 USA.,Palo Alto Veterans Administration, Palo Alto, CA USA
| |
Collapse
|
49
|
Velez G, Tang PH, Cabral T, Cho GY, Machlab DA, Tsang SH, Bassuk AG, Mahajan VB. Personalized Proteomics for Precision Health: Identifying Biomarkers of Vitreoretinal Disease. Transl Vis Sci Technol 2018; 7:12. [PMID: 30271679 PMCID: PMC6159735 DOI: 10.1167/tvst.7.5.12] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022] Open
Abstract
Proteomic analysis is an attractive and powerful tool for characterizing the molecular profiles of diseased tissues, such as the vitreous. The complexity of data available for analysis ranges from single (e.g., enzyme-linked immunosorbent assay [ELISA]) to thousands (e.g., mass spectrometry) of proteins, and unlike genomic analysis, which is limited to denoting risk, proteomic methods take snapshots of a diseased vitreous to evaluate ongoing molecular processes in real time. The proteome of diseased ocular tissues was recently characterized, uncovering numerous biomarkers for vitreoretinal diseases and identifying protein targets for approved drugs, allowing for drug repositioning. These biomarkers merit more attention regarding their therapeutic potential and prospective validation, as well as their value as reproducible, sensitive, and specific diagnostic markers. TRANSLATIONAL RELEVANCE Personalized proteomics offers many advantages over alternative precision-health platforms for the diagnosis and treatment of vitreoretinal diseases, including identification of molecular constituents in the diseased tissue that can be targeted by available drugs.
Collapse
Affiliation(s)
- Gabriel Velez
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Peter H. Tang
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Thiago Cabral
- Department of Specialized Medicine, CCS, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Vision Center Unit, Ophthalmology, EBSERH, HUCAM-UFES, Vitória, Brazil
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Galaxy Y. Cho
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT, USA
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, USA
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Daniel A. Machlab
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Stephen H. Tsang
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, USA
- Department of Ophthalmology, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | | | - Vinit B. Mahajan
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
50
|
Wert KJ, Velez G, Cross MR, Wagner BA, Teoh-Fitzgerald ML, Buettner GR, McAnany JJ, Olivier A, Tsang SH, Harper MM, Domann FE, Bassuk AG, Mahajan VB. Extracellular superoxide dismutase (SOD3) regulates oxidative stress at the vitreoretinal interface. Free Radic Biol Med 2018; 124:408-419. [PMID: 29940351 PMCID: PMC6233711 DOI: 10.1016/j.freeradbiomed.2018.06.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Oxidative stress is a pathogenic feature in vitreoretinal disease. However, the ability of the inner retina to manage metabolic waste and oxidative stress is unknown. Proteomic analysis of antioxidants in the human vitreous, the extracellular matrix opposing the inner retina, identified superoxide dismutase-3 (SOD3) that localized to a unique matrix structure in the vitreous base and cortex. To determine the role of SOD3, Sod3-/- mice underwent histological and clinical phenotyping. Although the eyes were structurally normal, at the vitreoretinal interface Sod3-/- mice demonstrated higher levels of 3-nitrotyrosine, a key marker of oxidative stress. Pattern electroretinography also showed physiological signaling abnormalities within the inner retina. Vitreous biopsies and epiretinal membranes collected from patients with diabetic vitreoretinopathy (DVR) and a mouse model of DVR showed significantly higher levels of nitrates and/or 3-nitrotyrosine oxidative stress biomarkers suggestive of SOD3 dysfunction. This study analyzes the molecular pathways that regulate oxidative stress in human vitreous substructures. The absence or dysregulation of the SOD3 antioxidant at the vitreous base and cortex results in increased oxidative stress and tissue damage to the inner retina, which may underlie DVR pathogenesis and other vitreoretinal diseases.
Collapse
Affiliation(s)
- Katherine J Wert
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA, United States; Omics Laboratory, Stanford University, Palo Alto, CA, United States
| | - Gabriel Velez
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA, United States; Omics Laboratory, Stanford University, Palo Alto, CA, United States
| | - Madeline R Cross
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Brett A Wagner
- Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Melissa L Teoh-Fitzgerald
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Garry R Buettner
- Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - J Jason McAnany
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL, United States
| | - Alicia Olivier
- Division of Comparative Pathology, Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Stephen H Tsang
- Bernard and Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Laboratory of Regenerative Medicine, Columbia University, New York, NY, United States; Edward S. Harkness Eye Institute, Columbia University, New York, NY, United States; Departments of Ophthalmology, Pathology & Cell Biology, and Institute of Human Nutrition, Columbia University, New York, NY, United States
| | - Matthew M Harper
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States; Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, United States; Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, United States
| | - Frederick E Domann
- Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Alexander G Bassuk
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Vinit B Mahajan
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA, United States; Omics Laboratory, Stanford University, Palo Alto, CA, United States; Palo Alto Veterans Administration, Palo Alto, CA, United States.
| |
Collapse
|