1
|
Hakim U, De Felice S, Pinti P, Zhang X, Noah JA, Ono Y, Burgess PW, Hamilton A, Hirsch J, Tachtsidis I. Quantification of inter-brain coupling: A review of current methods used in haemodynamic and electrophysiological hyperscanning studies. Neuroimage 2023; 280:120354. [PMID: 37666393 DOI: 10.1016/j.neuroimage.2023.120354] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Hyperscanning is a form of neuroimaging experiment where the brains of two or more participants are imaged simultaneously whilst they interact. Within the domain of social neuroscience, hyperscanning is increasingly used to measure inter-brain coupling (IBC) and explore how brain responses change in tandem during social interaction. In addition to cognitive research, some have suggested that quantification of the interplay between interacting participants can be used as a biomarker for a variety of cognitive mechanisms aswell as to investigate mental health and developmental conditions including schizophrenia, social anxiety and autism. However, many different methods have been used to quantify brain coupling and this can lead to questions about comparability across studies and reduce research reproducibility. Here, we review methods for quantifying IBC, and suggest some ways moving forward. Following the PRISMA guidelines, we reviewed 215 hyperscanning studies, across four different brain imaging modalities: functional near-infrared spectroscopy (fNIRS), functional magnetic resonance (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). Overall, the review identified a total of 27 different methods used to compute IBC. The most common hyperscanning modality is fNIRS, used by 119 studies, 89 of which adopted wavelet coherence. Based on the results of this literature survey, we first report summary statistics of the hyperscanning field, followed by a brief overview of each signal that is obtained from each neuroimaging modality used in hyperscanning. We then discuss the rationale, assumptions and suitability of each method to different modalities which can be used to investigate IBC. Finally, we discuss issues surrounding the interpretation of each method.
Collapse
Affiliation(s)
- U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom.
| | - S De Felice
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - X Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - J A Noah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Y Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
| | - P W Burgess
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - J Hirsch
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Departments of Neuroscience and Comparative Medicine, Yale School of Medicine, New Haven, CT, United States; Yale University, Wu Tsai Institute, New Haven, CT, United States
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
2
|
Holmes N, Rea M, Hill RM, Boto E, Leggett J, Edwards LJ, Rhodes N, Shah V, Osborne J, Fromhold TM, Glover P, Montague PR, Brookes MJ, Bowtell R. Naturalistic Hyperscanning with Wearable Magnetoencephalography. SENSORS (BASEL, SWITZERLAND) 2023; 23:5454. [PMID: 37420622 PMCID: PMC10304205 DOI: 10.3390/s23125454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
The evolution of human cognitive function is reliant on complex social interactions which form the behavioural foundation of who we are. These social capacities are subject to dramatic change in disease and injury; yet their supporting neural substrates remain poorly understood. Hyperscanning employs functional neuroimaging to simultaneously assess brain activity in two individuals and offers the best means to understand the neural basis of social interaction. However, present technologies are limited, either by poor performance (low spatial/temporal precision) or an unnatural scanning environment (claustrophobic scanners, with interactions via video). Here, we describe hyperscanning using wearable magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs). We demonstrate our approach by simultaneously measuring brain activity in two subjects undertaking two separate tasks-an interactive touching task and a ball game. Despite large and unpredictable subject motion, sensorimotor brain activity was delineated clearly, and the correlation of the envelope of neuronal oscillations between the two subjects was demonstrated. Our results show that unlike existing modalities, OPM-MEG combines high-fidelity data acquisition and a naturalistic setting and thus presents significant potential to investigate neural correlates of social interaction.
Collapse
Affiliation(s)
- Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; (M.R.); (E.B.)
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; (M.R.); (E.B.)
| | - Ryan M. Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; (M.R.); (E.B.)
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; (M.R.); (E.B.)
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
| | - Lucy J. Edwards
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
| | - Vishal Shah
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA; (V.S.); (J.O.)
| | - James Osborne
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA; (V.S.); (J.O.)
| | - T. Mark Fromhold
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
| | - Paul Glover
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
| | - P. Read Montague
- Fralin Biomedical Research Institute, Department of Physics, Virginia Tech, Roanoke, VA 24016, USA;
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; (M.R.); (E.B.)
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (R.M.H.); (J.L.); (L.J.E.); (N.R.); (P.G.); (M.J.B.); (R.B.)
| |
Collapse
|
3
|
Sun B, Wang Y, Ye Q, Pan Y. Associations of Empathy with Teacher-Student Interactions: A Potential Ternary Model. Brain Sci 2023; 13:brainsci13050767. [PMID: 37239239 DOI: 10.3390/brainsci13050767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Empathy has garnered increasing recognition as a pivotal component of teacher-student interactions and a notable determinant of student achievement. Nevertheless, the exact impact of empathy on teacher-student interactions remains elusive, despite research endeavors into the neural mechanisms of teacher empathy. Our article examines the cognitive neural processes of teacher empathy during various forms of teacher-student interactions. To this end, we first present a concise review of theoretical considerations related to empathy and interactions, followed by an extensive discussion of teacher-student interactions and teacher empathy through both "single-brain" and "dual-brain" perspectives. Drawing on these discussions, we propose a potential model of empathy that integrates the affective contagion, cognitive evaluation, and behavior prediction aspects of teacher-student interactions. Finally, future research directions are discussed.
Collapse
Affiliation(s)
- Binghai Sun
- Intelligent Laboratory of Child and Adolescent Mental Health and Crisis Intervention of Zhejiang Province, School of Psychology, Zhejiang Normal University, Jinhua 321004, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Yaoyao Wang
- Intelligent Laboratory of Child and Adolescent Mental Health and Crisis Intervention of Zhejiang Province, School of Psychology, Zhejiang Normal University, Jinhua 321004, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Qun Ye
- Intelligent Laboratory of Child and Adolescent Mental Health and Crisis Intervention of Zhejiang Province, School of Psychology, Zhejiang Normal University, Jinhua 321004, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Russo C, Senese VP. Functional near-infrared spectroscopy is a useful tool for multi-perspective psychobiological study of neurophysiological correlates of parenting behaviour. Eur J Neurosci 2023; 57:258-284. [PMID: 36485015 DOI: 10.1111/ejn.15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
The quality of the relationship between caregiver and child has long-term effects on the cognitive and socio-emotional development of children. A process involved in human parenting is the bio-behavioural synchrony that occurs between the partners in the relationship during interaction. Through interaction, bio-behavioural synchronicity allows the adaptation of the physiological systems of the parent to those of the child and promotes the positive development and modelling of the child's social brain. The role of bio-behavioural synchrony in building social bonds could be investigated using functional near-infrared spectroscopy (fNIRS). In this paper we have (a) highlighted the importance of the quality of the caregiver-child relationship for the child's cognitive and socio-emotional development, as well as the relevance of infantile stimuli in the activation of parenting behaviour; (b) discussed the tools used in the study of the neurophysiological substrates of the parental response; (c) proposed fNIRS as a particularly suitable tool for the study of parental responses; and (d) underlined the need for a multi-systemic psychobiological approach to understand the mechanisms that regulate caregiver-child interactions and their bio-behavioural synchrony. We propose to adopt a multi-system psychobiological approach to the study of parental behaviour and social interaction.
Collapse
Affiliation(s)
- Carmela Russo
- Psychometric Laboratory, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Paolo Senese
- Psychometric Laboratory, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
5
|
Lin JFL, Imada T, Meltzoff AN, Hiraishi H, Ikeda T, Takahashi T, Hasegawa C, Yoshimura Y, Kikuchi M, Hirata M, Minabe Y, Asada M, Kuhl PK. Dual-MEG interbrain synchronization during turn-taking verbal interactions between mothers and children. Cereb Cortex 2022; 33:4116-4134. [PMID: 36130088 PMCID: PMC10068303 DOI: 10.1093/cercor/bhac330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
Verbal interaction and imitation are essential for language learning and development in young children. However, it is unclear how mother-child dyads synchronize oscillatory neural activity at the cortical level in turn-based speech interactions. Our study investigated interbrain synchrony in mother-child pairs during a turn-taking paradigm of verbal imitation. A dual-MEG (magnetoencephalography) setup was used to measure brain activity from interactive mother-child pairs simultaneously. Interpersonal neural synchronization was compared between socially interactive and noninteractive tasks (passive listening to pure tones). Interbrain networks showed increased synchronization during the socially interactive compared to noninteractive conditions in the theta and alpha bands. Enhanced interpersonal brain synchrony was observed in the right angular gyrus, right triangular, and left opercular parts of the inferior frontal gyrus. Moreover, these parietal and frontal regions appear to be the cortical hubs exhibiting a high number of interbrain connections. These cortical areas could serve as a neural marker for the interactive component in verbal social communication. The present study is the first to investigate mother-child interbrain neural synchronization during verbal social interactions using a dual-MEG setup. Our results advance our understanding of turn-taking during verbal interaction between mother-child dyads and suggest a role for social "gating" in language learning.
Collapse
Affiliation(s)
- Jo-Fu Lotus Lin
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA.,Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan.,Institute of Linguistics, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Toshiaki Imada
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA.,Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Andrew N Meltzoff
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA
| | - Hirotoshi Hiraishi
- Hamamatsu University School of Medicine, 1 Chome-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takashi Ikeda
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | | | - Chiaki Hasegawa
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Masayuki Hirata
- Department of Neurosurgery, Osaka University Medical School, 2 Chome-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshio Minabe
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Minoru Asada
- Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
6
|
Watanabe H, Shimojo A, Yagyu K, Sonehara T, Takano K, Boasen J, Shiraishi H, Yokosawa K, Saito T. Construction of a fiber-optically connected MEG hyperscanning system for recording brain activity during real-time communication. PLoS One 2022; 17:e0270090. [PMID: 35737703 PMCID: PMC9223398 DOI: 10.1371/journal.pone.0270090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 06/06/2022] [Indexed: 12/19/2022] Open
Abstract
Communication is one of the most important abilities in human society, which makes clarification of brain functions that underlie communication of great importance to cognitive neuroscience. To investigate the rapidly changing cortical-level brain activity underlying communication, a hyperscanning system with both high temporal and spatial resolution is extremely desirable. The modality of magnetoencephalography (MEG) would be ideal, but MEG hyperscanning systems suitable for communication studies remain rare. Here, we report the establishment of an MEG hyperscanning system that is optimized for natural, real-time, face-to-face communication between two adults in sitting positions. Two MEG systems, which are installed 500m away from each other, were directly connected with fiber optic cables. The number of intermediate devices was minimized, enabling transmission of trigger and auditory signals with almost no delay (1.95-3.90 μs and 3 ms, respectively). Additionally, video signals were transmitted at the lowest latency ever reported (60-100 ms). We furthermore verified the function of an auditory delay line to synchronize the audio with the video signals. This system is thus optimized for natural face-to-face communication, and additionally, music-based communication which requires higher temporal accuracy is also possible via audio-only transmission. Owing to the high temporal and spatial resolution of MEG, our system offers a unique advantage over existing hyperscanning modalities of EEG, fNIRS, or fMRI. It provides novel neuroscientific methodology to investigate communication and other forms of social interaction, and could potentially aid in the development of novel medications or interventions for communication disorders.
Collapse
Affiliation(s)
- Hayato Watanabe
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Child Studies, Toyooka Junior College, Toyooka, Hyogo, Japan
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Atsushi Shimojo
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Kazuyori Yagyu
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Tsuyoshi Sonehara
- Research and Development Group, Hitachi Ltd., Sapporo, Hokkaido, Japan
| | - Kazuyoshi Takano
- Graduate school of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jared Boasen
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- Tech3Lab, HEC Montréal, Montreal, Quebec, Canada
| | - Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Koichi Yokosawa
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| | - Takuya Saito
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| |
Collapse
|
7
|
Levy J, Lankinen K, Hakonen M, Feldman R. The integration of social and neural synchrony: a case for ecologically valid research using MEG neuroimaging. Soc Cogn Affect Neurosci 2021; 16:143-152. [PMID: 32382751 PMCID: PMC7812634 DOI: 10.1093/scan/nsaa061] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/06/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022] Open
Abstract
The recent decade has seen a shift from artificial and environmentally deprived experiments in neuroscience to real-life studies on multiple brains in interaction, coordination and synchrony. In these new interpersonal synchrony experiments, there has been a growing trend to employ naturalistic social interactions to evaluate mechanisms underlying synchronous neuronal communication. Here, we emphasize the importance of integrating the assessment of neural synchrony with measurement of nonverbal behavioral synchrony as expressed in various social contexts: relaxed social interactions, planning a joint pleasurable activity, conflict discussion, invocation of trauma, or support giving and assess the integration of neural and behavioral synchrony across developmental stages and psychopathological conditions. We also showcase the advantages of magnetoencephalography neuroimaging as a promising tool for studying interactive neural synchrony and consider the challenge of ecological validity at the expense of experimental rigor. We review recent evidence of rhythmic information flow between brains in interaction and conclude with addressing state-of-the-art developments that may contribute to advance research on brain-to-brain coordination to the next level.
Collapse
Affiliation(s)
- Jonathan Levy
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
- Interdisciplinary Center, Baruch Ivcher School of Psychology, Herzliya 46150, Israel
| | - Kaisu Lankinen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Maria Hakonen
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ruth Feldman
- Interdisciplinary Center, Baruch Ivcher School of Psychology, Herzliya 46150, Israel
- Yale University, Child Study Center, New Haven, CT 06520, USA
| |
Collapse
|
8
|
Brain-to-Brain Neural Synchrony During Social Interactions: A Systematic Review on Hyperscanning Studies. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196669] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aim of this study was to conduct a comprehensive review on hyperscanning research (measuring brain activity simultaneously from more than two people interacting) using an explicit systematic method, the preferred reporting items for systematic reviews and meta-analyses (PRISMA). Data were searched from IEEE Xplore, PubMed, Engineering Village, Web of Science and Scopus databases. Inclusion criteria were journal articles written in English from 2000 to 19 June 2019. A total of 126 empirical studies were screened out to address three specific questions regarding the neuroimaging method, the application domain, and the experiment paradigm. Results showed that the most used neuroimaging method with hyperscanning was magnetoencephalography/electroencephalography (MEG/EEG; 47%), and the least used neuroimaging method was hyper-transcranial Alternating Current Stimulation (tACS) (1%). Applications in cognition accounted for almost half the studies (48%), while educational applications accounted for less than 5% of the studies. Applications in decision-making tasks were the second most common (26%), shortly followed by applications in motor synchronization (23%). The findings from this systematic review that were based on documented, transparent and reproducible searches should help build cumulative knowledge and guide future research regarding inter-brain neural synchrony during social interactions, that is, hyperscanning research.
Collapse
|
9
|
Czeszumski A, Eustergerling S, Lang A, Menrath D, Gerstenberger M, Schuberth S, Schreiber F, Rendon ZZ, König P. Hyperscanning: A Valid Method to Study Neural Inter-brain Underpinnings of Social Interaction. Front Hum Neurosci 2020; 14:39. [PMID: 32180710 PMCID: PMC7059252 DOI: 10.3389/fnhum.2020.00039] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/27/2020] [Indexed: 01/11/2023] Open
Abstract
Social interactions are a crucial part of human life. Understanding the neural underpinnings of social interactions is a challenging task that the hyperscanning method has been trying to tackle over the last two decades. Here, we review the existing literature and evaluate the current state of the hyperscanning method. We review the type of methods (fMRI, M/EEG, and fNIRS) that are used to measure brain activity from more than one participant simultaneously and weigh their pros and cons for hyperscanning. Further, we discuss different types of analyses that are used to estimate brain networks and synchronization. Lastly, we present results of hyperscanning studies in the context of different cognitive functions and their relations to social interactions. All in all, we aim to comprehensively present methods, analyses, and results from the last 20 years of hyperscanning research.
Collapse
Affiliation(s)
- Artur Czeszumski
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | - Sara Eustergerling
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | - Anne Lang
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | - David Menrath
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | | | - Susanne Schuberth
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | - Felix Schreiber
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | | | - Peter König
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany.,Institut für Neurophysiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Yokosawa K. Overview of Magnetoencephalography—Brief History of its Sensors and Hardware. ADVANCED BIOMEDICAL ENGINEERING 2020. [DOI: 10.14326/abe.9.217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Minagawa Y, Xu M, Morimoto S. Toward Interactive Social Neuroscience: Neuroimaging Real-World Interactions in Various Populations. JAPANESE PSYCHOLOGICAL RESEARCH 2018. [DOI: 10.1111/jpr.12207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Levy J, Goldstein A, Feldman R. Perception of social synchrony induces mother-child gamma coupling in the social brain. Soc Cogn Affect Neurosci 2018; 12:1036-1046. [PMID: 28402479 PMCID: PMC5490671 DOI: 10.1093/scan/nsx032] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 03/01/2017] [Indexed: 12/20/2022] Open
Abstract
The recent call to move from focus on one brain’s functioning to two-brain communication initiated a search for mechanisms that enable two humans to coordinate brain response during social interactions. Here, we utilized the mother–child context as a developmentally salient setting to study two-brain coupling. Mothers and their 9-year-old children were videotaped at home in positive and conflictual interactions. Positive interactions were microcoded for social synchrony and conflicts for overall dialogical style. Following, mother and child underwent magnetoencephalography while observing the positive vignettes. Episodes of behavioral synchrony, compared to non-synchrony, increased gamma-band power in the superior temporal sulcus (STS), hub of social cognition, mirroring and mentalizing. This neural pattern was coupled between mother and child. Brain-to-brain coordination was anchored in behavioral synchrony; only during episodes of behavioral synchrony, but not during non-synchronous moments, mother’s and child's STS gamma power was coupled. Importantly, neural synchrony was not found during observation of unfamiliar mother-child interaction Maternal empathic/dialogical conflict style predicted mothers’ STS activations whereas child withdrawal predicted attenuated STS response in both partners. Results define a novel neural marker for brain-to-brain synchrony, highlight the role of rapid bottom-up oscillatory mechanisms for neural coupling and indicate that behavior-based processes may drive synchrony between two brains during social interactions.
Collapse
Affiliation(s)
- Jonathan Levy
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Abraham Goldstein
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.,Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
| | - Ruth Feldman
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.,Department of Psychology, Bar-Ilan University, Ramat Gan, Israel.,Child Study Center, Yale University, New Haven, CT, USA
| |
Collapse
|
13
|
Vogeley K. Two social brains: neural mechanisms of intersubjectivity. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0245. [PMID: 28673921 DOI: 10.1098/rstb.2016.0245] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 12/11/2022] Open
Abstract
It is the aim of this article to present an empirically justified hypothesis about the functional roles of the two social neural systems, namely the so-called 'mirror neuron system' (MNS) and the 'mentalizing system' (MENT, also 'theory of mind network' or 'social neural network'). Both systems are recruited during cognitive processes that are either related to interaction or communication with other conspecifics, thereby constituting intersubjectivity. The hypothesis is developed in the following steps: first, the fundamental distinction that we make between persons and things is introduced; second, communication is presented as the key process that allows us to interact with others; third, the capacity to 'mentalize' or to understand the inner experience of others is emphasized as the fundamental cognitive capacity required to establish successful communication. On this background, it is proposed that MNS serves comparably early stages of social information processing related to the 'detection' of spatial or bodily signals, whereas MENT is recruited during comparably late stages of social information processing related to the 'evaluation' of emotional and psychological states of others. This hypothesis of MNS as a social detection system and MENT as a social evaluation system is illustrated by findings in the field of psychopathology. Finally, new research questions that can be derived from this hypothesis are discussed.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
Collapse
Affiliation(s)
- Kai Vogeley
- Department of Psychiatry, University Hospital Cologne, Kerpener Street 62, 50924 Cologne, Germany .,Institute for Neuroscience and Medicine-Cognitive Neuroscience (INM3), Research Center Juelich, Wilhelm-Johnen Strasse, 52428 Juelich, Germany
| |
Collapse
|
14
|
Ahn S, Cho H, Kwon M, Kim K, Kwon H, Kim BS, Chang WS, Chang JW, Jun SC. Interbrain phase synchronization during turn-taking verbal interaction-a hyperscanning study using simultaneous EEG/MEG. Hum Brain Mapp 2017; 39:171-188. [PMID: 29024193 DOI: 10.1002/hbm.23834] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/04/2017] [Accepted: 09/22/2017] [Indexed: 01/25/2023] Open
Abstract
Recently, neurophysiological findings about social interaction have been investigated widely, and hardware has been developed that can measure multiple subjects' brain activities simultaneously. These hyperscanning studies have enabled us to discover new and important evidences of interbrain interactions. Yet, very little is known about verbal interaction without any visual input. Therefore, we conducted a new hyperscanning study based on verbal, interbrain turn-taking interaction using simultaneous EEG/MEG, which measures rapidly changing brain activities. To establish turn-taking verbal interactions between a pair of subjects, we set up two EEG/MEG systems (19 and 146 channels of EEG and MEG, respectively) located ∼100 miles apart. Subjects engaged in verbal communication via condenser microphones and magnetic-compatible earphones, and a network time protocol synchronized the two systems. Ten subjects participated in this experiment and performed verbal interaction and noninteraction tasks separately. We found significant oscillations in EEG alpha and MEG alpha/gamma bands in several brain regions for all subjects. Furthermore, we estimated phase synchronization between two brains using the weighted phase lag index and found statistically significant synchronization in EEG and MEG data. Our novel paradigm and neurophysiological findings may foster a basic understanding of the functional mechanisms involved in human social interactions. Hum Brain Mapp 39:171-188, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sangtae Ahn
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hohyun Cho
- New York State Department of Health, Wadsworth Center, Albany, New York
| | - Moonyoung Kwon
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Kiwoong Kim
- Center for Biosignals, Korea Research Institute of Standards and Science, Daejeon, South Korea.,Department of Medical Physics, University of Science and Technology, Daejeon, South Korea
| | - Hyukchan Kwon
- Center for Biosignals, Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Bong Soo Kim
- EIT/LOFUS R&D Center, Institute for Integrative Medicine, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, South Korea.,Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea
| | - Won Seok Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Chan Jun
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
15
|
Rasheed W, Neoh YY, Bin Hamid NH, Reza F, Idris Z, Tang TB. Early visual analysis tool using magnetoencephalography for treatment and recovery of neuronal dysfunction. Comput Biol Med 2017; 89:573-583. [PMID: 28551109 DOI: 10.1016/j.compbiomed.2017.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/12/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
Functional neuroimaging modalities play an important role in deciding the diagnosis and course of treatment of neuronal dysfunction and degeneration. This article presents an analytical tool with visualization by exploiting the strengths of the MEG (magnetoencephalographic) neuroimaging technique. The tool automates MEG data import (in tSSS format), channel information extraction, time/frequency decomposition, and circular graph visualization (connectogram) for simple result inspection. For advanced users, the tool also provides magnitude squared coherence (MSC) values allowing personalized threshold levels, and the computation of default model from MEG data of control population. Default model obtained from healthy population data serves as a useful benchmark to diagnose and monitor neuronal recovery during treatment. The proposed tool further provides optional labels with international 10-10 system nomenclature in order to facilitate comparison studies with EEG (electroencephalography) sensor space. Potential applications in epilepsy and traumatic brain injury studies are also discussed.
Collapse
Affiliation(s)
- Waqas Rasheed
- Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical & Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
| | - Yee Yik Neoh
- Department of Neurosciences, School of Medical Sciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia Health Campus, Kota Bharu, Kelantan, Malaysia
| | - Nor Hisham Bin Hamid
- Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical & Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
| | - Faruque Reza
- Department of Neurosciences, School of Medical Sciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia Health Campus, Kota Bharu, Kelantan, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia Health Campus, Kota Bharu, Kelantan, Malaysia
| | - Tong Boon Tang
- Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical & Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia.
| |
Collapse
|
16
|
The forgotten artist: Why to consider intentions and interaction in a model of aesthetic experience. Phys Life Rev 2017. [DOI: 10.1016/j.plrev.2017.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, Lewis-Peacock J, Weiskopf N, Blefari ML, Rana M, Oblak E, Birbaumer N, Sulzer J. Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci 2016; 18:86-100. [PMID: 28003656 DOI: 10.1038/nrn.2016.164] [Citation(s) in RCA: 561] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Mu Y, Guo C, Han S. Oxytocin enhances inter-brain synchrony during social coordination in male adults. Soc Cogn Affect Neurosci 2016; 11:1882-1893. [PMID: 27510498 DOI: 10.1093/scan/nsw106] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 07/13/2016] [Accepted: 08/03/2016] [Indexed: 11/14/2022] Open
Abstract
Recent brain imaging research has revealed oxytocin (OT) effects on an individual's brain activity during social interaction but tells little about whether and how OT modulates the coherence of inter-brain activity related to two individuals' coordination behavior. We developed a new real-time coordination game that required two individuals of a dyad to synchronize with a partner (coordination task) or with a computer (control task) by counting in mind rhythmically. Electroencephalography (EEG) was recorded simultaneously from a dyad to examine OT effects on inter-brain synchrony of neural activity during interpersonal coordination. Experiment 1 found that dyads showed smaller interpersonal time lags of counting and greater inter-brain synchrony of alpha-band neural oscillations during the coordination (vs control) task and these effects were reliably observed in female but not male dyads. Moreover, the increased alpha-band inter-brain synchrony predicted better interpersonal behavioral synchrony across all participants. Experiment 2, using a double blind, placebo-controlled between-subjects design, revealed that intranasal OT vs placebo administration in male dyads improved interpersonal behavioral synchrony in both the coordination and control tasks but specifically enhanced alpha-band inter-brain neural oscillations during the coordination task. Our findings provide first evidence that OT enhances inter-brain synchrony in male adults to facilitate social coordination.
Collapse
Affiliation(s)
- Yan Mu
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Chunyan Guo
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, China
| | - Shihui Han
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
19
|
Kida T, Tanaka E, Kakigi R. Multi-Dimensional Dynamics of Human Electromagnetic Brain Activity. Front Hum Neurosci 2016; 9:713. [PMID: 26834608 PMCID: PMC4717327 DOI: 10.3389/fnhum.2015.00713] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022] Open
Abstract
Magnetoencephalography (MEG) and electroencephalography (EEG) are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency), which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory) analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain.
Collapse
Affiliation(s)
- Tetsuo Kida
- Department of Integrative Physiology, National Institute for Physiological SciencesOkazaki, Japan
| | | | | |
Collapse
|
20
|
Sensorimotor activation related to speaker vs. listener role during natural conversation. Neurosci Lett 2015; 614:99-104. [PMID: 26742643 PMCID: PMC4756274 DOI: 10.1016/j.neulet.2015.12.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/01/2015] [Accepted: 12/24/2015] [Indexed: 11/20/2022]
Abstract
Although the main function of speech is communication, the brain bases of speaking and listening are typically studied in single subjects, leaving unsettled how brain function supports interactive vocal exchange. Here we used whole-scalp magnetoencephalography (MEG) to monitor modulation of sensorimotor brain rhythms related to the speaker vs. listener roles during natural conversation. Nine dyads of healthy adults were recruited. The partners of a dyad were engaged in live conversations via an audio link while their brain activity was measured simultaneously in two separate MEG laboratories. The levels of ∼10-Hz and ∼20-Hz rolandic oscillations depended on the speaker vs. listener role. In the left rolandic cortex, these oscillations were consistently (by ∼20%) weaker during speaking than listening. At the turn changes in conversation, the level of the ∼10Hz oscillations enhanced transiently around 1.0 or 2.3s before the end of the partner's turn. Our findings indicate left-hemisphere-dominant involvement of the sensorimotor cortex during own speech in natural conversation. The ∼10-Hz modulations could be related to preparation for starting one's own turn, already before the partner's turn has finished.
Collapse
|
21
|
Zhou G, Bourguignon M, Parkkonen L, Hari R. Neural signatures of hand kinematics in leaders vs. followers: A dual-MEG study. Neuroimage 2015; 125:731-738. [PMID: 26546864 PMCID: PMC4692514 DOI: 10.1016/j.neuroimage.2015.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 11/18/2022] Open
Abstract
During joint actions, people typically adjust their own actions according to the ongoing actions of the partner, which implies that the interaction modulates the behavior of both participants. However, the neural substrates of such mutual adaptation are still poorly understood. Here, we set out to identify the kinematics-related brain activity of leaders and followers performing hand actions. Sixteen participants as 8 pairs performed continuous, repetitive right-hand opening and closing actions with ~3-s cycles in a leader–follower task. Subjects played each role for 5 min. Magnetoencephalographic (MEG) brain signals were recorded simultaneously from both partners with a dual-MEG setup, and hand kinematics was monitored with accelerometers. Modulation index, a cross-frequency coupling measure, was computed between the hand acceleration and the MEG signals in the alpha (7–13 Hz) and beta (13–25 Hz) bands. Regardless of the participants' role, the strongest alpha and beta modulations occurred bilaterally in the sensorimotor cortices. In the occipital region, beta modulation was stronger in followers than leaders; these oscillations originated, according to beamformer source reconstructions, in early visual cortices. Despite differences in the modulation indices, alpha and beta power did not differ between the conditions. Our results indicate that the beta modulation in the early visual cortices depends on the subject's role as a follower or leader in a joint hand-action task. This finding could reflect the different strategies employed by leaders and followers in integrating kinematics-related visual information to control their own actions. Pairs of subjects performed hand movements as a leader and follower in a dual-MEG setup. Alpha and beta powers did not differ between followers and leaders. Alpha and beta modulation indices were strongest at bilateral sensorimotor cortices. Beta modulation was stronger in leaders than followers in the early visual cortex. The role might influence the integration of kinematics-related visual information to control one's own movements.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo 02150, Finland.
| | - Mathieu Bourguignon
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo 02150, Finland
| | - Lauri Parkkonen
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo 02150, Finland
| | - Riitta Hari
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo 02150, Finland
| |
Collapse
|
22
|
|
23
|
Himberg T, Hirvenkari L, Mandel A, Hari R. Word-by-word entrainment of speech rhythm during joint story building. Front Psychol 2015; 6:797. [PMID: 26124735 PMCID: PMC4464109 DOI: 10.3389/fpsyg.2015.00797] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/27/2015] [Indexed: 11/16/2022] Open
Abstract
Movements and behavior synchronize during social interaction at many levels, often unintentionally. During smooth conversation, for example, participants adapt to each others' speech rates. Here we aimed to find out to which extent speakers adapt their turn-taking rhythms during a story-building game. Nine sex-matched dyads of adults (12 males, 6 females) created two 5-min stories by contributing to them alternatingly one word at a time. The participants were located in different rooms, with audio connection during one story and audiovisual during the other. They were free to select the topic of the story. Although the participants received no instructions regarding the timing of the story building, their word rhythms were highly entrained (øverlineR = 0.70, p < 0.001) even though the rhythms as such were unstable (øverlineR = 0.14 for pooled data). Such high entrainment in the absence of steady word rhythm occurred in every individual story, independently of whether the subjects were connected via audio-only or audiovisual link. The observed entrainment was of similar strength as typical entrainment in finger-tapping tasks where participants are specifically instructed to synchronize their behavior. Thus, speech seems to spontaneously induce strong entrainment between the conversation partners, likely reflecting automatic alignment of their semantic and syntactic processes.
Collapse
Affiliation(s)
- Tommi Himberg
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University Espoo, Finland
| | - Lotta Hirvenkari
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University Espoo, Finland
| | - Anne Mandel
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University Espoo, Finland
| | - Riitta Hari
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University Espoo, Finland
| |
Collapse
|